
Adiabatic Leaky Integrate and Fire Neurons with
Refractory Period for Ultra Low Energy

Neuromorphic Computing
Supplementary Material

Marco Massarotto1*, Stefano Saggini1, Mirko Loghi1,
David Esseni1

1DPIA - Polytechnic Department of Engineering and Architecture,
University of Udine, Via delle Scienze 206, Udine, 33100, Italy.

*Corresponding author(s). E-mail(s): massarotto.marco001@spes.uniud.it;
Contributing authors: stefano.saggini@uniud.it; mirko.loghi@uniud.it;

david.esseni@uniud.it;

1



Supplementary Note 1: Variability of Synaptic
Capacitor Bank
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Supplementary Figure 1: Monte Carlo Analysis of the Synaptic Capacitor
Bank. a Sketch of the series connection between the synapse and soma capacitors. b
to e Gaussian distribution of the capacitors defined in (a). In (c), the series between
the total synaptic capacitance (Csyn in orange) and the soma (e, Csoma in blue) results
in a slightly lower effective synaptic capacitance (Cser in red). f Transfer function
translating the decimal-encoded synaptic weight into a capacitance difference (C+

syn−
C−

syn). Thanks to the limited intrinsic variability of the capacitors, the average transfer
function of many Monte Carlo simulations (red dots) is in very good agreement with
the ideal case (black-dashed), resulting in an INL=0.01 and DNL=0.001.

The adiabatic implementation of all the neuromorphic functionalities devised in this
work rely on the weighting of the charge transferred to the integrating soma, thus
making a dependable and accurate programming of the capacitor bank implementing
the synaptic weights a most critical requirement. For this reason, the variability of the
synaptic weight induced by mismatch and process variabilities has been evaluated by
means of Monte Carlo simulations.

First, in fig. 1a it is sketched the series connection between the synapse and the
soma capacitors. In particular, we recall that the capacitor bank of the synapse consists
of 2Nbit=256 BEOL LSB capacitors (CLSB , yellow), that are arranged by the synaptic
weight into either a positive or a negative overall synaptic capacitance (C±

syn). The
total synaptic capacitance (Csyn=C+

syn+C−
syn, orange) is then connected to the soma

capacitor (Csoma, blue), which in turn consists of several grounded n-FETs on the
active silicon area, each contributing with a capacitance CFET (cyan).

In figs. 1b to 1e are then reported the Gaussian distributions of all the aforemen-
tioned capacitors extracted from Monte Carlo simulations, alongside with the average
value (µ) and the absolute (σ) and relative standard deviation (σ/µ).

As it can be seen, thanks to the large area of the capacitors, the variability is
limited to just a few percents of the average value. On the other hand, the series
between the synapse and soma inevitably results in an effective synaptic capacitance
(Cser) slightly lower than the nominal value. This is shown in red in fig. 1c, which
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reports the maximum deviation occurring for a maximum positive or negative synaptic
weight, namely when the entire orange Csyn is connected in series with the blue Csoma

in fig. 1e. In principle, the deviation of Cser from Csyn can be arbitrarily reduced by
enlarging the Csoma.

Next, we have simulated the variability of the capacitor bank by varying the synap-
tic weight accounting for the distributions in figs. 1b to 1e. The resulting transfer
function is reported in fig. 1f. We here recall that the transfer function of the capaci-
tor bank converts the synaptic weight into a difference (C+

SY N − C−
SY N ) between the

positive and negative synaptic capacitors (see the ”Capacitive Synapses and Soma”
paragraph of the ”Discussion” section in the main paper). Thanks to the limited vari-
ability of our capacitors, the average transfer function calculated by means of many
mismatch and process-aware Monte Carlo simulations (red dots) is in a very good
agreement with the ideal case (black-dashed line).

The linearity of the capacitor bank can be quantitatively expressed in terms of
an Integral Non-Linearity (INL) and a Differential Non-Linearity (DNL), which are
defined and evaluated respectively as [1]:

INL = max
i∈SW

∣∣∣∣ ideal(i)− real(i)

CLSB

∣∣∣∣ = 0.01

DNL = max
i∈SW

[
real(i+ 1)− real(i)

ideal(i+ 1)− ideal(i)
− 1

]
= 0.001

(1)

where ideal and real refer respectively to the ideal (black-dashed line) and non-ideal
(red dots) transfer functions in fig. 1f, while the index i spans over all the synaptic
weight symbols SW. Indeed, the limited intrinsic variability of all capacitors translates
into low INL and DNL values, which ensure a monotonic transfer function without
missing codes [1].
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Supplementary Note 2: Neuron Comparator
The comparator of each neuron is tasked to monitor the differential membrane poten-
tial ∆Vm between the two soma capacitors and then fire an output spike when it
crosses a certain threshold. Depending on the outcome of the evaluation, internally to
the comparator are also generated the signals that enable the leakage of the neuron
and the refractory period.

Single-Threshold Comparator
Our comparator is based on the single threshold comparator sketched in fig. 2a, which
resembles a dynamic sense amplifier. The two single-ended membrane potentials V ±

m

are provided as input to the gate terminals of the two branches of the sense amplifier,
which are identified respectively in red and blue in fig. 2a. The two branches can
be made asymmetric by changing their equivalent conductance. In particular, we
express such asymmetry in terms of an Asymmetry Factor (AF), which quantifies the
imbalance between the W+/L+ ratio of the red positive branch with respect to the
W−/L− ratio of the blue negative side. According to our definition in fig. 2a, the total
equivalent area of both branches is independent of the AF.

The comparator is controlled by the EVAL signal (fig. 2b). When EVAL is low
the comparator precharges both the Q± nodes of the cross-coupled latch at VDD

(fig. 2c). A single one-shot evaluation is then performed when EVAL is raised, which
starts the simultaneous discharging of the Q± nodes. The outcome of the evaluation is
given by the racing condition between Q+ and Q−, which depends on the differential
membrane potential ∆Vm and on the conductance of each branch. As reported in
fig. 2b, the faster-discharging node sets the state of the latch, which will reset only
during the following precharge phase (EVAL=0).

Inverting dynamic level restorers are added to accelerate the relatively slow
VDD→GND transitions of the dynamic nodes (Q±), so as to suppress the other-
wise relevant short-circuit currents in the following CMOS logic. As shown in fig. 2d,
the OUT± of the level restorers are first reset to GND (EVAL=0) and then, during
the evaluation (EVAL=1), one of them raises and marks which side won the racing
condition.

All the waveforms shown in figs. 2b to 2d are simulated at the Worst Speed (WS)
corner at a temperature of 100 ◦C. As it can be seen, the chosen evaluation time
guarantees a reliable comparison even in the worst case scenario with low-conductive
input transistors.

When the two branches are symmetric, which corresponds to AF=1, the racing
condition is won by the higher single-ended V ±

m voltage, and so the comparator is
actually monitoring the sign of the differential membrane potential, i.e. by raising
OUT+ if ∆Vm>0, or OUT− if ∆Vm<0.

On the other hand, when the asymmetry factor is greater than one, the node V +
m

needs to be sufficiently higher than V −
m in order to win the racing condition. This

requirement can be expressed as V +
m > V −

m +VTH ⇒ ∆Vm > VTH , which gives rise to a
positive threshold VTH on the differential membrane potential. In fig. 2e, the compara-
tor threshold has been evaluated for different AF configurations by means of Monte
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Carlo simulations accounting for both mismatch and process variabilities. Indeed, a
more pronounced asymmetry results in a higher threshold following an almost linear
trend with respect to AF. Moreover, thanks to our definition of asymmetry factor,
all the AF configurations occupy the same total area, thus ensuring a fair compari-
son between the uncertainties on the threshold voltage, which remain limited to just
a few mV across all the explored asymmetry configurations.

Hysteretic Comparator
The complete neuron comparator consists of the cascade of two single-threshold
comparators, as shown in fig. 2f.

First, the blue ”REST” comparator is symmetric (AF=1) with a null threshold
that monitors the sign of differential membrane potential (fig. 2g) to check if the
neuron is in its resting state (∆Vm≤0). As an output, it generates the REST signal
(fig. 2i), which disables the LEAK flag (fig. 2j) and in turn the leakage of the neuron. In
addition, the ”REST” comparator also provides the evaluation signal (EVAL_FIRE,
fig. 2k) to the second comparator, which enters the evaluation phase only when ∆Vm

is positive, thus saving up dynamic energy.
On the other hand, the second, red ”FIRE” comparator is asymmetric (AF>1)

and determines the firing thresholds of the neuron following fig. 2e. In particular,
whenever the membrane potential overcomes the threshold, the comparator raises the
FIRE signal (fig. 2l) together with the REFR flag (fig. 2m). The REFR flag triggers
the refractory period of the neuron, which is terminated by the REST signal when
the neuron returns to its resting state.
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Supplementary Figure 2: Neuron Comparator. a Dynamic single-threshold
comparator, whose outcome depends on a racing condition between the positive (red)
and negative (blue) branches. The differential membrane potential (∆Vm, purple) is
provided as a differential input between the two branches. b EVAL signal alternates
the comparator between precharge (EVAL=0) and evaluation phases (EVAL=1). c,d
Voltage waveforms at the Worst Speed (WS) corner at 100 ◦C of the Q± and OUT±
nodes when ∆Vm<VTH (left) and ∆Vm>VTH (right). e Simulated threshold VTH as
a function of the asymmetry factor (AF) when the common mode of the membrane
potential is 500mV. Error bars indicate the standard deviations extracted from Monte
Carlo simulations by accounting for the mismatch and process variability. f Hysteretic
neuron comparator consisting in the cascade of a symmetric ”REST” comparator,
which monitors the resting state of the neuron (blue, AF=1), and an asymmetric
”FIRE” comparator, which fires an output spike when the membrane potential over-
comes its firing threshold. g to m Example of a differential membrane potential (g)
and of the resulting signals generated by the ”REST” (h to j) and ”FIRE” comparators
(i to m).
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Supplementary Note 3: Modelling of Exponential
Leakage
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Supplementary Figure 3: Charge redistribution in the Synapse Capacitive
Network. a Direct divider, set by D=1, connecting C+

syn to V +
m and C−

syn to V −
m . The

soma (blue) and synapse voltages (gray) add up to the VWL=VDD enforced by the
T-Flipflop. b Inverted divider, set by D=0, connecting C+

syn to V −
m and C−

syn to V +
m .

Upon the transition from the direct divider in (a) to the inverted divider in (b), the
charge redistributes to maintain VWL=VDD (orange). During the opposite transition
from (b) to (a), VWL is enforced to GND and a similar charge redistribution occurs
(not shown). c Asymptotic equilibrium corresponding to V +

m=V −
m reached after many

commutations between (a) and (b) and for a synaptic weight equal to zero, namely
for C+

syn=C−
syn.

As described in the main paper, our implementation of the exponential leakage of
the differential membrane potential (∆Vm) exploits the charge redistribution among
the synaptic (C±

syn) and soma capacitors (Csoma) that occurs when their dividers are
inverted upon each input spike.

We recall that the configuration of the capacitive dividers is controlled by the signal
D, which sets the direct divider in fig. 3a for D=1, or the inverted divider in fig. 3b for
D=0. If we let n be a time instant corresponding to the direct divider configuration
in fig. 3a and, moreover, use the subscripts DIR and INV to denote the voltages V ±

m

respectively in the direct divider (fig. 3a) and inverted divider configuration (fig. 3b),
then the charge redistribution can be analytically modelled by a system of finite-
difference equations. In fact, upon the arrival of a spike at the instant (n+1) that
reconfigures the capacitive network into the inverted divider of fig. 3b, the voltages
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V +
m,INV (n+1), V −

m,INV (n+1) in the new divider configuration can be written as:

V +
m,INV (n+ 1) =

CsomaV
+
m,DIR(n) + C−

synV
−
m,DIR(n)

Csoma + C−
syn

V −
m,INV (n+ 1) =

CsomaV
−
m,DIR(n) + C+

synV
+
m,DIR(n)

Csoma + C+
syn

(2)

namely in terms of the voltages V +
m,DIR(n), V −

m,DIR(n) before the spike. Upon the
arrival of a second spike at the instant (n+2) which brings the capacitive network
back to the direct divider configuration in fig. 3a, the new voltages V +

m,DIR(n + 2),
V −
m,DIR(n+ 2) can be similarly expressed as

V +
m,DIR(n+ 2) =

CsomaV
+
m,INV (n+ 1) + C+

synV
−
m,INV (n+ 1)

Csoma + C+
syn

V −
m,DIR(n+ 2) =

CsomaV
−
m,INV (n+ 1) + C−

synV
+
m,INV (n+ 1)

Csoma + C−
syn

(3)

By substituting V +
m,INV (n+1) and V −

m,INV (n+1) from eq. (2) into eq. (3) and then
recalling the definition of the membrane potential ∆Vm=(V +

m−V −
m ), we readily obtain:

∆Vm,DIR(n+ 2) = ∆Vm,DIR(n) ·
(Csoma

2 − C+
synC

−
syn)

2

(Csoma + C+
syn)2(Csoma + C−

syn)2
(4)

The ∆Vm,DIR(n+ 2) in eq. (4) depends on the synaptic weight, which is encoded in
the difference between C+

syn and C−
syn.

For Csoma≫C+
syn, C

−
syn, eq. (4) can be simplified at the first order with respect to

(1/Csoma), which leads to:

∆Vm,DIR(n+ 2)−∆Vm,DIR(n) ≈ −2 ·∆Vm,DIR(n) ·
Csyn

Csoma
(5)

The ∆Vm,DIR(n+2) expression in eq. (5) is now independent of the synaptic weight,
in fact we recall that Csyn=(C+

syn+C−
syn) is the total capacitance of the synapse and

it is independent of the synaptic weight.
The proportionality between the [∆Vm,DIR(n+2)−∆Vm,DIR(n)] and ∆Vm,DIR(n)

expressed by eq. (5) results in an exponential decay of ∆Vm to zero over the arrival of
many spikes reconfiguring the capacitive dividers, provided that the SW is zero (i.e.
C+

syn=C−
syn) so as to avoid the direct influence of the synaptic weight on ∆Vm.

In our design, these conditions are fulfilled by the clock spikes governing the neuron
leakage. In fact, the charge transferred between the two Csoma every clock period
TCLK can be interpreted as an average current equal to 1

2Q/TCLK . In turn, such a
current can be equivalently described in terms of a resistance Req equal to

Req = 2 · TCLK

Csyn
(6)
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between the two Csoma capacitors, finally creating an RC circuit with a time constant
given by:

τeq = Req ·
Csoma

2
= TCLK · Csoma

Csyn
(7)

This is the behaviour summarized in Fig.6(e),(h) of the main paper.
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Supplementary Note 4: Optimization of the
Transmission Gates

In our architecture, the resonance between the inductive driver and the capacitive
word-line generates a sinusoidal current. Given that each input spike triggers a half-
period of the resonant oscillation, the conduction losses per synaptic operation for a
minimum length MOSFET can be written as:

ESOPcond =
RDS

W

I2pk
4

1

fLC
(8)

where RDS [Ωm] is the triode resistance per unit width of the minimum length
MOSFET, W is the channel width and Ipk is the peak amplitude of the current.

In principle, the conduction losses can be arbitrarily reduced by enlarging W ,
however, this would also increase the energy required to drive the gate capacitance. In
fact, during a half-period of the resonant oscillation, the TGs undergo both a charging
and a discharging of their gate capacitance, thus their gate-driving energy is readily
given by ESOPdriv=W · CGVDD

2, where CG [F/m] is the effective gate capacitance
per unit width of a minimum length MOSFET.

Because the energy dissipated in the switches is inversely proportional to W , while
their conduction losses are inversely proportional to W , there exists an optimum
channel width that, for a given frequency fLC , can minimize the overall dissipated
energy. This is readily obtained by setting to zero the derivative with respect to W
of (ESOPcond+ESOPdriv), which leads to:

Wopt =
1

2

Ipk
VDD

√
RDS

CG

1

fLC
(9)

and corresponds to ESOP opt
cond=ESOP opt

driv.
By substituting Wopt in the expression for ESOP opt

cond and ESOP opt
driv, the optimum

energy per spike event can be written as:

ESOP opt
tot = ESOP opt

cond + ESOP opt
driv = VDDIpk

√
RDSCG

fLC
(10)

As it can be seen in eq. (9), for a given fLC and given values of the technological
parameters RSD and CG, the optimum sizing of each transistor is proportional to the
peak Ipk of the corresponding sinusoidal current. Hence, the size of each transmission
gate (TG) was optimized by first following the TG tree sketched in fig. 4a to estimate
the corresponding Ipk, and then by substituting Ipk in eq. (9).

As for the calculation of the Ipk of each transmission gate, we recall that the
amplitude of the inductor current is proportional to the resonance frequency and can
be expressed as IL,pk = πCWLVDDfLC . Such a current flows through the word-line
selector TG-WL and is then distributed among all the synapses served by the WL.
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Internally to each synapse, the current gets further divided among the branches of the
capacitor bank. In particular, the current through the TG-SYN of the i-th capacitor
(Csyn,i=2iCLSB) is Isyn,i=2iILSB , with i ranging from zero (LSB) to Nbit−1 (MSB).
In our design, the synaptic weight has a resolution of 8 bits, hence the LSB current
ILSB is 1/128-th of the current flowing through the MSB capacitor. The TG-SYNs
currents on the two output branches of the capacitor bank depend on the synaptic
weight, and they are finally forwarded to the soma capacitors by a TG-SOMA.

Hence, in order to simplify the optimization of the TG-SYN sizing, we assumed
that all synapses have a null synaptic weight. This results in an equal distribution of
the current first among all synapses, and then among the TG-SOMAs. Moreover, we
also assume that the current gets split evenly also among the n-MOS and p-MOS of
each TG.

Figure 4b shows the optimization of the n-MOS of the TG-WL at fLC=100 kHz.
Such optimization has been carried out also for all the other TGs and resonance
frequencies ranging from 10 kHz to 10MHz, and the resulting optimum widths of their
n-MOS are summarized in fig. 4c as a function of fLC . As can be seen, the TG-WL
(red) drives the highest current and so requires the largest optimal width, followed
by the TG-SYN of the MSB and by the TG-SOMA (orange). On the other hand,
the TG-SYNs of the lesser significant bits (shades of green) rapidly saturate to the
minimum channel width allowed by the technology, which in our case is 220 nm.
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Supplementary Figure 4: Optimization of the Transmission Gates. a Sketch
showing how our optimization assumes the inductor current splits among the trans-
mission gates involved in the adiabatic energy transfer. b Overall energy per synaptic
operation dissipated by the n-MOS of the TG-WL either due to the conduction losses
(∝1/Wn) or due to the gate-driving losses (∝Wn) plotted versus the corresponding
device width Wn, and for a resonance frequency fLC=100 kHz. An optimum device
width is clearly observed, which is identified by the Wopt in eq. (9). c Optimum chan-
nel width for the different classes of TGs as a function of the resonance frequency.
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Supplementary Note 5: Energy Breakdown
As already mentioned in the ”Methods” section of the main paper, the energy per-
formance of our architecture has been thoroughly evaluated by separating the energy
consumption owing to each of its sub-circuits. So, in this section, we report and discuss
the breakdown of such energy contributions.

First, we recall that all the energy figures are here expressed in terms of Energy
per Synaptic Operation (ESOP), namely by normalizing the total dissipated energy to
the number of input spikes (both neurons and clock spikes), and then to the number
of synapses served by each sub-circuit.

The breakdown of the dynamic ESOP is reported in fig. 5a as a function of the
resonance frequency fLC . As it can be seen, the dynamic consumption of the logic
in the word-line controller (yellow) and in the crossbar (orange, including the logic
controlling the synapses - SYN - and the clock forwarders - CLK-FWD), increases
with fLC because the transmission gates (TG) become larger due to the frequency-
dependent optimization of the TG sizing described in section Supplementary Note
4:.

The pie charts in figs. 5b to 5e report the breakdown of the contributions to the
ESOP at the Minimum Energy Point (MEP), which falls at a resonance frequency
500 kHz as it is shown in fig. 3j of the main paper. In particular, fig. 5b illustrates the
proportion between the dynamic consumption due to the conduction losses (c), to the
logic (d), and to the static energy (e).

In fig. 5c, the losses in the tristate (pink) account for both the dissipation in the
output stage of the Toggle Flip-Flop (T-FF) and those in the TG-TRS (see fig.2c in the
main paper). Such losses are non-adiabatic and so depend only on the amplitude of the
voltage error caused by the incomplete transition of the WL. Actually, such correction
also causes non-adiabatic dissipations in both the TG-SYNs and TG-SOMAs that
add up to their adiabatic losses occurring during the integration phase.

On the contrary, the TG-WL (green) does not take part in the correction of the
WL, thus the corresponding conduction losses are purely adiabatic. Despite this, the
TG-WL always dominates over the other TGs because it carries the entire current
that is supplied by the inductor to the WL, as opposed to the TG-SYNs (blue) and
TG-SOMAs (purple) which carry just a small fraction of said current, as shown in
fig. 4a of this document.

In fig. 5d, the logic consumption of the crossbar (orange) and of the neuron com-
parator (brown) inevitably depend on the actual spiking activity of the neurons. In
fact, first the profile of the membrane potential directly affects the ESOP of the
”FIRE” comparator (see section Supplementary Note 2: and fig. 2f in this document),
because the comparator is active only when the neuron is in an excited state, namely
when we have ∆Vm>0. Second, both the refractory period (which is related to the
number of fired output spikes) and the neuron leakage govern how many times the SR
latches switch to toggle the REFR and LEAK signals (see fig. 2f). These, in turn, force
the synapse controllers to change their current synaptic weights by re-programming
the TG-SYNs of the capacitor banks, thus inevitably dissipating more energy.

Finally, in fig. 5f it is shown the breakdown of the dynamic ESOPs when the sys-
tem is operated in non-adiabatic mode (refer to the ”Adiabatic and Non-Adiabatic
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Operating Modes” paragraph of the ”Methods” section in the main paper). The over-
all energy consumption is 4.2 pJ and, as expected, does not depend on the resonance
frequency. The energy is clearly dominated by the conduction losses in the transmis-
sion gates (marked in pink, purple and blue in the figure), which sum up to 4 pJ. It
is worth noting that the TG-WL (green) does not contribute to the conduction losses
in the non-adiabatic mode, because the energy is not supplied by the inductive driver
but instead by the T-Flipflop, which bypasses the WL selector as shown in fig. 2c of
the main paper.

TG-SYN

TG-TRS + T-FF

TG-SOMA

TG-WL

WL controller

Crossbar

(SYN & CLK-FWD)

Timer

Neuron comparator 

Conduction losses

Logic consumption

(c) Dynamic: Conduction(b) ESOP @ MEP

(d) Dinamic: Logic

(a) Adiabatic Mode (Typical Mean @ 27°C)

(f) Non-Adiabatic Mode (Typical Mean @ 27°C)

(e) Static Power

340 pW1× CLK-FWD

1× 250 pWSYN

256× 65 nWSYN

1× 160 pWNeuron

Block(s) Power

MEP

Conduction 
losses ≈ 4pJ

Supplementary Figure 5: Breakdown of the Energy per Synaptic Opera-
tion. The figure reports all the individual ESOPs owing to the conduction losses in
the transmission gates (pink to green), and in the logic serving different sub-circuits
(yellow to brown). The ESOP of the crossbar (orange) combines the consumption of
both the synapses (SYN) and clock forwarders (CLK-FWD). a Frequency scaling of
the dynamic ESOPs in adiabatic mode. The Minimum Energy Point (MEP) falls at
fLC=500 kHz. b Breakdown of the ESOP at the MEP into its constituents due to the
dynamic conduction losses (c), dynamic consumption of the logic (d) and the static
dissipation (e). f Dynamic ESOPs in non-adiabatic mode.
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