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Abstract
We investigate the ability of the Lee–Carter model to effectively estimate the gender
gap ratio (GGR), the ratio between themale death rates over the female ones, by using a
Cox–Ingersoll–Ross (CIR) process to provide a stochastic representation of the fitting
errors. The novelty consists in the fact that we use the parameters characterizing the
CIR process itself (long-term mean and volatility), in their intrinsic meanings, as
quantitative measures of the long-term fitting attitude of the Lee–Carter model and
synthetic indicators of the overall risk of this model. The analysis encompasses 25
European countries, to provide evidence-based indications about the goodness of fit
of the Lee–Carter model in describing the GGR evolution. We highlight some stylized
facts, namely systematic evidence about the fitting bias and the risk of the model
across ages and countries. Furthermore, we perform a functional cluster analysis,
allowing to capture similarities in the fitting performance of the Lee–Carter model
among countries.
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1 Introduction

The empirical evidence reveals a higher life expectancy for females compared tomales,
albeit with worsening gaps for females in terms of quality of life (cf. MEF 2021) due
to the impact, amplified in adults, of disparities linked to labour market, wage levels
and choices related to work–life balance.

Implementing economic and social policies should be informed by quantitative
analysis of differences in male and female mortality and their evolution over time.
Just consider the design of insurance/pension contracts and, in general, the definition
of legislative measures that incorporate a fair gender differentiation (cf. Ayuso et al.
2021), in light, for instance, of healthy life expectancy at birth, that is lower for females
(MEF 2021).

The literature on the gender gap in mortality is far-reaching and frequently high-
lights descriptive numerical features of the trend. Glei and Horiuchi (2007) analyse
the sex differential in the expected future lifetime for several high-income national
populations; Bergeron-Boucher et al. (2018) focus on evolutionary trends in male and
female life expectancy characterized by a pattern convergence in mortality; Jallbjørn
and Jarner (2022) select multi-population mortality models through their capabil-
ity of representing the gender differences in mortality. The analysis by Zarulli et al.
(2021) focuses in detail on the dynamics of absolute and relative differences in male
and female mortality across populations. Ayuso et al. (2021) compare the gap in
life expectancy in different populations, disaggregated by gender, to define adequate
pension policies. Apicella et al. (2023) deepen the measure of the gender gap in the
probability of death across a wide range of ages, emphasizing, in specific geographical
areas, some characterizing aspects both in the historical trend and in future projec-
tions. Moreover, recent literature has considered the divergences between the correct
representation of the gender gap in death probabilities and the subjective perception
of life expectancy, which guides financial choices and pension planning (cf. Apicella
and De Giorgi 2022). This issue is closely related to investment choices and the effec-
tive ability to plan them in line with life expectancy and quality of life; in this sense,
Aristei and Gallo (2022) assess gender differences in objective financial knowledge
and effective self-confidence about their financial expertise.

The architecture of lifecycle-based financial policies and financial solutions for
ageing populations therefore underlies the quantitative design of the evolutionary
trend of the gender gap in death probabilities.

In this paper, we investigate the ability of the Lee–Carter (LC) model to effectively
estimate the gender gap ratio (GGR), the ratio of the male death rates to the female
ones. Such investigation is based on the analysis of the discrepancies between the
realized values of the GGR and the ones estimated by the LC model.
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Apicella et al. (2019) provide a quantitative background, based on the Cox–
Ingersoll–Ross (CIR) process, for the analysis of the fitting errors of stochastic
mortality models. The optimal parameters of the CIR process calibrated to the fit-
ting errors provide important directions to improve the forecasting performance of the
considered mortality models.

In this paper, we focus on a different phenomenon than mortality rates per se, since
we study the gender gap ratio. In particular, we intend to assess the ability of the LC
model to effectively describe the GGR. We apply the CIR-error process to model the
ratio between the GGR observed values and the GGR fitted values, according to the
LC estimates ofmale and femalemortality rates. The CIR process thus describes a new
phenomenon, namely the relationship between the gender-related fitting performances
of the LCmodel, and loses a demographic connotation.We study the parameters of the
CIR process under an original perspective, by assigning to them a specific role in the
quantitative description of the fitting performance. Indeed, we provide an extensive
analysis of the age-specific behaviour of the fitting bias and of the riskiness of the LC
model as revealed, respectively, by the long-term mean and by the volatility of the
CIR error process. Such parameters convey intrinsically dynamic information, other
than providing a static representation of the goodness of fit of the LC model, as they
reveal also the long-run potential of the LC model to approximate the trend of the
GGR.

Empirical analyses and functional cluster methods allow us to capture stylized
facts of the fitting performance of the LC model that are systematically verified on
the GGR data of different countries. The multi-country approach gives generality
and robustness to our study and extends the scope of application of the LC model.
Indeed, the quantitative study of the gender gap in mortality is relevant within the
decision-making process on socioeconomic, health and welfare issues, especially in
the aftermath of the COVID-19 pandemic (Flor et al. 2022). The assessment of the
LC performance for 25 European countries can provide guidance to decision-makers
on the extent of the applicability of this model for quantitative analyses on the gender
gap in mortality at supranational level.

The paper is organized according to the following layout. In Sect. 2, we present the
GGR forecasting topic, with its implications in demographic, economic and educa-
tional relevance. Section3 is dedicated to the mathematical models representing the
dynamics of mortality and the error stochastic process, focusing on the meaning of
its parameters (long-term mean and volatility) and their role in the LC performance
valuation. A numerical application follows in Sect. 4, where some stylized evidence
about the two parameters under study is highlighted in a detailed analysis. Within
the analysis of the parameters of the error process, a new approach for investigat-
ing the goodness of fit of the Lee–Carter model in describing the evolution of the
GGR is considered in Sect. 5, in which we outline the basics of the functional cluster
analysis and apply it in a cross-country perspective. Section6 closes the paper with
conclusions.
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2 Gender mortality gap forecasting: demographic, economic and
educational relevance

It is well established that females, on average, live longer compared to men. Indeed,
in the twenty-first century, the gender gap in longevity has become a universal
phenomenon (Barford et al. 2006). Nonetheless, the size of the discrepancies between
female and male longevity varies across time and countries (Schünemann et al.
2017), being affected also by non-biological factors, such as environmental and
socioeconomic factors.

Not only the drivers, but also the implications of the gender gap in mortality go
beyond the demographic domain. Indeed, different survival prospects for females and
for males have remarkable economic consequences, for instance related to the ade-
quacy of the normal retirement age and of pension incomes. As stressed by Coppola
et al. (2022), accounting for the future evolution of the gender longevity gap enables
policy-makers to devise retirement schemes that preserve the principles of equality
and solidarity, while reducing the gender pension gap. Apicella et al. (2023) argue that
assessing the future path of the gender gap inmortality has both a socio-economic rele-
vance and an educational value. According to Eurostat (2020), a larger share of women
than of men faces old-age poverty risk. Peeters and De Tavernier (2015) explain the
enduring financial vulnerability of women based on the interactions betweenwork his-
tory, family history and pension regulations. Nevertheless, also the ability and the skills
to proactively plan for the own retirement acquire a particular relevance in the new
retirement income provision paradigm, where individuals’ forward-looking behaviour
(with respect to investments, savings and annuitization) is given amore prominent role
(OECD2018; Lusardi andMitchell 2008;Kalmi andRuuskanen 2018). Such decisions
reverberate their effects in the long term and are crucially affected by the understand-
ing of complex risks, such as financial and longevity risks. Consequently, besides
financial illiteracy, a lack of longevity risk consciousness can undermine individuals’
retirement readiness (Hurwitz et al. 2022; Yakoboski et al. 2022), including women’s
financial security at the silver ages. Apicella et al. (2023) show that a “Gender Gap
Ratio” (namely the ratio between male and female mortality rates) ranging between
1.5 and 2.5, according to the age and country, implies a reduction of up to 25% in the
benefits from a temporary life annuity contract for females compared to men, against
the same amount invested in the annuity. The mis-estimation of the time span that is
likely to be spent in retirement can thus have significant economic implications. On the
top of this, a vast literature documents that the mis-estimation of survival prospects
may arise from behavioural biases (Heimer et al. 2019; Grevenbrock et al. 2021;
Apicella and De Giorgi 2022). It is thus crucial to address the lack of demographic
literacy, to allow individuals to take more informed and, possibly, less biased forward-
looking economic decisions involving the estimation of longevity. To assess the extent
of demographic illiteracy, it is useful to devise quantitative methods to obtain sound
and reliable future patterns of male and female longevity and, accordingly, of their
prospective discrepancy, acting as an objective benchmark for longevity evolution.

As already mentioned, the gender gap in mortality, likewise the female and male
mortality phenomena per se, is impacted by dynamic variables, such as economic
and biological factors. Mortality models based on stochastic time-series methods do
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not assume a dynamic evolution for the interactions between biological and economic
driverswithmortality over time. They instead exploit the regularity in both age patterns
and trends over time (Booth and Tickle 2008). As stressed in Apicella et al. (2019),
the deviations of the mortality rates fitted by the stochastic mortality models from the
observed mortality rates reflect the implications of such an underlying assumption.
Measures of the fitting errors of the stochastic mortality models can thus provide
extra-information to set a mathematical framework for the assessment of the mortality
models’ potential to catch, in the long run, the dynamic effects of themain contributors
of mortality, as revealed by the real data. Following Apicella et al. 2019, in relation to
the gender gap in mortality, we measure, in the affine diffusion framework, the ability
of the Lee–Carter model (Lee and Carter 1992) to catch the dynamics of the system
consistently across ages.

3 Mathematical framework and key ideas

3.1 Empirical mortality and GGR observations

In actuarial mathematics, m(t, x) commonly denotes the crude, unsmoothed, death
rate (see, for instance, Cairns et al. 2009). The empirical estimate of the crude death
rate is obtained as follows:

m̂(t, x) = D(t, x)/Ec(t, x), (1)

namely as the recorded number of deaths at age x last birthday in calendar year t ,
D(t, x), over the central number of exposed at risk, Ec(t, x). As stressed by Cairns
et al. (2009), the underlying death rate, m(t, x), is obtained by dividing the expected
deaths by the exposure.

As a measure of the crude gender gap in mortality, we adopt the ratio between male
and female death rates. This ratio identifies in the unit value the parity between male
and female death rates and in a higher (lower) value than 1 a larger (smaller) magnitude
of themale death rate compared to the female one. The state of the art already addresses
the analysis of this measure of discrepancy between male and female death rates, for
instance Hyndman et al. (2013). Following Apicella et al. (2023), we denominate such
a ratio “Gender Gap Ratio” (GGR), and we empirically compute it as follows:

̂GGR(t, x) = m̂M (t, x)/m̂F (t, x), (2)

where m̂M (t, x) and m̂F (t, x) denote the crude death rate, respectively, for males and
females aged x in calendar year t .

3.2 Description of the Lee–Carter model

Lee and Carter (1992) developed the following model for death rates:

log m(t, x) = β(1)
x + β(2)

x kt , (3)
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where β
(1)
x describes the averaged age-pattern of mortality over time, kt captures the

change in the general level of mortality and β
(2)
x reflects the age-specific deviations

of mortality from the averaged pattern when kt varies. The Lee–Carter model exploits
standard time-series methods to derive forecasts of the single time index kt , that, com-
bined with the estimates of the age-related parameters, allow to obtain age-specific
mortality forecasts. As emphasized by Basellini et al. (2022), in their thirtieth anniver-
sary review of Lee and Carter (1992), the Lee–Carter model was a breakthrough in
stochastic mortality modelling. Its success and very wide application, among national
and international statistical offices (ISTAT 2018), practitioners in the private sector
and academics, rely on characteristics such as simplicity. Furthermore, the LC model
is based on a purely extrapolative approach, requiring little subjective expert judge-
ment or external information, uniquely related to the choice of the fitting period. As
emphasized by Booth et al. (2006), determining the most appropriate fitting period
cannot disregard this judgement, sincemortality patterns have experienced remarkable
structural changes over the twentieth century, thus making the more distant past less
informative for current forecasts. Apicella et al. (2023) test the accuracy of models
M1 (Lee–Carter), M5 (or CBD, Cairns et al. 2006) and M8 (Cairns et al. 2009) in
fitting the female and male death rates characterizing the national populations of Italy,
France, Sweden and USA. Based on the Bayesian information criterion (BIC), for any
choice of the mortality dataset and of the fitting period (20, 30 or 40 years of data), the
Lee–Carter model turns out to be the best-fitting model. Furthermore, extending the
fitting period to more than 20 years of data leads to no significant gain in the fitting
accuracy. Analogously, within our paper, we exploit time series of historic mortality
data made up by 20 years when performing the calibration of the Lee–Carter model.

Booth et al. (2006) show that the Lee–Carter model tends, for males, to under-
estimate mortality between ages 30 and 40 and to overestimate mortality above age
45. Analogously, the Lee–Carter model tends to underestimate mortality for females
aged 20–45. Indeed, as shown in Eq. (3), the Lee–Carter model assumes a constant
age-specific pace of mortality change in response to the time index, as described
by the time-invariant parameter β

(2)
x . Such assumption can lead to underestimate the

more accelerated decline experienced bymortality for some age groups, for instance at
advanced ages (Rau et al. 2008). Given the relevance of mortality estimation to predict
retirement income provisions and healthcare expenditures, inter alia, investigating the
ability of the widely applied Lee–Carter model to accurately estimate mortality across
ages has its peculiar importance, in a context where ageing and new welfare are con-
sidered high concern emerging risks (Generali Group 2022). Bergeron-Boucher and
Kjærgaard (2022) evaluate the accuracy, bias and robustness of the Lee–Carter model
for age 65 and above based on an out-of-sample analysis concerning four countries
and both sexes. It is shown that the Lee–Carter model is not substantially biased, but
the assumption of a constant rate of mortality change does not fit all ages and all the
populations.

As explained in Sect. 2, our analysis of the performance of the Lee–Carter model
in catching the GGR dynamics builds on the methodological approach developed in
Apicella et al. (2019).
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3.3 Lee–Carter estimates of the GGR

The GGR fitted by the Lee–Carter model, for age x and calendar year t , is defined as:

GGR(t, x) = mM (t, x)/mF (t, x), (4)

where mM (t, x) and mF (t, x) are, respectively, the male and female death rate that
the Lee–Carter model assigns to age x and calendar year t , based on the information
extrapolated from the underlying data. Accordingly, the estimate of the gender gap
ratio reflects the (in)-effectiveness of theLee–Cartermodel in extrapolating the gender-
related past mortality dynamics. As already mentioned, there exists an age-dependent
bias of the Lee–Carter model (mortality under- or over-estimation) and such a bias
differs by gender (Booth et al. 2006). Furthermore, as stressed by Zarulli et al. (2021),
some ages are more decisive in moulding the sex gap in life expectancy. Indeed, the
higher mortality among men aged 60 and above plays a dominant role in shaping
such a gap. Analysing the accuracy of the estimation of the gender gap ratio at each
age allows to focus on a measure that summarizes the overall estimation bias of the
Lee–Carter model, accounting for both genders.

3.4 The CIR-error process for the GGR

We define the fitting error of the Lee–Carter model, with respect to the GGR,
YGGR(t, x), as follows:

YGGR(t, x) = ̂GGR(t, x)

GGR(t, x)
= m̂M (t, x)

m̂F (t, x)

mF (t, x)

mM (t, x)
= Y M (t, x)

Y F (t, x)
, (5)

where ̂GGR(t, x) is the empirical estimate of the GGR obtained from the data, for
age x and calendar year t , while GGR(t, x) is the GGR resulting from the calibration
of the Lee–Carter model, as shown in Eq. (4). Y M (t, x) and Y F (t, x) represent the
errors made by the Lee–Carter model in fitting the male and the female death rates,
respectively, for each considered age x and calendar year t :

Y M (t, x) = m̂M (t, x)/mM (t, x), Y F (t, x) = m̂F (t, x)/mF (t, x).

YGGR(t, x) in (5) quantifies how much the estimated GGR is far from the realized
GGR observed in the data, in relation to each single age x and calendar year t . Values
of YGGR(t, x) lower than 1 reflect GGR overestimation, while values of YGGR(t, x)
larger than 1 denote GGR underestimation.

YGGR(t, x) compares the fitting performance of the Lee–Carter model on male
mortality data against female ones and expresses which of the two is more accurate
(or, equivalently, less biased), in relation to a given age and calendar year. For instance,
a YGGR(t, x) value being larger than 1 denotes the long-run attitude of the Lee–Carter
model to underestimate the empiricalGGR; it reveals that the source of such estimation
inaccuracy is the larger error made by the LCmodel with respect to the male mortality
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data, compared to the female ones. YGGR(t, x) thus establishes a comparison between
two errors, Y M (t, x) and Y F (t, x), that allows to understand which of the two gender-
related model performances is delivering the larger accuracy and returning the best
result in the global representation of the GGR.

Following Apicella et al. 2019, we assume that, for any fixed age x f , YGGR(t, x f )

is governed by a Cox–Ingersoll–Ross (CIR) process (Cox et al. 1985), as follows:

dYGGR(t, x f ) = α(ζ − YGGR(t, x f ))dt + σ
√

YGGR(t, x f )dW (t), (6)

where W (t) is a Wiener process and α, ζ and σ represent the parameters. ζ denotes
the long-term mean towards which YGGR(t, x f ) is elastically pulled, at a speed α.
The stochastic component σ

√

YGGR(t, x f )dW (t), instead, continuously moves the
process from its deterministic path, with constant intensity σ .

YGGR(t, x f ) cannot become negative if its starting point is nonnegative and the
coefficients fulfil the condition:

2αζ ≥ σ 2. (7)

As explained by Apicella et al. (2019), the CIR process holds empirically rele-
vant properties making it suitable to model the ratios between mortality rates, such
as the preservation of nonnegativity, under condition (7). Such property does not
characterize, for instance, the Ornstein–Uhlenbeck process. Furthermore, given the
probability density of the state variable at time t , conditional on its value at the current
time s, for some s < t , straightforward computations give closed form formulas for
its expected value and variance, thus ensuring computational tractability. In order to
properly exploit the extra-information coming from the fitting errors, it is important
that the chosen model incorporates mean reversion. The presence of the long-term
mean and of a stochastic term being source of uncertainty, together with the nonneg-
ativity, fits well our analysis, as described in the remainder of this section. The CIR
process has these characteristics and, compared to more complex models, is simple
and parsimonious, holding the required information in a few parameters.

α, ζ and σ provide the coordinates of the evolution over time of YGGR(t, x f ) or, in
other terms, they characterize the dynamics of the goodness of fit of the Lee–Carter
model, with respect to the GGR. Accordingly, such parameters convey intrinsically
dynamic information, other than providing a static representation of the performance
of the Lee–Carter model. In this respect, in Apicella et al. (2019), the optimal values
of α, ζ and σ allow to obtain the best estimate of the CIR process trajectory over
the forecasting time horizon, acting as an effective correction factor of the longevity
projections of the mortality model.

The estimated parameter ζ̂ acts also as a measure of the fitting bias. Indeed, ζ̂

not only describes the historical attitude of the Lee–Carter model to under- or over-
estimate the GGR, but also summarizes the long-run potential of the mortality model
to accurately approximate the trend of the GGR, as extrapolated from the data. For
instance, in Apicella et al. (2023), ζ̂ is used as a further quantitative selection criterion
among competing mortality models.

TheCIRprocess of the in-sample errorsYGGR(t, x f ) deviates from its deterministic
path towards ζ̂ , because of a diffusion term whose intensity is constant and equal to
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σ̂ . Such a parameter represents a measure of risk, namely the risk that the information
provided by ζ̂ is unreliable. Indeed, the larger σ̂ , the more powerful the diffusion term
and, thus, themore unstable, or volatile, over time the goodness of fit of the Lee–Carter
model in relation to a specific age. σ̂ plays an important role, given that stability is
widely recognized as an important feature of stochastic mortality models (Coelho and
Nunes 2011). Since instability can derive from the characteristics of the underlying
data, in Apicella et al. (2023), the described methodological approach based on the
CIR description of the in-sample errors YGGR(t, x f ) and σ̂ is used to infer statistical
information about the volatility of the time series of mortality data concerning females
and males, and, by construction, of the gender gap ratio.

We leverage the intrinsic meanings of the long-term mean and the volatility of the
CIR-error process as revealing the fitting bias and the riskiness of the LC model in
the description of the GGR. We provide an extensive study of these two parameters to
uncover their behaviour by age. We shed light on how the magnitude of the fitting bias
and of the volatility vary over age and show if the uncovered age patterns have sys-
tematic features, consistently verified across several mortality datasets. This analysis
corroborates the long-term mean and the volatility parameters as quantitative criteria
for the global assessment of the LC model performance with respect to the GGR; it
offers novel evidence on the persistence of the parameters of the CIR-error process
over age. Our analysis allows also to discriminate the age intervals for which the LC
model systematically shows the best-fitting performance, according to the outlined
criteria.

4 Numerical application

For our numerical application, we use data from theHumanMortality Database (HMD
2023) related to the recorded number of deaths and the exposed at risk for females and
males of the following 25 European national populations: Austria, Belgium, Bulgaria,
Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary,
Ireland, Italy, Lithuania, Luxembourg, the Netherlands, Norway, Poland, Portugal,
Slovakia, Slovenia, Spain, Sweden, Switzerland, and United Kingdom (UK).

The observed data allow us to compute the empirical estimates of the female and
male death rates m̂i (t, x), i = M, F , as in Eq. (1), where x is the age, t represents one
calendar year between 2000 and 2019, M denotes males and F denotes females. We
relate such estimates to obtain the empirical values of the GGR for each considered
age and calendar year, ̂GGR(t, x), according to Eq. (2).

Rectangular arrays of deaths and exposures, including ages from 18 to 90 on the
rows and calendar years from 2000 to 2019 on the columns, are the input data for
the estimation of the Lee–Carter model, for each gender and considered country. The
choice of the time interval of 20 years is coherent with the results obtained in Apicella
et al. (2023) and recalled in Sect. 3.2. We implement the Lee–Carter model in the R
software (https://www.r-project.org/) through the StMoMo package. The StMoMo
function allows to create an object representing the LC model, based on information
about the link function, the predictor structure and the set of parameter constraints.
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We assume that deaths follow a binomial distribution and use a logit link function
targeting 1-year death probabilities q(t, x), that are then transformed in m(t, x). The
StMoMo package also includes the function lc that facilitates the definition of Lee–
Carter model. The generic function fit can be used for estimating the parameters of
the Lee–Carter model, by maximization of the model log-likelihood, as described in
Villegas et al. (2016). The outputs of the described implementation procedure are the
fitted male and female death rates mM (t, x) and mF (t, x), for x = 18, ..., 90 and
t = 2000, ..., 2019, for each country under study. We compute the ratio of mM (t, x)
to mF (t, x) to obtain the fitted values of the GGR, GGR(t, x), according to Eq. (4),
for the same age and time intervals. For our further analysis, we select the interval
of integer ages between 45 and 85, because this age interval encompasses the life-
cycle phases when individuals undertake relevant financial decisions and retirement
planning strategies. This age interval is the period in life when these choices ultimately
reverberate their effects, that combine with the outcomes of longevity risk.

For each integer age in [45–85], we focus on the time series of the in-sample fitting
errors of the GGR, YGGR(t, x f ), t = 2000, . . . , 2019, as in Eq. (5). We assume that
these are sample paths of a Cox–Ingersoll–Ross process and obtain calibrations of
such a process returning the optimal parameters α̂, ζ̂ and σ̂ for each age under study,
independently.

We estimate the parameter vector of the CIR process, by minimizing the negative of
the log-likelihood function for the CIR process (6) over its parameter space, inMAT-
LAB as in Kladivko (2012). In particular, we use the MATLAB function fminsearch
for performing unconstrained optimization and verify ex post that all the parameters
are positive and fulfil condition (7).We obtain initial estimates of the parameter vector,
by applying ordinary least squares on the discretized version of (6), as explained in
Kladivko (2012). The optimization routine requires the YGGR(t, x f ) time series for
each integer age under study and a time step equal to 1, as the error time series are built
from yearly empirical values of the GGR and corresponding LCmodel estimates. The
optimal parameters convey valuable information about the error dynamics over time
and thus on the fitting performance of the Lee–Carter model, for each considered age.
As explained in Sect. 3, we analyse ζ̂ and σ̂ , representing, respectively, a measure of
the fitting bias and a measure of the associated risk.

4.1 Stylized evidence about the fitting bias: �̂

The optimal parameter ζ̂x denotes the long-term mean of the Cox–Ingersoll–Ross
process governing the fitting errors YGGR(t, x) for age x .

We use such an optimal parameter to assess the sign of the fitting bias of the
Lee–Carter model across ages, namely whether we observe underestimation or over-
estimation of the gender gap ratio among the countries under study. It is systematically
verified, across countries, that, on the full age sample, GGR underestimation occurs
more frequently than GGR overestimation. In this respect, we compute the empirical
probability of GGR underestimation, namely the ratio of the number of ages for which
GGR underestimation occurs to the total number of ages in the sample. This empir-
ical probability ranges from the minimum value of 54% for France to the maximum
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Fig. 1 Empirical probability that the Lee–Carter model underestimates the realized gender gap ratio in the
age groups 45–64 (black bars) and 65–85 (grey bars), across countries (Color figure online)

value of 95% for Luxembourg. Since we do not observe cases of a perfect match
between GGR LC estimates and GGR empirical estimates (namely no YGGR(t, x f )

equals 1), the complementary probability represents the empirical probability of GGR
overestimation, accounting for all the ages in [45–85].

In Fig. 1, we display the empirical probabilities of GGR underestimation, specif-
ically concerning two age subgroups: [45–64] (black bars) and [65–85] (grey bars).
Except for Lithuania and the Netherlands, it is consistently observed that younger ages
in the age group [45–64] are more likely to be affected by the attitude of the LCmodel
to underestimate the realized GGR than the older ages.

We complement this evidence, by studying themagnitude of the fitting bias, namely
by assessing how much each ζ̂x differs from the desirable value of 1, representing the
tendency of the LC model to make no estimation errors.

For each country, we denote by �ζ̂x such a discrepancy, considered in its absolute
value, for each single age x in the sample [45–85]. Overall, for each country, we thus
observe 41 values of �ζ̂x , namely one per age. We rank �ζ̂x in ascending order, so
that to find the 15 smallest values (“top 15”, {�ζ̂ i : i = 1, ..., 15}) and the 15 largest
values of the fitting bias (“bottom 15”, {�ζ̂ j : j = 27, ..., 41}). In this respect, in
Table 1, for each country, we report the lower and the upper bounds of each set of
values, and the respective ages at which they occur.

Furthermore, for each country, we gain some insights into the cross-age persistence
of the fitting bias �ζ̂x . Indeed, the smallest recorded value of �ζ̂x , that is �ζ̂ 1,
corresponds to the least biased estimate of the GGR, with respect to the realized one,
achieved by the Lee–Carter model, over the age range [45–85] and for a given country.
The closer the �ζ̂x values among them and to �ζ̂ 1, the more persistent the lowest
fitting bias of the of the LC model throughout the considered ages.

We compute what we call Spreadiζ = �ζ̂ (i+1) − �ζ̂ i , i = 1, ..., 40, namely the
difference between each of the 40 pairs of consecutive ordered values. The average
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Fig. 2 In this scatter plot, we display, by countries, the pairs of the smallest value attained by �ζ̂x (�ζ̂ 1,
x-axis), and the average distance between all the �ζ̂x s values, as a measure of persistence of �ζ 1 across
ages (Spreadζ , y-axis). The dots in the bottom-left corner of the figure are not labelled, due to the tight
closeness of such dots

difference Spreadζ , reported in column 10 of Table 1, measures how much �ζ̂x is
consistent, in terms of its magnitude, across ages. The higher the Spreadζ , the more
unstable the fitting bias in our age sample.

The smallest value�ζ̂ 1, alongwith the average bias spread Spreadζ , allows to gain

preliminary insights into the fitting attitudes of the LC model, in terms of ζ̂ , across
countries. In Fig. 2, we provide graphical evidence about the outcomes reported in
Table 1. Indeed, in such figure, we display, on the x-axis, the values taken on by �ζ̂ 1

and, on the y-axis, the values of Spreadζ ; accordingly, each dot identifies the pair of

�ζ̂ 1 and Spreadζ that characterizes a given country. We see that, when calibrated to
the mortality data concerning the population of Luxembourg, the Lee–Carter model
returns the worst performance in terms of the fitting bias, since it is characterized by
the highest value of �ζ̂ 1 (6.8, unit 10−4) and by the largest instability (with Spreadζ

attaining the value of 51.5, unit 10−4). By contrast, the countries for which the Lee–
Carter model shows the best performance are displayed in the bottom-left corner of
the plot and are France, Germany, Bulgaria, Poland, Hungary and UK, with values
of �ζ̂ 1 in the range [0.0, 0.3] and values of Spreadζ in the range [1.1, 3.3]. This
group of countries is closely followed by Italy, Spain, Greece, Czech Republic, The
Netherlands and Portugal with values of �ζ̂ 1 in the range [0.4, 0.6] and values of
Spreadζ in the range [0.9, 4.7]. With respect to the mentioned countries, the other

ones are characterized by either higher values of �ζ̂ 1 or larger values of Spreadζ or
both. In particular, for Slovenia and Estonia the Lee–Carter model shows a markedly
higher instability in themagnitude of the fitting bias,with respect to the other countries.

We assess the age group for which the Lee–Carter model shows a more marked
attitude to make the smallest errors �ζ̂x observed throughout the age sample. In
this respect, we compute the empirical probability that an age belonging to [65–85]
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Fig. 3 Evidence about how the magnitude of the fitting bias of the LC model, as measured by ζ̂x differs
by age group. For each country, the black bars display the empirical probability that an age belonging
to [65–85] is associated with one of the 15 smallest values of �ζ̂x . The grey bars display the empirical
probability that an age belonging to [65–85] is associated with one of the 15 largest values of �ζ̂x (Color
figure online)

is associated with one of the 15 smallest values of �ζ̂x . For each country, these
probabilities are displayed with the black bars in Fig. 3 and are compared against the
empirical probabilities that an age belonging to [65–85] is associated with one of the
15 largest values of �ζ̂x (grey bars). The complementary probabilities relate to the
other age group [45–64]. It is consistently verified for all countries, except for Italy
and Poland, that the “top 15” largely pertains to ages in the interval [65–85]. Indeed,
if we exclude Italy and Poland, we find that 60% up to 100% of the 15 smallest values
of�ζ̂x is associated with an age x higher than 64. By contrast, we observe much more
frequently that the ages in the interval [45, 64] are characterized by the largest values
of�ζ̂x . Indeed, as shown by the grey bars in Fig. 3, there are a few older ages out of the
total being characterized by the greatest values of �ζ̂x (from the 0% of Luxembourg
to the 40% of Czech Republic, with the exclusion of Italy of Poland that both deviate
from this stylized evidence).

Our analysis suggests that, for almost all the countries under study, the Lee–Carter
model tends to estimate the gender gap ratio more accurately for the ages we could
conventionally refer to as “post-retirement ages”.

4.2 Stylized evidence about the risk: �̂

The optimal parameter σ̂x denotes the constant intensity with which the Cox–
Ingersoll–Ross process governing the fitting errors YGGR(t, x) for age x deviates
from its long-term mean.

123



Lee–Carter model: assessing the potential...

Fig. 4 In this scatter plot, we display, by countries, the pairs of the smallest value attained by σ̂x (σ̂ 1,
x-axis), and the average distance between all the σ̂x s values, as a measure of persistence of σ̂x across ages
(Spreadσ , y-axis). The dots in the bottom-left corner of the figure are not labelled, due to the tight closeness
of such dots

We use such an optimal parameter as ameasure of the risk for the Lee–Carter model
to produce inaccurate, volatile, estimates of the gender gap ratio in the long run, for
each age, by country. As for �ζ̂x , we rank σ̂x in ascending order so that to detect the
15 smallest values (“top 15”, {σ̂ i : i = 1, ..., 15}) and the 15 largest values of this
measure of risk (“bottom 15”, {σ̂ j : j = 27, ..., 41}). In this respect, in Table 2, for
each country, we report the lower and the upper bounds of each set of values and the
respective ages at which they occur.

Furthermore, for each country, we investigate the cross-age persistence of σ̂x .
Indeed, the smallest recorded value of σ̂x , that is σ̂ 1, expresses the lowest risk, among
the ages under study, that the Lee–Carter model gives rise to inaccurate estimates of
the GGR, in relation to a given country. The closer the σ̂x values among them and to
σ̂ 1, the more persistent this low risk over the age sample.

We compute what we call Spreadiσ = σ̂ (i+1) − σ̂ i , i = 1, ..., 40, namely the
difference between each of the 40 pairs of consecutive ordered values of σ̂x . The
average difference Spreadσ , reported in column 10 of Table 2, measures how much
σ̂x is consistent, in terms of its magnitude, across ages. The higher the Spreadσ , the
more unstable the risk in our age sample.

As for �ζ̂x , we use the smallest value σ̂ 1 and the average risk spread Spreadσ

to assess the risk inherent to the fitting performance of the LC model, in terms of σ̂ ,
across countries. In Fig. 4, we display countries, according to the outcomes reported
in Table 2. Indeed, in such figure, we display, on the x-axis, the values taken on by σ̂ 1

(column 2 of Table 2) and, on the y-axis, the values of Spreadσ (column 10 of Table
2). Accordingly, each dot identifies the pair of σ̂ 1 and Spreadσ that characterizes a
given country. In line with our findings related to the fitting bias �ζ̂x , we see that
Luxembourg stands out sharply from the other countries because of the high level
of riskiness of the LC estimations of the GGR. Indeed, for Luxembourg, the lowest
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Fig. 5 Evidence about themagnitude of the risk of the LCmodel, as measured by σ̂x , by age group. For each
country, the black bars display the empirical probability that an age belonging to [65–85] is associated with
one of the 15 smallest values of σ̂x . The grey bars display the empirical probability that an age belonging
to [65–85] is associated with one of the 15 largest values of σ̂x (Color figure online)

attained risk, among all the ages under study, is 374% higher than the average risk
over all the considered nations; furthermore, such a risk is dramatically volatile across
ages. By contrast, the group of countries appearing in the bottom-left corner of Fig. 4
show the most moderate level of riskiness. Such countries are France, Germany, Italy,
Poland, Spain and the UK, with values of σ̂ 1 between 0.9 and 1.9 and values of
Spreadσ in the range [0.3, 0.6]. With respect to the mentioned countries, the other
ones are characterized by either higher values of σ̂ 1 or larger values of Spreadσ or
both. As for �ζ̂x , we find that the LC fitting performance is distinctive also in terms
of riskiness for Slovenia and Estonia.

We assess the age group for which the Lee–Carter model shows the lowest risk. In
this respect, we obtain the empirical probability that an age in the interval [65–85] is
associatedwith one of the 15 smallest values of σ̂ . For each country, these probabilities
are displayed with the black bars in Fig. 5, while the grey bars represent the empirical
probabilities to observe one the 15 largest values of σ̂ for the same age group. In
both cases, the complementary probabilities measure the likelihood of the two events
(occurrence of one of the 15 smallest values or otherwise) for the other age group
[45–64]. The evidence about σ̂x demonstrates, even more markedly than the findings
about �ζ̂x , that the age group [65–85] is noticeably characterized by the best fitting
performance of the Lee–Carter model. Not only such an evidence is consistent across
all countries, but also the occurrences of the smallest σ̂x among the ages higher than
64 are dramatically high. Indeed, for 16 countries out of 25 we find that more than
80% of the 15 smallest values of σ̂x is associated with an age in the interval [65–85].
By contrast, we observe that the ages lower than 65 are more frequently associated
with the largest values of σ̂x . Indeed, as displayed the grey bars in Fig. 5, for a very

123



G. Apicella et al.

few older ages out of the total we observe values of σ̂x being among the 15 greatest
ones (never more than 27% of the total cases).

4.3 Assessment of the LCmodel based on �̂ and �̂

In this section, we combine the two goodness-of-fit assessment criteria, ζ̂ and σ̂ , to
uncover evidence about the age range forwhich the Lee–Cartermodel shows an overall
better attitude to accurately approximate the Gender Gap Ratio phenomenon.

In Sect. 4.1, we detect the 15 smallest values of the �ζ̂x s obtained over the age
sample [45–85] (top 15 of �ζ̂x s). Indeed, in relation to age x , the lower �ζ̂x , in
absolute value, the smaller the distance from the desirable value of 1, representing the
tendency of the LC model to make no estimation errors, as inferred from observing
the model’s performance on the time horizon [2000–2019]. Analogously, in Sect. 4.1,
we detect the 15 smallest values of the σ̂x s, for x ∈ [45–85] (top 15 of σ̂x s). With
respect to age x , the lower σ̂x , the more stable the tendency toward ζ̂x , this denoting
the reliability of the model to catch the dynamics of the underlying data.

Accordingly, when assessing the LC fitting performance in relation to the GGR, the
lowest values of both �ζ̂x s and σ̂x guide the assessment towards the ages for which
the potential of the LC model to precisely capture the dynamics of the GGR is at its
highest levels. Based on this reasoning, for each country, we detect the ages for which
both one of the 15 smallest values of the �ζ̂x s and one of the 15 smallest values of
the σ̂x s contextually occur. These ages are shown in Table 3. The 25 countries under
study vary by the number of simultaneous occurrences of a �ζ̂x and of a σ̂x in the
top 15, whose maximum attainable value is 11, according to our evidence. Only two
countries, the Netherlands and Sweden, achieve the result of 11 matches, that are
associated, in the vast majority of cases, to ages in the interval [65–85]. The fact that
the Lee–Carter model performs better for more advanced ages than for younger ones
is quite stylized over our sample of countries. Indeed, higher ages than 64 account
for the 67% up to the 100% (for 14 countries out of 25) of the found matches. We
remark that this sharp prevalence of more advanced ages has a different meaning and
impact depending on the country under study. Indeed, it has a greater relevance for
those countries being characterized by a weak persistence of both the fitting bias and
the riskiness across ages, as shown in Sects. 4.1 and 4.3. If, otherwise, the magnitude
of the fitting bias and of the riskiness are stable over ages, ages in the range [65, 85]
stand out less remarkably from the younger ones.

To enhance the robustness of our findings, we perform the analysis on the fitting
bias and the riskiness of the Lee–Carter model, when this model is calibrated to a 30-
year time span, starting from 1990. Also under this new setting, we obtain very strong
evidence that the 15 smallest values of�ζ̂x s and of σ̂x are more likely to be associated
with ages between 65 and 85, consistently across countries.Whenwe combine the two
goodness-of-fit assessment criteria, ζ̂ and σ̂ , by computing the number of simultaneous
occurrences of a�ζ̂x and of a σ̂x in the top 15, we find that higher ages than 64 account
for the 71% up to the 100% of the found matches across countries. Furthermore,
Luxembourg stands out sharply from the other countries, as it is characterized by the

123



Lee–Carter model: assessing the potential...

Table 3 Goodness of fit of the LC model by ages

Country Ages

Austria 63 76 77 78 79 80 82 84 85

Belgium 60 69 74 76 77 79 80 81 85

Bulgaria 66 68 72 73 74 75 76 78 80 81

Czech Republic 67 71 79 80 83 84

Denmark 73 76 78 79 80 82 83 84

Estonia 61 62 72 74 80 84

Finland 75 79 80 81 83 84 85

France 65 71 74 75 81 83 84 85

Germany 75 77 78 80 81 84 85

Greece 69 72 74 75 76 77 79 83 84 85

Hungary 60 64 71 74 75 78 81 83

Ireland 64 74 76 77 78 79 81 82 85

Italy 69 70 73 74 75

Lithuania 64 74 75 76 79 82

Luxembourg 59 61 70 74 76 81 83 84

Netherlands 62 67 71 77 79 80 81 82 83 84 85

Norway 64 67 74 76 79 80 82 85

Poland 53 57 58 72 76 78 81 85

Portugal 70 76 77 78 79 80 81 82

Slovakia 65 75 76 77 78 80 81 85

Slovenia 73 77 78 80 81 83 84

Spain 73 74 75 78 80 82 84 85

Sweden 64 67 75 76 77 78 79 82 83 84 85

Switzerland 68 71 73 75 76 78 79

UK 67 73 75 76 79 80 81 83 84 85

In relation to each country, we report the ages for which both one of the 15 smallest values of the �ζ̂x s and
one of the 15 smallest values of the σ̂x s contextually occur

highest fitting bias and the largest riskiness of the Lee–Carter model in the description
of the GGR.

5 Further investigations: functional cluster analysis of the GGR

The goodness of fit, already studied on the basis of the discrete trend of ζ and σ (by
ages), can be explored according to a different perspective, aimed at jointly captur-
ing the evolutionary and magnitude characteristics of the two parameters. Within this
context, we use a procedure based on the technique of the functional multi-country
clustering applied to the parameters ζ and σ . Through this procedure, the previous dis-
crete analysis is now developed by means of a continuous representation, obtained by
suitable interpolating curves. The goodness of fit of the stochastic GGR error process
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is involved in the trend of the interpolating curves, that jointly highlight magnitude
and evolutionary features of the parameters ζ and σ , respectively.

5.1 A brief outline on the fundamentals of the functional cluster analysis

In this section, we describe the functional multi-country clustering of the parameters
ζ and σ as described in Sect. 3, formula (6). In particular, for each fixed age, we
obtain the optimal values of ζ and σ , reflecting the dynamics of the in-sample errors
YGGR(t, x f ), as extrapolated over the 20-year time period [2009–2019]. We analyse
the evolution of ζ and σ over ages in different countries and produce a comparative
analysis, by implementing a functional data clustering of the trends through data
interpolation, which returns a curve over ages for each country. Through the spline
functions, it is possible to identify suitable mathematical functions to describe these
curves. Once these functions have been identified, the clustering algorithm allows us
to highlight groups of countries that have shown similarities in the trend of the two
parameters over ages.

In the statistical literature, functional data clustering has been introduced for uni-
variate time series (James and Sugar 2003; Tarpey and Kinateder 2003; Chiou and Li
2007; Bouveyron and Jacques 2011). Afterwards, multivariate time-series functional
data clustering has been proposed by Jacques and Preda (2014b), aiming at taking into
account the dependence among curves and catching the similarities between them. In
Jacques and Preda (2014a), the authors describe four methods to implement the func-
tional clustering of time series. In the raw-data approach, the clustering is performed
directly on the discretization of the functions at some time points, working on a very
large amount and being time-consuming. In the two-stage approach, firstly data are
approximated by curves through basis expansion or principal component tool (James
and Sugar 2003), and then, the clustering is performed. The reducing dimension step
generally consists in approximating the curves into a finite basis of functions. In Abra-
ham et al. (2003), the two-step method consists in a k-means clustering performed
on the B-spline coefficients. Wahba (1990) discusses the attractiveness of B-spline
expansions, able to grasp the nonlinear effects in multivariate dataset. Kayano et al.
(2010) implement a functional cluster analysis via orthonormalized Gaussian basis
expansions.

As in Ferraty and Vieu (2006), in the nonparametric approach, hierarchical cluster-
ing is applied to assigned measures of distances or dissimilarities among functional
curves. Finally, in the model-based clustering, an assumption of density probability
generating data is considered.

In this paper, the values of ζ and σ referred to each age belonging to the interval
45–85 have been obtained as the optimal values of these parameters, calibrating the
CIR process in the time interval 2000–2019. They are fixed for each age and synthetize
the in-sample errors process dynamics revealed by that data on that time horizon.

In this paper, we have selected the two-step method to cluster the multivariate series
of ζ̂ and σ̂ , respectively, with respect to the ages. Each of these parameters can be
described through its functional form, as a function of the age, considering the values
of the observed parameters as its realizations. Consequently, it exists a stochastic
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process underlying the family of random variables that generates the observed values
at each age point. In a n−dimensional setting, the analysis deals with n curves.

Let γ
j
t (x) (where γ = σ̂ or ζ̂ ) be the observed value of the parameter γ for the

population j ∈ [1, ..., n] at age x ∈ [x1, ..., ω] in a given year t .
Let us consider the following basis expansion:

γ
j
t (x) =

L
∑

l=1

α jl · φl(x) (8)

where φl(x) with L ≥ 1 is the selected number of basis functions, α jl ∈ R are the
coefficients and φl(x) are the basis functions. The basis coefficients are estimated from
the observed values using the least-square estimation.

Given the discrete observations γ
jk
t of each sample path γ

j
t (x) at a finite set of

knots {x jk : k = 1, ...,m j }, the functional predictor becomes:

γ
jk
t = γ

j
t (x jk) + ε jk k = 1, ...,m j

with ε jk independent and identically zero mean distributed errors.

The basis coefficients of each sample path σ
j
t (x) are then approximated by:

α̂ j = (�′
j� j )

−1�′
j σ̃

j
t

with α̂ j = (α̂ j1, ..., α̂ j L)′, � j = (φl(x jk))1≤k≤m j ,1≤l≤L and γ̃
j
t = (γ

j1
t , ..., γ

jm j
t )′.

Equation (8) provides a functional representation of the curve γ
j
t (x) allowing to

handle the rough surfaces.
Once the functional form of each curve is derived, in the second step we implement

the k-means method to cluster the coefficients of the expansions of the curves of
the parameter γ , in order to capture the dependence on the entire curves among the
considered populations. The k-means is an iterative clustering algorithm, that assigns
a data point to a cluster working on the Euclidean distance, so that the sum of the
squared distance between each data point and the arithmetic mean of all data points
in the cluster is minimized.

5.2 Cross-country analysis

We use functional cluster analysis to assess cross-country similarities in the dynamics
of ζ over age, that is ζ(x), as described in Sect. 5.1. ThroughB-splines, we obtain, from
the 41 ζ̂x s we observe by age, an approximating functional form, whose parameters
are calibrated, according to the OLS methods, at a finite set of knots (one for each
couple of consecutive ages). This allows us to obtain, for each country under study,
a functional representation of the curve of ζ(x) with respect to age, for which we
know the coefficients expressing the magnitude and the slope for each knot. Once the
functional form of each curve is derived, in a second step, we implement the k-means
method to cluster the coefficients of the expansions of the curves of ζ(x), in order
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Fig. 6 The figure displays the curves describing how ζ(x) evolve over age, for each of the 25 coun-
tries under study. The black colour identifies countries that, according to the performed functional cluster
analysis, belong to cluster 1, whereas colours blue, red and yellow are associated, respectively, with
clusters 2, 3 and 4 (Color figure online)

to capture the dependence on the entire curves among the considered countries. The
k-means is an iterative clustering algorithm, that, through minimization of within-
cluster variances specifically, squared Euclidean distances), allows to partition the
obtained curves ζ(x) into a given number of clusters, based on their similarities, in
terms of magnitude and shape. Our outcomes, based on the Elbow method, suggest
to partition the 25 curves (one per country) describing how ζ(x) evolve over age
into four clusters, depicted in Fig. 6 and listed in Table 4. In Fig. 6, the black colour
identifies countries that, according to the performed functional cluster analysis, belong
to cluster 1, whereas colours blue, red and yellow are associated, respectively, with
clusters 2, 3 and 4. Clusters differ by the magnitude of parameter ζ(x) and by how it
evolves over age. The major differences among countries relate to the oscillation that
ζ(x) experiences for younger ages in the group [45–65]. Because of this more marked
oscillation, Slovenia (cluster 3) is set apart from the countries belonging to cluster 2.
As it turned out from the empirical analysis developed in Sect. 4.1, Luxembourg stands
out sharply from the other countries under study, because of the higher magnitude of
ζ(x) for each x and the higher oscillation age by age.

We proceed analogously to assess cross-country similarities in the dynamics of σ

over age, that is σ(x), as described in Sect. 5.1. Our outcomes, based on the Elbow
method, suggest to partition the 25 curves (one per country) describing how σ(x)
evolve over age into four clusters, depicted in Fig. 7 and listed in Table 5. As observed
for ζ(x), we find that Slovenia and Luxembourg stands out from the other clusters,
pooling larger groups of nations. The functional form of the curve, other than the
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Table 4 Cross-country
comparison of the dynamics of ζ

over age: partition into clusters

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Belgium Austria Slovenia Luxembourg

Bulgaria Denmark

Czech Republic Estonia

France Finland

Germany Ireland

Greece Lithuania

Hungary Norway

Italy Slovakia

Netherlands Sweden

Poland Switzerland

Portugal

Spain

UK

Fig. 7 The figure displays the curves describing how σ(x) evolve over age, for each of the 25 countries under
study. The black colour identifies countries that, according to the performed Functional Cluster Analysis,
belong to cluster 1, whereas colours blue, redf and yellow are associated, respectively, with clusters 2, 3
and 4 (Color figure online)

magnitude, plays the major role in discriminating cluster 3 (Slovenia) from cluster 2,
especially with respect to younger ages.

The study performed through functional cluster analysis is more refined in the
unfolding of the fitting bias and model risk characterizing the Lee–Carter model in
the description of the gender gap ratio. Furthermore, by virtue of the peculiarities of
this procedure and of the underlying algorithm, under a cross-country perspective, we
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Table 5 Cross-country
comparison of the dynamics of σ

over age: partition into clusters

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Belgium Austria Slovenia Luxembourg

Bulgaria Denmark

Czech Republic Estonia

France Finland

Germany Greece

Hungary Ireland

Italy Lithuania

Netherlands Norway

Poland Portugal

Spain Slovakia

UK Sweden

Switzerland

can grasp similarities in the performance of ζ and σ , according to a joint view of the
evolutionary and the magnitude variations for each parameter.

Identifying such similarities allows to categorize the goodness offit of theLCmodel,
providing clusters of countries identified along with the benchmarks for achieving the
“best-fitting” results; each cluster shows similarities in the trend of the two parameters
over age. Cluster 1, namely the black curves in the figures, thus groups those nations
for which there is a better goodness of fit of the LC model for describing the GGR,
while for Slovenia and for Luxembourg there is evidence of a poor adequacy of the
LC model to represent the true trend of the GGR.

6 Conclusions

The study of gender differences in survival, in this paper expressed and studied as
the gender gap ratio (GGR), the ratio between male and female mortality rates, is
the core of the work. The aim is to assess the ability of the Lee–Carter model to
accurately represent the GGR real data trends in a multi-country perspective, in order
to provide application guidelines. The results provide elements to infer which are the
geographical areas where the LC is more effective in representing the GGR.

The paper focuses on the description and analysis of errors between real data and
GGR values estimated with the LC model, by using the stochastic dynamic Cox–
Ingersoll and Ross model and in particular by studying the parameters of this process.
The parameters are, in our opinion, particularly interesting and explanatory with
respect to the scope of the work: the estimated parameter ζ , the long-term average of
the error process, acts as ameasure of the fitting bias. It not only describes the historical
attitude of the Lee–Carter model to under or over-estimate the gender gap ratio, but
also summarizes long-run potential of the mortality model to accurately approximate
the trend of the GGR, as extrapolated from the data. In fact, the idea of studying the
error process between real GGRs and GGRs estimated through the LC model implies
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that the closer the long-term mean of the CIR process represented by the parameter ζ

is to 1, the higher the quality of the LC model in describing the real GGR data. Hence,
the significance of the long-term mean parameter as a model benchmark and thus as
a further quantitative selection criterion among competing mortality models.

Noting then that the CIR of the in-sample errors deviates from its deterministic path
towards its long-termmean because of a diffusion term,whose intensity is constant and
equal to the parameter σ , such a parameter represents a measure of risk, understood as
the risk that the information provided by the estimated long-term mean is unreliable.
Thus, we can state that the higher σ , the more powerful the diffusion term and, thus,
the more unstable, or volatile, over time the goodness of fit of the Lee–Carter model in
relation to a specific age. It follows that σ plays an important role, given that stability
is widely recognized as an important feature of stochastic mortality models.

To summarize, the LC model is better at representing actual GGR data the closer ζ

approaches 1 and σ approaches 0. The overall analysis developed on these parameters
(long-term mean and volatility) for 25 European countries provides an interpretation
of the extent of the fitting bias from which a model risk analysis arises. We perform
the study under two different approaches. The first consists in a widespread explo-
ration of the evidence emerging from the comparison of fitted and observed data in
order to capture some significant stylized facts. The second is based on a functional
cluster analysis, carried out on the same countries, which allows to grasp similarity
characters in the performance of the considered parameters, according to a joint view
of evolutionary and magnitude variations for each of them.

Thework focuses on the adult ages, believing it particularly significant to investigate
the phenomenonwhere it is realized in a greater number of survivors of one gender than
another and therefore has a greater economic, political and social impact. The value of
the information the work aims to provide is important to correctly guide political and
social choices in certain areas related to the life cycle. As is well known, a longer life
expectancy for females is characterized by a compromised state of health, which will
cause not only a higher number of female elderly to live, but also a higher number of
females with fragile health. This requires a more cautious approach to protecting old
age women under difficult health conditions, for example by implementing prevention
programmes targeted at diseases characterizing one gender rather than another. In
addition, other things being equal, women generally have lower retirement income
than their male counterparts. Furthermore, the results obtained can support the role
of insurance over the life course: from an insurer’s point of view, it is also important
to know, also in terms of internal control, whether a portfolio of pension annuities is
biased to one gender or another. The interplay among these elements thus requires
preventive action from a health point of view and prudent planning from a financial
point of view. Active and healthy ageing is indeed a primary objective for national
and supranational authorities, and the methodological approach in this paper can be
useful for identifying what public and private resources are capable of addressing the
disparities in the ageing process. But also, in a variety of other fields, gender differences
in survival can cause orientations in social behaviour: for example in electoral choices,
in the greater or lesser propensity to use the media and the social media in particular,
in marketing strategy and in many other fields of human behaviour in which scientific
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branches such as sociology, health policies, economics and economic policy find their
application.

Also in this context, we have paid attention to the circumstance that currently
supranational organizations draw up regulatory structures with the aim ofmore nations
adopting them andmaking them their own, which is why the work extends the analysis
to 25 European countries. The paper provides a “local” picture of the GGR and of the
greater or lesser ability of the Lee–Carter model to well capture actual GGR data
in a certain geographic area, where specific clinical, economic, and anthropogenic
disparities are to be grasped. This in-depth analysis, carried out using cluster analysis
methodology, made it possible to isolate geographical areas for which the reliability
of the Lee–Carter model as a description of mortality appears questionable.

In light of this, the trend and the size of the GGR take on an important role of
providing information, being a basic tool to build newwelfare structures andfinancially
sustainable policies; a deeper level of understanding of these elements allows to define
solutions aimed at senior protection and well-being. The estimation of GGR through
themost effective and popular model, the Lee–Carter model, is therefore of substantial
importance in this framework of interest.

Future research lines can be developed throughout a interdisciplinary perspective,
deepening the specific determinants from which the quantitative results originate. In
particular, this analysis could inspire and innovate financial/insurance tools and social
policies which support the ageing process.

Last but not least, within a financial education program, knowing the quantitative
dimension of the GGR is culturally significant, increasing the awareness of elderly
people (and not only) to take informed decisions based on the life-cycle assessment.
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