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Abstract: In this paper, we consider the evaluation of the mental attention state of individuals driving
in a simulated environment. We tested a pool of subjects while driving on a highway and trying
to overcome various obstacles placed along the course in both manual and autonomous driving
scenarios. Most systems described in the literature use cameras to evaluate features such as blink rate
and gaze direction. In this study, we instead analyse the subjects’ Electrodermal activity (EDA) Skin
Potential Response (SPR), their Electrocardiogram (ECG), and their Electroencephalogram (EEG).
From these signals we extract a number of physiological measures, including eye blink rate and
beta frequency band power from EEG, heart rate from ECG, and SPR features, then investigate their
capability to assess the mental state and engagement level of the test subjects. In particular, and as
confirmed by statistical tests, the signals reveal that in the manual scenario the subjects experienced a
more challenged mental state and paid higher attention to driving tasks compared to the autonomous
scenario. A different experiment in which subjects drove in three different setups, i.e., a manual
driving scenario and two autonomous driving scenarios characterized by different vehicle settings,
confirmed that manual driving is more mentally demanding than autonomous driving. Therefore,
we can conclude that the proposed approach is an appropriate way to monitor driver attention.

Keywords: driver attention; electrodermal activity; electrocardiogram; electroencephalogram; blink
rate; driving simulator

1. Introduction

According to the European Union annual accident report [1], during 2019 and consider-
ing EU member countries, 22,700 people died in crashes on roads, and more than 1.2 million
were injured.Vehicle crashes on EU roads are estimated to cost EUR 280 billion yearly [2].
Driver error is known to be the main contributor to all road crashes [3,4]. Among the major
causes of human error are inappropriate lookout [5], high speed [6], and inattention [7]. In-
appropriate lookout includes surveillance error and looked-but-failed-to-see errors, which
are in turn related to inattention. Thus, driver inattention is an important contributor to
road crashes. Essentially, driver inattention is defined as inadequate attention or failure
to pay attention to crucial driving tasks [8]. This may happen in the form of restricted
attention when the driver is intoxicated, fatigued, or drowsy, or in the form of diverted
attention when the driver is distracted by stimuli derived from sources other than driving
tasks, such as navigation systems, mobile phones, passengers, or external sources [7].

Driving is a complex and resource-demanding activity for the driver. Essentially, it
is a sensorimotor task that involves: (1) perception of environmental stimuli through the
visual [9], vestibular [10], and somatosensory [11] systems; (2) processing of signals and
planning of responses by the brain; and (3) transmission of signals by the central nervous
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system (CNS) to muscles in order to execute physical responses [12]. Therefore, drivers
have an active role in the closed loop of environment perception and vehicle control
activity. Naturally, their attention is essential to keeping the loop running safely and
preventing accidents. Numerous techniques have been proposed by researchers [13–15]
and car manufacturing companies to detect drivers’ attention state using driver monitoring
systems (DMSs) as a part of advanced driving assistance systems (ADAS) [16,17]. In general,
a DMS is designed to automatically detect the attention level of the driver and in case of
necessity to warn them with various methods such as audio warnings or vibrations in
order to prevent dangerous situations and crashes. Commonly, most DMSs employ various
kinds of camera-based solutions along with image processing techniques to estimate the
driver’s attention/inattention level. Although these techniques are very popular because
of the simplicity of their installation and use, they can be less efficient when the vehicle is
in motion due to vibrations created by its movement, potentially resulting in noisy images.
Furthermore, while driving the background color of the scene is constantly changing, as
is the light direction. This can create a partial or complete shadow on the driver’s face,
making it difficult for such systems to recognize the face and its attributes. Additionally,
the efficiency of such systems may vary due to the time of day or to weather conditions such
as rain or snow because of variations in light intensity. Moreover, because most camera-
based methods make use of ocular indices, if the driver is wearing spectacles or sunglasses,
eye detection is more difficult for the system, and as a result it may not work properly.

Another approach to assess driver attention is based on the use of physiological
measurements. These indicators can be acquired through various methods, including elec-
troencephalography (EEG), electrocardiography (ECG), and electrodermal activity (EDA)
measurements. Although these can be affected by different types of artifacts, as discussed
in Section 5.3, they are generally exempt from the aforementioned concerns about weather
and environmental conditions. Furthermore, physiological measures are known to be accu-
rate [18] and reliable [19], and their combination in a multi-modal sensor fusion architecture
can increase the robustness of the various measurements [20]. In addition, because the
measurements are acquired directly from the subject’s body, they have low latency and
high temporal resolution [21]. Several studies have presented physiological measures as
valid sources for human cognitive state evaluation [22]. For example, in [23] the authors
confirmed a negative correlation between attention and blink frequency. From [24], we
know that EDA has a long history of use as an indicator of attention and arousal. The re-
search study presented in [25] reported a relation between visual attention accuracy and
increase in EEG beta frequency band power in the occipital region of the brain. The authors
of [26] showed a positive correlation between increased anxiety and EEG beta power, as
well as a surge in heart rate, during attentional tasks.

This study is an extension of our previous conference paper [27]. In that paper, we
briefly described an experiment conducted at our university, hereinafter referred to as
the first experiment, in which we acquired EEG signals from subjects while driving in a
professional driving simulator and using our specially designed EEG headset. We then
computed the blink rate by processing the EEG signals recorded from the frontal regions
of the subject’s head. We noticed that the blink rate decreased during manual driving
tasks with respect to autonomous driving; thus, we concluded that drivers had higher
attention during manual driving as compared to autonomous driving. In this work, we
present a new experiment, from now on referred to as the second experiment, in which
we recorded the Skin Potential Response (SPR), ECG, and EEG signals from a different set
of individuals in manual and autononomous driving scenarios. The SPR and ECG signal
features have been shown to be good indicators of a subject’s mental state. As examples,
in [28,29] these two physiological signals were employed to analyze the effect of traffic
situations on subjects while driving in an urban area. In [30,31], we previously evaluated
the emotional state of individuals wearing both SPR and ECG sensors driving along the
same route and using a variety of car handling settings. Here, we report the results obtained
when using SPR, ECG, and EEG signals together through a multisensor recoding system.
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In addition to the blink rate measures calculated using EEG frontal channels, in this novel
experiment we evaluate the EEG beta band power, ECG heart rate, and EDA SPR measures
in order to asses the attention level of drivers. We show that different driving scenarios
induce different responses in the test subjects; in accordance with [27], the manual driving
scenario impacts the subjects more, evidencing a more challenged mental state than in the
autonomous scenario.

In summary, the main contributions of this paper are as follows. (1) We develop
a system for assessing driver attention based on the analysis of various physiological
signals, in particular, EEG, ECG, and EDA-SPR. The system consists of wireless wearable
sensors, with their own firmware, and signal processing software. (2) Unlike other solutions
proposed in the literature for assessing driver attention levels, which mostly rely on visual
information, here we estimate the blink rate and the beta power on the basis of EEG,
the heart rate on the basis of ECG, and SPR RMS measures on the basis of EDA. (3) We
report the results of two experiments comparing autonomous and manual driving scenarios.
These experiments demonstrate that drivers are more engaged during manual driving, and
confirm the applicability of the proposed system in practical driving scenarios.

2. Materials and Methods
2.1. Sensor Description

In this section, we describe the architecture of the sensors used in the experiments
introduced above. In the first experiment, we used our own EEG headband design, which is
characterized in [32]. To briefly describe its characteristics and specifications, the headband
has six electrodes which acquire EEG signals from the scalp; two of them are located in
the frontal region, two in the central region, and two in the occipital region. Referring to
the 10-20 international system [33], the electrode positions are at the locations named Fp1,
Fp2, C3, C4, O1, and O2. In Figure 1, the electrode locations are indicated with gray circles.
The reference electrodes are shown placed at the locations of mastoids M1 and M2.

Figure 1. Placement of the EEG electrodes according to the 10/20 standard.

The circuit of the EEG sensor is composed of an analog section and a digital section.
In the analog section, the signals are conditioned by means of six differential amplifiers
that convert the differential voltages between each electrode and the reference electrodes
M1 and M2 into high-level single-ended voltages. The low-level voltage of each channel
is in the ±350 µV range, while the high-level output voltage spans up to 3.3 Vpp. Each
differential amplifier is characterized according to these specifications in [32], showing a
gain of 4210 ± 35. The nonlinearity of the amplifiers results in their being on the order
of 6 µV. The amplifiers are designed for band-pass behavior in the [0.8, 44] Hz range,
with slopes of +40 dB/dec and −60 dB/dec for the lower and upper corner frequencies,
respectively. The digital section is composed of a DSP and a WiFi module. Through its
on-board A/D converter, the DSP converts the amplified signals into 12-bit information at
a sample rate of 3200 Sa/s; thanks to the oversampling technique, 14-bit data are obtained
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at a sample rate of 200 Sa/s, corresponding to a resolution of 50 nV. After acquisition, data
are sent via UART to the WiFi module, which transmits them to a laptop. The headband is
battery-operated with a single LiPo cell and has a capacity of 850 mAh, allowing for ten
hours of continuous transmission.

In the second experiment, ECG and EDA signals were acquired in addition to EEG
signals; the ECG and EDA sensor systems were developed by the authors and are described
in detail in [34]. The system is composed of a dual channel ECG sensor and two EDA
sensors. The EDA sensors acquire the SPR by posing two Ag/AgCl electrodes on the palm
and back of each hand. We decided to use two sensors, one on each hand, in order to avoid
motion artifacts that can arise due to hand motions during driving [34]. Each SPR sensor
acquires the low-level differential voltage on each hand (in the ±10 mV range) and converts
it into a high-level signal which spans up to 3.3 Vpp. Then, the information is digitized with
a 12-bit resolution and sent to a WiFi module for wireless transmission. The nonlinearity of
SPR readings results (as reported in [34]) in their being lower than 30 µV, with a resolution
of 5 µV and bandwidth in the [0.08, 8] Hz range. The ECG sensor acquires the low-level
derivations on the chest by means of four Ag/AgCl electrodes and converts the low-level
differential voltages (in the ±5 mV range) into 3.3 Vpp. Afterwards, the data are digitized
with 12-bit resolution and sent to a WiFi module. The nonlinearity of the ECG sensor means
that the results are on the order of 5 µV, the resolution is 2.4 µV, and the bandwidth is in
the [0.08, 75] Hz range. The locations of the electrodes for the ECG and SPR sensors are
schematized in Figure 2.

Figure 2. Placement of the ECG and SPR electrodes.

Particular care was taken with the data transmission protocol. It is mandatory to
maintain all of the sensors in time alignment and with good accuracy. For this reason, we
chose to set the ECG sensor as the access point while the others (EEG, SPR) transmit the
data to the access point via an UDP protocol. In this setup, the ECG sensor is responsible
for maintaining time alignment between the SPR and EEG data and the ECG data, as
well as for transmitting all of the data to a laptop. This choice leads to a maximum time
misalignment between signals on the order of just 50 ms [34].

2.2. Signal Processing

After acquisition, data were postprocessed in order to extract information on driver
attention.

EEG signals were processed with EEGlab, a toolbox for Matlab [35], in order to remove
artifacts due to head motion. Subsequently, the spectral components of the EEG signals
were divided into the standard bands, namely, delta [0.5, 4] Hz, theta [4, 8] Hz, alpha
[8, 12] Hz and beta [12, 30] Hz. The power of each band was computed by integrating the
power spectral density over the relevant frequency range. The estimation of power bands
was performed by applying the Welch Periodogram on 4 s blocks (i.e., 800 samples) with
overlap of 50% (i.e., 400 samples) using the Hanning window. In this work, we concentrated
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on the power of the beta waves, as in the literature the power in this frequency band is
associated with discomfort, stress, and attention [26,36].

Because EEG signals usually present additional artifacts due to other physiological
factors such as cardiac and muscle activities, and may be subject to power line interference,
we used Independent Component Analysis (ICA) along with the labelling procedure
provided by EEGLab. This analysis allows for quantification of the ECG, muscle activity,
and power line components within the EEG signals and provides the percentage amount
of these artifacts. As reported in detail in Section 4, the overall impact of these artifacts is
ultimately not relevant.

For illustration purposes, Figures 3 and 4 show the connectivity networks of the six
EEG derivations (Fp1, Fp2, C3, C4, O1, and O2) taking into account the signals acquired
from the seventeen subjects involved in the second experiment. Here, we only consider
the alpha [8, 12] Hz and beta [12, 30] Hz waves [37], as it is well known (see [26,36]) that
the power computed in these frequency bands is related to various mental states such as
relaxation, discomfort, and stress. The mutual correlation between EEG channels is used to
derive each connectivity matrix. Observing these figures, in particular those with alpha
waves, it can be seen that the overall connectivity between channels is lower in the manual
driving scenario, indicating that the relevant brain activity could be happening in particular
brain regions. With beta waves, the differences in connectivity are less marked.

The blink rate was extracted using Blinker, a Matlab toolbox [38] which extracts eye
blink locations and statistics (duration, slew rate, EBR) starting from the frontal derivations
(Fp1, Fp2) of EEG signals. The extraction of blink statistics is performed by the algorithm,
which executes the following steps: (1) FIR band-pass filtering of the EEG signal in the
frequency range [1, 20] Hz; (2) marking the portions of the EEG signal where the amplitude
is higher than the mean of the signal by 1.5 standard deviations; (3) identifying the portions
of the EEG signal (among the ones marked in the previous step) with durations longer than
50 ms and with a minimum distance of 50 ms with respect to the previous and next marked
intervals; (4) calculating the blink parameters (position, peak, rise time, fall time, slew rate);
(5) calculating the correlation of the identified blinks to a stereotypical blink; (6) eliminating
the identified blinks with low signal-to-noise ratios; and (7) eliminating other eye move-
ments from the identified blinks. Figure 5 shows an example of blink position extraction
(red markers) from the Fp1 channel EEG signal (blue line). Subsequently, the EBR is ob-
tained as the total number of detected blinks divided by the total experiment duration.

(a) (b)

Figure 3. Connectivity networks of subjects 1–17. The thicker lines are associated with higher
correlation. (a) Manual, alfa waves; (b) ADAS, alpha waves.
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(a) (b)

Figure 4. Connectivity networks of subjects 1–17. The thicker lines are associated with higher
correlation. (a) Manual, beta waves; (b) ADAS, beta waves.

Figure 5. Example of EEG signal in Fp1 location (blue line) and blink identification by Blinker (red
markers).

The ECG signal is processed in order to extract the heart rate (HR) and heart rate vari-
ability (HRV). In particular, the ECG signal is processed with the Pan-Tompkins algorithm
in order to find the R-peaks in the QRS complex. The time between two subsequent peaks
is the instantaneous RR interval (which is resampled at 200 Hz), and its inverse represents
the instantaneous HR. In this work, it should be noted that when we manually checked
the ECG signals, no ectopic beats appeared; otherwise, we would have had to eliminate
the ectopic beats and replace the instantaneous ectopic HR with the average between the
previous and the next values having normal sinus rhythm.

Regarding the SPR, we evaluate the signals coming from two sensors (SPR1 and SPR2
in Figure 2). These are processed via the motion artifact removal algorithm we previously
presented in [39]. The motion artifact removal algorithm assumes that the SPR pulses,
which are correlated with autonomic nervous system activity, are similar in both cases,
while the spurious signals caused by hand motions generate an asymmetric energy increase
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mainly visible in one hand at a time (i.e., the hand which is mostly engaged in the physical
action). Thus, the algorithm computes the energy of the two SPR signals over a moving
window with a duration of 1 s, and tends to follow the input signal with lower energy
if there is discordance between signals. The output of the algorithm then results in a single
SPR signal without motion artifacts. Finally, the root mean square (RMS) value of the
output signal is computed, and this quantity is used to assess the electrodermal activity.

2.3. Statistical Tests and Methods

The Gaussianity of data samples is a typical assumption in situations where accurate
information on data statistics is lacking, as is typically the case for small data samples. We
performed Gaussianity tests on our data using the Kolmogorov–Smirnov test, assuming,
though it is not wholly correct, that the mean and variance of the data were equal to those
of the samples. In addition, we performed the more accurate Lilliefors test, in which critical
values are calculated using Monte Carlo simulations and assuming unknown mean and
variance. All the acquired data passed the Kolmogorov–Smirnov Gaussianity test at the
α = 0.05 significance level, while all the data except the beta power in the Manual scenario
passed the Lilliefors test for Gaussianity (α = 0.05).

To quantify the hypothesis that data characteristics change in the different scenarios,
in Section 3 we report the results of both the t-test, which assumes Gaussianity, and of the
more general non-parametric Wilcoxon test. The paired t-test is a parametric test used
when the same subject performed a task two times, and was used to verify whether there
was a significant difference between data characteristics in the first and second task.

The Wilcoxon test relies on the sum of the rankings of the input data to verify whether
the data distributions in the first and second task are significantly different. In contrast to
the t-test, the non-parametric Wilcoxon test does not assume Gaussianity.

Both tests provide as output a probability p that the two sets of data belong to dif-
ferent distributions. As commonly accepted in the literature, we assume a good level of
significance if the probability satisfies p ≤ 0.05. These values are highlighted in bold in the
tables in Section 3. Such a result means that when p ≤ 0.05, it can reasonably be assumed
that there is a significant difference between the values in the first test setup as compared
to the second test setup. For the first experiment, we performed the Kruskal–Wallis test
to compare the three groups, confirming the hypothesis that the samples do not have the
same distribution. We believe that comparing the samples in pairs can provide even clearer
evidence of the differences among data characteristics.

3. Experimental Setup

In this work, we analyze physiological data acquired from healthy subjects during
two different experiments carried out in our BioSensLab laboratory at the University of
Udine [40]. The participants were provided with a guideline document asking them to not
drink coffee or other beverages with caffeine and to not smoke for at least two hours before
the experiment. They had to be in possession of a driver’s license. In addition, none of
the subjects had any history of psychiatric or neurological illnesses, and all had normal or
corrected vision.

In the first experiment, we collected EEG signals from the subjects and derived the
blink rate from this in order to first evaluate whether and how this signal alone could
reveal possible changes in the mental attention state of the subjects when comparing
the manual and autonomous scenarios. In the second experiment, we recorded SPR,
ECG, and EEG signals from a different group of subjects. In this case, we report the
results obtained by using these three signals together in a multisensor acquisition setup.
The driving simulator used in both experiments consisted of a three-axis moving platform
(DOF Reality Professional P3) controlled by driving software, allowing the subjects to feel
the car movements in both manual and autonomous driving modes. The platform, along
with a curved screen, Virtual Reality (VR) (Oculus Rift) headset, force-feedback steering
wheel, pedals, gearbox (Logitech G29), and racing seat (see Figure 6), were connected to a
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PC running the driving software. The subjects wore the VR headset throughout the tests to
ensure that they were not influenced by glare or lighting conditions in the environment.
Each subject performed all of the test phases one after the other in a single session. Both
experiments were carried out according to the principles of the Declaration of Helsinki,
as described them in detail below.

Figure 6. A test subject in our lab using our simulator setup, with SPR, ECG, and EEG sensors
employed to acquire the physiological signals (Experiment 2).

Experiment 1: Ten subjects took part to this experiment, seven men and three women.
Their age was in the (29 ± 5) range, with average driving experience of 11 years. They were
asked to use the simulator and drive along a highway with Jersey barriers placed along it in
well-defined locations. More specifically, the course was 20 km long with 10 Jersey barriers
placed at 2 km distances one from the other, the first being at 2 km from the beginning of
the track. These barriers were meant to simulate road work, and involved lane changes or
road narrowing which the subjects had to overcome (see Figure 7).

Figure 7. Example of obstacle mimicking road work with Jersey barriers to force multiple
lane changes.

The subjects had to complete the track three times (i.e., in three separate sessions),
each time in a different driving scenario: a manual driving scenario (denoted as “Manual”
from now on), an autonomous driving scenario with a cautious algorithm set on the
driving simulator (denoted as “ADAS1”), and finally an autonomous driving scenario
with an erratic algorithm set on the driving simulator (denoted as “ADAS2”). In ADAS1,
the frontal acceleration of the vehicle while driving was set to 8 m/s2 and the lateral
acceleration was set to 3 m/s2. In ADAS2, the vehicle acceleration was not specified except
for the limits of the vehicle dynamics. For each subject, the order of these three sessions
was randomly chosen. Because we asked that the average velocity kept by each subject
be 120 km/h, each simulation lasted 7 to 10 min. In addition, in the Manual scenario
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the subjects were encouraged to drive responsibly, as in a real-world scenario, while trying
to avoid speeding and accidents. In the autonomous scenarios the subjects only needed to
experience the drive and the platform movement, looking at the road when they wanted
while the software (with either cautious or erratic behaviour) drove the car autonomously
along the track. During this first experiment only EEG data were acquired from the EEG
headband and transmitted to a computer via WiFi using TCP protocol. We developed a
Graphical User Interface (GUI) that allowed us to gather, display, and save the data before
further processing.

Experiment 2: Seventeen subjects (15 men and 2 women) participated in the exper-
iment, in the 20–37 age range, with 7 years of average driving experience. They signed
informed consent that allowed us to acquire their SPR signals from both hands, their ECG
from the chest, and their EEG signals from the head throughout the experiment. At first,
they were asked to sit in a chair in front of a PC monitor (not the simulator) and look at
it while it displayed a single black point at the center. This phase was meant to relax and
calm the subjects; at the same time, it allowed us to record signals that might be useful as a
baseline, in particular for comparison of the same physiological signals among different
subjects. Then, similarly to the previous experiment, the participants were instructed to
drive along a straight 14 km highway in the simulator in a full manual driving scenario
(referred to as “Manual” from now on). During this phase, they had to overcome six tasks
while driving. In particular, six portions of the road had road work on it, defined by Jersey
barriers which were added beforehand. Each task spanned 200 m, and the distance between
them was 2 km. The first was located at 2 km from the start of the track, and there were
800 m left in the track after the last task. At an average velocity of about 120 km/h, this
phase lasted about 7 min. Finally, the participants had to experience a drive along the
same highway, again with six tasks, now in an autonomous driving scenario (referred to
as “ADAS”). These six tasks were chosen to be different from the ones selected for the
manual phase. During this experiment, SPR, ECG, and EEG sensors were used to log data,
all of which were sent to a computer through WiFi, as in the previous experiment; the only
difference in data transmission with respect to previous experiment was that here we used
ECG sensor as an access point and the data were transmitted (via UDP protocol) from the
EEG and SPR sensors to the ECG sensor, which then transmitted all the data to a laptop.
We developed a new GUI which enabled us to collect all signals synchronously, monitor
them in real time, and save them.

4. Experimental Results

In this section, we present the results obtained by processing the data logged from
the subjects during the two experiments described above. An in-depth discussion of these
results is provided in Section 5.

As introduced in Section 2.2, in order to quantify the impact of possible artifacts on
the EEG signal we performed Independent Component Analysis (ICA) on the EEG signals
using EEGLab. Figure 8 shows a box plot of the relative power content relevant to muscle
activity, ECG, and power line noise for all of the signals acquired from the subjects.

Figure 8. Box plot representing the relative power content of muscle (EMG), heart (ECG), and power
line noise for all of the recorded signals.
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It can be seen that the power line provides the lowest contribution (on the order of
0.8%) thanks to the digital notch filter implemented on the GUI, which has 30 dB power
line suppression, while muscle activity (EMG) and ECG manifest a slightly higher relative
power, on the order of 2% and 3.5%, respectively. In Figure 8, the lines dividing the boxes
into two parts represent the medians, the boxes represent the 25th and 75th percentiles,
and the whiskers are based on computation of the interquartile range. As is apparent,
the impact of the artifacts is small.

The data were then processed for each experiment. For Experiment 1, we only take
into account the EEG signals logged from each subject, analyzing the detected blinks with
the related EBR (i.e., the ratio between the number of blinks detected by Blinker and the
time needed by the subject to complete the course in minutes), along with the power of the
EEG beta waves. The average of these parameters is compared among subjects during each
driving scenario (Manual, Autonomous 1, and Autonomous 2). Further statistical tests were
carried out to compare the EBR and the EEG beta power of the ten subjects. In Experiment
2, we focus on the analysis of the EBR, EEG beta power, RMS of the SPR signal, and mean of
the HR signal. More specifically, these values are computed considering the entire signals
logged from the the whole track, for each subject. After that, we calculate the average
of these values considering all of the test subjects and compare the results among the
various driving scenarios, i.e., Manual and ADAS. Statistical tests were applied in this
case as well, this time considering the derived parameters for the seventeen subjects in the
two scenarios.

4.1. Experiment 1

Here, we summarize the results of the first experiment, which was partially described
in [27]. Table 1 shows the EBR and average beta power of the O2 channel for all scenarios
and each subject.

Table 1. Blink rate (FP1 derivation) and beta power (O2 derivation) for all scenarios and each subject.

Manual ADAS1 ADAS2

Subject EBR a Beta Power b EBR Beta Power EBR Beta Power

1 2.36 8.29 9.01 4.68 9.13 6.63
2 25.31 8.71 31.53 6.90 43.08 9.77
3 8.82 13.89 12.14 5.05 9.13 4.86
4 22.37 6.07 39.53 4.25 41.58 5.55
5 10.37 10.41 9.90 6.46 15.99 6.31
6 7.03 7.09 9.20 4.63 9.92 7.10
7 9.95 8.38 34.37 5.24 30.65 6.05
8 5.74 7.10 9.17 4.10 7.13 17.19
9 5.74 7.10 21.03 9.03 15.03 12.94
10 6.60 5.83 13.51 4.08 11.47 6.37

a Blinks Per Minute. b µV2.

This table shows that EBR varies quite noticeably from subject to subject. In addition, it
shows quite well that EBR is reduced during manual driving compared to the two scenarios
with autonomous driving, reflecting the increased attention associated with manual driving.
Table 1 reports the power of the EEG beta waves, which correspond to the EEG spectral
content in the range of [12, 30] Hz. As mentioned above, the beta power is evaluated
integrating (over the frequency range of [12, 30] Hz) the Welch-periodogram power spectral
density estimate of the EEG signal of the O2 derivation. The estimate is computed by
dividing the signal into blocks of 4 s duration windowed with the Hanning window and
with 50% overlap. It can be noted that the beta power is higher during manual driving
as opposed to the two autonomous driving scenarios.

For a better comparison, Figure 9 shows the box plot of EBR and beta power, taking
into account the data of all the subjects in the three scenarios. The box plot in Figure 9a
shows that EBR is considerably lower during manual driving than during the ADAS1 and
ADAS2 scenarios. In addition, the box plot in Figure 9b shows that the beta power is higher
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during manual driving compared to the ADAS1 and ADAS2 scenarios. For each subject,
we computed the ratio between the EBR in the manual scenario and the corresponding
average of the values in the two autonomous scenarios and did the same for the beta power.
For the EBR, the mean of the values of this ratio was 0.57, with a standard deviation of 0.21,
while for the beta power the mean was 1.33 with a standard deviation of 0.61. These values
again confirm that the drivers were more engaged during manual driving, with a reduced
EBR and increased beta power.
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Figure 9. (a) Box plot of EBR in Manual, ADAS1, and ADAS2 scenarios; (b) box plot of beta power
in Manual, ADAS1, and ADAS2 scenarios. The red lines correspond to the medians, the boxes
correspond to the first and third quartiles, the whiskers correspond to the values based on the
Interquartile Range (IQR) computation, and the red plus sign markers correspond to the outliers. The
green asterisks refer to the p-values computed using t-tests.

A quantitative evaluation of the previous observations can be obtained by carrying
out two statistical tests, i.e., a parametric test (t-test) and a non-parametric test (Wilcoxon
signed rank test). Table 2 shows the results of these tests in terms of the p-value when
comparing the EBR and beta power values in the ADAS1 vs. ADAS2, Manual vs. ADAS1,
and Manual vs. ADAS2 scenarios. When considering EBR, both the t-test and Wilcoxon
test show that the EBR in ADAS1 appears to be higher in a significant way than in Manual,
while the EBR in ADAS2 appears to be higher in a significant way than in Manual and
the EBR in ADAS1 and ADAS2 provides similar results. When considering the EEG beta
power, it can be seen that the t-test and Wilcoxon test point to the conclusion that ADAS1 is
less engaging in a significant way than ADAS2, ADAS1 is less engaging in a significant
way than Manual, and ADAS2 and Manual produce similar results.

Table 2. Wilcoxon test and paired t-test probabilities.

EBR p-Value

ADAS1 vs. ADAS2 Manual vs. ADAS1 Manual vs. ADAS2

t-Test 0.83 0.008 0.006
Wilcoxon 0.969 0.038 0.054

Beta Power p-Value

t-Test 0.044 0.001 0.797
Wilcoxon 0.025 0.003 0.326

Values in bold highlight a good level of significance (p ≤ 0.05).

The box plots in Figure 9 are annotated with asterisks according to the p-values
computed using the t-test. We followed the common convention in denoting p-values
with * when p ≤ 0.05, with ** when p ≤ 0.01, with *** when p ≤ 0.001, and with **** when
p ≤ 0.0001.
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4.2. Experiment 2

In Table 3, we show the EBR, beta power, SPR RMS, and mean HR computed for each
subject and each scenario in the second experiment. In addition, in the final row we show
the mean of these parameters as obtained by averaging the values corresponding to all of
the subjects.

Table 3. EBR, mean beta power, SPR RMS, and mean HR computed for each subject and each
driving scenario.

Manual ADAS

Subject EBR a Beta
Power b

SPR
RMS c

Mean
HR d

EBR Beta
Power

SPR
RMS

Mean
HR

1 16.39 37.45 1.05 100.72 25.27 40.47 0.59 82.95
2 6.64 42.07 0.22 79.29 16.52 29.59 0.35 70.31
3 5.93 33.48 0.38 69.55 5.36 14.54 0.10 63.53
4 19.29 33.47 0.08 69.97 18.07 24.49 0.22 59.06
5 20.01 54.38 0.87 70.56 13.41 21.68 0.42 69.41
6 11.99 26.13 0.16 88.51 17.22 25.55 0.29 76.57
7 9.23 29.75 0.18 77.17 5.65 30.31 0.03 69.04
8 10.10 89.73 0.27 76.50 10.84 60.21 0.24 70.16
9 4.02 23.70 0.86 50.14 9.60 20.73 0.12 44.30
10 7.55 32.35 1.02 84.91 9.46 25.79 0.17 77.64
11 1.25 50.85 0.32 115.79 5.36 23.20 0.23 78.54
12 8.07 30.91 0.67 79.52 13.27 27.32 0.51 66.04
13 7.73 52.85 1.59 104.07 21.17 36.77 0.43 80.88
14 19.29 54.54 0.84 83.56 23.30 70.60 0.47 80.19
15 8.47 82.87 0.41 91.40 11.01 31.91 0.15 80.09
16 13.71 137.82 0.79 65.02 33.44 36.71 0.24 58.84
17 12.44 35.06 0.21 91.40 12.85 19.91 0.23 79.73

mean 10.71 49.85 0.58 82.24 14.81 31.75 0.28 71.02
a Blinks Per Minute; b µV2; c mV; d Beats Per Minute.

The parameters can differ significantly from a subject to another. However, when
looking at the mean EBR, it can be noted as a result of considering all subjects that it is
lower in the manual driving scenario than in the autonomous scenario.

This result is revealed from the box plot reported in Figure 10a as well, showing how
the EBR in the manual setting is lower and much different from the autonomous setting.
By analyzing the beta power of the EEG waves reported in Table 3 (and in the box plot in
Figure 10b), it can be observed that the mean beta power is higher in the manual scenario
than in the ADAS scenario. In the end, looking at the mean of the RMS of the SPR signals
and the mean of the HR computed by averaging the values of all of the test subjects, it
is evident that these measurements are higher in the manual scenario than in ADAS (see
Figure 10c,d). In Figure 11, we show the box plot of the values calculated by multiplying
the SPR RMS, HR mean, and beta power values (which all increase from Manual to ADAS)
and dividing by EBR (which decreases from Manual to ADAS) for each subject in the two
different scenarios; we indicate this parameter as “CP”.

As in the previous experiment, we carried out an additional analysis considering the
t-test and the Wilcoxon test. More specifically, we compared the values of the seventeen
subjects’ SPR RMS, mean HR, EEG, and beta power parameters for each scenario. The re-
sults are presented in Tables 4 and 5 for the t-test and Wilcoxon test, respectively. From both
tables, it can be seen that in the majority of cases there is a significant difference between
the parameters calculated when considering the different driving scenarios in both tests.
Regarding the Wilcoxon test, Table 5 includes the results obtained considering the CP
parameter of all subjects in the two different scenarios. It can be observed from Table 5
that there are two cases in which the probability p is greater than 0.05, which happen when
comparing the EBR and SPR RMS among the subjects (although the probability p related
to the SPR RMS measurement is slightly greater than the 0.05 threshold). The box plots in
Figures 10 and 11 include asterisks according to the p-values computed using the t-test and
the Wilcoxon test, respectively. We follow the same convention as before, denoting p-values
with * when p ≤ 0.05, ** when p ≤ 0.01, *** when p ≤ 0.001, and **** when p ≤ 0.0001.
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Figure 10. (a) Box plot of EBR among subjects in Manual and ADAS scenarios; (b) box plot of beta
power; (c) box plot of SPR RMS; (d) box plot of HR. The green asterisks refer to the p-values computed
using t-tests.
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Figure 11. Box plot of the CP parameter (SPR RMS × mean HR × beta power/EBR, with SPR in
mV, HR in Beats Per Minute, beta power in µV2, and EBR in Blinks Per Minute) among subjects in
the Manual and ADAS scenarios. The red lines correspond to the medians, the boxes to the first
and third quartiles, the whiskers to the values based on the Interquartile Range (IQR) computation,
and the plus sign markers to the outliers. The green asterisks refer to the p-values computed with the
Wilcoxon test.

Table 4. Paired t-test probability p-value considering Manual versus ADAS scenarios using different
physiological measurements (EBR, beta power, SPR RMS, and mean HR) computed for all subjects.

Measurement Manual vs. ADAS

EBR 0.017
beta power 0.013
SPR RMS 0.004
mean HR 0.00006
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Table 5. Paired Wilcoxon test probability p considering Manual versus ADAS scenarios using
different physiological measurements (EBR, beta power, SPR RMS, mean HR, and SPR RMS × mean
HR × beta power/EBR) computed for all subjects.

Measurement Manual vs. ADAS

EBR 0.12
beta power 0.008
SPR RMS 0.054
mean HR 0.033
SPR RMS × mean HR × beta power/EBR 0.0004

5. Discussion

In this section, we discuss the results introduced in the previous section. In addition,
we highlight the key aspects and main advantages of our system, then report limitations
and possible drawbacks.

5.1. Experiment 1

First, we consider the first experiment. Table 1, reporting the EBR and beta power
values for all of the test subjects, shows that EBR can change significantly from individual
to individual. The EBR can in fact be affected by several biological factors, for example
cognitive or visual capacity, as well as personal traits such as age, health, and lifestyle
factors [41,42]. In addition, the EBR can change during the day, i.e., at certain hours of the
day it can be different than at other hours [43]. From this table, it can be noted that the EBR
is lower in the manual driving scenarios as opposed to the autonomous driving scenarios,
highlighting the higher attention level of the subjects while driving manually. This finding
is in agreement with what is reported in the literature, for example in [44], where the
value of EBR decreases when performing dynamic visual assignments. Table 1 shows
the EEG beta power. Again, this is more prominent when driving in the manual scenario
and manifests a lower value during the two autonomous driving scenarios. As noted
before, this is in accordance with previous papers presented in the literature which have
shown that the spectral components of the EEG signal become greater in individuals
experiencing high mental concentration or going through distracting events compared to
other less mentally engaging situations. These results are further confirmed by the box plot
of EBR and beta power displayed in Figure 9. Qualitatively, this figure shows a noticeable
difference between the values observed in the manual driving scenario compared to the
autonomous driving ones, especially as regards the EBR. In particular, it can be noted that
the blocks that delimit the 25–75 percentiles do not overlap. As for the beta power, there is
a clear difference between Manual and ADAS1, though this difference is less evident when
considering ADAS2, which corresponds to more aggressive autonomous driving. The
results of the t-test and the Wilcoxon signed rank test are reported in Table 2, evaluating
the EBR and beta power values in ADAS1 vs. ADAS2, Manual vs. ADAS1, and Manual
vs. ADAS2 scenarios. As introduced before, when evaluating EBR both tests indicate
that the EBR in ADAS1 is significantly higher than in Manual, that the EBR in ADAS2
is significantly higher than in Manual, and that the EBR values in ADAS1 and ADAS2
provide comparable results. When evaluating the EEG beta power, on the other hand,
both tests indicate that ADAS1 is significantly less engaging than ADAS2, that ADAS1 is
significantly less engaging than Manual, and that ADAS2 and Manual provide comparable
results. The results of this experiment, along with those presented below for the second
experiment, confirm that the measurements obtained through analysis of the EEG signal,
in particular when considering the blink rate and the beta power, provide consistent results
and can be used as a good indicator of driver attention levels. Because the use of the EEG
signal alone is sufficient for blink rate detection, cameras are not necessary, avoiding any
problems with posture and lighting. Furthermore, analysis of EEG signals allows us to
obtain useful additional information, such as the beta power considered in this paper.
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5.2. Experiment 2

As far as the second experiment is concerned, Table 3 reports the EBR, the beta power,
the SPR RMS, and the mean HR computed for each subject and each scenario, including
the means of these parameters. Again, it can be noted that the parameters vary appreciably
among individuals. In particular, as already mentioned, the EBR may depend on various
aspects related to visual functionality as well as to the age and gender of the subject under
test. Nonetheless, the mean of the EBR is smaller in the manual driving scenario than in the
autonomous scenario, suggesting that when driving manually the subjects experienced a
greater mental load and needed to concentrate more on overcoming the obstacles, resulting
in lower blink activity. This is in line with the results obtained in the first experiment.
From Table 3, it can be seen that the mean beta power is again bigger in the manual scenario
than in the ADAS. These results are confirmed by the box plot in Figure 10a, where the
EBR in the manual scenario appears smaller and has a different value compared to the
autonomous scenario. The RMS of the SPR signals and the mean of the HR signals are
larger in the manual scenario than in the ADAS scenario, as shown in Figure 10c,d. In our
previous papers [45,46], we have demonstrated that both SPR and HR signals typically
increase when individuals undergo stress episodes or are engaged mentally, and are higher
when evaluated on a whole track with obstacles placed on it during a manual drive than
on an autonomous one. To sum up, we found that the SPR RMS, mean HR, and beta power
values increase in this experiment during the manual driving, whereas the EBR is the only
parameter that decreases in the manual scenario. For this reason, in Figure 11 we show
the box plot of the values obtained by computing the product of the SPR RMS, HR mean,
and beta power values, as they are higher in Manual than in ADAS, while dividing by
the EBR, as it is lower in Manual than in ADAS. The separation of the values between the
two scenarios is even more remarkable. Tables 4 and 5 show the results of the t-test and
the Wilcoxon test of this experiment, evaluating the statistical significance among the data
belonging to all of the subjects in the manual and autonomous scenarios. In detail, the t-test
shows that the SPR RMS, mean HR, and beta power parameters are significantly higher
in the Manual scenario than in the ADAS scenario, while the EBR is significantly higher
in the ADAS scenario than in the Manual scenario. This is in accordance with the box
plot representations displayed in Figure 10, because boxes which are clearly in different
positions (without overlaps) are an indication of smaller p-values, whereas boxes with
large overlaps are an indication of higher p-values. Regarding the Wilcoxon test, Table 5
includes the results obtained for the CP parameter. We cannot apply the t-test using these
parameter values, as the t-test assumes that data are occurrences of independent normal
random variables, and this hypothesis is no longer true when we consider values from a
composition of multiple operations (such as products and divisions). As already stated,
there are two cases in Table 5 with a probability p greater than 0.05, appearing when we
compare the EBR and the SPR RMS among the subjects (the probability p related to the SPR
RMS measurement is, however, slightly higher than 0.05). To sum up, we can state that
the physiological measurements computed taking into consideration all of the subjects are
significantly different when evaluating them in the two driving scenarios, suggesting that
these scenarios actually lead to different attention levels in the subjects under test.

5.3. Strengths and Weaknesses of Our System

Most of the systems proposed in the literature are based on analysis of images and
video sequences, and have the aim of identifying certain visual elements such as the blink
rate, face or head direction, or other particular behaviours of the driver. For instance,
in [47] the authors introduced a system with a camera to track the head and face of the
driver using image processing techniques. The proposed system was able to capture the
driver’s eye blink and head rotation to evaluate their attention level. Similarly, in [48]
the authors presented a visual monitoring system to evaluate the fatigue and monotony
state of drivers. The system used a low cost camera to detect head direction and blink
patterns. Another study [49] employed a GPS and a two-axis accelerometer integrated with
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three cameras to monitor the driver and their surroundings, with the main objective of
evaluating driver performance.

These systems are prone to problems related to possible light variations, non-ideal
posture of the subjects, and interference in the scene from objects of various kinds such as
glasses or accessories. On the contrary, the possibility of acquiring physiological signals
correlated to the psycho-physical state of the driver, as considered in the present work,
could allow for more consistent assessment. Moreover, the use of a camera may not be
applicable in certain situations due to privacy and ethical reasons or high costs. Wearable
bio-sensors are prone to movement artifacts, and similar to camera-based solutions can be
influenced by vibrations and movements. In addition, as already mentioned, individual
and subjective matters (e.g., sudden changes in light that may affect blink rate, or other
causes that affect HR and SPR) can alter the acquired physiological signals for reasons
beyond driver attention or events related to driving. Therefore, it is not easy to unambigu-
ously define possible alert thresholds for drivers. Nonetheless, the system can certainly
provide useful information on the psycho-physical state of drivers in order to suggest
possible countermeasures. The wearability of our proposed system has the advantage of
higher accuracy, along with the disadvantage of being slightly intrusive for the driver, while
camera-based solutions are contactless and independent from the driver. To solve the prob-
lem of intrusiveness, non-wearable biological sensors have been presented in the literature,
for instance, sensors integrated in the driver’s seat such as capacitive electrocardiogram
(cECG), Ballistocardiogram (BCG) [50,51], Seismocardiogram (SCG) [52], or steering wheel
ECG [53], or radar systems [54]. However, compared to wearable bio-sensors they have
less efficiency and accuracy and are more prone to being affected by other environmental
conditions such as humidity, vibration, and the driver’s clothing [55].

Clearly, each system has its advantages and disadvantages. The choice of the most
appropriate system depends on the requirements of the application, environmental condi-
tions, and available budget. In general, a sensor fusion approach combining camera-based
and physiological measurements could be a good solution in the context of advanced driver
monitoring systems, supporting and improving the results obtained by each system. Our
sensors are currently designed as prototype laboratory tools for further tests using driving
simulators. When considering possible practical implementation of the scheme for use
in the real word, there are potentially simpler solutions for biological signal acquisition,
for example, by acquiring EEG through glasses or hats, EDA from gloves, and ECG from
the seat.

6. Conclusions

In this paper, we have proposed a scheme for monitoring driver attention based on
the acquisition of their EEG, SPR, and HR signals. In particular, estimation of the eye
blink rate was performed automatically by analyzing EEG signals. Our experiments were
organized in two phases. In the first experiment, we considered only the EEG signal,
comparing it in a manual driving and two different autonomous driving sessions. We
observed that the EBR was lower during manual driving compared to autonomous driving,
confirming the increased attention of the subjects while driving manually. The power of the
EEG beta waves appeared to be higher during the manual scenario as well, which again
was associated with higher mental engagement on the part of the drivers. In the second
experiment, the EBR, EEG beta power, RMS of the SPR signal, and mean of the HR signal
were considered during two driving sessions, one manual and one autonomous. The same
considerations as in the first experiment on only the EBR and the EEG beta power features
were confirmed in the second experiment as well, which additionally revealed that the RMS
of the SPR signals and the mean of the HR signals were generally higher in the manual
scenario than in the autonomous one. In both experiments, therefore, the proposed system
was able to discriminate the different driving conditions by associating a state of increased
attention with manual driving. The significance of the data was confirmed through the
use of appropriate statistical tests. In summary, the proposed system based solely on the
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acquisition of biophysical signals seems to offer good prospects for the recognition of
different states of attention, and more generally of the psycho-physical state of the driver.
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