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Abstract

Recent advancements in Artificial Intelligence have led to several breakthroughs in many
heterogeneous scientific fields, such as the prediction of protein structures or self-driving
cars. These results are obtained by means of Machine Learning techniques, which make
it possible to automatically learn from the available annotated examples a mathemat-
ical model capable of solving the task. One of its sub-fields, Deep Learning, brought
further improvements by providing the possibility to also compute an informative and
non-redundant representation for each example by means of the same learning process.
To successfully solve the task under analysis, the model needs to overcome the gen-
eralization gap, meaning that it needs to work well both on the training data, and on
examples which are drawn from the same distribution but are never observed at training
time. Several heuristics are often used to overcome this gap, such as the introduction of
inductive biases when modeling the data or the usage of regularization techniques; how-
ever, a popular way consists in collecting and annotating more examples hoping they can
cover the cases which were not previously observed. In particular, recent state-of-the-
art solutions use hundreds of millions or even billions of annotated examples, and the
underlying trend seems to imply that the collection and annotation of more and more
examples should be the prominent way to overcome the generalization gap. However,
there are many fields, e.g. medical fields, in which it is difficult to collect such a large
amount of examples, and producing high quality annotations is even more arduous and
costly.

During my Ph.D. and in this thesis, I designed and proposed several solutions which
address the generalization gap in three different domains by leveraging semantic as-
pects of the available data. In particular, the first part of the thesis includes techniques
which create new annotations for the data under analysis: these include data augmen-
tation techniques, which are used to compute variations of the annotations by means of
semantics-preserving transformations, and transfer learning, which is used in the scope
of this thesis to automatically generate textual descriptions for a set of images. In the
second part of the thesis, this gap is reduced by customizing the training objective based
on the semantics of the annotations. By means of these customizations, a problem is
shifted from the commonly used single-task setting to a multi-task learning setting by
designing an additional task, and then two variations of a standard loss function are
proposed by introducing semantic knowledge into the training process.





Sommario

I recenti sviluppi in Intelligenza Artificiale hanno portato al raggiungimento di impor-
tanti passi in avanti in diversi campi scientifici, quali la predizione della struttura delle
proteine e gli autoveicoli a guida autonoma. Questi risultati sono stati ottenuti tramite
tecniche di Machine Learning, il quale permette di apprendere in autonomia un modello
matematico in grado di risolvere un problema a partire da degli esempi annotati. Il
Deep Learning, che è uno dei campi di ricerca appartenenti al Machine Learning, ha
portato ad ulteriori miglioramenti in quanto permette di ottenere anche una rappresen-
tazione informativa e non ridondante di ogni esempio sfruttando lo stesso processo di
apprendimento automatico. Per risolvere con successo il problema analizzato, il mod-
ello appreso necessita di superare il divario della generalizzazione (detto generalization
gap), ovvero necessita di effettuare delle buone predizioni sia sui dati di addestramento,
sia su esempi che sono campionati dalla stessa distribuzione ma non osservati in fase di
addestramento. Varie euristiche sono spesso utilizzate per superare questo divario, quali
l’introduzione di bias induttivi durante la fase di modellazione dei dati o l’uso di tecniche
di regolarizzazione; tuttavia, un modo comunemente usato consiste nel collezionare ed
annotare un numero maggiore di esempi nella speranza che coprano le casistiche non
osservate in precedenza. In particolare, le soluzioni usate nello stato dell’arte utilizzano
centinaia di milioni o anche miliardi di esempi annotati: l’andamento sempre crescente
nel numero dei dati utilizzati sembra implicare che tale processo di collezione ed anno-
tazione sia il modo principale per superare il generalization gap. Tuttavia tale processo
non è facilmente applicare in molti campi, quale ad esempio il settore medicale, in cui
è difficile collezionare un numero cos̀ı alto di esempi, ed è ancor più arduo e costoso
fornire delle annotazioni di qualità.

Durante il mio Corso di Dottorato ed in questa tesi, ho progettato e proposto varie
soluzioni che riducono tale gap in tre domini diversi sfruttando degli aspetti semantici
presenti nei dati a disposizione. In particolare, la prima parte di questa tesi include
diverse tecniche che creano nuove annotazioni per i dati analizzati: tali tecniche com-
prendono strategie, chiamate di data augmentation, che ottengono variazioni dei dati e
delle loro annotazioni tramite trasformazioni che ne preservano la semantica, e tecniche
di trasferimento dell’apprendimento, che in questa tesi sono state usate per generare
automaticamente descrizioni testuali per un insieme di immagini. Nella seconda parte
della tesi, il divario è ridotto grazie ad una personalizzazione delle funzioni obiettivo
usate in fase di addestramento basata sulla semantica delle annotazioni. In questa tesi,
tramite queste variazioni è stato possibile trasformare un problema dall’impostazione
tipicamente singolare ad un’impostazione multi-task, in cui cioè il modello impara a
risolvere più problemi in contemporanea; successivamente, a partire da una funzione
obiettivo standard sono state ottenute due variazioni che introducono aspetti di seman-
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tica direttamente nel processo di addestramento.
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1
Introduction

In recent years, Artificial Intelligence (AI) has hit the headlines of several news outlets
showcasing outstanding achievements in highly complex problems, such as the genera-
tion of realistic images following a natural language description1, or the prediction of
the structure of proteins2. Many of these results in AI were possible thanks to recent ad-
vancements made in Machine Learning (ML), which is a branch of AI, and in particular
in Deep Learning (DL), a subfield of ML. Instead of defining every exact detail used to
solve a given problem, ML focuses on developing algorithms which automatically learn
from available examples how to do it. In 1959, Arthur Samuel used it for the game
of checkers, making the computer able to “learn from experience”, in order to “play
a better game of checkers than can be played by the person who wrote the program”
[241]. To learn in this way, ML algorithms need to have a numerical representation of
the input data which is informative and non-redundant: for instance, images can be
represented as 3-D arrays, however keeping all the pixels is redundant and also unlikely
to be informative, e.g. two images which contain a lot of blue would be considered
similar, although one could show an airplane in the sky whereas a boat in the middle
of the ocean could be the focus of the second image. Therefore, only the most impor-
tant characteristics of the input data should be considered: these characteristics, called
features, are intended to be informative and non-redundant, and are derived from the
input data via a feature extraction process. Popular algorithms used to manually extract
features for visual data include the Scale-Invariant Feature Transform (SIFT) algorithm
[179], which locates ‘key points’ of the image and produces for each of them a scale-
and rotation-invariant local representation, and the Histogram of Oriented Gradients
(HOG) [43], which computes a global representation by using the distribution of the
direction of the gradients. Differently from these techniques, DL aims at automatizing
the feature extraction step by learning at the same time how to extract useful features
from the raw input data, and how to solve the target task. The surge of DL started in
2012, after the impressive improvements obtained in image recognition with very deep
neural networks [146]. Since then several breakthroughs were made in many highly

1https://www.nytimes.com/2022/04/06/technology/openai-images-dall-e.html
2https://www.bbc.com/news/science-environment-57929095
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heterogeneous domains, ranging from self-driving cars [16], to achieving superhuman
proficiency in complex games [258], to protein structure prediction [128].

To obtain these results, the model learned by any of these techniques needs to grasp
the important details of the data which apply both to seen and unseen examples: in fact,
since both ML and DL learn from a finite set of examples, there may be cases which
are not covered and therefore never observed by the model during its learning phase.
This problem has important relations to the generalization gap, which is intuitively
defined as the difference between the performance measured on the training data and
on another set of examples drawn from the same distribution, and is quite important to
understand whether a trained model will operate well outside the learning environment.
The generalization ability of a model could be verified by using the true distribution of
data and computing this value. However, the true distribution is commonly unknown.
To mitigate this problem, a subset of the available data is commonly held out, never
used to gain any information during the learning phase, and only used to quantify
the generalization ability: in particular, the available data is usually split into three
sets, namely training, validation, and test set, which are respectively used as learning
examples, a set of examples which are used to analyze the generalization after each
update of the model, and finally the set of unseen examples which are only tested once
in order to measure how well the learned model generalizes. By using these sets, it is
possible to track the learning, to identify failure modes, and to introduce heuristics for
a better generalization ability of the model; however, collecting more training data is
often preferred, since it may lead to examples which have similar characteristics to the
unseen ones. A naive idea could be to manually collect and annotate more examples:
although tedious and error-prone, it would be feasible for a handful of researchers or
other experts to provide high quality annotations. Yet, the most important limitation
of this idea is about the quantity: in fact, some of the datasets used to tackle the
aforementioned tasks are made of hundreds of thousands or even millions of annotated
examples. It is clear that manually annotating such an amount of data becomes rapidly
unfeasible. A clever next step consists in enlarging the pool of annotators, for instance
by leveraging online crowdsourcing platforms which distribute the execution of tasks
requiring human supervision across the globe. These platforms, which for instance
include Amazon Mechanical Turk3 and Prolific Academic4, were used to collect several
public datasets over time. In the TGIF dataset, 100000 animated GIFs collected on
Tumblr were annotated by crowdworkers with 120000 free-form descriptions [166]. A
Microsoft Research team collected in a similar way a total of 200000 natural language
descriptions for 10000 videos retrieved from YouTube [310]. Even richer and more
complex annotations were collected in the Visual Genome, including 3.8 millions of
object instances, 1.7 millions visual questions and answers, and 5.4 millions of sentences
describing specific regions of an image [145]. More recently, more than 3000 hours of
video were collected in Ego4D and annotated with millions of different annotations,
including dense textual descriptions of fine-grained activities, visual queries, and speech
transcriptions, requiring more than 250000 hours of efforts from human annotators [87].
However, although the collection and annotation of these large scale datasets became
feasible thanks to crowdsourcing platforms, the tediousness of the tasks solved by the

3https://www.mturk.com/
4https://www.prolific.co/



Chapter 1 — Introduction 5

human annotators, the need to implement clever methods to guarantee the quality of
the annotations, and the costs required to pay the human annotators for the invaluable
service they performed, may still represent an hindrance to the collection of even bigger
datasets. The collection of billions of examples might seem to lead to diminishing returns
in terms of added knowledge when compared to millions, yet these humongous amounts
of data are used to train recent state-of-the-art approaches: in particular, this is the case
for foundational models which often perform multi-task learning, that is they try to solve
multiple tasks at the same time by learning representations which are general enough
to solve them all. Notable examples of this family of models include Flamingo which
used around 500 millions of video-text and image-text pairs [3]; Florence which used 900
millions of image-text pairs [322]; ALIGN and SimVLM which used around 1.8 billions
of image and alt-text pairs [123, 291]. Although crowdsource-based approaches may
still be used to collect such a sizable amount of data, the costs for the annotation may
become far too high. Therefore, several techniques capable of collecting the annotations
automatically were proposed to reduce the costs. For instance, the annotation for a
video could be given by any textual description attached to it, such as the alt-text used
for accessibility purposes [123, 12], or by obtaining the speech transcript as generated by
Automatic Speech Recognition (ASR) techniques [195]. Clearly, while these annotations
are collected at a much cheaper cost, their quality may be lackluster when compared to
those obtained by human annotators, and may also introduce several errors, e.g. in the
case of ASR.

While there is a need for large amounts of annotated data to train DL models able
to solve these tasks, the underlying trend seems to imply that the only way to overcome
the generalization gap is to collect and annotate more and more data. However, there
are two important shortcomings to this approach. First of all, it is not always possible
to perform this collection and annotation step with ease: for instance, there are many
domains in which the data is difficult to collect and even more problematic to annotate,
such as when dealing with a datum which requires extensive expertise to correctly un-
derstand what it means and what it entails, e.g. tumor scans obtained with Magnetic
Resonance Imaging. Secondly, while having more data is useful, there are many other
ways to overcome the generalization gap, such as by working on the modeling aspects
of the data or by paying more attention to the training procedure. During my Ph.D.
studies I concentrated my efforts on these aspects, providing further evidence that the
available data can be used to a greater extent in order to obtain better solutions which
reduce the generalization gap. In particular, in this thesis such an objective is tackled
by focusing on two main questions. In the first one, which covers Part I, the novel
techniques we developed show how the available data can be used to generate new an-
notations which are helpful at training time. In the second one, covering Part II, the
attention is moved to the learning aspects and in particular to the customization of
the training objective, in which we propose to leverage semantic aspects of the avail-
able data to provide further or more target-oriented supervision, resulting in models
which generalize better. A third technique to reduce the generalization gap consists in
the development of new methods to model the data under analysis. Solutions of this
type were explored during my studies, but on a highly different field of study, that of
Predictive Maintenance. For this reason, Chapter 9 covers this topic and is part of the
Appendix. Before moving to the two core parts of this thesis, the next section covers the



6 Chapter 1 — Introduction

background which is useful to have an in-depth understanding of the following work. In
particular, it presents three problems, which are Video Question Answering, Text-Video
Retrieval, and Text-to-Image Synthesis, which were used as case studies to apply and
test the proposed solutions. Then, an outline of the thesis will be presented, highlighting
the main motivation and results, which also ended up in scientific products, as detailed
in the list of publications presented thereafter.

1.1 Background

1.1.1 Video Question Answering

Video Question Answering, or VideoQA, requires to predict the correct answer to a
natural language question about the visual contents of a video clip. Solving this problem
has several interesting consequences, such as to provide support in training of human
workers, to help and provide some visual context to visually impaired people, and also
for more foundational questions related to the visual Turing test [83].

Following the general definition of the problem, multiple tasks stemmed from it based
on the methodology used to deal with the answer reasoning and prediction phases. The
closest approach to real-world scenarios, which is often termed as open-ended, free-
form, or generation-based, requires the model to generate the answer word-by-word
by solely reasoning on the question and the video [218, 306]. To simplify the answer
prediction methodology, especially considering that the answers were often quite simple,
classification-based objectives and metrics became the center of the attention in the
community. The two most prominent approaches are called multiple choice and open-
ended ; in the former, a small pool of candidate answers (e.g. five choices in [72, 120, 273])
is provided along the video and the question, and the model needs to understand which
candidate is correct; in the latter, the answer needs to be selected from a fixed set of
possible answers from the dataset, e.g. 1000 in [308, 321, 327]. Since in the multiple
choice task the model only needs to determine the correct answer among the candidates
instead of answering the question, it is considered less challenging than the open-ended
tasks [129]; therefore, recent works are trying to raise more attention towards the open-
ended and especially the generation-based version, which are more of interest for real-
world applications [306]. Another approach, called fill-in-the-blank, which consists in
asking the model to fill the blanks in a template was also considered in some early
works [186, 348], but it is getting more attention recently [23, 238].

Considering that VideoQA requires a mixture of computer vision and natural lan-
guage processing, most of the methods developed for this task inherit several ideas
from unimodal methodologies, customizing them to model the cross-modal interactions
needed to solve the problem. About the textual data, it is common to extract pre-
trained vectors for the word-level representations, such as by using Word2Vec [196] or
GloVe [214], followed by a recurrent network to produce a context [171, 250]; some
works also obtain a sentence-level representation directly, e.g. by using RoBERTa [189].
To compute a representation of the video, deep neural networks are used to capture
regional [233], appearance [98, 272], and motion features [94, 276]; audio features may
also play a role in identifying the correct answer to a question and therefore are used,
especially within datasets containing audio-related questions [316, 323]. After obtaining



1.1 Background 7

a representation for both types of data, attention mechanisms are often used to filter
out irrelevant information and to attend solely to the most important frames or regions
within the visual data, eventually guided by the question context [120, 140, 154, 163].
When regional features are added into the process, the interactions between frame- and
region-level features are modelled with graphs [111, 250], possibly obtaining richer inter-
actions by leveraging the textual context [48, 124, 171, 210]. A joint representation of
video and question is hence computed and used to predict the correct answer. This step
may be performed as simply as by using a classifier or a regressor, but it is common to
model further cross-modal interactions in a late fusion approach. While attention mech-
anisms may still play a part into this process, more complex techniques were developed,
involving multi-step reasoning techniques [73, 189] and the usage of memory layers to
store and eventually make multiple modalities interact with each other [73, 79, 171].
Finally, similarly to what happened in other research fields, Transformers [279] also be-
came popular in VideoQA [151, 157, 315]. However, their need for large scale pretraining
datasets often leads to noisy data collected automatically from the web [195, 315].

1.1.2 Text-To-Video Retrieval

When looking for a video through a multimedia search engine, the user typically needs
to provide a textual description of the expected contents; then, the engine outputs an
ordered list of the videos contained in its database, in which the order is determined
by how well a video is described by the query. By improving the solutions for this
fundamental problem, it is possible to improve the multimedia search engines which are
becoming more and more important as the amount of visual contents published online
increases5, but also to easily find photos or videos in private media galleries by providing
a simple textual query. Moreover, given its multimodal nature, it has important relations
to the general understanding of the cross-modal interactions happening between the
visual contents and how we are used to describe them.

State-of-the-art solutions for the Text-To-Video Retrieval6 problem are typically
obtained by using deep learning techniques applied on large scale datasets, compris-
ing at least one textual description (or caption) for each video clip. In particular,
the most prominent approach consists in learning a joint text-video embedding space
[12, 57, 184, 257], in which the representation of the video clip is forced to be highly
similar to that of its own caption. By doing so, it is possible to search for a video
by mapping the textual query into the same embedding space and then by ranking its
neighbors through a similarity metric, such as the cosine similarity or the Euclidean
distance. To achieve this goal, the loss function used to guide the optimization process
is of utmost importance: considering the aforementioned peculiarities of the desired em-
bedding space, a family of loss functions, called contrastive, is the most common choice
since they aim at maximizing the similarity of the representations of video-caption pairs,
while decreasing that of other pairs [36, 93, 193, 247]. From an architectural point of
view, many heterogeneous approaches were proposed by the community. Given the mul-
timodal nature of the problem and the availability of models (or “experts”) pretrained

5Users of YouTube uploaded more than 500 hours of video every minute, as of February 2020 [25],
and 95 millions of video and images are uploaded on Instagram daily [190].

6Commonly, Text-To-Video Retrieval is seen as a component of a more general setting, termed Text-
Video or Video-Text Retrieval, which also considers the Video-To-Text aspect for a holistic evaluation.
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for several tasks, it is common to compute a representation by mixing the information
obtained by these multiple sources and by learning how to weigh each of the expert
features. Notable examples include Mixture of Embedding Experts [194] and T2Vlad
[288], which use NetVLAD [6] to perform the aggregation and matching of local features,
Collaborative Experts [175], which introduce a collaborative mechanism to modulate the
influence of each pretrained model according to the other experts, and TeachText [40]
which extended the idea of using pretrained models to the language modeling aspect.
Later works also used multimodal Transformers to model the cross-modal interactions
through multiple self-attention layers [76, 61]. Differently from them, several researchers
focused on leveraging the structure of the data coming from both modalities to improve
the organization of the embedding space. By using Part-of-Speech (PoS) taggers to
extract nouns and verbs from the descriptions, both PoS-restricted and PoS-agnostic
embedding spaces were learned in [299]. The structure of the captions and the under-
lying semantic relations between its noun and verb phrases made it possible to learn
hierarchical representations in [26], whereas later works extended this idea to also learn
an hierarchical video graph [75, 127, 301] including sub-clip frame- or object-level rep-
resentations. Recent works [52, 82, 212, 223, 236, 243] aim at leveraging additional
linguistic supervision to inject semantic aspects into the visual representations, e.g. by
using a support set of captions and a generative cost function [212], by obtaining addi-
tional language embeddings and pseudo-classnames to improve the semantic consistency
of the visual representations [236], or by introducing a question-answering module which
tries to solve a proxy task resembling the multiple choice setting of VideoQA [82].

Another aspect which is fundamental for Text-Video Retrieval and which is is ob-
serving a change in recent years consists in its evaluation. In fact, the evaluation was
usually instance-based, that is given a query the evaluation metrics only consider where
the “groundtruth” video is located in the ranking list: to do so, popular metrics include
the recall rates, the median and mean rank, and the geometric mean of recall. Although
these metrics represented the standard way to measure advancements in Text-Video
Retrieval, they do not consider the quality of the ranking list, which is more indicative
of high performance in retrieval systems: in fact, by using these metrics a model is
penalized if, given a query, it ranks highly (i.e., far away from the top results in the
ranking list) the video associated to that query in the dataset, despite ranking first a
video which shares similar visual contents but a slightly different textual description,
e.g. due to a synonym. Therefore, to truly quantify the advancements made in Text-
Video Retrieval, the quality of the full ranking list would need to be assessed by means
of more complex metrics, such as the nDCG [122] and the mAP [10]. In particular,
these semantic nuances may influence highly on the performance, since multiple video
clips may be described by similar captions. To use these metrics, the usage of semantic
similarity measures was recently proposed to compute a proxy for the relevance grades,
leading to semantic Text-Video Retrieval [45, 298].

1.1.3 Text-to-Image Synthesis

The generation of images conditioned on a natural language description takes the name
of Text-to-Image Synthesis or Generation. Recent advancements on this topic, espe-
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cially after the release of DALL-E 2 [224], hit several media outlets78 and sparked an
increased interest due to the high quality of the generated images. Apart from generating
fancy images, being able to generate text-conditioned images affects several applications
including image editing and graphic design.

With deep learning, this field of research rapidly improved and achieved interesting
results. In particular, most of the state-of-the-art methods for Text-to-Image Synthesis
are based on Generative Adversarial Networks (GAN) [85], which generally achieve a
high sample quality [144, 168, 237, 330]. These networks follow an adversarial learn-
ing approach, in which two distinct networks, the “generator” and the “discriminator”,
compete to gain the upper hand. In particular, the “generator” generates increasingly
more realistic images while trying to fool the “discriminator”, which in turn learns
to discriminate generated from real images. To have more control on the generation
process, later works introduced a conditioning variable [200], especially focusing on a
textual guidance [231]. Subsequent works started to use multiple GANs implementing
a coarse-to-fine procedure to produce high resolution images [311, 331, 332], eventually
supporting this procedure with additional structures, such as memories in which inter-
mediate results and representations are stored [350], or additional training objectives,
e.g. cycle consistency with an Image-to-Text objective [221, 347]. Given the success of
contrastive loss functions in several cross-modal fields, several authors tried to steer the
training paradigm towards these contrastive approaches [318, 319, 330]. In particular,
after the release of the contrastively-trained text-vision model CLIP [223], many works
also tried to integrate it into their methodologies [77, 78, 211]. For instance, Patashnik
et al. proposed three different approaches for Text-to-Image manipulation which use
CLIP to map a textual description of the desired change and identifying a direction in
the latent space to perform such a transformation [211]; similarly, Gal et al. followed
and adapted one of these approaches to enable out-of-domain Text-to-Image Synthesis
[77].

However, the difficult training process and the inability to capture the high diversity
of the true distribution represented important shortcomings of GANs which drove the
attention to likelihood-based generative approaches [202, 227]. In particular, a class
of likelihood-based models, called diffusion models [102, 261, 264], is getting increased
attention since they have many desirable properties, e.g. ease of training and scalability,
while also leading to high quality images [54, 102, 263, 264]. Many recent works are now
investigating these models and their application to Text-to-Image Synthesis [8, 91, 126,
225, 235, 300], leading to a process which is typically made of two stages: in the first
stage, an encoder-decoder architecture is learned by means of VQ-VAE [278] or VQ-
GAN [64] to faithfully reconstruct an input image; then, based on a condition variable,
the second stage either uses an autoregressive model to sequentially predict the image
[225, 300], or a diffusion model to predict it by performing a gradual denoising process
[91, 235].

7https://www.washingtonpost.com/technology/interactive/2022/artificial-intelligence-images-dall-
e/

8https://www.nytimes.com/2022/04/06/technology/openai-images-dall-e.html
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1.2 Thesis Outline and Contributions

The thesis is divided into two parts.
The first part, named “Can we reduce the generalization gap by automatically creat-

ing new labels?”, aims at showing that the available annotations can be used to automat-
ically create new ones, through generation or by using data augmentation techniques,
and that the models resulting from the training with these additional annotations gen-
eralize better than the original ones. This initial part stems from the extensive work
which was done over the years to mitigate the overfitting problem and to artificially
increase the training dataset size. In this thesis, two techniques which are quite popu-
lar and widely used, especially in computer vision, became the center of the attention:
data augmentation, and transfer learning. Data augmentation refers to the usage of
semantics-preserving techniques which are used to create variations of the input data.
These techniques became popular in computer vision after the work by Krizhevsky et
al., who used random croppings, horizontal reflections, and changes in the RGB inten-
sity to increase the training dataset size by a factor of 2048 [146]. Following this work,
other researchers proposed other techniques for data augmentation, including the ran-
dom erasing of image regions [341] or cutting a region from one image and applying it
on another one [324]. Some of these techniques, especially the geometric or color-space
transformations, were also applied to videos at the frame-level; nonetheless, the addi-
tional temporal dimension raises further possibilities to augment the input video clip,
e.g. by temporally subsampling it [285] or by replacing part of it with a cuboid taken
from a different video clip [325]. However, when textual annotations are paired to a
video clip and used as part of the training data, these data augmentation techniques
may introduce a discrepancy: for instance, the description of a video clip may refer to
some object which is positioned on the “left”; when the video is horizontally flipped,
its position on the image will change to the “right” and so the description needs to be
updated to preserve the consistency and not to introduce errors in training. In Chapter
2, we detail our findings on this topic when applied to the Video Question Answer-
ing problem. We also design three data augmentation techniques which are applied to
the raw textual and visual annotations, and experimentally validate them on a public
dataset, obtaining an overall improvement of up to 5.5% and reducing the effect of sev-
eral biases. Notwithstanding the popularity of these techniques, there are also a few
disadvantages in their usage: the need for the data to be available and shareable, which
may not always be possible since the videos may be taken from copyrighted contents,
such as movies [273, 186] or TV series [153, 154], or may have been obtained from online
platforms which might remove some of the previously published contents; the increased
computational costs, because the full pipeline from raw pixels to target variables needs
to be executed for each video; and the need to customize each data augmentation tech-
nique to the type of data under analysis, since for instance a technique designed for
videos may not be usable for its textual description. A way to mitigate these prob-
lems consists in moving the augmentation to the latent space: in fact, by doing so the
latent representations are the only elements which need to be shared and they do not
raise copyright or privacy concerns; less computational resources are required, since
forwarding the raw data across the full pipeline is no longer required; and, finally, the
same techniques can be applied seamlessly to different modalities. Therefore, Chapter
3 presents a novel multimodal data augmentation technique which works in the latent
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space: given a video and its own caption, their representations are mixed with those
of another video-caption pair, which is identified within the dataset by quantifying the
overlap of semantic concepts shared between the captions. We considered Text-Video
Retrieval as a case study because it is commonly tackled by learning a joint embedding
space, whose structure may benefit from learning the additional relationships occurring
between different yet semantically similar videos and captions. When validated on on
two public datasets, the proposed technique showed consistent improvements, highlight-
ing its high robustness and effectiveness. The second technique considered in this part
of the thesis, that is transfer learning, consists in learning how to solve a task on a big,
often generic dataset in the hope that the knowledge learned there transfers well to other
similar domains. When dealing with a narrow and niche domain, the public datasets for
it may be designed for unimodal tasks, e.g. unconditioned image generation; however,
cross-modal interactions are fundamental in order to have a control on the generation
process, e.g. by means of a textual description. In our case study, described in Chapter
4, transfer learning was used to automatically generate the textual annotations for un-
labelled visual data in order to learn Text-to-image Synthesis models. This was possible
by learning a captioning model, and the experimental results confirmed the feasibility
of this protocol.

In the second part of the thesis, named “Can we reduce the generalization gap
by customizing the training objective?”, the attention is driven to another important
component of the learning pipeline: the training objective. The learning process which
teaches a model how to solve a task through deep learning techniques involves the
minimization of the cost as computed by a function, typically called loss function or
objective function. At training time, a prediction is made for all the examples and
an associated cost is computed, which is “high” for an error and “low” for a correct
prediction; then, it is used to guide the learning process towards a minimum. Therefore,
the choice of the right loss function, either among a set of standard ones or by designing
it from scratch, is of utmost importance for the success of the overall learning process. In
this thesis, particular attention was given to the customization of the training objective
by using additional information which can be obtained from the available data. As a
first case study, in Video Question Answering the learning process aims at minimizing
the amount of times the wrong answer is chosen by the model in a set of possible
candidate answers: to do so, a commonly used loss function computes a regression
score for each of the candidates and aims at minimizing that of the wrong candidates,
while maximizing the score of the correct answer. To reduce the overfitting, especially
in domains with only few examples, and to improve the generalization ability of a
model, an interesting possibility resides in the usage of multi-task learning: in fact, by
requiring the model to solve multiple tasks at the same time, the internal representation
computed by the model itself needs to be general enough and not specific for a single task.
Therefore, in Chapter 5 we decided to introduce into the training objective the prediction
of the type of the question. Although simple, such an objective was supported by
empirical evidence which showed that the technique used to compute the representation
for the textual annotations influences the performance obtained on specific question
types. By using it, consistent improvements were achieved in an extensive benchmark
covering multiple datasets, models, and word embedding techniques. Instead of adding
customized functions into the training objective, in Chapters 6 and 7 the available data
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is used to introduce semantic knowledge into standard loss functions. In particular, the
case study under analysis is Text-Video Retrieval, which is commonly tackled by learning
a joint embedding space in which the representation for a video is highly similar to that of
its own captions: by doing so, a user formulates a query about the contents of the video in
natural language, then the model maps this query into the same embedding space, which
can then be used to find relevant videos by looking into the neighborhood of the query
representation. To achieve this goal, a peculiar type of loss functions, called contrastive,
is typically used because they aim at obtaining a similar representation for a video
and its own caption, while decreasing the similarity with the other captions and videos
[36, 247]. Although this methodology is widely used [257, 57], it implicitly assumes that
only the captions provided for a video are able to describe its visual contents. However,
this hardly holds in practice, since the same video may be described differently by
two human annotators, for instance by using a highly diverse lexicon despite capturing
the same visual aspects. To bring some of these semantic nuances into the training
process, two different approaches are proposed. In Chapter 6, a fixed hyperparameter of
a contrastive loss function is reformulated in terms of the overlap of semantic concepts
computed between the captions associated to a video. By doing so, these semantic
aspects are enforced directly onto the structure of the joint embedding space which
is learnt at training time. By validating this methodology on three different network
architectures and two datasets, we were able to confirm its effectiveness. Differently, in
Chapter 7 the overlap of semantic concepts is used to separate the videos and captions
into two different sets - namely, relevant and irrelevant to a given query example; then,
the loss function is customized in order to implement different behaviors when dealing
with examples from these two sets. The proposed strategy is validated across multiple
models, datasets, and loss functions showing a high effectiveness and robustness.

Finally, Chapter 8 concludes this thesis by summarizing the main results and con-
tributions, and by highlighting two research directions which may stem from them and
which are filled with open questions and difficult challenges.

1.3 Publications

This Thesis is based on the following peer-reviewed works and publications:

1. Menardi, M., Falcon, A., Mohamed, S. S., Seidenari, L., Serra, G., Bimbo, A.
D., and Tasso, C. (2020). Text-to-Image Synthesis Based on Machine Generated
Captions. In Proc. of Italian Research Conference on Digital Libraries (pp. 62-
74). Springer, Cham.

URL: https://doi.org/10.1007/978-3-030-39905-4 7

This work sets the basis for Chapter 4.

2. Falcon, A., Lanz, O., and Serra, G. (2020). Data augmentation techniques for
the video question answering task. In Proc. of European Conference on Computer
Vision Workshops (pp. 511-525). Springer, Cham.

URL: https://doi.org/10.1007/978-3-030-66415-2 33
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This work sets the basis for Chapter 2.

3. Falcon, A., Serra, G., and Lanz, O. (2022). Learning video retrieval models with
relevance-aware online mining. In Proc. of International Conference on Image
Analysis and Processing (pp. 182-194). Springer, Cham.

URL: https://dl.acm.org/doi/abs/10.1007/978-3-031-06433-3 16

4. Falcon, A., Serra, G., and Lanz, O. (2022). Relevance-aware online mining for
a more semantic video retrieval. In IEEE Transactions on Multimedia. Under
review.

Q1 in Computer Science Applications, Electrical and Electronic Engineering, Me-
dia Technology, and Signal Processing, IF 8.182

These two works set the basis for Chapter 7.

5. Falcon, A., Sudhakaran, S., Serra, G., Escalera, S., and Lanz, O. 2022. Relevance-
based Margin for Contrastively-trained Video Retrieval Models. In Proc. of
International Conference on Multimedia Retrieval (ICMR ’22). Association for
Computing Machinery, New York, NY, USA, 146–157.

URL: https://doi.org/10.1145/3512527.3531395

This work sets the basis for Chapter 6.

6. Falcon, A., Serra, G., and Lanz, O. (2022). A Feature-space Multimodal Data
Augmentation Technique for Text-video Retrieval. In Proc. of ACM International
Conference on Multimedia (MM ’22). Association for Computing Machinery, New
York, NY, USA, 4385–4394.

URL: https://dl.acm.org/doi/10.1145/3503161.3548365

Conference rank: A*

This work sets the basis for Chapter 3.

7. Falcon, A., Serra, G., and Lanz, O. (2022). Video question answering supported
by a multi-task learning objective. In Multimedia Tools and Applications. Under
review.

Q1 in Media Technology, Q2 in Computer Networks and Communications, Hard-
ware and Architecture, and Software, IF 2.577

This work sets the basis for Chapter 5.

Furthermore, during my Ph.D. and up to the thesis submission date (i.e., 2022-11-
30), I produced the following peer-reviewed publications:

1. Falcon, A., D’Agostino, G., Serra, G., Brajnik, G., and Tasso, C. (2020). A Neu-
ral Turing Machine-based approach to Remaining Useful Life Estimation. In Proc.
of 2020 IEEE International Conference on Prognostics and Health Management
(ICPHM) (pp. 1-8). IEEE.
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URL: https://doi.org/10.1109/ICPHM49022.2020.9187043

2. Falcon, A., D’Agostino, G., Serra, G., Brajnik, G., and Tasso, C. (2020, July). A
Dual-Stream architecture based on Neural Turing Machine and Attention for the
Remaining Useful Life Estimation problem. In Proc. of PHM Society European
Conference (Vol. 5, No. 1, pp. 10-10).

URL: https://doi.org/10.36001/phme.2020.v5i1.1227

3. Falcon, A., D’Agostino, G., Lanz, O., Brajnik, G., Tasso, C., and Serra, G.
(2022). Neural Turing Machines for the Remaining Useful Life estimation problem.
Computers in Industry, 143, 103762.

URL: https://doi.org/10.1016/j.compind.2022.103762

Q1 in Computer Science (miscellaneous) and Engineering (miscellaneous), IF
11.245

4. D’Agostino, G., Falcon, A., Lanz, O., Brajnik, G., Tasso, C., and Serra, G.
(2022). Estimating the Remaining Useful Life via neural sequence models: a
comparative study. To appear in Proc. of 2nd Italian Workshop on Artificial
Intelligence and Applications for Business and Industries (AIABI), co-located with
AI*IA 2022.

1.4 Other achievements and open source contribu-
tions

During my Ph.D., I also obtained the following awards:

Moreover, to support the reproducibility of the results, I publicly released on GitHub
several open source codebases:

• Neural Turing Machines for the Remaining Useful Life estimation problem:

https://github.com/aranciokov/NTM-For-RULEstimation

• Relevance-aware online mining for a more semantic video retrieval and Learning
video retrieval models with relevance-aware online mining :

https://github.com/aranciokov/ranp
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• A Feature-space Multimodal Data Augmentation Technique for Text-video Re-
trieval :

https://github.com/aranciokov/FSMMDA VideoRetrieval

• Relevance-based Margin for Contrastively-trained Video Retrieval Models:

https://github.com/aranciokov/RelevanceMargin-ICMR22
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2.1 Introduction

Video Question Answering (VideoQA) is a task that aims at building models capable
of providing a meaningful and coherent answer to a visual contents-related question,
exploiting both spatial and temporal information given by the video data. VideoQA is
receiving attention from both the Computer Vision and the Natural Language Process-
ing communities, due to the availability of both textual and visual data which require
to be jointly attended to in order to give the correct answer [308, 79, 73].

Recent advancements in the VideoQA task have also been achieved thanks to the
creation of several public datasets, such as TGIF-QA [120] and MSVD-QA [308], which
focus on web scraped video that are often recorded from a third-person perspective.
Even more recently, Fan released in [72] EgoVQA, an Egocentric VideoQA dataset
which provided the basis to study the importance of such task. In fact, several fields can
benefit from advancements in the Egocentric VideoQA task: for example, the industrial
training of workers, who may require help in understanding how to perform a certain
task given what they see from their own perspective; and the preventive medicine field,
where Egocentric VideoQA makes it possible to identify sedentary and nutrition-related
behaviours, and help elderly people prevent cognitive and functional decline by letting
them review lifelogs [55]. Differently from third-person VideoQA, in the egocentric
setting some types of questions can not be posed, such as those pertaining the camera
wearer (e.g. “what am I wearing?”). Moreover, if the question asks to identify an item
the camera wearer is playing with, hands occlusion may partially hide the item, making
it hard to recognize.

Data augmentation techniques have proven particularly helpful in several Computer
Vision tasks, such as image classification [146]. Not only they can be helpful to avoid
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overfitting and thus make the model more general, they can also be used to solve class
imbalance in classification problems by synthesizing new samples in the smaller classes
[255]. With respect to third-person VideoQA datasets, EgoVQA is a small dataset
comprising around 600 question-answer pairs and the same number of clips. Since
data augmentation is helpful in such contexts but to the best of our knowledge its
effectiveness has never been systematically investigated for the Egocentric VideoQA nor
for the VideoQA task, in this Chapter we propose several data augmentation techniques
which exploit characteristics given by the task itself. In particular, by exploiting the
EgoVQA dataset [72] we show their impact on the final performance obtained by the
ST-VQA model [120], which is proven to be effective in the study made by Fan.

The main contributions of this Chapter can be summarized as follows:

• we propose several data augmentation techniques which are purposefully designed
for the VideoQA task;

• we show the usefulness of our proposed augmentation techniques on the recently
released EgoVQA dataset and try to explain why we observe such improvements;

• we achieve a new state-of-the-art accuracy on the EgoVQA dataset;

• we will release code and pretrained models to support research in this important
field.

The rest of the Chapter is organized as follows: in Section 2, we introduce the
related work to the topics involved in this Chapter, namely Egocentric VideoQA and
data augmentation techniques; in Section 3, we detail both our proposed augmentation
techniques and the architecture we use; Section 4 covers the experiments performed and
the discussion of the results that we obtained; finally, Section 5 draws the conclusions
of this Chapter.

2.2 Related work

In this section we will discuss the work related to the two main topics involved in this
Chapter, i.e. Video Question Answering, and data augmentation techniques.

2.2.1 VideoQA

Recently, VideoQA has received a lot of attention [72, 73, 79, 120, 308] from researchers
both in Computer Vision and NLP fields. Several reasons can be related to this inter-
est, such as the challenges offered by this task and the availability of several datasets,
e.g. TGIF-QA [120], MSRVTT-QA [308], MSVD-QA [308], ActivityNet-QA [321], and
TVQA+ [154], populated by many thousands of examples to learn from.

Modern approaches to this task involve a wide selection of different techniques. Jang
et al proposed in [120] to use both temporal attention and spatial attention, in order
to learn which frames and which regions in each frame are more important to solve the
task. Later on, attention mechanisms have been also used as a cross-modality fusion
mechanism [111], and to learn QA-aware representations of both the visual and the
textual data [154, 135]. Because of the heterogeneous nature of the appearance and
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motion feature which are usually extracted from the video clips, Fan et al [73] also
propose to use memory modules, coupled with attention mechanisms, to compute a
joint representation of these two types of features. Moreover, to compute the final
answer for the given video and question there are multiple approaches. Simpler ones
propose to use fully connected networks coupled with non-linear functions [120], but also
more complex solutions have been proposed, e.g. based on reasoning techniques which
exploit multiple steps LSTM-based neural networks [73] or graphs to better encode the
relationships between the visual and textual data [111, 124].

Finally, given the multitude of VideoQA datasets, there can also be multiple types
of information to exploit. In fact, not only clips, questions, and answers are exploited
to solve this task: as an example, TVQA+ [154] also provides subtitles and bounding
boxes, by using which it is possible to improve the grounding capabilities of the VideoQA
model in both the temporal and the spatial domain.

2.2.2 Egocentric VideoQA

On the other hand, Egocentric VideoQA was a completely unexplored field until very
recently, when Fan released the EgovQA dataset in [72]. Yet, considering the recent
advancements in several fields of the egocentric vision, such as action recognition and
action anticipation [45, 44], Egocentric VideoQA also plays a primary role in the under-
standing of the complex interactions of the first-person videos.

Both VideoQA and Egocentric VideoQA usually deal with two main types of tasks:
the “open-ended” and the “multiple choice” task [72, 120, 308, 321]. Given a visual
contents-related question, the difference between the two is due to how the answer is
chosen: in the former, an answer set is generated from the most frequent words (e.g.
top-1000 [308, 321]) in the training set and the model needs to choose the correct answer
from it, i.e. it is usually treated as a multi-class classification problem; in the latter the
model needs to select the correct answer from a small pool of candidate answers (e.g.
five choices [72, 120]), which are usually different for every question. In this Chapter we
focus on the multiple choice task.

Together with the release of the EgoVQA dataset, Fan also provided in [72] a base-
line made of four models borrowed from the VideoQA literature [73, 79, 120]. These
models use the same backbone, which consists in a frozen, pretrained VGG-16 [259] to
extract the frame-level features; a frozen, pretrained C3D [276] to extract the video-
level features; and a pretrained GloVe [214] to compute the word embeddings. The four
models can be seen as extensions of a basic encoder-decoder architecture (referred to as
“ST-VQA without attention” in [72]): “ST-VQA with attention” is based on [120] and
uses a temporal attention module to attend to the most important frames in the input
clip; “CoMem” is based on [79] and involves the usage of two memory layers to gener-
ate attention cues starting from both the motion and appearance features; and finally
“HME-VQA” [73] uses two heterogeneous memory layers and a multi-step reasoning
module. In [72], Fan shows that these four models achieve similar performance despite
the introduction of several cutting-edge modules. Because of this reason and because of
its simplicity, in this Chapter we focus on the “ST-VQA with attention” model.

2.2.3 Data augmentation techniques
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Several Computer Vision tasks, such as image classification [146] and handwritten digit
classification [149], have seen great improvements by exploiting data augmentation tech-
niques, through which the size of the training set can be expanded artificially by several
orders of magnitude. This leads to models which are far less susceptible to overfitting
and more prone to give better results during the testing phase.

Whereas papers about first- or third-person VideoQA never mention any augmenta-
tion technique, in the VisualQA task, which deals with question-answering over images,
there are some papers which try to tackle this opportunity by exploiting template-based
models or generative approaches. Using a semantic tuple extraction pipeline, Mahendru
et al [187] extract from each question a premise, i.e. a tuple made of either an object,
or an object and an attribute, or two objects and a relation between them, from which
new question-answer pairs are constructed using previously built templates. Kafle et
al [130] proposes two techniques. The first is a template-based method which exploits
the COCO dataset [170] and its segmentation annotations to generate new question-
answer pairs of four different types, exploiting several different templates for each type.
The second approach is based on sequentially generating new questions (and related an-
swers) by conditioning an LSTM-based network on the image features from the “VQA
dataset” [5]. Both these methods focus on creating new question-answer pairs for the
same image, either by exploiting purely linguistic aspects or by using visual information
to better guide the generation. Yet, as the authors report in the respective papers,
these methods although reliable are not error-free [187, 130]; on the other hand, our
proposed techniques are simple yet effective and they do not raise issues. In particular,
in this Chapter we focus on exploiting both the visual and the textual data, although
we do not create new questions: two of our techniques create new candidate answers
for the same question to strengthen the understanding of the concepts contained in the
question and to better distinguish between the correct and the wrong answers, and the
other technique creates “new” clips by horizontally flipping the frames and consistently
updating both the question and the candidate answers accordingly.

2.3 Methodology

In this section we will introduce and describe the proposed augmentation techniques.
Moreover, we will also discuss and describe the model used in this Chapter, which is
called “ST-VQA” and was initially introduced by Jang et al in [120].

2.3.1 Augmentation techniques

Following the work made in [72], we are working on the multiple choice setting. For each
video and question five candidate answers are provided, of which only one is correct.
The wrong answers are randomly sampled from a candidate pool based on the question
type, i.e. if the question requires to recognize an action, the five candidate answers (both
the right one and the four wrong) are actions. By doing so, the model is encouraged to
understand the visual contents in order to reply to the question, avoiding the exploitation
of pure textual information (e.g. exploiting the question type to filter out some of the
candidate answers).
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Figure 2.1: Model used in this Chapter. The feature extraction module is made of VGG
and C3D, whose output consists of N frames and 8192 features. The output of GloVe
consists in fixed-length vectors (i.e. embeddings) of embedding size E = 300. The
Video Encoder and the Text Encoder have a similar structure, but whereas the output
of the former is a sequence (length N) of hidden states, the output of the latter is a
single hidden state. The Decoder outputs a single real-valued score for each candidate
answer.

We propose to use three simple augmentation techniques designed for the VideoQA
task and which exploit the multiple choice setting: resampling, mirroring, and horizontal
flip. This is not only helpful when dealing with the overfitting, but can also give the
model a better understanding of what the questions is asking for and make the model
more robust to variations in the input frames.

Resampling

Given a question Q, in the multiple choice setting a handful (e.g. 5 choices [72], [120])
of candidate answers are considered. The first technique consists in fixing the correct
answer and then randomly resampling the wrong ones. By doing so, using the same
video and question, we can show the model several more examples of what is not the
correct answer. This should give the model the ability to better distinguish what the
question is and is not asking for. An example is shown in Figure 2.2.

Considering that the amount of possible tuples of wrong answers is exponentially
big, we are restricting the pool of wrong answers to those pertaining the same question
type of Q. Moreover, we are not considering all the possible tuples in the pool.

Mirroring

Given a question, it may be that the correct answer in the rows of the dataset is often
placed in the same position. This can create biases in the model which may tend to
prefer an answer simply based on its position (w.r.t. the order of the candidates). To
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Q: what is the man in white shirt holding ?

Candidate answers:
1) picture on the wall
2) door
3) monitor
4) can
5) desk

Candidate answers:
1) phone
2) pen
3) laptop
4) can
5) camera

Possible candidate answers
for Q type object 3rd

{ laptop, monitor, desk, phone,
camera, pen... }

Figure 2.2: Example of the “resampling” technique applied to a video clip in the
EgoVQA dataset.

Q: what is the man in white shirt holding ?

Candidate answers:
1) picture on the wall
2) door
3) monitor
4) can
5) desk

Candidate answers:
1) desk
2) can
3) monitor
4) door
5) picture on the wall

Figure 2.3: Example of the “mirroring” technique applied to a video clip in the EgoVQA
dataset.

relieve some of this bias we propose the mirroring technique, which consists in simply
adding a row to the dataset where the order of the candidate answers (and the label
value) is mirrored. An example is shown in Figure 2.3.

Horizontal flip

One of the most common image data augmentation techniques consists in horizontally
flipping the images, which often improves the model performance thanks to the avail-
ability of newly created images which are taken both from the left and from the right.
This technique may prove useful in a VideoQA setting as well, but it should not be
applied lightly because it is a non-label preserving transformation: horizontally flipping
the considered frame means that an object which was on the left side of the frame
appears on the right side after the transformation, and viceversa, eventually creating
wrong labels if not updated correctly. Thus, when flipping the frames in the video clip
both the question and the candidate answers likely need to be updated (e.g. Figure
2.4).

2.3.2 QA encoding: Word embedding and Text Encoder

As shown in Fig. 2.1, it can be seen as made of four blocks: Question-Answer (QA)
Encoding, Video Encoding, Fusion, and Decoding. To compute the word embeddings
for the question and the answers, we consider GloVe [214], pretrained on the Common
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Figure 2.4: Example of the “horizontal flip” technique applied to a frame of a video clip
in the EgoVQA dataset.

Crawl dataset1, which outputs a vector of size E = 300 for each word in both the
question and the answers. Since GloVe is not contextual, question and answer can be
given in input to the model either separately or jointly obtaining the same embedding.

First of all, the question and the candidate answer are tokenized, i.e. they are split
in sub-word tokens and then each of them receives an identifier, based on the vocabulary
used by GloVe. Let q1 . . . qm and a1 . . . an be the sequence of m words of the question and
n words of (one of the candidate) answer, and let L = m+ n. Thus, let ϕq ∈ Rm×E be
the question embedding, and ϕa ∈ Rn×E be the answer embedding. The final question-
answer embedding is computed as their concatenation, i.e. ϕw = [ϕq, ϕa] ∈ RL×E .

Then the Text Encoder, consisting of two stacked LSTM networks, is applied to
ϕw. By concatenating the last hidden state of both the LSTM networks we obtain the
encoded textual features ϵw ∈ R1×H , where H is the hidden size.

2.3.3 Video Encoding

From each input video clip, both motion and appearance features are obtained in the
Video Encoding module. In particular, the appearance features are computed as the
fc7 activations (ϕa ∈ RN×4,096) extracted from a frozen VGG-16 [259], pretrained on
ImageNet [146]. We use VGG because we want to keep the spatial information extracted
by the convolutional layers, which would be otherwise lost in deeper networks, such as
ResNet [98], which exploit a global pooling layer before the FC layers. Similarly, the
motion features are computed as the fc7 activations (ϕm ∈ RN×4,096), extracted from a
frozen C3D [276], pretrained on Sports1M [132] and fine-tuned on UCF101 [265]. Finally
we concatenate these features and obtain a feature vector ϕa,m ∈ RN×8,192, which is
then encoded by a Video Encoder module, consisting of two stacked LSTM networks.
The only difference between the Text and Video Encoder module is that the output
ϵv of the latter consists in the concatenation of the full sequence of hidden states from
both the networks, and not only the last hidden state. Thus ϵv ∈ RN×H represents the
encoded video features.

1The Common Crawl dataset is available at http://commoncrawl.org
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2.3.4 Fusion

Depending on the question (and eventually the candidate answer), a frame may be
more or less relevant. To try and exploit this information, the fusion block consists of
a temporal attention module that lets the model learn automatically which frames are
more important based on both the encoded video features and the textual features. In
particular, the temporal attention module is based on the works by Bahdanau et al [11]
and by Hori et al [106]. It receives in input the encoded video features ϵv ∈ RN×H

and the encoded textual features ϵw ∈ R1×H , and can be described by the following
equations:

ωs = tanh(ϵvWv + ϵwWw + bs)Ws (2.1)

α = softmax(ωs) (2.2)

ωa = 1(α ◦ ϵv) (2.3)

where Wv,Ww ∈ RH×h, Ws ∈ Rh×1 are learnable weight matrices, bs ∈ R1×h is a
learnable bias. ◦ represents the element-wise multiplication operator. By means of
α ∈ RN×1 we aim at capturing the importance of each of the visual feature vectors and
their interaction with the textual information. The output of the Fusion module is a
feature vector ωa ∈ R1×H , which is obtained by accumulating the N attended visual
feature vectors through Eq. 2.3, which uses a row of ones (11×N ) and is equivalent to

ωa =
∑︁N

i=1(αi ◦ ϵv,i).

2.3.5 Decoding

Finally, the decoding step considers both the attended features computed by the Fusion
block and the encoded textual features, as proposed by Fan [72]. In our multiple choice
setting, the decoding is performed five times, i.e. for each Q-A pair, with different
textual features producing five different scores, one per candidate answer. It can be
described by the following equations:

df = tanh(ωaWa + ba) (2.4)

dr = (df ◦ ϵw)Wd + bd (2.5)

where Wa ∈ RH×H and Wd ∈ RH×1 are learnable weight matrices, ba ∈ R1×H and
bd ∈ R are learnable biases, df ∈ R1×H , dr ∈ R. dr can be seen as the score obtained
by testing a specific candidate answer (out of the five possible choices related to the
given question).

2.3.6 Loss function

The model is trained using a pairwise hinge loss, as is done in [72, 120]. The loss function
can be defined as follows:

Lc,r =

{︄
0 if c = r

max(0, 1 + sn − sp) if c ̸= r
(2.6)
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Q: what am I doing?
Q type: action 1st

Q: what is the man in green shirt holding?
Q type: object 3rd

Candidate answers:
1) pass book
2) walk
3) throw toy to another
4) get can
5) drink

Candidate answers:
1) bottle
2) apple
3) tv
4) book
5) monitor

Figure 2.5: Samples of video clips, questions, and candidate answers from the EgoVQA
dataset.

where sn and sp are respectively the scores df computed by the decoder for the choice
c ∈ {1, . . . , 5} and the right answer r. As described in Sec. 2.3.5, our model is producing
a score (real number) for each input tuple (V, Q, A), and the score for the correct answer
should be the highest among the five candidates; by using the hinge loss we enforce a
margin between the score sn obtained by the wrong answer and the score sp obtained
by the correct one, aiming at obtaining sp ≥ sn + 1.

Finally we compute the loss as follows:

L =
∑︂
q∈Q

5∑︂
c=1

Lc,r (2.7)

Here Q is the set of the questions, and r is the right answer for the question q.

2.4 Results

In this section we briefly describe the dataset used to perform the experiments, and we
discuss both the overall results and the per question type results.

2.4.1 EgoVQA dataset

The EgoVQA dataset was recently presented by Fan [72]. It features more than 600 QA
pairs and the same number of clips, which are 20-100 seconds long and are obtained by
16 egocentric videos (5-10 minutes long) based on 8 different scenarios. An example of
these egocentric videos and QA pairs can be seen in Fig. 2.5. The questions can be
grouped in eight major types and they are described in Table 2.1.

2.4.2 Implementation details

In our setting, we fixed H = 512 and h = 256. To optimize the parameters we used
the Adam [141] optimizer with a fixed learning rate of 10−3 and a batch size of 8. To
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Table 2.1: Description of the question types available for testing in the EgoVQA dataset.
Code Question type Quantity Example
Act1st Action 1st 67 “what am I doing”
Act3rd Action 3rd 108 “what is the man in red clothes doing”
Obj1st Object 1st 54 “what am I holding in my hands”
Obj3rd Object 3rd 86 “what is placed on the desk”
Who1st Who 1st 13 “who am I talking with”
Who3rd Who 3rd 63 “who is eating salad”
Cnt Count 64 “how many people am I talking with”
Col Color 31 “what is the color of the toy in my hands”

Table 2.2: Performance computed for each of the splits, obtained by applying the pro-
posed techniques on the EgoVQA dataset.

Augmentation
Accuracy (%) on split

0 1 2 Avg
ST-VQA [120] 31.82 37.57 27.27 32.22
+ mirroring 32.58 40.46 23.53 32.19
+ resampling 26.52 28.90 29.41 28.28

+ mirroring 37.88 36.42 30.48 34.93
+ horizontal-flip 34.09 41.62 25.13 33.61

+ resampling 37.12 35.26 25.67 32.68
+ mirroring 40.91 43.35 28.88 37.71

implement our solution we used Python 2.7, Numpy 1.16, and PyTorch 1.4. A PyTorch
implementation will be made available to further boost the research in this important
area at https://github.com/aranciokov/EgoVQA-DataAug.

2.4.3 Discussion of the results

Table 2.2 shows the results obtained for each of the three splits proposed in [72] by
applying, with different combinations, our proposed augmentation techniques. Table
2.3 shows the results based on the question type, whose details (and codes, such as
“Act1st” and “Act3rd”) are defined in Table 2.1.

Overall it can be seen that, when used in conjunction, the proposed augmentation
techniques help improving the performance obtained by the considered model.

Looking at the results per question type, it is possible to notice that:

• the “resampling” technique is particularly helpful when it comes to counting ob-
jects (“Cnt”) and identifying objects used by actors in front of the camera wearer
(“Obj3rd”);

• the “mirroring” technique shows sensible improvements during the identification
of actors, both when the camera wearer is interacting with them (“Who1st”) and
when they are performing certain actions in front of the camera wearer itself
(“Who3rd”).
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Table 2.3: Per-question type results obtained by applying the proposed techniques on
the EgoVQA dataset.

Augmentation
Question type accuracy (%)

Act1st Act3rd Obj1st Obj3rd Who1st Who3rd Cnt Col

ST-VQA [120] 28.36 30.56 31.48 31.40 46.15 34.92 35.94 32.26

+ mirroring 26.87 33.33 35.19 27.91 53.85 46.03 26.56 19.35
+ resampling 26.87 26.85 20.37 37.21 15.38 23.81 43.75 16.13

+ mirroring 25.37 34.26 25.93 41.86 15.38 47.62 42.19 19.35
+ horizontal-flip 40.30 36.11 42.59 25.58 38.46 28.57 26.56 41.94

+ resampling 34.33 37.96 22.22 33.72 15.38 33.33 29.69 29.03
+ mirroring 31.34 39.81 22.22 44.19 15.38 47.62 37.50 38.71

• the “horizontal flip” technique is especially helpful when the model needs to iden-
tify the actions performed by (“Act1st”) and the objects over which the action is
performed by the camera wearer (“Obj1st”). Moreover, it gives the model a great
boost in recognizing colors (“Col”).

Both in the questions of type “Cnt” and “Obj3rd” the model is required to recog-
nize an object: in fact, whereas in the latter the model needs to identify an object by
distinguishing among the five candidates, the former also requires the model to under-
stand what such object is in order to count how many times it occurs in the scene. It
is interesting to notice that in our “resampling” technique we are not augmenting the
questions of type “Cnt”, because the only five possible candidate answers in the dataset
for such question type are the numbers from “one” to “five”. Thus, since we are able
to observe this improvement in both these question types, it likely implies that such
data augmentation technique helps the model to better distinguish among the differ-
ent objects available in the dataset because it provides several more examples where
the model needs to understand which object is the right one among several (wrong)
candidate answers.

In the case of the question types “Who3rd” and “Act3rd” the improved performance
may be due to two aspects: first of all, since they both require to recognize actions
performed by actors in front of the camera wearer, the accuracy gain obtained in one type
transfers (to some extent) to the other type, and viceversa; and then to the “mirroring”
technique, since it is possible to observe that in the training set there is a bias in both
question types towards one of the last two labels. In particular, over the three training
splits, the last candidate answer is the correct one 60 times over 203 questions (29.55%)
of type “Act3rd”, whereas “Who3rd” counts 27 instances of the second-to-last candidate
answer over a total of 77 questions (35.06%). Using the “mirroring” technique it is
thus possible to reduce this bias, making the model more robust. It is interesting to
notice that in both these question types, the addition of the “horizontal flip” technique
gives a further boost in the accuracy of the model. This is likely related to the fact
that several questions in the training data also contain a positional information (“left”,
“right”) of the actor involved: in particular, for the type “Act3rd” there are respectively
16 and 20 questions mentioning “left” or “right” over a total of 203 questions, whereas
for “Who3rd” there are respectively 2 and 3 over a total of 77.

In the question type “Who1st” we can observe a sensible improvement with the
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“mirroring” technique. Although the reason are likely similar (considering that the first
candidate answer is the right one 11 times over 20 instances for “Who1st”), we prefer
not to make any conclusive claim given that there is only a total of 20 instances in the
training set and 13 in the testing set.

The “horizontal flip” technique shines when asked to recognize which object the
camera wearer is interacting with (“Obj1st”) and to identify which action (“Act1st”)
is performed by the camera wearer itself. The improvement over the former question
type may be explained by the fact that several of its questions in the training data
involve a positional information: in particular, there are respectively 18 and 9 questions
containing “left” or “right” over a total of 86 questions. On the other hand, the great
improvement in the latter question type (whose questions are almost all of the form
“what am I doing”) is likely justifiable by the greater amount of different visual data
available for training.

Finally, among our proposed techniques, only the “horizontal flip” seems to cope
well with “Col” questions. This question type is particularly tough because it requires
the model to recognize the object which the question is referring to, the action which
is performed over the object (35/49 total instances), and sometimes even the colors of
the clothes of the actor (e.g. “what is the color of the cup held by the man in black
jacket”, 13/49 total instances). First of all, the “mirroring” technique does not help:
the training split are slightly biased towards the first and the last labels (respectively,
10 and 16 over 49 instances), meaning that in this case the proposed technique does not
resolve the bias towards these two labels. Secondly, our “resampling” technique is not
helping because there are only six unique colors in the dataset, thus it is not creating
enough new rows. Thirdly, only 2 over a total of 54 questions of this type in the training
data contain “left” or “right”, likely implying that the improvement obtained by the
“horizontal flip” technique is due to having more visual data which forces the model to
better understand where to look for the object targeted by the question.

2.5 Conclusion

Egocentric VideoQA is a task introduced recently in [72] which specializes the VideoQA
task in an egocentric setting. It is a challenging task where a model needs to understand
both the visual and the textual content of the question, and then needs to jointly
attend to both of them in order to produce a coherent answer. In this Chapter we
proposed several data augmentation techniques purposefully designed for the VideoQA
task. The “mirroring” technique tries to partially remove the ordering bias in the
multiple choice setting. The “resampling” technique exploits the training dataset to
create new question-answer pairs by substituting the wrong candidate answers with
different candidates from the same question type, in order to feed the network with
more examples of what is not the target of the question. Finally, the “horizontal-flip”
technique exploits both the visual and the textual content of each row in the dataset, and
aims at giving the model the ability to differentiate between “left” and “right”. To show
the effectiveness of these techniques, we tested them on the recently released EgoVQA
dataset and showed that we are able to achieve a sensible improvement (+5.5%) in the
accuracy of the model.
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As a future work, we are both considering to explore our proposed augmentation
techniques with other architectures, such as the HME-VQA model [73], and to replicate
these experiments in third-person VideoQA datasets. Moreover, we are considering
several different augmentation techniques that deal with the linguistic aspects and the
visual information both separately and jointly. In particular, we think that considering
them jointly is of most interest because of the inherent characteristics of the problem
setting, which requires the model to understand both linguistic and visual clues together.
A purely linguistics technique which we plan to explore consists in a variation of the
“mirroring” technique which permutes the candidate answers instead of simply mirroring
them: this should reduce the ordering bias in all the possible situations, even those
where the “mirroring” technique is weaker. The “resampling” technique could be further
improved by picking candidates which are grounded in the visuals or which pose a greater
challenge to the model, instead of choosing them randomly: for instance, if the question
is about “what am I eating”, then the video may show both the meal of the camera
wearer and that of other people, therefore by picking the latter as wrong candidates
requires the model to avoid linguistic biases and be more careful at the visual content.
Another technique, although focusing solely on the visual data consists in applying small
rotations to the video clips, considering that the egocentric camera may not be aligned
at all times due to the camera wearer moving in the scenario. Finally, reversing the
video clips and updating both question and the candidate answers accordingly (e.g. by
“reversing” the name of the actions performed in the video clip) may give the model a
more clear understanding of the actions, while better exploiting the sequential nature
of the visual data.





3
A Feature-space Multimodal

Data Augmentation Technique
for Text-video Retrieval

3.1 Introduction

The amount of user-generated video content uploaded to the Internet every minute is
ever increasing, leading to more than 500 hours of content uploaded to YouTube every
minute, as of February 2020 [25]. Finding the relevant videos for a given query requires a
mix of computer vision and natural language processing techniques, placing this problem
at the intersection of the two communities. In particular, the text-to-video retrieval task
encompasses this objective by requiring to sort all the videos based on their semantic
closeness to the input query. Another task, which is similar to text-to-video retrieval
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Figure 3.1: Overview of the proposed multimodal data augmentation technique working
on latent representations.
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and is used to holistically evaluate a method, is the video-to-text retrieval task, which
switches the role of video and query. In general, with the term text-video retrieval
both tasks are considered and, given its cross-modal nature, it involves both visual and
textual understanding.

Recently, deep learning techniques were used to automatically extract features from
the multimodal data and learn how to solve this task, showing their potential and
achieving impressive results [288, 40, 212]. However, a significant limitation in the
success of these techniques is represented by the huge amount of annotated data required
to perform the training of a deep learning model. To this end, large amounts of data
were collected through crowdsourcing platforms where human efforts are required to
carefully annotate the data, leading to tedious tasks for the annotators and huge costs
for the dataset collectors. Examples of large scale datasets obtained with this approach
include MSR-VTT [310] and VATEX [289]. To reduce the costs of the collection, the
scientific community mainly investigated two automatic solutions: web scraping and
data augmentation. In the former, the extraction of visual content from the Internet and
the related annotation is performed automatically, for instance with speech recognition
[195], alternative texts [12], or by leveraging hashtags [84]. While this approach leads
to possibly huge and rich datasets, the annotations are often noisy and it is difficult
to guarantee the quality of the annotations. On the other hand, data augmentation
techniques are often used to artificially increase the size of a dataset by leveraging
the already available annotated samples: new samples can be obtained by applying
label-preserving techniques, hence providing semantically coherent data and avoiding
the noise. Indeed, these techniques have shown a great potential in many fields, both
from the vision community, such as classification [146, 312, 14, 285] and detection [341,
228], and the language processing community, such as text summarization [209, 66] and
text classification [294, 147]. Although augmentation was applied to visual question
answering [252, 292] and image captioning [41, 281], these techniques are less explored
for text-video retrieval. To address this shortcoming, we investigate the application of
augmentation techniques and propose an augmentation technique for text-video retrieval
which exploits multimodal information (visual and textual). In particular, our video
augmentation strategy creates a new augmented video by mixing the visual features of
two samples from the same class (‘Video fusion’ in Fig.3.1), therefore leveraging the high
level concepts automatically extracted from the deeper layers of a CNN-based backbone.
This is achieved by performing our augmentation in the feature space, as opposed to
common transformations, such as the geometric and color space transformations used
for images, which are applied on the raw data [146]. In fact, working in the feature space
raises three additional advantages: the same technique can be applied to data coming
from different modalities, for instance on both video and text as we show in this Chapter,
without requiring considerable changes which, on the other hand, are likely required
when trying to apply a technique defined on one modality (e.g., replacing a word with
a synonym) on a completely different modality (e.g., on video); it does not rely on the
availability of the original videos or frames, which are more difficult to share and are not
always shareable due to privacy or copyright issues, e.g. more than 20% of the original
videos of MSR-VTT were reported to be removed from YouTube [194], whereas all the
videos of MovieQA [273] faced copyright issues; and finally it can be applied on pre-
extracted features, making it overall less time- and resource-demanding. The augmented
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caption for the abovementioned video is also created by following the same principle
(‘Text fusion’ in Fig.3.1), showing the general applicability of our technique to multiple
types of media. Finally, to validate our approach, multiple experiments are performed
on the recently released EPIC-Kitchens-100 dataset [45]. These experiments include:
multiple ablation studies to demonstrate the effectiveness of our strategy and to motivate
the design choices; several comparisons to augmentation techniques inspired from the
literature; and finally, to give additional evidence of the usefulness of our method, we
observe further improvements when our proposed technique is integrated with a state-of-
the-art model. To support reproducibility, code and pretrained models are made publicly
available on Github at https://github.com/aranciokov/FSMMDA VideoRetrieval.

We organize the Chapter as follows. In Section 3.2 we perform a literature review and
contextualize our work into it. Then, in Section 3.3 we described in detail the proposed
technique. Several ablation studies and experiments are performed and discussed in
Section 3.4, whereas in Section 3.5 we conclude this Chapter.

3.2 Related work

Since this Chapter focuses on the exploration of data augmentation techniques for the
text-video retrieval task, we reserve Section 3.2.1 for the augmentation techniques which
were proposed in vision and language fields. Then, in Section 3.2.2 we briefly describe
recent modeling approaches in the text-video retrieval community.

3.2.1 Data augmentation techniques

Data augmentation techniques are widely used in computer vision because they allow
creating new data points. Several techniques working on the raw data were proposed.
Standard geometric or color space transformations, such as rescaling, rotation, variations
in the brightness, etc were used in multiple contexts related to images [146, 14] and, by
applying the same transformations in a frame-by-frame fashion, also to videos [117, 239].
Specific techniques were introduced to leverage the temporal nature of videos, including
temporal subsampling [285], inversion of the sequence of frames [156], or the replacement
of part of the video with a different cuboid [325]. Furthermore, as described in a recent
survey by Cauli et al., generative models [1, 293] and simulation programs [110, 113]
were also used to generate new data [24].

At the same time, in the natural language processing community several interesting
techniques were proposed, which can be categorized into symbolic and neural techniques
as explained in the comprehensive survey [256] by Shorten et al. A key difference between
the two categories is represented by the usage of additional neural models in the latter.
Symbolic augmentations work on the raw words or sentences and include random word
insertion, deletion, and swapping [294], synonym replacement [294, 287], passivization,
and subject-object inversion [191, 199]. Neural augmentation rely on neural models to
augment the available textual data, for example by leveraging back-translation [217, 178]
or generative models [302].

Some of these techniques were also extended or adapted for tasks at the intersection of
the vision and language communities. Rephrasings of questions and a cycle-consistency
loss were introduced by Shah et al. to make a more robust model for visual question
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answering [252], whereas Wang et al. used a generative model to generate questions and
answers [292]. To alleviate overfitting in image captioning, Wang et al. [281] performed
cropping, rescaling, and mirroring on images, whereas Cui et al. [41] created image-text
pairs used as negative examples by replacing or permuting words or full sentences. A
few recent works were also proposed for text-image retrieval. Wang et al. generated
new captions from the images with a pre-trained image captioning model [286]. Zhan et
al. used a ‘cut-and-paste’ technique to vary the background features of product images
[328].

While all these techniques prove to be powerful and help learning richer represen-
tations, they are based on the raw data and require their availability, which may be
difficult to share and even not shareable due to privacy or copyright issues, e.g. clips
from movies or TV series. Conversely, data augmentation techniques working at the
feature level are less computationally intensive and can provide considerable improve-
ments. Examples of these techniques either work on one vector at a time, e.g. by using
noising techniques [307, 34], or multiple, for instance by interpolating two samples from
the same class [174, 147] or by varying one in terms of the center of its class [34]. Aug-
mentation techniques working in the latent space were used to augment images [174, 34]
and text [307, 147]. Nonetheless, these techniques are less explored in the video com-
munity. In particular, Dong et al. performed data augmentation in the feature space by
temporally downsampling the sequences and perturbing the video features with noise
injection [56, 58].

To the best of our knowledge, data augmentation techniques, both on the raw data
and in the feature space, were not used in the text-video retrieval field.

3.2.2 Text-video retrieval

Text-video retrieval is a cross-modal task comprising two symmetric sub-tasks, text-to-
video and video-to-text retrieval, depending on which modality is used to form the query
and the ranking list. An approach which is commonly used consists in learning a textual-
visual embedding space by means of a contrastive loss [193, 92, 247, 93]. Generally, this
means that the embeddings of each video and caption pair (the ‘positive’ examples) in
the dataset are extracted and their similarity is maximized; the similarity of pairs of
video and caption which are not associated in the dataset (called ‘negative’ examples)
may be also considered for the loss.

Many different methods were proposed for the text-video retrieval task. Several
authors leveraged the availability of very large scale datasets to perform vision and
language pretraining [195, 151, 173], but these methods often are not designed for the
task at hand and are computationally expensive. Differently from them, learning how
to aggregate the multiple representations available was explored for both the visual
[288, 175, 76] and textual data [40, 164]. Finally, instead of working with global features,
several authors shifted the attention to the alignment of local components. Wray et al.
learned multiple embedding spaces based on part-of-speech [299]. Chen et al. extracted
semantic role graphs of the captions and aligned each node to learned representations
of the clips [27]. On a similar note, Jin et al. computed a graph representation of the
video in three levels and aligned them to local components of the sentences [127].
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3.3 Feature-space multimodal data augmentation

Learning a model for the text-video retrieval task often involves two neural networks to
compute the two representations of the input video and related caption. Then, the sim-
ilarity of these representations is increased, requiring the preceding networks to adjust
their weights in order to compute a similar representation for both the video and the cap-
tion. By doing so, the input caption may be at the top of the ranked list given its video,
and vice versa. Yet, multiple captions (and videos) may be equally relevant and thus
rightfully placed at the same rank. Therefore, we propose a multimodal data augmen-
tation technique which creates new representations for videos and captions by mixing
those which share similar semantics. In particular, our augmentation is performed in
the feature space, leading to multiple advantages: by working on the features extracted
from the deeper layers of the backbones, the augmented representations encompass high
level concepts, as opposed to the low level characteristics used by techniques working
on raw data; the technique is easy to extend to different modalities, since it works
on latent representations; by only requiring pre-extracted features to be shared, there
are less concerns regarding the shareability and availability of the original raw data;
less computational resources are needed to perform the augmentation, as the feature
extraction from the raw data can be performed offline.

As an example which further motivates the proposed technique, let v1 and v2 be two
videos showing different people while rinsing a fork with running water. To describe
this action, verbs such as “cleaning”, “washing”, or “rinsing” may be used, whereas the
fork may also be pointed with more general (“cutlery” or “silverware”) or more specific
terms (“fork with 3 tines” or “stainless steel fork”). All these captions share similar
semantics with only small variations, which may be captured by the high level features
automatically extracted from a deep neural network. Therefore, these features may be
reused and mixed to obtain a new representation for a caption which shares similar
semantics as the original ones. Similarly, we may treat v1 and v2 as interchangeable
and, even more interestingly, possibly mixable.

In the following Sections 3.3.1 and 3.3.2 we describe in detail how to generate new
clip and new caption features from the available information. An overview of the whole
process is shown in Algorithm 1.

3.3.1 Generating a new clip from same-class samples interpola-
tion

First of all, we define two selection criteria, ϕV and ϕN , which identify compatible videos
with respect to the action performed or the object with which the interaction happens.
This means that if a is an action and o is an object, then ϕV (a) and ϕN (o) are sets of
videos which are representatives of a and o. Note that this criterion may lead to far too
much variance: for instance, ϕV (take) may contain videos about taking a fork from the
cupboard, or picking it up from the table, but a video showing someone taking a slice of
pizza would also be identified as compatible. While this may gather many more videos,
both highly or minimally relevant, and help pushing them all at the top of the ranked
list, it may also raise additional confusion and lower precision. Therefore, we further
constrain ϕV and ϕN by keeping them bound to both the entities and the actions of the
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Algorithm 1 Algorithm used to perform the augmentation at training time.

1: Input: video v, caption q
2: Output: eventually augmented descriptors v and q
3: v ← f(v), q ← g(q) ▷ v and q are embedded
4: p ∼ U(0, 100)
5: if p > (1− χ) · 100 then ▷ If we perform the augmentation
6: N or V ∼ U(0, 1) ▷ On actions or entities?
7: if N or V == 0 then ▷ On entities
8: ϕ← ϕN , ψ ← ψN , fn← ent ▷ Set the correct ϕ, ψ, and fn functions
9: else ▷ On actions

10: ϕ← ϕV , ψ ← ψV , fn← act

11: end if
12: c← c ∼ fn(v) ▷ Sample an action/entity from v
13: w ← w ∼ ϕ(c, v) ▷ Sample a substitute video
14: w ← f(w) ▷ w is embedded
15: v ← µ(v, w) ▷ Create the new video
16: t← t ∼ fn(q) ▷ Sample an action/entity from q
17: d← d ∼ ψ(t, q) ▷ Sample a substitute from the candidates
18: d← g(d) ▷ d is embedded
19: q ← ρ(q, d) ▷ Create the new caption
20: end if
21: return v, q

video:

ϕV (a, v) = {w | a ∈ act(w) ∧ (ent(v) ∩ ent(w)) ̸= ∅} (3.1)

ϕN (o, v) = {w | o ∈ ent(w) ∧ (act(v) ∩ act(w)) ̸= ∅} (3.2)

where w represents a sampled video. Here act and ent are functions used to
extract the semantic classes for the actions and entities in the corresponding captions.
As an example, act(pick a slice of pizza) will be a set containing the identifier of the
class for ‘pick’, and ent(pick a slice of pizza) will contain the one for ‘slice of pizza’.
To obtain the functions act and ent, a pipeline made of a part-of-speech tagger and a
lexical database (e.g. WordNet [198]) can be used. If each video is paired with multiple
captions, the semantic classes for it may include those which are shared among multiple
captions, as in Wray et al. [298].

As shown in Algorithm 1, we decide whether or not to perform the augmentation of
a given sample with chance χ (steps 4-5), therefore using both original and augmented
samples during training. Then, the choice between actions and entities is taken with
uniform chance (step 6) and the corresponding criteria are selected (steps 7-11). To
create the augmented sample, two more variables need to be sampled: the semantic class
(action or entity) which will be used to find a compatible w, and the actual sampling
of w from all the possible candidates found through ϕ (steps 12-13). Finally, a new
“virtual” member of the same class as v and w is obtained by extracting their vectorial
representations v and w with a function f (steps 3 and 14) and combining them with
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µ(v, w) (‘Video fusion’ in Fig.3.1). In our method, we define µ as a linear interpolation
of v and w, by implementing it as:

µ(v, w) = λ · v + (1− λ) · w (3.3)

and by sampling λ from a Beta distribution with both parameters set to 1, i.e. λ ∼
β(1, 1), inspired by Mixup [333]. By doing so, µ(v, w) will share high level traits from
both v and w, therefore making it a possible representation extracted from a video
depicting similar actions and entities as them.

3.3.2 Textual side of the proposed multimodal augmentation

As in the case of videos, we design the textual augmentation technique in the feature
space. We define two criteria, ψV (a, q) and ψN (o, q), to identify the captions which can
become valid substitutes of a given q based on one of its actions a or entities o. For
instance, ψV (a, q) = {d | a ∈ act(d) ∧ ent(q) ∩ ent(d) ̸= ∅}.

Given these operators and a caption q, the augmentation is performed with chance
χ, and the decision between actions and entities is taken with uniform chance (χ is the
same as in Section 3.3.1). After the selection of a valid candidate d (step 16), the latent
representations of both q and d are extracted with a function g (steps 3 and 18) and
then mixed with the function ρ (step 19). As for the videos, we define ρ as a mixing
function working on the high level concepts extracted from the language model g, that
is ρ(q, d) = λ · q + (1− λ) · d (‘Text fusion’ in Fig.3.1).

3.4 Experimental results

To empirically validate our methodology, we present several experiments performed on
two public datasets: YouCook2 [343], a popular dataset of around 13000 video clips on
complex kitchen activities, and the recently released EPIC-Kitchens-100 [45], a chal-
lenging and large scale public dataset comprising more than 70000 egocentric video
clips, i.e. the videos are taken from a first-person perspective by leveraging wearable
cameras. The videos capture multiple daily activities in a kitchen and the camera wear-
ers do not follow any scripted interaction. Each video is annotated with a caption,
which is provided by a human annotator and contains at least one verb and one or more
nouns. Additionally, verbs and nouns are respectively grouped into 98 and 300 semantic
classes, each of which contains semantically close tokens, e.g. the class for verb ‘take’
also contains ‘pick up’, ‘grab’, etc. An example of these data is shown in Figure 3.2.
Given the multimodal nature of the videos, we use the RGB, flow, and audio features
extracted with TBN [134], which are provided alongside the dataset. When dealing with
YouCook2, we use the features extracted with S3D pretrained on HowTo100M [195, 193]
which are available within the VALUE benchmark [158].

In the context of the EPIC-Kitchens-100 multi-instance retrieval challenge1, Damen
et al. use two rank-aware metrics, the Mean Average Precision (mAP) [10] and the
Normalized Discounted Cumulative Gain (nDCG) [122] to report performance. Both

1https://epic-kitchens.github.io/2022#challenge-action-retrieval
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caption: pour washing up liquid into sponge
verb: pour (id=9)
nouns: washing up liquid (id=22), sponge (id=9)

caption: open sausage box 
verb: open (id=3)
nouns: sausage box (id=23)

Figure 3.2: Examples of the data used in EPIC-Kitchens-100. Verbs and nouns are
grouped into semantic classes containing tokens which share similar semantics, e.g. class
22 for nouns contains ‘washing up liquid’, but also ‘cleaning liquid’, ‘detergent’, etc.

are defined in terms of the following relevance function [45]:

R(x, y) =
1

2

(︂ |xV ∩ yV |
|xV ∪ yV |

+
|xN ∩ yN |
|xN ∪ yN |

)︂
where xN , xV , yN , and yV are sets of noun and verb semantic classes observed in
captions x and y. When x or y are videos, the associated caption is considered. The
mAP uses a binary definition of relevance, meaning that either a caption (or video) is
relevant to the query, i.e. the computed relevance is 1, or it is not. The nDCG uses a
finer-grained definition of relevance, allowing continuous values between 0 and 1.

To validate the proposed data augmentation technique, we use a text-video retrieval
model to perform the alignment between the visual and textual features. In particular,
we chose HGR [27] as the baseline because of its proven capabilities on multiple datasets,
including EPIC-Kitchens-100 [70]. To compute the descriptors of the input data, HGR
builds a graph structure of the caption and aggregates it with a graph neural network,
whereas it relies on simpler neural networks for the video. We follow their hyperparam-
eters setting and perform the training for 50 epochs on EPIC-Kitchens-100 and for 125
epochs on YouCook2, in both cases with a batch size of 64. We release code and pre-
trained models on Github at https://github.com/aranciokov/FSMMDA VideoRetrieval.

3.4.1 Visual augmentation

We start by exploring the effectiveness of our video augmentation technique. First of
all, in Sections 3.4.1 and 3.4.1 we perform ablation studies on two ‘parameters’ of our
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strategy, which are the granularity of the selection criteria and the influence of the λ
parameter. Then, in Section 3.4.1 we compare our technique to another technique from
the literature.

Video selection criteria

In our video augmentation technique, we define two fine-grained criteria to identify
which videos are valid candidates, i.e. sharing similar semantics, for the augmentation
of a given v (see Section 3.3.1). The criteria are defined for both actions and entities,
and identify all the training videos which share a specified class (e.g. the action ‘take’)
and at least one semantic class of the other type (e.g. the entity ‘slice of pizza’). Here
we explore a coarser definition of the criteria, by only guaranteeing that the specified
class (e.g. ‘take’) is shared. As an example, given a video v and the action ‘take’,
the fine-grained criterion selects videos which depict an action from the same class as
‘take’ and at least one of the entities shown in v; the coarser criterion ignores the latter
constraint, therefore identifying many more videos as viable candidates.

We depict the results of this inquiry in Figure 3.3 with the orange (‘coarse, λ ∼
β(1, 1)’) and red (‘fine, λ ∼ β(1, 1)’) curves. We also show the values obtained by
the HGR baseline, which does not perform the augmentation, with a blue dashed line.
Considering that for each sample the augmentation happens with chance χ (see Alg. 1,
steps 4-5), we vary χ ∈ {25%, 50%, 75%, 100%}. As defined in our method, we sample
the λ parameter of the mixing function (see Section 3.3.1) from a Beta distribution
with both parameters set to 1. Both with the fine-grained and the coarse criterion, we
observe that the nDCG on the test set increases as the augmentation is performed more
frequently: the fine-grained criterion leads to 37.8% average nDCG when χ = 25% and
up to 40.9% when the augmentation is always done (χ = 100%), whereas the coarser
criterion leads to nDCG values ranging from 38.6% (χ = 25%) to 41.8% (χ = 100%).
The difference in nDCG is likely explained by the weaker constraint employed by the
coarse criterion to identify the videos used for the augmentation: since the candidates
are only required to share one of the semantic classes of the original video, the augmented
training samples likely cover a wider set of high level concepts. This helps the trained
model retrieving partially (and minimally) relevant videos and captions at inference
time. However, the fine-grained criterion leads to higher quality ranked lists as confirmed
by the mAP (45.6% compared to less than 42% obtained by the coarse criterion), which
suggests that the highly relevant captions and videos are retrieved at the top ranks.
While the sum of recalls (Rsum) shows higher values for the coarse criterion, it is not as
relevant as the other metrics: in fact, the recall solely keeps track of the ‘groundtruth’
associations, but many captions may equally describe the same video and this can not
be captured through the recall. As an example, if q1 = “pick a slice of pizza” and
q2 = “grab a slice of pizza” were the first retrieved captions for a video originally paired
with q2, mAP and nDCG would be invariant with respect to the ordering, whereas the
recall metrics would not (e.g. R@1 would be 0 in this case).

Influence of the mixing parameter λ on the final performance

The main parameter of the mixing function we use is λ, which represents the extent
to which the original video features are mixed with the features from a different video
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Figure 3.3: Video augmentation. (blue) Performance of the baseline without augmen-
tation. (red) The proposed video augmentation technique (see Sec. 3.3.1). (orange) We
explore a coarser selection criterion (see Sec. 3.4.1) to identify the videos used to perform
the mixing. (purple) We explore a fixed solution (see Sec. 3.4.1) for the λ parameter of
our mixing function. Performance is displayed as the parameter χ, used to determine
how frequently the augmentation is performed, varies from 0 (0%) to 1 (100%).

(see Sec. 3.3.1 for more details). Therefore, as a second experiment we explore a fixed
solution for λ in place of the variable solution defined in our method. In particular, we
experiment with λ = 0.5, which is the expected value of λ under the Beta distribution.
As before, we analyze the performance as χ varies, and depict the results in Figure 3.3
with the red (‘fine, λ ∼ β(1, 1)’) and purple (‘fine, λ = 0.5’) curves.

If we compare the two variants of λ, three observations can be made. First of all, as
in the previous case, we observe that also with λ = 0.5 the performance improves as the
augmentation becomes more frequent: in fact, when compared to the non-augmented
baseline (35.9% average nDCG and 39.5% average mAP, depicted with the blue dashed
line), we observe better nDCG and mAP rates, leading to up to 39.2% nDCG and 43.4%
mAP when the video is always replaced with its augmented version. Secondly, in both
cases the best performance are achieved when the video is always (χ = 100%) replaced
with its augmented version. Thirdly, a variable λ is preferred: in fact, the usage of
a variable λ consistently leads to an improvement in both nDCG (+1.7%) and mAP
(+2.2%).

Comparison with other visual augmentation techniques

As mentioned before, we compare our proposed video augmentation technique to the
only other solution working in the feature space, that is the video-level augmentation
proposed by Dong et al. [56, 58], and use the code publicly shared by the authors. We
illustrate the results in Figure 3.4, where we plot the baseline in blue, our proposed
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Figure 3.4: Video augmentation. (red) Our proposed video augmentation technique.
(green) We adapt the video-level augmentation by Dong et al. [56, 58] in our framework.
With our technique, we achieve much higher nDCG and mAP, therefore retrieving more
semantically similar captions and videos at the top of the ranked list.

video augmentation technique in red, and the augmentation by Dong et al. in green. A
better Rsum is observed with the latter, meaning that the groundtruth is more likely
to be retrieved at the top of the ranked list, but this metric ignores that other captions
and videos may have the same semantics. On the other hand, it can be seen that our
technique let us achieve higher quality ranked lists with a margin of more than 4% both
in nDCG and mAP.

3.4.2 Textual augmentation

Before diving into the joint augmentation of video and text, we explore the effects of
text augmentation on retrieval performance. We start by exploring how the perfor-
mance are affected based on how frequently the augmentation happens, so we vary
χ ∈ {25%, 50%, 75%, 100%} and display the results in Figure 3.5 with the grey curve,
whereas the value obtained without any augmentation is shown with the blue line. As in
the previous case the proposed augmentation is greatly useful, leading to improvements
of up to +4.5% nDCG (40.4% compared to 35.9% obtained by the baseline) and +6.2%
mAP (45.7% compared to 39.5%) when the augmentation is always performed.

Then, we perform a comparison with a symbolic technique inspired by the works of
Wei et al. and Wang et al. [294, 287], which consists in replacing a word with a synonym.
Although it works on the raw textual data, we chose this technique because performing
the synonym replacement shares some similarities with how we select the candidate for
the mixing step. We report the results in Figure 3.5 with the orange curve. Two major
observations can be made. First of all, the performance increases with χ, as in the
previous cases, although it reaches a peak in the mAP performance when χ = 75%.
Secondly, it leads to an improvement over the baseline, but the proposed technique
achieves better performance obtaining a margin of +2.1% nDCG (40.4% compared to
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Figure 3.5: Text augmentation. Experiments on EPIC-Kitchens-100. (grey) The pro-
posed method which performs the augmentation in the feature space. (orange) New
captions are created by performing synonym replacement (see Sec. 3.4.2 for details).
We observe consistent improvements over the baseline in both cases, but the proposed
feature-space augmentation leads to overall better results.

38.3%) and +2.4% mAP (45.7% to 43.3%).

3.4.3 Joint text-video augmentation

In the previous experiments we show that the two components of the proposed multi-
modal data augmentation technique are greatly useful and improve the performance on
unseen test examples. To show the usefulness of our complete technique, we compare
its performance to the two unimodal components. In Figure 3.6 we display how the
final performance varies with the parameter χ. We observe two major results. First
of all, if only one of the two unimodal components is used (video-only in orange, text-
only in green), then we observe higher nDCG when the video is augmented, and slightly
higher mAP when the captions are augmented. Secondly, considerable improvements are
achieved when the complete multimodal technique is adopted during training, leading
to a margin of more than 1% on both metrics.

3.4.4 Synergy with improved selection of contrastive samples

To validate the robustness of our data augmentation strategy, we test it on two recently
published techniques: RAN and RANP [70]. RAN and RANP are two online mining
techniques introduced for a contrastive framework which lead to increased text-video
retrieval performance by improving the selection of both negative and positive exam-
ples. As done in the previous experiments, we explore how these techniques affect our
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Figure 3.6: Comparison between the baseline (blue), our proposed multimodal technique
(red), and its two components, video-only (orange) and text-only (green). Experiments
on EPIC-Kitchens-100.

framework while varying χ and visualize the results in Figure 3.7, where HGR is shown
in blue, RAN and RANP with light and dark green, our proposed multimodal technique
with orange, and the addition of RAN and RANP to our method is depicted with dark
orange and red. We observe that our proposed technique and the improved selection
of negative examples provided by RAN synergize well: in fact, with this addition we
obtain up to +12% nDCG and +2.2% mAP, which also leads to a margin of 4.3%
nDCG and 1.7% mAP over RAN, as shown by the dark orange curve and light green
dashed line in Fig. 3.7. Conversely, the addition of RANP, which adds positive exam-
ples mining to the contrastive loss, leads our method to similar nDCG rates but worse
mAP when the augmentation is always performed (χ = 100%), therefore we observe
a lesser synergy between the two. Finally, in Table 3.1 we report a quantitative com-
parison between augmented and non-augmented versions of HGR, RAN, and RANP.
For the non-augmented versions, we report the same results observed in [70]. For the
augmented HGR, RAN, and RANP we report nDCG and mAP observed with χ respec-
tively set to 100%, 75%, and 50% (selected by looking at Fig. 3.7). It can be seen that
in almost all the cases, both looking at text-to-video (‘t2v’), video-to-text (‘v2t’), and
text-video retrieval (‘t-v’), further improvements can be obtained by using the proposed
augmentation technique.

3.4.5 Comparison to state-of-the-art

In Table 3.2 we compare our results to all the published methods for the EPIC-Kitchens-
100 dataset, including the baseline we used, MME and JPoSE by Wray et al. [299],
Hao et al. from the technical report of last year challenge [46], and RANP by Falcon
et al. [70]. As can be seen, by leveraging our proposed multimodal data augmenta-
tion technique on the state-of-the-art methods RAN and RANP, we achieve further
improvements.
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Figure 3.7: Comparison with RAN and RANP [70]. Three non-augmented methods:
(blue) HGR; (light green) RAN; (dark green) RANP. The three methods are then aug-
mented with our proposed multimodal augmentation technique, leading to improved
results: (orange) augmented HGR; (dark orange) augmented RAN; (red) augmented
RANP. Best viewed in color.

Table 3.1: Comparison between HGR, RAN, and RANP and the three methods aug-
mented with our proposed multimodal data augmentation technique. We observe that
our technique synergizes well with different techniques, leading to improved performance
both in terms of mAP and nDCG.

nDCG (%) mAP (%)
Model t2v v2t t-v t2v v2t t-v
HGR [27] 37.9 41.2 39.5 35.7 36.1 35.9
Aug. HGR (ours) 41.0 41.6 41.3 42.6 50.2 46.4
RAN [70] 47.1 49.7 48.4 43.1 49.9 46.5
Aug. RAN (ours) 51.6 53.8 52.7 44.1 52.4 48.2
RANP [70] 56.5 61.2 58.8 42.3 52.0 47.2
Aug. RANP (ours) 57.2 61.4 59.3 41.9 52.4 47.2
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Table 3.2: Comparison with the baseline and state-of-the-art methods for EPIC-
Kitchens-100 (results for MME and JPoSE are from [45], Hao et al. from [46]). With
the proposed multimodal data augmentation technique, we observe higher mAP per-
formance, therefore more highly relevant captions and videos are retrieved at the top
ranks, when compared to other techniques.

EPIC-Kitchens-100
nDCG (%) mAP (%)

Model t2v v2t t-v t2v v2t t-v
HGR [27] 37.9 41.2 39.5 35.7 36.1 35.9
MME [299] 46.9 50.0 48.5 34.0 43.0 38.5
JPoSE [299] 51.5 55.5 53.5 38.1 49.9 44.0
Hao et al. [46] 51.8 55.3 53.5 38.5 50.0 44.2
RANP [70] 56.5 61.2 58.8 42.3 52.0 47.2
Aug. RAN (ours) 51.6 53.8 52.7 44.1 52.4 48.2
Aug. RANP (ours) 57.2 61.4 59.3 41.9 52.4 47.1

Table 3.3: Comparison with the HGR baseline on YouCook2. The augmented version
uses the proposed multimodal data augmentation technique with χ = 0.50.

YouCook2
nDCG (%) mAP (%)

Backbone & Model t2v v2t t-v t2v v2t t-v
S3D HGR [27] 50.1 49.7 49.9 45.3 43.9 44.6
S3D Aug. HGR (ours) 50.8 51.3 51.0 45.4 43.9 44.7

Moreover, in Table 3.3 we show that the proposed technique also leads to improve-
ments on YouCook2. For this dataset, we use publicly available features (from the
VALUE benchmark [158]) which were extracted with an HowTo100M-pretrained S3D
model [193]. In particular, by using the proposed technique with χ = 0.50, we observe
+1.1% nDCG on average, reaching 51.0% nDCG. On the other hand, lesser improve-
ments are observed in terms of mAP.

3.5 Conclusions

In this Chapter, we introduced a multimodal data augmentation technique working
in the feature space. In this way several advantages can be leveraged, including the
possibility to work on the high level concepts extracted from the deeper layers of CNN-
based backbones and easier applicability since the original videos need not to be shared,
avoiding copyright and privacy issues. To validate our solution, we performed multiple
experiments on the large scale public dataset EPIC-Kitchens-100, as well as a compari-
son on YouCook2. We tested our technique on three different methods, including recent
state-of-the-art methods on EPIC-Kitchens-100, and achieved further improvements. As
a future work, we plan to extend our technique to different datasets (e.g. MSR-VTT
[310] and VATEX [289]) and methods (e.g. dual encoding by [57]).





4
Text-to-Image Synthesis Based

on Machine Generated Captions

4.1 Introduction

Text-to-Image Synthesis, also called Conditional Image Generation, is a process that
consists in generating a photo-realistic image given a textual description. It is a chal-
lenging task and it is revolutionizing many real-world applications. For example, starting
from a Digital Library of adventure books it could be possible to enrich the reading ex-
perience with computer-generated images of the locations explored in the story, while
a Digital Library of recipe books may be enriched with images representing the steps
involved in a given recipe. In addition, such images may be used to exploit Information
Retrieval systems based on visual similarity. Due to its great potentiality and usefulness,
it raised a lot of interest in the research fields of Computer Vision, Natural Language
Processing, and Digital Libraries.

One of the main approaches used for the text-to-image task involves the use of
Generative Adversarial Networks (GAN) [85]: starting from a given textual description,
GANs can be conditioned on text [231], [230], [332] in order generate high-quality images
that are highly related to the text meaning.

To condition a GAN on text, captioned images datasets are needed, meaning that
one (or more) captions must be associated to each image. Despite the large amount of
uncaptioned images datasets, the number of captioned datasets is limited. For example,
LSUN [320] dataset, which consists in more than 59 million labeled images for each of 10
scene categories and 20 object categories [320]. The LSUN-bedroom dataset contains im-
ages from LSUN dataset tagged with the “bedroom” scene category. It contains around
∼ 3, 000, 000 images [320], but it does not contain the associated captions. This may
lead to a difficulty in training a conditional GAN to generate bedroom images related
to a given textual description, such as “a bedroom with blue walls, white furniture and
a large bed”. In this Chapter we propose an innovative, though quite simple approach
to address this issue as shown in Figure 4.1. First of all, a captioning system (that we
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Figure 4.1: Our pipeline: captioned images are used to train the Image Captioning
Module; uncaptioned images are then captioned through the Trained Image Captioning
Module and both the image and the generated captions are used to train the GAN
Module; finally, the Trained GAN Module is used to generate an image based on an
input caption.

call Image Captioning Module) is trained on a generic captioned dataset and used to
generate a caption for the uncaptioned images. Then, the conditional GAN (that we call
GAN Module) is trained on both the input image and the “machine-generated” caption.
A high-level representation of the architecture is shown in Figure 4.2. To evaluate the
results, the performance of the GAN using “machine-generated” captions are compared
with the results obtained by the unconditional GAN. To test and evaluate our pipeline,
we are using the LSUN-bedroom [320] dataset.

The results obtained in the experiments are very preliminary yet very promising.
According to the results observed in this Chapter, the GAN Module does not learn how
to produce meaningful images, with respect to the caption meaning, and we hypothesize
that this is due to the “machine-generated” captions we use to condition the GAN
Module. The Image Captioning module is trained on the COCO dataset [170], which
contains captioned images for many different classes of objects and intuitively this should
lead the Image Captioning Module to learn how to produce captions for bedroom images
as well. Despite being able to produce the desired captions, we notice that the “machine-
generated” captions are often too similar and not detailed for different bedroom images.
The last section of this Chapter proposes some approaches that can deal with these
problems.

4.2 Related Work

In 2014, Goodfellow et al. introduced Generative Adversarial Networks (GAN) [85],
a generative model framework that consists in training simultaneously two models: a
generator network and a discriminator one. The generator network has the task of
generating images as real as possible, while the discriminator network has to distinguish
the generated images from the real ones. Generative models are trained to implicitly
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Figure 4.2: Pipeline: images are fed to a captioning system that outputs its captions.
The generated captions and the images are then given as input for training the condi-
tional GAN.

capture the statistical distribution of training data; once trained, they can synthesize
novel data samples, which can be used for example in the tasks of semantic image editing
[346] and data augmentation [18].

GANs can be trained to sample from a given data distribution, in such case a random
vector is provided as input to the generator. Otherwise, as in the case of text-to-image
synthesis, they can be trained conditionally, meaning that an additional variable is
provided as input to control the generator output. In certain formulations, the discrim-
inator observes the conditioning variable too, during training. In the literature, several
possibilities were tested for the variables used to condition a GAN: attributes or class
labels (e.g. [30], [204]), images (e.g. for the tasks of photo editing [346] and domain
transfer [118]).

Several methods have been developed to generate images conditioned on text. Man-
simov et al. [188] built an AlignDRAW model trained to learn the correspondence
between text and generated images. Reed et al. in [232] used PixelCNN to generate
images using both text descriptions and object location constraints. Nguyen et al. [203]
used an approximate Langevin sampling approach to generate images conditioned on
text, but it required an inefficient iterative optimization process. In [231], Reed et al.
successfully generated 64×64 images for birds and flowers conditioning on text descrip-
tions. In their follow-up work [230], they were able to generate 128 × 128 images by
using additional annotations on object part locations. Denton et al. in [51] proposed
the Laplacian pyramid framework (LAPGANs), which is composed of a series of GANs.
A residual image is conditioned at each level of the pyramid on the image of the pre-
vious stage to produce an image for the next stage. Also in [133], Kerras et al. use
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a similar approach by incrementally adding more layers in the generator and in the
discriminator. [331] and [332] suggest the use of a so-called sketch-refinement process,
where the images are first generated at low resolutions using a GAN conditioned over
the textual description, and then refined with another GAN conditioned on both the
image generated at the previous step and the input textual description. [105] and [161]
infer a semantic label map by predicting bounding boxes and object shapes from the
text, and then synthesize an image conditioned on the layout and the text description.
A recent work by Qiao et al. [222] uses a three-step approach where it first computes
word- and sentence-level embedding from the given textual description, then it uses the
embeddings to generate images in a cascaded architecture, and finally starting from the
image generated at the previous step it tries to regenerate the original textual descrip-
tion, in order to semantically align with it. Although several different state-of-the-art
architectures may be chosen for the task, such as HDGAN [338] and AttGAN [311], in
our pipeline we decided to use StackGAN-v2 [332] as the conditional GAN component,
given the availability of its code on GitHub.

Recently, several impressive results [344], [167], [234] were obtained for the Image
Captioning (or image-to-text) task, which deals with the generation of a caption de-
scribing the given image and the objects taking part to it. It is an important task that
raises a lot of interest in the Computer Vision and Natural Language Processing research
fields. A recent and comprehensive survey about the task is provided by Hossain et al.
in [107]. Some of the approaches used for this task involve the use of Encoder/Decoder
networks and Reinforcement learning techniques.

The encoder/decoder paradigm for machine translation using recurrent neural net-
works (RNNs) [35] inspired [131], [280] to use a deep convolutional neural network to
encode the input image, and a Long Short-Term Memory (LSTM) [104] RNN decoder
to generate the output caption. Given the unavailability of labeled data, recent ap-
proaches to the image captioning task involve the use of reinforcement learning and
unsupervised learning-based techniques. [344] and [167] use actor-critic reinforcement
learning methods, where a “policy network” (the actor) is trained to predict the next
word based on the current state, whereas a “value network” (the critic) is trained to
estimate the reward of each generated word. These techniques overcome the need to
sample from the policy (actors) action space, which can be enormous, at the expense of
estimating future rewards. Another approach, used by Ranzato et al. in [226], consists
in applying the REINFORCE algorithm [295]. A limitation of this algorithm consists
in the requirement of a context-dependent normalization to tackle the high variance
encountered when using mini-batches. The approach we are following uses Self-Critical
Sequence Training (SCST) [234] which is a REINFORCE algorithm that utilizes the
output of its own test-time inference algorithm to normalize the rewards it experiences:
doing so, it does not need neither to estimate the reward signal nor the normalization.

4.3 Our Approach

We propose a pipeline whose goal is to generate images by conditioning on “machine-
generated” captions. This is fundamental when image captions are not available for a
specific domain of interest. Thus, the proposed solution involves the use of a generic
captioned dataset, such as the COCO dataset, to make the Image Captioning Module
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capable of generating captions for a specific domain.
To do so, we want to explore the possibility of using an automatic system to gen-

erate textual captions for the images and use them for the training of a Generative
Adversarial Network. For achieving our goal, we built a pipeline composed by an Image
Captioning Module and a GAN Module, as shown in Figure 4.1. First of all, the Image
Captioning Module is trained over a generic captioned dataset to generate multiple cap-
tions for the input image. Then, real images are given as input to the Trained Image
Captioning Module, which outputs multiple captions for each image. The generated
captions together with the images are then fed to the GAN Module, which learns to
generate images conditioned on the “machine-generated” captions. By feeding the GAN
with multiple captions for each image, the GAN can better learn the correspondence
between images and captions.

In the following sections, we detail the two modules used in our pipeline: the Image
Captioning Module and the GAN Module.

4.3.1 Image Captioning Module

The goal of the Image Captioning Module is to generate a natural language description
of an image. Good performance in this task are obtained by learning a model which
is able to first understand the scene described in the image, the objects taking part
to it and the relationships between them, and then to compose a natural language
sentence describing the whole picture. Given the complexity of such a task, it is still
an open challenge in the fields of Natural Language Processing and Computer Vision.
The task of open domain captioning is a challenging task. It requires a fine-grained
understanding of the whole entities, attributes and relationships in an image. In our
pipeline, we are implementing our Image Captioning Module in a similar way as the one
proposed in [234], meaning that we also use a captioning system based on FC models.
It has been built using an optimization approach that is called Self-Critical Sequence
Training (SCST).

Typical deep learning models used for the Image Captioning task are trained with
the “teacher-forcing” technique, which consists in maximizing the likelihood of the next
ground-truth word given the previous ground-truth word. This has been shown to
generate some mismatches between the training and the inference phase, knows as “ex-
posure bias”. Moreover, the metrics used during the testing phase are non-differentiable
(such as BLEU and CIDEr), meaning that the captioning model can not be trained
to directly optimize them. To overcome these problems, Reinforcement Learning tech-
niques such as the REINFORCE algorithm have been used. SCST is a variation and
an improvement of the popular REINFORCE algorithm that, rather than estimating a
baseline to normalize the rewards and reduce variance, utilizes the output of its own
test-time inference algorithm to normalize the rewards it experiences. This means that
it is forced to improve the performance of the model under the inference algorithm used
at test time. Practically, SCST has much lower variance than REINFORCE and can be
more effectively trained on mini-batches of samples using SGD. Moreover, it has been
shown that SCST system has achieved state-of-the-art performance by optimizing their
system using the test metrics of the MSCOCO task. Practically, it has been found that
SCST has much lower variance, and can be more effectively trained on mini-batches of
samples using SGD. Since the SCST baseline is based on the test-time estimate under
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the current model, SCST is forced to improve the performance of the model under the
inference algorithm used at test time. In addition, this encourages training consistency
like the maximum likelihood-based approaches except it optimized sequence metrics.

4.3.2 GAN Module

The GAN Module has the major role of learning to generate images by conditioning on
the “machine-generated” captions. In particular, we are using StackGAN-v2 [332] as
our GAN Module.

StackGAN-v2 consists of a multiple stage generation process, where high-resolution
images are obtained by initially generating low-resolution images which are then refined
in multiple steps. It consists in a single end-to-end network composed by multiple
generators and discriminators in a tree-like structure. Different branches of the tree
generate images of different resolutions: at branch i, the generator Gi learns the image
distribution pGi

at that scale, while the discriminator Di estimates the probability of a
sample being real. The framework of StackGAN-v2 has a tree-like structure, that takes
as input the noise vector z ∼ pnoise. The noise z is transformed in hidden feature layer
by layer. The hidden features hi for each generator Gi are calculated by a non-linear
transformation

h0 = F0(z); hi = Fi(hi−1, z), (4.1)

where hi represents hidden features for the ith branch, m is the total number of branches,
and Fi are modeled as neural networks. The noise vector z is concatenated to the
hidden features hi−1 as the inputs of Fi for calculating hi. The generators produce
samples at different scales (s0, s1, ..., sm−1) based on the hidden features at different
layers (h0, h1, ..., hm−1).

si = Gi(hi), i = 0, 1, ...,m− 1, (4.2)

where Gi is the generator for the ith branch. Since we are more interested in the
conditional case, we are not reporting the loss function used by the generator and the
discriminator in the unconditional setting, for which more details can be found in [332].
The discriminator Di takes a real image xi or a fake sample si as input and is trained
to classify them as real or fake by minimizing the cross entropy loss:

LDi
= −Exi∼pdatai

[logDi(xi)]− Exi∼pGi
[log(1−Di(si))]⏞ ⏟⏟ ⏞

unconditional loss

−Exi∼pdatai
[logDi(xi, c)]− Exi∼pGi

[log(1−Di(si, c))]⏞ ⏟⏟ ⏞
conditional loss

(4.3)

where xi is an image from the true image distribution pdatai at the ith scale, si is from the
model distribution pGi at the same scale. While StackGAN-v2 [332] follows the approach
of Reed et al. [229] to pre-train a text encoder to extract visually-discriminative text
embeddings of the given description, in our case we use Skip-Thought [143], that works
at the sentence level, to generate the text embeddings (c in the equations 4.3 and 4.4).
Sentences that share semantic and syntactic properties are mapped to corresponding
vector representations [143].
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The multiple discriminators are trained in parallel each one for a different scale, while
the generator is instead optimized to jointly approximate multi-scale image distributions
pdata0

, pdata1
, ..., pdatam−1

by minimizing the following loss function:

LG =

m∑︂
i=1

LGi
, LGi

= −Esi∼pGi
[logDi(si)]⏞ ⏟⏟ ⏞

unconditional loss

−Esi∼pGi
[logDi(si, c)]⏞ ⏟⏟ ⏞

conditional loss

(4.4)

where LGi
is the loss function for approximating the image distribution at the ith scale.

The unconditional loss is used to determine whether the image is real or fake, while the
conditional loss is used to determine if the image and the condition match.

4.4 Experimental Results

In this section, we present the preliminary results of the experiments involving the
proposed pipeline. The Image Captioning Module was trained on the COCO dataset
[170], which contains 120, 000 generic images tagged with categories and captioned by
five different sentences each. The uncaptioned dataset that we considered is the LSUN
[320] dataset, which consists in more than 59 million labeled images. From the LSUN
dataset, we first select the ∼ 3, 000, 000 images tagged with the “bedroom” scene cat-
egory and from that set a subset of the first 120, 000 images is selected: 80, 000 are
then used to train the GAN and 40, 000 as test set. Later on in this Chapter, the se-
lection of the ∼ 3, 000, 000 images tagged with the “bedroom” scene category is called
“LSUN-bedroom”.

A typical metric used to evaluate both the quality and the diversity of generated
images is the Inception Score [240]. Unfortunately, the type of image of the LSUN
dataset is very different from those used by ImageNet [332, 50], therefore it has been
shown that the Inception Score is not a good indicator for the quality of generated
images [332]. So we decided not to report the obtained scores.

We performed three experiments over the considered dataset.

The first experiment consists in training the GAN Module on the whole LSUN-
bedroom dataset (∼ 3, 000, 000 images). This is done because of two reasons: first, it
serves as a baseline for the next experiment; second, we compare the results obtained by
our computing facilities with the results obtained in [332], since with our graphics card
we are limited to a lower batch size of 16. Figure 4.4 shows some examples of generated
images, and it is possible to see that the quality of the generated images is similar to
those shown in Figure 4.3 [332].

To reproduce the results reported in the paper, we used an NVIDIA GTX 1080
8GB machine. It took us around one month to train the GAN Module on the whole
LSUN dataset. Because of this, we decided to explore and understand how the GAN
Module performs with less training images. In the second experiment, the training of
the GAN Module without conditioning is done on a subset of LSUN-bedroom, consisting
of 120, 000 images. Some of the results obtained in this experiment are showed in Figure
4.5. Although the quality of the generated images is slightly reduced, it is possible to
see that the semantic content is still clear and defined.

Finally, to test our pipeline, we used the Image Captioning Module to generate cap-
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Figure 4.3: Examples of images generated by the StackGAN Module trained on the
whole LSUN-bedroom dataset.

Figure 4.4: Examples of images generated by the GAN Module trained on the whole
LSUN-bedroom dataset.

tions for the images contained in the considered subset of the LSUN-bedroom dataset.
Then, the GAN Module was trained on these same images and conditioned by the
“machine-generated” captions. About the preliminary results that we obtained, some
examples are shown in Figure 4.6. We suspect the problem is due to the similarity of the
“machine-generated” captions: the LSUN-bedroom dataset does not come with captions
and thus the Image Captioning Module is trained on a generic dataset (COCO) and not
for that specific dataset. Because of this, the Image Captioning Module is unable to
produce detailed and varied captions for different bedroom images. For instance, Table
4.1 reports some examples of generated captions on images taken from LSUN-bedroom,
which show that the Image Captioning Module is often unable to generate detailed and
accurate captions which compete with those provided by human annotators. In addi-
tion, usually GANs used noise vector to generate images which always different from
each other [85]. In our experiment, the noise vector is taken as input by the model and
used to generate an image. Then, the captions are used to yield the embeddings, which
are also used as noise by the generator. The fact that the noise is almost always the
same could be the cause of the observed problem.

We found that the scores for the LSUN-bedroom dataset seem to not fully correlate
with the quality of the generated images. As explained in [332], this may be due to the
inception score being trained on the inception dataset, and thus it does not work well
on datasets with specific types of images. Also, it has to be considered that different
datasets get inception scores in different ranges. For this reason, inception scores must
not be compared across different datasets.
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Figure 4.5: Examples of images generated by the GAN Module trained on a part of the
LSUN-bedroom dataset.

Figure 4.6: Examples of images generated by the GAN Module trained on a part of the
LSUN-bedroom dataset and conditioned on “machine-generated” captions.

4.5 Conclusion

We explored the problem of conditional image generation using Generative Adversarial
Networks with machine-generated captions. For this task, we built a pipeline to first
generate captions for uncaptioned datasets and then to use the “machine-generated”
captions to condition a GAN. To test our pipeline, we run experiments on the LSUN-
bedroom dataset, which is a subset of the LSUN dataset containing uncaptioned images
of bedrooms, and then compare the generated images in the unconditional setting and
in the conditional setting where “machine-generated” captions are used. The results
observed in the experiments do not achieve success in the task of conditioning with
“machine-generated” captions. So we identify, analyze, and propose possible solutions
to the obstacles that need to be overcome.

The Image Captioning Module that we trained on the COCO dataset seems to gener-
ate captions too similar to each other. Moreover, the captions we generated lack details
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Generated captions:
• a bedroom with a bed in a room with a tv
• a bedroom with a bed in a room with a table
• a bedroom with a bed in a room with a window
• a bedroom with a bed in a room with a television
• a bedroom with a bed in a room with a room

Generated captions:
• a man standing in a bed in a room
• a man standing in a bed in a room with a bed
• a woman standing in a bed in a room
• a man standing in a bed in a room with a television
• a bedroom with a bed in a room with a table

Table 4.1: Examples of machine-generated captions for two images taken from LSUN-
bedroom.

and contain some errors. This is probably related to the fact that more diverse and de-
tailed captions are needed during training in order to achieve significant improvements.
During a subsequent review of works on captioning, we found a work from Shetty et al.
[253], that promises to generate more different captions, instead of variations of the same
caption. This result is achieved by using GANs for image captioning instead of other
traditional methods. An open question is whether with a bigger dataset the GAN could
learn the image-captions correspondence, even when captions are very similar for each
image. We believe improving the quality of the generated caption is the main challenge
for our method. An hybrid approach could make our proposed method work by making
humans write captions on a subset of the dataset, then use the obtained captions to
train a captioning system. For generating human captions, crowdsourcing platforms
like Amazon Mechanical Turk (AMT) could be used. We are currently working on this
idea because it is likely that it will lead to improvements in the quality of generated
bedroom images, given that AMT could make it possible to have high-quality and more
diverse captions. Moreover, we are also considering the use of the Fréchet Inception
distance [101] to evaluate the generated captions and images.
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5
Video question answering
supported by a multi-task

learning objective

5.1 Introduction

Video Question Answering (VideoQA) is a task that requires to analyze and jointly
reason on both the given video data and a visual content-related question, to produce
a meaningful and coherent answer to it ([120]). By solving this task, a computational
model could reach human-level capabilities when dealing with both complex video and
textual data, since it would require learning to reason about the elements of interest
in the video and their spatial and temporal interactions related to the given question.
VideoQA represents thus a challenging task at the interface between Computer Vision
and Natural Language Processing (NLP) ([308, 79, 73]).

Typically, a VideoQA architecture consists of a video encoder, a text encoder, a
fusion module, and a decoder to produce the final answer ([74]), as can be seen in
Fig. 5.1.a. These components for VideoQA are often built from neural networks which
are the outcome of research work both from the NLP and Computer Vision communities.
Deep convolutional networks originally proposed for Computer Vision tasks, such as
image classification or action recognition, are usually employed as the backbone of the
video encoder: as an example, among the many proposed architectures, appearance
features are computed by means of VGG ([259]) in [72, 73], while [74, 120, 111, 124]
adopt ResNet ([98]); on the other hand, motion features can be produced by using C3D
([276]) (e.g. in [72, 73, 120, 124]) or BN-Inception ([116]), as in [74]. Similarly, text
encoding involves the usage of word embedding techniques, which are algorithms that
transform natural language words into fixed-size representations. Considering that these
representations are suitable for neural network training, these techniques are responsible
for the great developments in the NLP community in recent years, e.g. [251, 182] for the
task of named entity recognition, and [53, 176] for text question-answering. Although
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Figure 5.1: High level representation of a typical VideoQA architecture (shown in the
upper part), consisting of: Video encoder and Text encoder which transform the raw
input data into fixed-size representations; a Fusion module which combines the multi-
modal information; and the Answer decoder, which computes the final answer. In the
lower part, we present an augmented VideoQA architecture which leverages a multi-task
learning strategy in order to jointly classify and answer the input question.

several word embedding techniques with different characteristics have been proposed in
the literature, VideoQA architectures rely on only a few of these techniques, such as
GloVe proposed by [214] and word2vec by [196] ([271]). As a consequence this language
component, which provides the basis for the training process, is often underexplored in
VideoQA architectures. Moreover, to the best of our knowledge, there are no complete
and in-depth studies about the interaction between word embedding techniques and the
VideoQA task. Hence, in this Chapter we propose an in-depth and extensive analysis
to address these shortcomings.

Moreover, a multi-task learning strategy for VideoQA is introduced. As explained in
a recent survey by [337], multi-task learning is a learning paradigm which aims at jointly
learning multiple related tasks – in this way, the model needs to extract representations
which are useful for all the considered tasks, therefore possibly leading to better gener-
alization. This approach led to considerable improvements when applied to NLP (e.g.
[216, 290]) and computer vision (e.g. [267, 326]), but also at the intersection of the two
domains, especially when dealing with large scale visual-textual pretraining (e.g. [180];
[309]). Few works in the literature introduce auxiliary tasks designed for VideoQA, such
as the one by [136], where the model is trained to perform question answering, as well
as video-subtitle alignment and temporal localization. In this Chapter, an auxiliary
task is introduced and it is designed with reference to the insights gathered from the
aforementioned analysis of the word embedding techniques in the VideoQA domain.

In this Chapter, we propose a twofold contribution to VideoQA: firstly, a detailed
analysis of word embedding techniques and of the final performance achieved by the
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model; secondly, a novel multi-task learning strategy to train a VideoQA architecture
which aims at improving its generalization capabilities. In particular, we consider four
word embedding techniques: GloVe, a popular technique which leverages co-occurrence
statistics to compute low-dimensional embeddings; ELMo ([215]), a technique which
uses character-level convolutions and LSTM networks; BERT ([53]) and XLM ([148])
which leverage Transformers ([279]) as part of their encoding process. We integrate and
evaluate these four techniques into three different VideoQA architectures, each of which
adopts multiple state-of-the-art techniques. As the main and most relevant result of our
analysis, we observe that different word embedding techniques perform differently when
facing specific question types. With the term ‘question type’ we refer to a categorization
of the questions based on the target of the question itself. As an example, the question
type ‘Causality’ refers to questions that ask to identify an event which happens in
relation to another one. As can be seen in Figure 5.1.a, a question of this type could
involve a specific event such as “what happened when the egg broke?”, to which the
model may correctly answer by pointing out what happened next, e.g. “a green little
dinosaur popped out”. As detailed in the experimental analysis, we observe that BERT
and XLM exhibit a higher accuracy (with a sensible margin) than ELMo and GloVe
when dealing with ‘Causality’ questions. To investigate the relation occurring between
word embedding techniques and question types, we propose a solution involving multi-
task learning (Figure 5.1.b) which, differently from traditional approaches to VideoQA,
jointly optimizes both the task-oriented loss and a novel classification loss related to the
question types.

The main contributions of this Chapter can be summarized as follows:

• we integrate four of the most adopted word embedding techniques (GloVe, ELMo,
BERT, and XLM) in three recent VideoQA architectures, from an attention-based
encoder-decoder baseline ([120]) to more complex architectures involving memory
([79]) and reasoning ([73]);

• by quantitatively analyzing all the 12 combinations of embedding techniques and
VideoQA architectures, we observe that word embedding techniques work better
for specific question types;

• we propose a simple yet effective multi-task learning strategy which can help the
considered models achieve better generalization, leading to considerable improve-
ments on two public datasets;

• we release code and pretrained models to support research in this important field,
to ease the reproducibility of the results, and to provide a codebase adaptable to
different VideoQA datasets and models.

The rest of the Chapter is organized as follows. In Section 5.2 a comprehensive
literature review is performed in order to contextualize the proposed method. The
proposed methodology is presented in detail in Section 5.3. Several experimental results
are shown and discussed in Section 5.4, concerning both the analysis of multiple word
embedding techniques and the proposed multi-task learning strategy. Finally, Section
5.5 concludes the Chapter.
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5.2 Related work

In this section we discuss the work related to the two main topics involved in this
Chapter, i.e. Video Question Answering, and word embedding techniques.

5.2.1 Video Question Answering

Thanks to the recent availability of several large scale VideoQA datasets, such as TVQA
([153]), How2VQA69M ([315]), TGIF-QA ([120]), MSRVTT-QA and MSVD-QA ([308]),
this task has gained more and more attention by researchers in both Computer Vision
and NLP fields [308, 79, 73, 120, 72, 317, 315, 111, 210]. In particular, two types of
tasks are often linked to VideoQA: the “open-ended” (e.g. in [120, 72, 308, 315]) and
the “multiple choice” task (e.g. [120, 72, 139, 273, 153]). The former is usually treated
as a classification problem where the correct answer is identified in a predefined set
of possible answers, although it can also be approached through generative techniques
by generating a free-form response word-by-word, e.g. in [339, 306]; the latter (i.e.
“multiple choice”, which is also the task that we tackle within this Chapter) involves
the usage of a small pool of candidate answers (e.g. five choices in [120, 72]) which are
possibly different for every question, and the model selects one of the candidates based
on a score computed through a regressor. Considering that in this Chapter we describe
and apply our approach in relation to the multiple choice task, in the following we focus
on this specific task.

A prominent research direction for the multiple choice task consists in the usage of
deep neural networks to learn suitable temporal or spatio-temporal features, eventually
adopting attention mechanisms to filter out irrelevant features or redundant frames or
frame regions, e.g. [120, 79, 153, 163]. “ST-VQA” (by [120]) integrated a temporal
attention module to attend to the most important frames in the input clip, while lever-
aging LSTM networks to model the sequential aspect of both the visual and textual data.
Conversely, [163] proposed a Positional Self-Attention block (based on [279]) to replace
recurrent networks, while also using self-attention to learn self-attended single-modality
features and a cross-modal attention mechanism in order to compute rich representations
for the available visual and textual data. Although these methods led to considerable
improvements on several public benchmarks, an important drawback is that they relied
on clip- or frame-level representations, therefore missing out finer-grained details at the
object-level. A recent research direction which focused on this aspect explored local
relations between the visible objects and their natural language description . [111] built
a complete graph using frame- and object-level features as node descriptors, making
the graph location-aware by augmenting the nodes by means of spatial and temporal
position features , and then reasoned over this structure with a Graph Convolutional
Network ([142]). Yet, only visual information are used to build and reason on the graph
structure. [124] argued that visual and linguistic factors have coordinated semantics
which can be aligned to perform cross-modal reasoning, hence leading to the construc-
tion of an heterogeneous data structure. Although multiple video modalities are used
by Jiang and Han, the semantic relations between them are not fully used. Therefore,
[210] suggested to model both the visual-linguistic interactions as well as the seman-
tic relations between different video modalities (e.g. appearance, motion) by using the
question as a proxy. Differently from these works, a new research direction shifted the
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attention to the training strategy. In particular, objective functions taken from the
NLP domain were adapted to the VideoQA task. [317] performed masked language
modeling (MLM) and next sentence prediction using object-level and question features
as one of the inputs, while the candidate answers are used as possible next sentences.
Similarly, [315] suggested using MLM and a contrastive objective in order to choose
the correct answer using similarity metrics. Several papers (e.g. [151, 349, 157]) have
also achieved notable performance on the target dataset by performing a large scale
pretraining phase on large scale multi-modal datasets such as VisualGenome ([145]),
HowTo100M ([195]), or How2VQA69M ([315]) by using language-only, vision-only, or
language-vision proxy tasks. Yet, a major drawback of these pretraining procedures
is the prohibitive computational cost, e.g. the training procedure on How2VQA69M
lasted 2 days while using 8 Tesla V100 GPUs, according to [315]. Finally, given the
sequential nature of the data involved in VideoQA, the usage of memory layers has
also been explored, raising the possibility to interact with a memory made of multiple
vectors, which is typically not possible in other neural networks which have a memory
consisting of a single vector. “CoMem” ([79]) used memory layers to generate attention
cues starting from both motion and appearance features. “HME-VQA” ([73]) intro-
duced an heterogeneous memory layer while also proposing a multi-step LSTM-based
reasoning technique. In this Chapter, among all the aforementioned solutions, we chose
to use ST-VQA, CoMem, and HME-VQA because they offer increasingly complex and
rich solutions which cover multiple state-of-the-art techniques, while also offering open
source code bases. In particular, ST-VQA offers an attention-based encoder-decoder,
CoMem also employs memory layers to support the generation of attention cues from
both video modalities, and finally HME-VQA integrates multi-step reasoning as well.
Although these works use advanced techniques to perform the video modeling or to fuse
heterogeneous types of information, they only explore one technique to embed the words
into vectorial representations, that is GloVe, therefore ignoring recent advancements in
NLP. To this end, given that understanding the question is fundamental to predict the
correct answer, in this Chapter we analyze how four popular embedding techniques in-
teract with the network architectures used for VideoQA. Then, we propose a multi-task
learning strategy to improve the generalization capabilities of a VideoQA system, by
designing an auxiliary task based on the results of the preliminary analysis.

5.2.2 Word embedding techniques

NLP has rapidly evolved during the past few years and one of the most investigated
topics is related to neural language models (LM). Before the introduction of BERT,
GloVe and ELMo were two of the most used techniques.

[214] introduced GloVe, which is a static, non-contextual word embedding technique
which computes the word vectors by leveraging both local and global statistics (e.g.
word co-occurrence), assigning the same embedding (i.e. a real-valued vector) to a word
independently from the context in which such word is used. Differently from GloVe,
[215] proposed a contextual (i.e. each word receives an embedding depending on the
context) LSTM-based LM called ELMo. Moreover, the objective of ELMo is to estimate
the probability distribution of the training corpus using recurrence, and is thus classified
as an autoregressive LM.

Lately, the introduction of BERT by [53] and its variants (e.g., XLM by [148] and
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Figure 5.2: General architecture of the models considered in this Chapter, which focuses
on the Word Embedding module and the Question type classifier (outlined in red). The
former receives the question and the candidate answers, and outputs L embeddings of
size E. The latter is trained in a multi-task learning style and we show it helps improving
the performance.

DistilBERT by [242]) showed that these models have strong transfer learning capabilities
by simply attaching and training a task-specific head over the pretrained backbone.
Being based on Transformers ([279]), they are solely based on attention mechanisms
and do not use any recurrent neural network. Because of this they are classified as
autoencoding LMs: instead of estimating the probability distribution of the corpus,
they learn a function to reconstruct the input from masked versions of it.

With the introduction of BERT, several tasks in NLP reached new state-of-the-art
results, yet its predecessors are still used in many works, e.g. GloVe in [73, 111, 210,
282, 124]. As mentioned before, to fairly analyze the influence of the most important
word embedding techniques in the VideoQA task, we propose a study to understand
which one to use by integrating each of them in three VideoQA models.

5.3 Methodology

In this Chapter we explore the usage and integration of several word embedding tech-
niques into three different VideoQA architectures (i.e. ST-VQA, CoMem, and HME-
VQA) which involve multiple state-of-the-art techniques including attention mecha-
nisms, memory layers, and multi-step reasoning. To treat them all in a shared but
comprehensive manner, we present in Figure 5.2 a detailed overview of a VideoQA ar-
chitecture: it comprises both the common components, such as “Feature extraction”
and “Word embedding”, as well as the modules which are exclusive to only some of
the architectures, such as the “Reasoning module” which is only used by HME-VQA.
Moreover, on the right we also outline the additional components related to the pro-
posed multi-task learning strategy, including a module used to classify the question
type, and the joint loss function (built on LA and LC , described in Section 5.3.1). As
already mentioned, a VideoQA architecture can be seen as made of four blocks, that



5.3 Methodology 67

is Video encoding, QA encoding, Fusion, and Decoding. Given the input data, we ex-
tract a sequence of embeddings for both the video (in “Feature extraction”) and the
input question (in “Word embedding”), as well as for the candidate answers. For the
video, VGG is employed to extract appearance features, while C3D is used for motion
features. For the textual data, we use one of the word embedding techniques that we
explore in this Chapter (see Sec. 5.4.2 for more details). These two steps are done
for all the architectures that we consider, which are ST-VQA ([120]), CoMem ([79]),
and HME-VQA ([73]). Then, for both visual and textual data, we employ an encoder
made of two stacked LSTM networks to model the evolution of the features. Note that
ST-VQA concatenates appearance and motion features before processing them by using
the Video encoder; CoMem and HME-VQA independently model the two sequences
of features via two independent Video encoders which follow the same structure. The
Fusion block aims at computing a representation which takes both the video and tex-
tual information into account. In ST-VQA, this is done through a Temporal Attention
module, which weighs each visual features vector based on the aggregated textual rep-
resentation; in CoMem, appearance and motion features are used to provide attention
cues to each other by employing a Memory module; finally, a Reasoning module is used
in HME-VQA to compute an aggregated representation of the output of the heteroge-
neous memory layer, while also employing two temporal attention modules to compute
modality-independent attention-weighted vectors (see Sec. 5.3.2 for an in-depth explana-
tion). The fused features are then used in the decisional process to predict a regression
score for the candidate answer. Note that in the case of HME-VQA the input to the
decoder uses both the attended visual vectors and the output of the Reasoning module.
To optimize the network parameters, an hinge loss is used to enforce a margin (e.g.
1, as in Eq. 5.2) between the score computed for the correct answer and all the other
candidate answers.

In Section 5.3.1 we thoroughly describe the proposed multi-task learning strategy.
For completeness, we also provide further details about the adopted methods in Section
5.3.2, by focusing on their differences.

5.3.1 Multi-task learning strategy

When asking a question to a VideoQA model, we expect it to extract visual and textual
information which are related to the question itself. Furthermore, we expect questions of
the same category to share a similar visual and textual joint representation as computed
by the Fusion module. As an example, questions asking to identify an object may require
spatial features which are closely related to the objects shown in the video, while asking
to recognize an action may shift the focus on temporal aspects. For this reason, we
propose to incorporate the question type (as a classification objective) into the loss
function we strive to optimize.

The proposed multi-task learning strategy involves a joint loss function, comprising
of a pairwise hinge loss LA, which is used to train the model for the VideoQA multiple
choice task, as it is often done in the literature (e.g. in [120, 72]) and a classification
loss LC which we use to make the model able to categorize an input question into one
of the predetermined types. Such a joint loss can be described as:

L = LA + LC (5.1)
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For a given input sample, the pairwise hinge loss can be described as:

Lc,r =

{︄
0 if c = r

max(0, 1 + sc − sr) if c ̸= r
(5.2)

where sc and sr are the scores dr computed by the Decoder (see Sec. 5.3.2, Eq. 5.11
for more details) for the candidate answer c and the right answer r. We use this loss
function because it allows us to optimize the parameters of the models under analysis
by enforcing a margin between the scores sc and sr. Moreover, by using it we were able
to reproduce previously reported results ([72]). To compute Lc,r for each sample in the
minibatch, we use the following equation:

LA =
∑︂
q∈Q

∑︂
c∈Cq

Lc,r (5.3)

where Q represents the questions in the minibatch, while Cq and r are respectively the
set of candidate answers and the correct answer for q.

To deal with the additional classification objective LC , we augment all the considered
architectures by attaching a classifier head on top of the Text encoder:

lqt = softmax(ϵwWqt + bqt) (5.4)

where ϵw ∈ R1×H is the output of the Text encoder (see Sec. 5.3.2 for more details),
Wqt ∈ RH×nqt and bqt ∈ R1×nqt are trainable parameters, H is twice the hidden size h,
and finally nqt is the amount of question types in the considered dataset. To train the
model for this additional task, we consider the following equations:

χ(x, y) =
1

nqt

nqt∑︂
i=1

−(yi · log(xi) + (1− yi) · log(1− xi)) (5.5)

LC =
1

|Q| · |Cq|
∑︂
q∈Q

∑︂
c∈Cq

χ(lqt, one-hot(t)) (5.6)

where t is the type of the question q, and one-hot(t) computes its one-hot representation.
By using lqt we consider the question as well as the candidate answer because both may
contain helpful and discriminative information while optimizing for this task.

As previously mentioned, we apply our multi-task learning strategy to several dif-
ferent architectures, in order to show its general applicability. In the following section,
we provide a more detailed presentation of the considered VideoQA architectures.

5.3.2 VideoQA architectures

Here we describe three VideoQA models which can be seen as made of four blocks ([74]):
Question-Answer (QA) Encoding, Video Encoding, Fusion, and Decoding. This can be
observed both in Fig. 5.1, where we depict it from a high level view, and in Fig. 5.2,
which shows a general framework to cover all the models used in this Chapter. These
three models involve several state-of-the-art techniques, including attention mechanisms,
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memory layers, and multi-step reasoning, offering an heterogeneous experimental set-
ting. In Figure 5.3 we also include a more in-depth view on the three architectures in
order to highlight the major differences between them, which are also commented in the
following subsections. The four blocks previously identified in Fig. 5.2 are respectively
colored in purple, blue, yellow, and darker yellow. The proposed multi-task learning
strategy (see Sec. 5.3.1) is highlighted in red. As can be seen, the auxiliary task in-
troduced in this Chapter, that is the prediction of the question type, is performed by
using the textual features computed by the LSTM-based Text Encoder. The proposed
multi-task learning strategy is easily extendable to heterogeneous architectures and, in
fact, in Sec. 5.3.1 it is shown how to apply it to three different techniques from the
literature.

ST-VQA. The first model we use is based on ST-VQA proposed by [120], an
encoder-decoder architecture supported by attention mechanisms. Since we deal with
the multiple choice task, the QA encoding module receives a question and a pool of can-
didate answers. Let q1 . . . qm and a1 . . . an be the sequence of m tokens of the question
and n tokens of (one of the candidate) answer. As shown in Fig. 5.2, the encoding of
question and candidate answer is performed for each of the candidates, since they are
(possibly) different for each question. In Fig. 5.3 (left) this is shown as the “Textual
question + candidate answer” block. To do so, q1 . . . qm and a1 . . . an are concatenated
into δ and used as input to the embedding technique (shown as “Word embedding” in
Fig. 5.3), eventually adding some special tokens (for more details, see Sec. 5.4.2). Hence,
the textual data are first embedded into ϕw ∈ RL×E , where L is the number of tokens
in question and answer, and E is the embedding size. Then, ϕw is input to the Text
Encoder, which consists of two stacked LSTM networks. The encoded textual features
ϵw are obtained by concatenating the last hidden state of both the LSTM networks, thus
forming a feature vector ϵw ∈ R1×H . In the Video Encoding block, both motion and
appearance features are obtained from an input video clip made of N frames. Both the
feature extraction and the Video Encoder are depicted in Fig. 5.3 with the blue color. To
compute the appearance features, they use a frozen VGG-16, pretrained on ImageNet,
and extract the fc7 activations (ϕa ∈ RN×4096). To compute the motion features, they
use a frozen C3D, pretrained on Sports1M ([132]) and fine-tuned on UCF101 ([265]),
and extract the fc7 activations (ϕm ∈ RN×4096). In this Chapter, we use VGG-16 and
C3D because the feature vectors are computed through a transformation of the feature
maps computed by the convolutional layers, and not by employing a global pooling
layer. In fact, while the usage of the latter operation (for example, employed in ResNet
by [98]) greatly reduces the quantity of parameters in the model, it also leads to a loss
of the positional information available in the activation tensors. The features extracted
from VGG and C3D are concatenated obtaining ϕa,m ∈ RN×V (with V = 8192) and
then input to a Video Encoder made of two stacked LSTM networks. Despite similar
in structure to the Text Encoder, the output of the Video Encoder consists of the full
sequence of hidden states, i.e. ϵv ∈ RN×H .

ST-VQA features an attention-based ([11, 106]) Fusion block, shown in yellow in
Fig. 5.3 (left), which lets the model learn which frames are more important based on
the encoded textual features. It receives in input the encoded video features ϵv and the
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Figure 5.3: Detailed diagram of the three models we selected from the literature, i.e.
(left) ST-VQA by [120], (middle) CoMem by [79], and (right) HME-VQA by [73].
Compared to Fig. 5.2, we color in blue the “Video encoding”, in purple the “QA
encoding”, in yellow the “Fusion”, in darker yellow the “Decoding”, and finally we
highlight in red the modification applied to the base algorithms in order to use the
proposed multi-task learning strategy. In the “Optimization” cloud we perform LA+LC .
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textual features ϵw, and can be described by the following equations:

ωs = tanh(ϵvWv + ϵwWw + bs)Ws (5.7)

αs = softmax(ωs) (5.8)

ωa = 1 · (αs ◦ ϵv) (5.9)

where Wv,Ww ∈ RH×h, Ws ∈ Rh, and bs ∈ R1×h are learnable parameters. Eq. 5.7
and 5.8 are used to compute the attention weights αs ∈ RN×1 for the N visual feature
vectors and their interaction with the textual information; then, Eq. 5.9 implements a
sum-pool operation, where 1 is a row of ones (11×N ), which is used to sum the weighted
visual information. ◦ represents the element-wise multiplication operator.

Finally, the decoder we use is based on the one proposed in [72]. Decoding is done
for each QA pair, that is in our multiple choice setting, five times with different textual
features producing five different scores, one per candidate answer. It can be described
by the following equations:

df = tanh(ωaWa + ba) (5.10)

dr = (df ◦ ϵw)Wd + bd (5.11)

where Wa ∈ RH×H , Wd ∈ RH×1, ba ∈ R1×H , and bd ∈ R are parameters, df ∈ R1×H ,
dr ∈ R. dr is the score obtained by testing a specific candidate answer (out of the
five possible choices related to the given question). The Decoding step is shown with a
darker shade of yellow in Fig. 5.3.

CoMem. The CoMem model is based on the work by [79]. As in ST-VQA the
textual features are computed by the word embedding technique and the Text Encoder.
The visual features are again extracted using VGG and C3D but, in this case, they
are not concatenated and they are encoded with two independent Video Encoders.
Furthermore, hidden and cell state of the Text Encoder are initialized with those of the
Video Encoder. Yet, the main difference with the ST-VQA approach is the usage of a
Memory module within the Fusion block, shown in yellow in Fig. 5.3 (middle), which
is supported by a co-attention mechanism. That is, they show appearance features are
useful to guide the extraction of relevant motion features, and vice versa. To capture
these interactions, both attention and memories are exploited. Moreover, the Memory
module is used sequentially in the architecture as a fusion technique by replacing the
Temporal Attention. These operations are shown in Fig. 5.3 (middle) in yellow.

In particular, CoMem uses and iteratively updates two memories called “appearance
memory” and “motion memory”: at every iteration, both are updated by an attention
function which jointly attends to both motion and appearance encoded features, the
memory, and the question embedding. Then, appearance and motion features are used
to update each memory (shown with the

⨁︁
operator in Fig. 5.3). This operation is

repeated a fixed amount of times and is depicted with the “N x” block.

HME-VQA. As in CoMem, HME-VQA ([73]) follows a similar overall flow: the
visual features computed by using VGG and C3D with independent Video Encoders,
and the textual features are computed with the Text Encoder applied on top of the
word embeddings. Differently from CoMem, HME-VQA uses two memories, a “visual
memory” and a “question memory”, as depicted in Fig. 5.3 (right). The former is
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Question text: what is the man in front of the door 
doing?

Question type: action 3rd

Candidate answers:
1. get a box from shelf

✔️ 2. pick up the toy
3. erase whiteboard
4. type on keyboard
5. stand

Question text: what is the man on my left side 
passing to the man on my right side?

Question type: object 3rd

Candidate answers:
1. monitor

✔️ 2. snack
3. toy
4. black pillow
5. picture on the wall

Figure 5.4: Samples of clips, questions, and candidate answers from EgoVQA.

updated by an attention function that exploits three hidden states, which consider
appearance and motion features both separately and jointly. In the latter only one
hidden state is used. A second novelty in HME-VQA is the usage of an LSTM-based
Reasoning module (colored with a dark yellow in Fig. 5.3), which consists of three steps:
first of all two context vectors, cv and cq, are created by attending to the hidden states
of the “visual memory” and the “question memory”, and the previous hidden state
st−1; then cv, cq, and st−1 are used to separately compute attention weights, which are
used to compute the “fused knowledge”, i.e. a weighted sum of cv and cq; finally, the
LSTM updates st using the fused knowledge and st−1. The last hidden state of the
LSTM is used as a distilled version of the given data . A Temporal attention module is
separately applied on the appearance and motion features, as shown in Fig. 5.3. Finally,
the text-attended visual features and the output of the Reasoning module are used in
conjunction with the Decoder to compute the score for the answer.

5.4 Results and Discussions

To perform the analysis of the word embedding techniques and to validate our multi-
task learning strategy, we choose to use two public VideoQA datasets, PororoQA ([139])
and EgoVQA ([72]), as they also briefly discuss question types. After presenting these
datasets, we thoroughly describe the word embedding techniques that we used, and we
discuss both the overall results and the per question type results.
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Code Description Example
Act1st action performed by camera wearer “what am I doing”
Act3rd action performed by different actor “what is the man in red clothes doing”
Obj1st object the camera wearer is interacting with “what am I holding in my hands”
Obj3rd object a different actor is interacting with “what is placed on the desk”
Who1st who the camera wearer is interacting with “who am I talking with”
Who3rd who is performing a certain action “who is eating salad”
Cnt number of persons or objects in the scenes “how many people am I talking with”
Col identify the color of an object “what is the color of the toy in my hands”

Table 5.1: Description of the question types available in the EgoVQA dataset.

Code Description Example
Abs questions about abstract concepts “what is the weather like in the forest”
Act recognize the action performed “what are Pororo and Crong doing”
Caus describe which event follows another one “what happened when the egg broke”
Det detail of something in the clip “what kind of bird is Pororo”
Loc describe where an event takes place “where did Pororo take the egg”
Met describe how something is done “how did Pororo introduce himself”
Per identify who did a specific action “who was sliding on the ice”
Reas motivate a specific event “why is Pororo running away”
Stmt questions about the content of a speech “what did the baby dinosaur say first”
Time describe when an event takes place in the clip “when does Pororo find an egg”
Y/N yes/no questions with an explanation “are Pororo’s friends scared of the dinosaur”

Table 5.2: Description of the question types available in the PororoQA dataset.

5.4.1 The datasets

EgoVQA Presented in [72], it features more than 600 QA pairs and the same number
of clips, which are 20-100 seconds long and are obtained from 16 egocentric videos (5-10
minutes long) based on 8 different scenarios. An example of these egocentric videos
and QA pairs can be seen in Fig. 5.4. The questions can be grouped in eight types, as
described in Table 5.1.

For each video and question five candidate answers are provided, of which only one
is correct. The wrong answers are randomly sampled from a candidate pool based on
the question type, i.e. if the question requires to recognize an action, the five candidates
(the right one and the four wrong) are actions.

PororoQA Introduced by [139], it features around 8,800 QA pairs over 6,160 clips,
which are 3.5 seconds long (on average) and are obtained from 166 episodes of the Korean
cartoon “Pororo”. PororoQA follows the multiple choice setting with five candidates,
and the question types are shown in Table 5.2. Although this dataset also offers scene
descriptions and subtitles, we choose not to use them because it would be a different
task (Video Story Question Answering, see [273, 153, 80] as well), and thus out of the
scope of this Chapter. For this reason, we are only using RGB frames, hence why we
are not comparing the performance results we obtain with [139], [138], and [317], where
scene descriptions and subtitles are exploited as well.
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5.4.2 Word embeddings

In our experiments, we choose to use GloVe, ELMo, BERT, and XLM because of their
popularity and because they provide both contextual and non-contextual embeddings.
Note that they use different tokenizers: in particular we use full words for GloVe and
ELMo, WordPiece ([303]) for BERT, and Byte-Pair Encoding ([249]) for XLM.

GloVe. By using GloVe, pretrained on the Common Crawl dataset, a vector of
size E = 300 is computed for each word in both question and answer. Since GloVe
is not contextual, question and answer can be given in input to it either jointly or
separately obtaining the same embedding. In the former case, the input to GloVe is
a simple concatenation of the tokens, i.e. δ = q1 . . . qma1 . . . an, whereas the output is
ϕw ∈ R(n+m)×E . In the latter case, two embedded representations are computed by
separately using GloVe on q1 . . . qm and a1 . . . an, which are then concatenated to obtain
ϕw.

ELMo. ELMo is a contextual word embedding technique based on LSTMs which
computes for each word multiple representations, derived from its hidden states. In
our setting, we extract the topmost representation of size E = 1024. Since ELMo is
contextual, as opposed to GloVe which is not, the word embeddings for question and
answer need to be jointly computed, i.e. the input to ELMo is δ = q1 . . . qma1 . . . an,
with |δ| = L.

BERT. Similarly to ELMo, BERT computes multiple representations for each word.
We use the base version consisting of 12 attention heads and 12 layers, each of which
produces a different embedding of size E = 768. We use the embeddings from the last
layer. For BERT, δ = αq1 . . . qmσa1 . . . anσ, where α is the token ‘[CLS]’, and σ is the
separator ‘[SEP]’.

Note that although BERT already provides an aggregated output in the represen-
tation of the ‘[CLS]’ token, we chose to also adopt the LSTM-based Text Encoder (see
Sec. 5.3.2) on top of it because of two reasons: firstly, to have an overall similar structure
across all four embedding techniques; secondly, because it can provide further context
while also improving the final performance ([80]).

XLM. XLM is a variant of BERT which uses a different training technique and also
uses BERT as an initialization step for machine translation models. In particular, we
adopt the base version of XLM, which uses 12 layers and 16 attention heads. The word
embeddings computed using this method have size E = 2048. δ is defined in the same
way as for BERT.

5.4.3 Evaluation protocol

In our setting, we fix H = 512 and h = 256. To optimize the parameters we use Adam
([141]) with a fixed learning rate of 10−3 and a batch size of 8.

To implement our solution we use Python 3.6, Numpy 1.18, and PyTorch 1.7. We
use AllenNLP ([81]) to test ELMo1, and the ‘transformers’ library 3.5.1 ([297]) to test
BERT2 and XLM3.

1pretrained: ‘elmo 2x4096 512 2048cnn 2xhighway weights’
2pretrained: ‘bert-base-uncased’
3pretrained: ‘xlm-mlm-en-2048’
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Figure 5.5: We report for each question type the average accuracy (setting the minimum
to the random chance, i.e. 20%) obtained by using a specific word embedding technique.
It is possible to see that different question types are best dealt with by using different
embeddings. Best viewed in color.

To evaluate the performance of the multiple combinations explored in this Chapter,
we train for 20 epochs, then we select the model with the best validation accuracy and
use it for testing. This is done five times (fixed seeds, 0 to 4), in order to obtain more
stable and reliable results. It is particularly important for EgoVQA, where the amount
of available data is relatively low and thus susceptible to highly variable results over
multiple runs.

5.4.4 Results using the frozen embeddings

The first set of results analyze how different embedding techniques affect the final perfor-
mance, while using them pretrained and frozen. We start from this experiment because
word embeddings are often kept frozen and not trained, e.g. in [296], since they are
learned on big text corpora from which the embeddings gather semantics which can
transfer well to downstream tasks. Tables 5.3 and 5.4 present the overall accuracy for
EgoVQA and PororoQA, and show that BERT provides the best embeddings for the
task: in particular, adopting BERT in the ST-VQA architecture leads to an average
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GloVe ELMo BERT XLM

ST-VQA 35.7±4.2 34.9±4.5 36.1±6.0 24.0±3.3
CoMem 34.1±3.8 33.6±4.8 31.6±5.3 25.7±3.9

HME-VQA 35.4±3.1 35.5±3.8 33.6±4.5 26.8±3.2

Table 5.3: Average accuracy over EgoVQA using the frozen embeddings.

GloVe ELMo BERT XLM

ST-VQA 36.8±0.5 35.7±0.9 39.7±0.9 27.4±1.2
CoMem 33.3±1.1 35.4±1.0 36.1±0.8 22.2±0.7

HME-VQA 36.8±1.8 34.5±1.1 39.2±0.7 27.8±0.9

Table 5.4: Average accuracy over PororoQA using the frozen embeddings.

accuracy of 36.1% in EgoVQA (Table 5.3) and 39.7% in PororoQA (Table 5.4). But,
especially for EgoVQA, Table 5.3 shows that other techniques can provide useful em-
beddings depending on the architecture chosen: as an example, ST-VQA with GloVe
achieves 35.7%, while HME-VQA with ELMo obtains 35.5%.

To perform a finer-grained analysis, we present in Tables 5.5 and 5.6 the accuracy
values based on the question type for EgoVQA and PororoQA. We perform this analysis
because, as previously mentioned, question types may represent a key element when
trying to answer a question. As an example, Table 5.5 shows that, when dealing with
Act3rd questions, HME-VQA with GloVe (row identified with “H;G”) achieves 41.5%
average accuracy, yet when using BERT loses around 6% (row “H;B” shows 35.2%).
Similarly, CoMem with GloVe (row “C;G”) has an accuracy of 40.3% when answering
Cnt questions, yet it only obtains 32.8% when using BERT. Similar differences can be
also observed on PororoQA in Table 5.6, e.g. when faced with Reas questions, ST-VQA
obtains 39.5% and 31.0% when adopting, respectively, GloVe (row “S;G”) or ELMo (row
“S;E”). Thus, by analyzing the results while also taking the question type into account
can lead to some insights which we detail in the next subsections.

EgoVQA

In Figure 5.5 we propose two plots where we present the accuracy obtained when aver-
aging with respect to the architecture used. For example, in Fig. 5.5.a the blue column
(related to GloVe) over Obj1st shows 41.85, which is the mean value of the average
accuracy obtained by ST-VQA, CoMem, and HME-VQA for that type of question. We
do this in order to have a simplified view of the detailed results shown in Tables 5.5 and
5.6.

In the case of EgoVQA, Fig. 5.5.a shows that on average GloVe and ELMo achieve
better performance than BERT and XLM.

Moreover, we can also observe that ELMo obtains a 2.2% margin over GloVe when
trying to identify who is performing a given action in front of the camera wearer
(Who3rd). Considering that the questions of this type, Who3rd, are longer with re-
spect to other types (11.5 words versus an average of 9.6), this may be due to ELMo
having the memory capabilities provided by the LSTMs while also exploiting the bidirec-
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Met;Emb
Question type accuracy (%)

Act1st Act3rd Obj1st Obj3rd Who1st Who3rd Cnt Col

S; G 29.2±2.2 33.9±2.2 42.6±4.1 37.0±4.9 52.3±3.1 40.3±5.4 38.8±2.5 20.0±4.3
S; E 29.2±1.8 32.6±3.4 41.1±4.6 35.6±2.2 49.2±3.8 41.6±2.1 38.4±3.6 18.1±4.4
S; B 28.9±2.8 35.9±1.8 39.6±3.2 35.6±2.8 52.3±3.1 45.4±2.1 33.1±5.0 20.0±5.9
S; X 24.8±4.1 26.8±3.4 31.5±5.6 31.4±5.9 12.3±6.2 9.5±2.8 22.8±5.8 21.3±4.8
C; G 30.7±3.2 33.0±4.4 45.5±4.0 35.1±1.4 40.0±7.5 27.6±13.8 40.3±0.6 23.2±6.6
C; E 28.4±2.1 34.4±1.9 43.3±4.5 35.1±2.9 50.8±3.8 31.7±3.9 35.6±4.6 17.4±7.8
C; B 26.3±2.8 32.8±1.5 38.5±3.2 35.1±2.5 50.8±3.8 22.9±4.1 32.8±7.0 21.9±3.8
C; X 21.8±4.1 32.2±3.1 35.2±5.2 29.8±3.3 23.1±8.4 16.2±2.7 19.4±4.7 23.2±7.7
H; G 35.8±3.1 41.5±4.0 37.4±4.4 33.5±2.3 44.6±5.8 35.5±10.1 33.1±5.4 19.3±3.5
H; E 37.6±4.0 39.8±1.3 37.4±5.9 34.4±5.2 47.7±5.8 36.8±7.2 31.9±6.5 20.6±8.3
H; B 32.8±3.0 35.2±3.3 33.3±3.7 39.5±3.0 49.2±6.2 29.8±8.0 31.6±7.3 19.4±8.4
H; X 25.7±4.3 30.7±3.3 37.0±4.5 29.5±1.6 23.1±10.9 14.3±5.9 26.6±4.4 19.3±5.4

Table 5.5: Accuracy per question type over EgoVQA using the frozen embeddings. We
introduce “Act1st”, etc. in Table 5.1 to identify the question types. S, C, H, G, E, B, X
represent respectively ST-VQA, CoMem, HME-VQA, GloVe, ELMo, BERT, and XLM.

M;E
Question type accuracy (%)

Abs Act Caus Det Loc Met Per Reas Stmt Time Y/N

S;G 38.5±1.7 39.8±2.0 33.2±3.9 37.5±3.7 28.7±4.6 45.4±1.9 30.3±0.9 39.5±4.3 37.9±2.8 37.1±4.1 32.9±3.3
S;E 40.2±2.2 39.3±1.6 33.3±5.2 34.8±4.1 29.9±5.7 43.7±2.5 30.8±1.1 31.0±5.5 40.2±1.9 28.6±5.4 39.3±3.0
S;B 45.9±2.7 44.5±1.7 37.7±5.7 44.7±7.0 30.5±4.1 45.8±1.7 32.0±0.5 35.7±2.5 40.7±2.9 29.7±4.7 44.8±1.8
S;X 30.3±1.8 30.9±1.5 39.1±4.5 29.7±4.7 26.5±4.2 22.7±2.2 23.3±1.7 30.3±2.6 28.9±1.3 15.9±2.9 27.4±2.2
C;G 34.0±2.4 36.7±1.5 28.8±1.8 35.3±6.3 25.9±2.6 44.8±3.5 25.7±2.4 34.1±3.5 32.3±4.7 33.5±5.1 25.3±2.8
C;E 37.9±5.9 38.6±1.3 28.4±7.1 32.3±3.7 29.2±2.4 44.8±2.2 29.4±1.0 31.6±6.6 36.2±4.6 37.3±6.7 31.9±2.6
C;B 41.4±1.4 41.5±1.7 43.7±2.7 37.4±7.0 28.3±2.3 48.0±4.2 26.6±0.4 34.6±3.8 33.4±1.1 38.5±5.6 33.6±5.1
C;X 23.0±3.4 25.2±1.1 29.3±6.9 21.2±3.5 20.5±2.5 20.2±2.6 21.8±1.9 21.0±2.8 23.3±1.8 16.3±1.9 17.6±4.6
H;G 39.5±4.2 38.5±1.8 29.0±4.6 43.2±3.6 26.4±3.9 45.2±3.5 30.7±1.5 39.3±4.0 37.8±2.2 36.2±8.3 39.6±4.2
H;E 36.6±3.7 39.9±1.0 34.5±11.4 31.8±4.4 36.2±6.2 43.4±2.5 28.3±1.5 33.0±1.4 36.2±3.1 32.7±6.6 34.2±6.9
H;B 44.7±2.9 43.1±1.7 46.2±2.8 44.6±6.2 27.2±3.2 44.2±2.0 30.9±2.1 38.2±2.4 38.7±2.1 38.4±6.2 36.7±1.3
H;X 30.0±1.4 30.7±1.9 40.0±6.6 27.7±4.7 24.8±4.4 21.1±2.4 24.5±1.9 33.2±2.3 29.5±2.3 17.8±1.3 16.9±4.5

Table 5.6: Accuracy per question type over PororoQA using the frozen embeddings.
Note that “Abs”, etc. are introduced in Table 5.2 to identify the question types.

tional context. A similar reasoning could be applied to BERT as well: in fact, as shown
in Table 5.5, when coupled with ST-VQA (row “S;B”) it achieves the best result for this
question type (45.4%), yet the mean value shown in Fig. 5.5.a is lowered due to the low
average and high variance obtained by the other two architectures (with CoMem, i.e.
row “C;B”, it obtains 22.9% while with HME-VQA, i.e. row “H;B”, 29.8%).

Similarly, the question type Obj1st is best tackled with GloVe embeddings (Fig. 5.5.a
reports 41.8% accuracy). In this case, around 78% of the questions are of the form “what
am I holding”, thus the long-term state provided by the LSTMs or by the Transformer
encoder may be too complex to capture some of the information which, on the other
hand, synergize well with the simplicity of GloVe.

PororoQA

Differently from EgoVQA, Fig. 5.5.b shows that BERT is the overall best choice when
dealing with PororoQA, although there are situations in which GloVe and ELMo perform
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GloVe* ELMo* BERT* XLM* avg

ST-VQA 35.7±4.1(+0.0) 34.0±4.7(-0.9) 34.9±4.9(-1.2) 25.1±4.2(+1.1) -0.2
CoMem 33.9±3.7(-0.2) 32.4±5.0(-1.2) 33.1±4.7(+1.5) 22.3±4.2(-3.4) -0.8

HME-VQA 35.6±3.2(+0.2) 34.9±3.8(-0.6) 36.4±4.4(+2.8) 25.9±4.0(-0.9) +0.4
avg +0.0 -0.9 +1.0 -1.1 -0.2

Table 5.7: Average accuracy (with absolute and average changes wrt Table 5.3) over
EgoVQA after the finetuning of the embeddings.

comparably (Stmt, Time) or even better (Loc, Reas).

In this case, Table 5.6 is fundamental to detail some differences. HME-VQA cou-
pled with ELMo performs better than all the other combinations for Loc questions:
it achieves 36.2% accuracy (row “H;E”), while the second best is given by ST-VQA
with BERT (row “S;B”) which obtains 30.5% (hence, a 6% margin). Since the answers
mainly differ due to nouns related to sceneries (e.g. “forest”, “sea”), ELMo may be
more effective at providing embeddings which cope better with these visual features.
This proves extremely beneficial when coupled with the heterogeneous memory and the
gating mechanisms exploited in HME-VQA, which help the model picking the correct
association between the available multimodal features.

Obtaining “more than random” performance for Stmt questions is also noteworthy
because these questions involve the contents of a speech. Given that GloVe, ELMo, and
BERT obtain around 37% accuracy as shown in Fig. 5.5.b, several of these questions
can be correctly answered to by only looking at the RGB frames, the question text, and
the answer text. As an example of this, the possible answers for the question “what
did Poby and his friend say” are permutations of “paper rock scissor”: the models thus
learn how to correctly answer by extracting spatio-temporal visual features which lead
them to correctly identify the three hand gestures in the clip.

Another interesting detail can be seen in the Caus question type, which involves
questions asking to identify an event which happened in relation to another one (e.g.
“what happened when the egg broke?”, “a green little dinosaur popped out”). The
best result is obtained by BERT (Fig. 5.5.b reports around 42.5% accuracy), but XLM
manages to shine as well (36.1%) obtaining a margin of at least 4% over ELMo (32.1%)
and GloVe (30.3%). This is likely due to two facts: Transformer-based embeddings, and
bidirectionality. The first point could be due to both the depth of the network and the
attention mechanisms exploited in the Transformer, which are not used in GloVe nor in
ELMo. The second point is supported by noticing that these questions are likely better
understood when read both directions (the event described in the answer might have
happened before the one described in the question, or vice versa), and by the fact that
ELMo exhibits this property as well, leading it to be more accurate (around +2%) than
GloVe.

5.4.5 Finetuning the embeddings

As a second set of experiments, we focus on the finetuning step of the embedding
modules. This is usually performed because it helps the model gain a considerable
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GloVe* ELMo* BERT* XLM* avg

ST-VQA 36.5±0.5(-0.3) 38.2±1.0(+2.5) 41.2±1.0(+1.5) 28.7±0.8(+1.3) +1.2
CoMem 35.3±0.8(+2.0) 37.0±1.5(+1.6) 33.0±7.2(-3.1) 29.1±0.4(+6.9) +1.9

HME-VQA 37.6±1.0(+0.8) 39.1±1.9(+4.6) 43.5±2.0(+4.3) 29.3±0.7(+1.5) +2.8

avg +0.8 +2.9 +0.9 +3.2 +2.6

Table 5.8: Average accuracy (with absolute and average changes wrt Table 5.4) over
PororoQA after the finetuning of the embeddings.

M;E
Question type accuracy (%)

Abs Act Caus Det Loc Met Per Reas Stmt Time Y/N

S;G* 37.2±1.2 42.5±1.5 27.4±3.7 35.7±1.9 24.7±3.4 45.4±1.7 34.6±3.0 36.8±5.7 40.7±2.1 38.6±3.5 30.2±2.0
S;E* 39.3±4.8 41.1±1.9 35.8±5.9 38.8±6.3 30.8±1.4 46.2±3.2 34.1±3.8 35.0±3.2 44.4±1.9 34.0±5.6 42.7±2.5
S;B* 43.3±4.4 43.3±1.7 36.5±7.7 43.0±7.1 33.1±4.7 52.9±3.2 33.9±2.4 40.7±3.1 43.0±3.1 31.9±6.3 48.6±4.7
S;X* 28.8±0.9 34.8±1.8 37.4±3.0 30.2±4.2 23.9±2.1 20.9±2.9 25.0±1.6 34.4±0.4 28.4±1.6 22.3±7.7 17.1±2.4
C;G* 34.1±2.9 39.0±2.1 25.7±2.3 40.4±5.7 23.2±4.7 43.0±3.4 27.2±2.5 34.9±2.8 39.2±4.6 37.8±6.4 33.8±2.8
C;E* 38.0±2.1 38.2±2.4 26.0±4.3 36.2±5.1 32.5±6.2 41.1±5.0 32.0±2.4 35.5±4.4 42.0±3.1 38.9±4.3 37.7±2.1
C;B* 34.0±7.5 35.6±8.6 39.1±3.4 34.1±5.9 30.5±7.0 31.8±10.2 27.9±6.7 36.3±8.2 33.6±5.9 27.0±7.1 28.3±14.8
C;X* 33.4±2.9 33.5±1.6 45.2±2.6 32.1±1.6 25.2±3.7 21.5±1.6 26.1±2.3 33.5±2.2 29.7±1.3 18.5±2.5 21.5±1.5
H;G* 38.3±2.9 37.8±0.8 27.8±3.1 43.1±2.3 26.0±3.4 41.1±2.7 33.7±1.4 42.4±2.3 39.3±2.2 38.1±7.5 38.4±1.5
H;E* 40.4±4.1 39.9±2.4 32.0±4.1 38.5±3.8 34.4±3.5 49.1±4.2 32.5±1.8 36.6±2.6 41.8±1.3 41.4±3.5 39.7±2.6
H;B* 43.6±3.6 43.6±2.1 36.4±1.4 49.7±5.5 34.9±4.8 50.9±3.8 34.6±2.3 45.1±3.4 45.8±2.1 33.8±8.1 46.4±5.5
H;X* 32.7±0.6 33.4±1.3 41.5±5.3 31.6±3.8 27.0±2.7 19.3±1.9 22.8±2.9 36.6±1.4 29.5±1.8 26.5±4.6 17.4±1.8

Table 5.9: Accuracy per question type over PororoQA after the finetuning of the em-
beddings.

boost, since it helps rearranging the embedding space in a way to make the features
more related to the task at hand. As an example, GloVe embeddings are finetuned in
[73].

Instead of starting the training from scratch, we restart from the weights learned
during the previous step. The procedure we follow can be described as such: first of
all, we select the model with the best validation accuracy and use it to set the initial
weights; then, we freeze all the components (but the embedding module) and perform
the training for 20 epochs using a fixed learning rate of 5e-5. We repeat this procedure
five times and we also use the same seed, i.e. when performing the i-th iteration of this
procedure, we fix seed i and use the weights that were computed using seed i.

EgoVQA

From Table 5.7 it can be noted that, although the best result has improved, the finetun-
ing procedure often does not help, e.g. with ELMo (on average, it loses around 0.9%).
This is likely due to the dataset being too small to benefit from the finetuning, leading
almost all the models to overfit. Yet, it can be seen that BERT benefits the most from
this procedure (on average +1.0%) and, in particular, HME-VQA with BERT obtains
a +2.8% improvement (+3.1% wrt the best result published in [72]).

PororoQA

Differently from EgoVQA, finetuning is particularly helpful and beneficial over Poro-
roQA. Table 5.8 reports an average improvement of 2.6%, with a peak of +6.9% when
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GloVe ELMo BERT XLM avg

ST-VQA 36.5±4.7(+0.8) 33.7±5.0(-1.2) 36.2±6.9(+0.1) 25.2±3.1(+1.2) +0.2
CoMem 32.9±3.2(-1.2) 33.8±4.3(+0.2) 31.2±4.5(-0.4) 24.0±3.1(-1.7) -0.8

HME-VQA 34.5±3.4(-0.9) 35.1±4.0(-0.4) 35.0±5.5(+1.4) 27.2±3.9(+0.4) +0.1

avg -0.4 -0.6 +0.3 -0.5 -0.2

Table 5.10: Average accuracy (with absolute and average changes wrt Table 5.3) over
EgoVQA after the adoption of the multi-task learning strategy (frozen embeddings).

GloVe ELMo BERT XLM avg

ST-VQA 37.3±1.4(+0.5) 36.6±1.1(+0.9) 40.6±1.5(+0.9) 28.7±1.5(+1.3) +0.9
CoMem 35.0±1.1(+1.7) 36.1±0.8(+0.7) 37.0±1.6(+0.9) 24.0±0.7(+1.8) +1.3

HME-VQA 35.8±1.2(-1.0) 36.8±0.5(+2.3) 38.7±1.3(-0.5) 27.9±1.1(+0.1) +0.2

avg +0.4 +1.3 +0.4 +1.1 +1.0

Table 5.11: Average accuracy (with absolute and average changes wrt Table 5.4) over
PororoQA after the adoption of the multi-task learning strategy (frozen embeddings).

finetuning XLM using CoMem. Table 5.9 shows a less varied situation than Table 5.6,
with BERT being the overall best choice. Yet, some interesting results may be distilled
from it.

First of all, after the finetuning step XLM achieves the best accuracy when dealing
with the question type Caus (obtaining 45.2% when using CoMem). Although BERT
obtains a lower average accuracy with respect to the previous performance (likely due
to the learning rate being too high), BERT and XLM achieve 37.3% and 41.4% (Table
5.8), when averaging with respect to the architecture. Considering that GloVe and
ELMo achieve 26.9% and 31.3%, this may confirm the previous hypothesis involving
bidirectionality and network depth.

Secondly, ELMo receives on average a 5.3% improvement (from an average of 32.8%
in Table 5.6 to 38.1% in Table 5.8, computed with respect to the three architectures)
when tackling Time questions. Considering that these questions often involve reasoning
about temporally-related events, the bidirectionality of ELMo coupled with the LSTM
gating and memory capabilities may be the key point which helps understanding these
relations. Although generally smaller, an improvement over Time questions is also
observed with XLM and BERT.

Finally, HME-VQA coupled with BERT achieves both the best overall result (43.5%
in Table 5.8) and also the best result over several question types. While this is par-
tially due to BERT and its abilities to compute semantically rich embeddings, it surely
confirms that HME-VQA is a powerful model able to capture multimodal cues which
makes it great for VideoQA ([73]).

5.4.6 Adoption of multi-task learning strategy

As can be seen from the previous experiments, different word embedding techniques
perform differently depending on the question type under analysis. This result is likely
related to the different embedding techniques being able to capture some patterns in
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M;E
Question type accuracy (%)

Abs Act Caus Det Loc Met Per Reas Stmt Time Y/N

S;G 38.8±2.8 39.9±2.8 33.3±5.7 39.3±3.6 31.2±3.9 47.9±3.0 30.0±1.6 38.5±2.5 42.4±2.9 39.5±4.9 30.3±5.1
S;E 38.0±1.0 39.7±2.0 24.3±4.0 34.7±0.7 30.6±4.4 49.3±2.6 31.0±1.5 34.9±5.4 41.6±3.9 38.5±6.2 39.6±5.3
S;B 43.6±1.6 42.2±0.9 39.0±7.1 43.6±5.2 30.3±2.8 46.3±2.9 35.3±1.7 34.0±4.5 41.2±3.3 33.5±4.0 42.9±4.0
S;X 28.9±2.3 30.5±2.0 45.0±2.2 34.7±3.5 22.5±4.6 21.6±1.6 24.9±1.2 33.7±2.1 29.9±2.1 20.0±4.7 21.0±1.5
C;G 36.9±2.6 38.6±1.9 33.6±5.6 41.0±4.7 26.3±2.4 41.7±3.2 28.3±3.9 34.5±4.3 34.8±3.2 36.9±4.1 34.8±3.3
C;E 40.0±2.1 40.2±1.9 29.7±7.9 32.2±2.7 29.2±3.9 45.5±2.2 29.9±1.8 36.9±3.1 39.8±3.5 28.6±7.3 36.5±4.3
C;B 42.8±1.9 39.3±2.2 38.0±8.8 39.5±4.4 29.8±3.9 46.0±2.8 26.2±2.4 36.2±1.8 37.5±3.5 34.4±5.0 34.9±3.8
C;X 23.5±4.2 24.3±3.8 31.4±2.6 23.6±4.2 22.1±2.3 24.2±2.6 23.3±1.5 22.4±4.0 23.3±2.4 11.5±2.5 23.0±4.6
H;G 38.8±2.5 39.2±0.9 36.7±4.7 41.6±4.6 27.6±2.5 45.4±3.6 29.1±2.4 37.7±6.1 41.8±1.3 23.9±5.6 32.7±3.4
H;E 38.9±2.1 41.2±0.9 26.2±6.2 36.1±5.0 34.3±4.2 44.9±4.1 32.1±1.1 30.2±4.6 42.2±3.6 35.0±4.7 40.0±5.7
H;B 44.4±1.2 42.0±3.1 41.5±8.3 40.3±2.0 26.4±1.0 45.7±4.7 32.1±2.9 36.9±4.3 43.7±4.9 31.0±3.8 38.4±4.6
H;X 29.5±2.5 32.3±1.3 43.6±7.7 26.2±1.7 19.7±2.5 22.4±1.0 25.9±2.2 34.8±2.8 31.1±2.3 20.0±6.4 25.2±1.9

Table 5.12: Accuracy per question type over PororoQA after the adoption of the multi-
task learning strategy (frozen embeddings).

the question which depend on the type and are helpful to localize the answer within
the video. To prove this surmise, we propose to adopt a multi-task learning strategy
(detailed in Sec. 5.3.1), and show that it helps the models achieve a better generalization.

EgoVQA

Table 5.10 shows that HME-VQA coupled with BERT is the combination which benefits
the most from the adoption of the multi-task strategy, gaining on average 1.4% accuracy.
Yet, several of the other combinations gain only marginal improvements or even obtain
a lower accuracy. This is likely due to the models overfitting even more than before,
due to the added parameters.

Nonetheless, there are also other combinations which benefit from the added pa-
rameters as well. In particular, it can be noted that ST-VQA synergizes the best with
the proposed technique, since it improves its performance when coupled with GloVe
(+0.8%) and XLM (+1.2%) embeddings. This may be due to its simplicity and lower
amount of parameters with respect to CoMem and HME-VQA.

To understand whether the difference in performance before and after the addition
of the proposed multi-task learning strategy is significant, we use the Almost Stochas-
tic Order (ASO) test ([49, 60]), as implemented by [277]. This test operates on the
cumulative distribution function of the two models (before and after training with the
proposed strategy) and estimates the amount of violation of the stochastic order. It
formulates the following null hypothesis: H0 : ϵmin ≥ τ , which can be interpreted as the
standard training being stochastically dominant in more cases than the training per-
formed with the proposed strategy. To reject this hypothesis, ϵmin < τ where τ = 0.5.
Using ASO with a confidence level α = 0.05 it was possible to confirm some of the
results we observed. In particular we found that, based on five random seeds, ST-VQA
with ELMo, CoMem paired with GloVe or XLM, and HME-VQA paired with GloVe
are stochastically dominant (in particular, ϵmin ≥ 0.80) if trained without the proposed
strategy; in the cases of HME-VQA with ELMo or XLM, CoMem with ELMo or BERT,
and ST-VQA with BERT the ϵmin is close to the threshold τ , so the difference is not as
significant. In the other cases, the addition of the multi-task learning strategy leads to
stochastically dominant solutions, with ϵmin ≤ 0.40 in most cases.
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PororoQA

As can be seen in Table 5.11, almost all the different combinations of architectures and
embeddings benefit from the adoption of the multi-task learning strategy: overall, if
we compare to the results obtained before the finetuning of the embeddings (Table 5.4,
changes are reported in Tab. 5.11), the improvement obtained by adopting the proposed
strategy amounts to around +1.0% with a peak of +2.3% when using HME-VQA with
ELMo. This shows that such simple addition helps the models both generalize better
and understand what they should focus on based on the type of the question.

To ease the comparison of Tables 5.6 and 5.12, we propose in Fig. 5.6 a simplified
view of the results per question type, where we visualize the average accuracy obtained
by the embedding techniques (mean values with respect to the three architectures) be-
fore and after the adoption of the multi-task learning strategy. While it shows an overall
improvement, such a figure also shows there are situations in which the proposed tech-
nique is beneficial or not based on the embedding technique used. As an example,
for Caus questions, GloVe and XLM benefit greatly from the additional task, whereas
BERT and ELMo do not. More in detail, Table 5.12 shows that a considerable boost
(+9.9%) is obtained by ST-VQA coupled with ELMo when dealing with Time ques-
tions, where the accuracy goes from 28.6% (in Table 5.6, row “S;E”) to 38.5%. Since
a similar improvement was also obtained when finetuning ELMo for this question type,
this further strengthens the hypothesis previously formulated.

As in the previous case, we use ASO to determine the significance of the results.
With a confidence level α = 0.05, we found that the addition of the proposed multi-task
learning strategy leads to solutions which are stochastically dominant over the model
trained without the proposed strategy in most of the cases (with ϵmin < 0.40). In
the case of HME-VQA, the addition of the proposed strategy leads to a stochastically
dominant solution only when paired with ELMo (ϵmin < 0.10) whereas, according to the
statistical test, the model trained without the proposed strategy is either stochastically
dominant (with GloVe and BERT, ϵmin ≥ 0.85) or the same as the model trained with
the proposed strategy (with XLM, ϵmin = 0.5).

5.4.7 Embeddings finetune after the multi-task learning

As we did previously, we start from the weights obtained during the training with the
multi-task learning strategy and proceed with the finetuning of the embeddings alone.
Overall, a greatly positive outcome is achieved for PororoQA (Table 5.14), whereas over
EgoVQA it does not help at all.

PororoQA

Table 5.14 reports on average a +2.9% improvement, with even higher peaks when using
CoMem (+5.7%). Also in this case we propose a simplified view of the comparison
between Tables 5.12 and 5.14 in Figure 5.7, where we visualize the accuracy obtained
before and after finetuning. From the Figure it can be seen that BERT and ELMo
always benefit from the finetuning procedure. In particular, from Table 5.14 it can be
seen that the average improvement amounts to 1.8% for ELMo and 3.9% for BERT. It
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Figure 5.6: Average accuracy over PororoQA, averaged with respect to the three ar-
chitectures, before (◦) and after (♢) the adoption of the proposed multi-task learning
strategy. Best viewed in color.

Figure 5.7: Accuracy over PororoQA obtained by the embedding techniques (average
wrt models trained with the proposed multi-task learning strategy) before (◦) and after
(♢) finetuning. Best viewed in color.
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Embedding technique
Architecture GloVe ELMo BERT XLM avg

ST-VQA 0.005 0.039 0.015 0.026 0.021
CoMem 0.064 0.101 0.074 0.095 0.083

HME-VQA 0.050 0.085 0.062 0.081 0.069
avg 0.040 0.075 0.050 0.067 -

Table 5.13: The average time (in seconds) spent per sample at inference time for each
of the 12 combinations considered in this Chapter.

follows that, generally speaking, it is a wise choice to finetune the embeddings, especially
when there is a decent amount of available data.

5.4.8 About inference times

In this section, we analyze the time taken to predict the answer during the inference
phase. In particular, the total time required by the pipeline analyzed by isolating the
feature extraction of the video from all the other operations. This is done because the
visual feature extraction is performed in the same way for all the considered solutions.
In fact, all of them, as previously described in Sec. 5.3, use VGG and C3D which,
on average, take less than 150 ms per video clip. Therefore, the time taken by this
step can be removed from the total time in order to make it clear the overhead taken
by the specific architecture or word embedding techniques. Conversely, the extraction
of the textual features is tightly linked to the word embedding technique used. In
Table 5.13 we report the average time taken by all the combinations of overall model
(ST-VQA, CoMem, or HME-VQA) and word embedding technique considered in this
Chapter. According to this analysis, ST-VQA combined with GloVe represents the
fastest solution taking only 5 ms on average. In particular, GloVe represents the fastest
word embedding approach since it only needs to map tokens to vectors through a table,
whereas BERT, ELMo, and XLM have additional layers which slow down the process,
leading respectively to 50, 75, and 67 ms on average. Moreover, since it is the simplest
architecture considered in this Chapter, ST-VQA is also the fastest among the three (on
average, 21 ms compared to 83 and 69 ms taken by CoMem and HME-VQA).

5.4.9 Take-home messages

Word embeddings. Each of the analyzed embedding techniques deals better with
specific question types, likely implying questions have characteristics which are encoded
differently (and possibly ignored) by each technique. Over EgoVQA, ELMo works bet-
ter when identifying an actor (Who3rd), and GloVe is effective when identifying objects
(Obj1st); over PororoQA, ELMo performs significantly better than GloVe, XLM, and
BERT when identifying locations (Loc), and the synergy between the bidirectionality
and the Transformer-based encoder, used by XLM and BERT, is beneficial when guess-
ing which event happened in relation to another one (Caus).

Importance of the embedding choice. In relation to the previous message, we
thoroughly showed that the choice of the embedding technique to use should take into
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GloVe* ELMo* BERT* XLM* avg

ST-VQA 37.8±1.2(+0.5) 38.8±0.9(+2.2) 42.7±1.4(+2.1) 30.0±0.6(+1.3) +1.5
CoMem 35.6±0.6(+0.6) 37.8±1.2(+1.7) 42.7±1.8(+5.7) 28.7±1.2(+4.7) +3.2

HME-VQA 37.3±0.9(+1.5) 38.2±1.2(+1.4) 42.6±1.1(+3.9) 28.9±0.6(+1.0) +1.9

avg +0.9 +1.8 +3.9 +2.3 +2.9

Table 5.14: Average accuracy (with absolute and average changes wrt Table 5.11) over
PororoQA after the adoption of the multi-task learning strategy and the finetuning of
the embeddings.

account which question type (and the properties of its questions) is the most prevalent
in the considered dataset.

Bidirectionality. We provide evidence showing that bidirectionality is convenient
when both Q and A are rich and complex sentences (e.g. Caus, Time questions).
Although for the latter it becomes clearer when finetuning, for the former it is noticeable
also when using the frozen embeddings.

Finetuning. Although the improvements due to finetuning are harder to see with
EgoVQA due to its smaller size, it is diaphanous for PororoQA: finetuning helps rear-
ranging the embedding space, making it easier for the models to understand and link
the textual and the visual concepts.

Multi-task learning. Question types raise the possibility to perform finer-grained
analysis, but they can also be exploited to achieve improved generalization. We show
this is possible by proposing a multi-task learning strategy which takes question types
into account.

5.5 Conclusion

VideoQA has recently seen a surge of interest thanks to the release of several rich
and public datasets. In VideoQA, to provide a meaningful answer, the model needs
to understand both the visual and the textual content. Given the multitude of word
embedding techniques and considering that the computed representations influence the
final performance of the VideoQA model, we explore the use of several of them on two
public datasets: EgoVQA and PororoQA. We find that the embeddings computed by
BERT are the best overall solution, but we also find that depending on the question
type different embeddings should be preferred.

Moreover, we showed this result can be further exploited by introducing a multi-task
learning approach where the models are also asked to classify the given questions: a sim-
ple yet effective technique which greatly helps the overall performance of the considered
solutions.

Finally, we show that more accurate predictions can be obtained by finetuning the
embeddings, both with and without the proposed multi-task learning strategy. BERT
is the technique benefiting the most from it, but there are situations in which the
improvement can be substantially large when taking into account specific question types,
e.g. the synergy between ELMo and Time questions. At the end of the experimental
section we also collect some “take-home messages” (Sec. 5.4.9) where we summarize the
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main results observed in this Chapter.
As a future work, several other word embedding techniques can be tested, such as

DistilBERT ([242]) and RoBERTa ([176]). Moreover, we focused on EgoVQA and Poro-
roQA, but these results should help obtaining improved performance in several other
datasets, such as TGIF-QA ([120]) or MovieQA ([273]), where it is possible to define the
type of the questions. In particular, automatically identifying the type of the question
may be an interesting research direction. The types may be defined by a rule-based sys-
tem (e.g. inspired by the “five Ws”), or by using clustering techniques to automatically
discover clusters of semantically related questions. Furthermore, in our multi-task learn-
ing approach we focused on a single auxiliary task designed on the concept of question
type, but additional tasks may be used to extend it and help the model extracting more
general features. Finally, the VideoQA community is mostly focusing on defining new
methods to achieve better performance. Nonetheless, predicting the correct answer with
a lower time delay may have important consequences on several applications, therefore
it may become an interesting research direction.



6
Relevance-based Margin for
Contrastively-trained Video

Retrieval Models

6.1 Introduction

With the rapid growth of digital media shared on the web it becomes increasingly im-
portant for real-world applications to offer flexible, user friendly modalities to access
media content at scale. Google video search for example, translates a natural language
query into a ranked list of content-related videos from the web. Natural free form, un-
restricted language enables a user to express the fine-grained details in an articulated
query, and each user can do so with its own expressivity. Thus, a same retrieval re-
sponse can be triggered with syntactically different but semantically coherent queries.
This poses significant challenges to the current state of the art in cross-modal retrieval
research.

Recent approaches which deal with cross-modal video retrieval aim at learning a joint
embedding space [26, 40, 57, 288] by means of contrastive losses [93, 247, 193, 205], which
put the associations available in the dataset (e.g. a video and its natural language
description) as close as possible while enforcing a separation margin to all the other
items (see lower left of Fig. 6.1). During inference, the ranking list for a given query is
produced by computing similarity scores with respect to all the items by means of, e.g.
the dot product or the cosine similarity. By measuring the performance of the video
retrieval system with rank-unaware metrics, such as recall rates, increasingly better
solutions to this problem were proposed. In fact, contrastive losses synergize well with
recall rates, given how they maximize the similarity of the associated items. But during
training they do not make any distinction between items which are highly relevant and
items which are only partially or completely irrelevant to a given query. For example, if
a query is about ‘how to cook a pizza’, then videos which depict how to ‘bake a pizza’,
‘cook pasta’, or ‘knead dough’ are all treated the same way, although they can be more
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Figure 6.1: Training a model for text-video retrieval by employing a contrastive loss
which uses a fixed margin ∆ (lower left) treats semantically equivalent descriptions
which do not appear as groundtruth pairs in the dataset as equally irrelevant. We
propose to move away from such a paradigm and adopt a relevance-based margin (lower
right), i.e. a margin which is proportional to the relevance R (see Sec. 6.3.1).

or less semantically close to the query. Furthermore, one of the reasons which limited the
usage of rank-aware metrics in video retrieval consists in visual-language datasets only
providing the visual contents and textual annotations (obtained manually [310, 343] or
automatically [195]). Due to the absence of relevance grades, rank-aware metrics (e.g.
nDCG) are difficult to adopt. Recently, this problem was partially alleviated by the
introduction of a relevance function [45] which, to avoid a costly manual annotation
step, is defined in terms of the captions already available in the dataset.

To give the model awareness of the semantical differences between items and queries
during training, we free the margin from its stillness. Several solutions for non-fixed
margins were proposed in previous literature, such as using multiple margins (e.g.
[33]) or adaptive solutions. In particular, [248] implemented a schedule for the margin
value which gradually incorporates inter-category correlations and information about the
structure of the embedding space. Recently, for video retrieval [96] proposed an adap-
tive margin proportional to the similarity of item and query as computed by multiple
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models. Differently from them, we propose to inject semantic knowledge into the train-
ing process by means of a relevance-based margin. To do so, we leverage the relevance
function detailed in [45], so that the margin is proportional to how relevant the item is
to the query, as illustrated in Fig. 6.1. By doing so, we effectively discard one hyper-
parameter to tune. Moreover, even by performing an expensive search for it, the results
are still suboptimal when compared to the proposed relevance-based margin. We give
empirical evidence that the proposed technique makes it possible to easily improve the
quality of the ranking lists, measured through Normalized Discounted Cumulative Gain
(nDCG) and Mean Average Precision (mAP). We use three different and increasingly
more complex models (MME from [299], JPoSE [299], and HGR [26]) on two datasets
(EPIC-Kitchens-100 [45] and YouCook2 [343]). Furthermore, we perform several ab-
lations to study how it interacts with multiple video modalities (motion, appearance,
audio) and with both cross-modal and within-modal losses.

We organize the Chapter as follows. In Section 6.2 we review related works, including
vision and language tasks, main techniques and losses used to deal with text-video
retrieval, and optimization of retrieval metrics such as the nDCG. Then, we formally
describe the proposed technique in Sec. 6.3, in terms of the relevance function and
how we apply it to a typical contrastive loss setting. In Sec. 6.4 we perform multiple
experiments to prove the strength of the relevance-based margin. Finally, in Sec. 6.6 we
conclude the Chapter.

6.2 Related works

Vision and Language. In recent years, deep learning brought several advance-
ments in multiple tasks dealing with vision and language, such as question answering
[4, 5, 111, 137], retrieval [150, 335, 57, 26], and captioning [254, 59, 152, 157]. Given
that vast amounts of data can be scraped from the web, many works perform a joint
vision and language pretraining [165, 31, 270, 342] by optimizing vision-text proxy tasks.
Recently, a line of research uses natural language supervision such as captioning [52] or
alignment [123] objectives to pretrain visual models. While in both cases they achieve
competitive and state-of-the-art results on downstream tasks, these methods are data
hungry and expensive to train, making them impractical from a computational point of
view.

Text-Video Retrieval. Multiple techniques were proposed to learn a representa-
tion for the input data while capturing multimodal interactions. [175, 288, 76] explore
multimodal fusion techniques to fuse all the information extracted from a video using
multiple pretrained ‘experts’. While these methods focus on the addition of video-side
information, a supervisory signal can also be obtained by looking with more detail at the
text. [26] create a semantic role graph of the caption and aligns to each node a learned
representation of the clip-level descriptor. [299] extract verbs and nouns from the cap-
tion and uses them to learn Part-of-Speech-specific embedding spaces. [212] introduce
a generative cross-captioning task, using the batched videos as a support set. Recently
[40] distil information from multiple pretrained text experts. A different trend involves
heavy pretraining steps [61, 151, 12, 173], followed by finetuning for downstream tasks.
Moreover, the addition of image-text datasets as part of the pretraining step, showed
significant improvements when dealing with video-related tasks [151, 12]. While these
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methods achieve impressive results, they rely heavily on the data, are expensive to train,
and are not designed for the nature of the problem.

Due to the unavailability of groundtruth relevance values which can inform about
the optimal ranking list to a given query, the video retrieval community focused on rank-
unaware metrics such as the recall rates or the median rank. Contrastive losses greatly
improve these metrics since they reduce the distance between the visual descriptor and
the linguistic one and thus increase its similarity, making it possible to retrieve it before
the negative descriptors. But multiple descriptions can be equally or partially relevant
for the same video (and vice versa), thus more complex and rich metrics, such as the
nDCG, are needed to accurately evaluate a retrieval system [298]. To do so, a way to
determine how relevant an item is to a query must be available. To avoid the need for
manual and costly annotation, [45] proposes to use a relevance function defined in terms
of the noun and verb classes present in the caption (more details in Sec. 6.3.1).

Learning a joint embedding space. Common approaches for text-video retrieval
learn a joint embedding space by means of a contrastive loss [93, 247] which, during
training, puts semantically similar items (e.g. a video and a caption describing its
contents) closer in the embedding space, while dissimilar items are pushed away. While
groundtruth associations (i.e. positive pairs, such as a video and its caption) are known
from the dataset, the negative examples (such as a different video) have to be sampled, or
‘mined’, given that the amount of possible tuples scales exponentially with the dataset
size, e.g. cubically with triplets. Multiple techniques have been proposed including:
offline mining, which randomly samples a fixed number of tuples and repeats the process
multiple times during training; online mining, which uses the negatives inside the mini-
batch by considering all the non-groundtruth pairs, or only hard [100, 313] or semi-
hard negatives [247]. Recent research also found relevant signal while mining positive
samples, e.g. easy [314] or hard positives [100]. In this Chapter, we focus on triplets
as they are a popular margin-based contrastive loss, but it can be extended to other
techniques, e.g. to quadruplets [29]. Moreover, we experiment with two different and
opposite techniques: offline mining with random sampling and online mining with hard
negatives, and show the advantages of the relevance-based margin in both cases.

Margin in contrastive losses. Most of the approaches involving contrastive losses
are based on maximum-margin losses (e.g. [93]). Although the margin is usually fixed,
variable or adaptive solutions for it have been explored in different fields. For person
re-identification, [33] suggest using two different (but fixed) margins for inter- and intra-
class constraints, whereas [336] propose to monotonically increase the margin during
the training process. [109] use a ‘soft margin’ to improve recommender systems, that is
they remove the fixed margin and use (a soft version of) the distance between positive
and negative pairs as the loss. [159] augment the bidirectional contrastive loss by also
summing the margin to the loss objective, to optimize it during the training process. For
text-image retrieval, [248] propose a scheduled adaptive margin which starts from a fixed
value and gradually changes during the training process both to integrate inter-category
similarity-based correlations and to preserve the category clusters formed during the
initial phases of the training. Recently, for cross-modal video retrieval [96] proposed an
adaptive margin proportional to the similarity of the representations computed for the
negative pair, both in terms of ‘static’ (pretrained, frozen) models, which provide initial
supervision, and ‘dynamic’ (trained with the task) models, which provide supervision in
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later stages of the training. Differently from all these works, we propose a margin which
is proportional to the relevance value of the queries involved in the triplet, effectively
using the semantic knowledge during training.

Optimization of nDCG. Considering that visual-textual datasets usually lack
relevance grades, rank-unaware metrics are one of the preferred ways to measure progress
in the video retrieval community. Yet given a video, multiple captions can be used to
describe its contents. To capture the difference in the ranking list when binary relevance
(i.e. a caption is either relevant or irrelevant to a video) is considered, mAP is preferred
to the recall rates. Furthermore, finer-grained relevance grades could be also available
(i.e. a caption can be relevant to a video to some degree), in which case the DCG (or its
normalized version, the nDCG) is chosen. But, optimizing these metrics during training
clashes with gradient-based optimization methods because ranks are not differentiable
with respect to the learnable parameters, e.g. the nDCG of a list of items to a given
query is normalized using the optimal ranking list, which is computed by sorting with
respect to the relevance values.

Surrogate losses are used to partially address this problem, which can be categorized
into: pointwise (e.g. regression loss [39]), which compare predicted and optimal rank
of one item at a time; pairwise (e.g. RankNet [21]), which deal with pairs of items
and relative ordering; listwise approaches (e.g. LambdaRank [20]), which work on full
list of items. Note that the triplet loss [247] can be seen as a ‘triplet-wise’ surrogate
loss. Since these surrogate losses are loosely connected to downstream metrics, there
is also an active research field which directly optimizes retrieval metrics by deriving a
relaxation of the sorting operator which has well-defined gradients, e.g. [90, 42, 15].

Considering its widespread usage for video retrieval, we consider the triplet loss an
optimal candidate for our relevance-based margin, and show it can lead to higher quality
ranking lists.

6.3 Relevance-based margin

In Sec. 6.3.1 we define the relevance function R and the metrics used during evaluation.
In Sec. 6.3.2 we describe how we change the margin in the contrastive loss to make it
dependent on R. Finally, Sec. 6.3.3 details the three methods on which we test our
technique.

6.3.1 Semantic classes and relevance

Given a video clip, multiple natural language descriptions may fully capture its visual
contents, and vice versa. Hence, if a user looks for videos about ‘cooking a pizza’, an
intelligent video retrieval system should retrieve all the videos which show how to cook a
pizza, and show them all before (i.e. rank them higher than) those that show the baking
of a ‘focaccia’. Similarly, videos about ‘fried potatoes’ should be ranked even lower,
given how dissimilar they are when compared to the user query. As a consequence, the
automatic evaluation of the quality of a ranking list requires a function which considers
‘focaccia’ more relevant than ‘potatoes’ when compared with ‘pizza’, as well as the
cooking technique (‘bake’ versus ‘fry’). To avoid the need for costly manual annotation
which requires human assessments using a predefined set of grades, [45] introduces a
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relevance function R defined as:

R(xi, xj) =
1

2

(︃ |xVi ∩ xVj |
|xVi ∪ xVj |

+
|xNi ∩ xNj |
|xNi ∪ xNj |

)︃
(6.1)

where xVk and xNk denote the sets of verb and noun classes found in the k-th caption.
This can be extended to videos by considering the associated description. By defining
the relevance as in Eq. 6.1, xi is highly relevant to xj if they share similar noun and verb
classes. We refer to ‘classes’ because we do not want to consider synonyms (e.g. ‘pick
up’ and ‘take’, or ‘drop’ and ‘put down’) as different items which need to be separated,
hence each class will contain tokens with a similar meaning. In some datasets, this
class knowledge may be already available, but several other datasets do not provide it.
To automatically compute them, a pipeline made of a PoS-tagger (e.g. with spaCy),
followed by WordNet [198] and the Lesk algorithm [155] can be used, as in [298].

To evaluate a video retrieval system, we use two metrics which are commonly used
in Information Retrieval, which are the Mean Average Precision (mAP [10]) and the
Normalized Discounted Cumulative Gain (nDCG [122]), as recently proposed in [298].
The mAP is defined as the mean of the Average Precision (AP) with respect to all the
queries. For a given query q, AP can be defined as:

AP (q) =

∑︁N
k=1 P (k) · r(k)

Nr
(6.2)

where N is the number of items (both relevant and irrelevant) in the ranking list,
P (k) is the Precision at k [10], r(k) is an indicator function which tells whether the
k-th item is relevant or not, and Nr is the total number of relevant items. The mAP
allows to grasp with a single number the area under the Precision-Recall curve. But
this metric requires binary relevance values, thereby requiring the introduction of a
threshold below which items are considered irrelevant (and relevant otherwise). For
mAP, we consider k to be relevant to q only when R(q, xk) = 1 as is done in [45] (hence,
for mAP Nr = |{xi |R(q, xi) = 1}|). On the other hand, nDCG makes use of non-binary
relevance values, allowing it to grasp finer details (and errors) of the ranking list. Given
a query q and a list of items K = {xi}, it is defined as

nDCG(q,K) =
DCG(q,K)

IDCG(q,K)
(6.3)

where IDCG is the optimal DCG value obtained when the ranking list follows a de-
scending order of relevance values. We define DCG as in [122, 45]:

DCG(q,K) =

Nr∑︂
k=1

R(q, xk)

log2(k + 1)
(6.4)

where xk is the k-th item in the list K, and we only consider the first Nr items in the
ranking list. Note that Nr = |{xi |R(q, xi) > 0}|.
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6.3.2 Contrastive loss with relevance-based margin

To learn a joint text-video embedding space, various contrastive (or ranking) losses have
been proposed (see Sec. 6.2). In this Chapter we consider a contrastive term based on
the triplet loss defined as:

L = [m+ s(a, n)− s(a, p)]+ (6.5)

where [·]+ = max(0, ·), m is interpreted as a separation margin, s(·, ·) is a similarity
metric (e.g. cosine similarity), whereas a, n, and p represent respectively the embedding
of the anchor, negative, and positive item. Eq. 6.5 provides a positive loss when the
margin m between the positive pair (a, p) and the negative one (a, n) is violated, i.e.
s(a, p) − s(a, n) < m. The loss may be cross-modal, i.e. n, p from one modality (e.g.
video) and a from the opposite one (e.g. text), or within-modal, i.e. a, p, n are all from
the same modality. Furthermore, the optimal m is not known beforehand and should
be treated as an hyper-parameter which can affect the performance. Thus, it should be
tuned on the validation set.

During training, all the items which are not from the positive pair (a, p) are pushed
away until they are separated by a margin of m, as shown in Fig. 6.1. Although effective
and widely used in the literature, Eq. 6.5 ignores that multiple items may be completely
or partially relevant to the same query, and treats all the items which are not from the
groundtruth pair as equally irrelevant. Thus the retrieval system might not be able to
distinguish between the many relevance levels which can exist between an item and a
query.

To address this, we propose a relevance-based margin instead of a fixed margin. In
this Chapter, we aim at defining m in terms of the relevance function R. In particular,
we update Eq. 6.5 as follows:

L = [∆a,p,n + s(a, n)− s(a, p)]+ (6.6)

where:

∆a,p,n = R(a, p)−R(a, n)

= 1−R(a, n)
(6.7)

since we consider the groundtruth pair to be maximally relevant, i.e. R(a, p) = 1. The
relevance-based margin keeps L positive until s(a, p) and s(a, n) are separated by a
margin which is proportional to their relevance values, thus separating irrelevant items
more than those which have a positive relevance. This is illustrated in Fig. 6.1 on the
lower right. Note that this term is not bound to the network state and can thus be
applied both to offline and online mining techniques.

6.3.3 Methods

Given a dataset D = {(vi, qi)} of video-caption pairs, we strive to learn optimal weights
for two embedding functions f : Rfv → Rd and g : Rfq → Rd such that f(vi) and
g(qi) are close in the d-dimensional joint embedding space. Here fv and fq represent
the dimension of the video and caption descriptors. To parameterize f and g we con-
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sider the following methods: MME is a baseline from [299] which learns one embedding
function for each of the two modalities, video and text. In JPoSE [299], the captions
are processed in order to obtain a single sentence-level descriptor and multiple descrip-
tors restricted to specific Part-of-Speech (PoS) tags, e.g. nouns and verbs. Then, two
functions are learned for each of these embedding spaces using both cross-modal and
intra-modal contrastive terms for the sentence-level, as well as for the PoS-level. HGR
[26] structures the learning at multiple levels (global event, local actions, and local en-
tities) which are obtained by computing a semantic role graph for each of the captions.
Then a graph convolutional network is used to learn compositional semantics of the
caption based on the local components, i.e. full sentence, verbs, and noun phrases.

We choose these three methods because they provide incrementally structured ap-
proaches to deal with video and language data, starting from a simpler MLP-based
network to a graph-based approach. Moreover, JPoSE represents the state-of-the-art
for EPIC-Kitchens-100 (measured through nDCG and mAP), which is the main dataset
under consideration. Finally, by selecting them we can validate our approach on both of-
fline (MME and JPoSE) and online (HGR) mining techniques. We thus proceed to show
the generality and effectiveness of the proposed relevance-based margin by empirically
validating on two different datasets.

6.4 Experiments

After the introduction of the experimental setting in Sec. 6.4.1, we show in Sec. 6.4.2
how the proposed relevance-based margin helps to achieve better nDCG and mAP on
EPIC-Kitchens-100 and YouCook2. Then, in Sec. 6.4.3 we perform several ablation
studies. First we show that even by carefully tuning the fixed margin, the proposed
technique consistently achieves better results without the need to tune it. Secondly,
we also evaluate its robustness by ablating the loss function and the modalities used
in JPoSE. Finally in Sec. 6.4.4 we analyze the distribution of the margin values during
training and some video-to-text examples from the testing set.

6.4.1 Experimental setting

Datasets. We focus our experimental setting on two challenging video and language
datasets: the recently released EPIC-Kitchens-100 [45] and YouCook2 [343]. For the
retrieval challenge, the former comprises 67217 egocentric clips for training and 9668
for evaluation. It is also the largest dataset for video retrieval in the egocentric setting.
Moreover, it also provides semantic annotations for each of the captions, by covering
300 noun and 97 verb classes. The latter provides a lower amount of training clips
(10337) but still offers a challenging evaluation set with 3492 clips. While semantic
annotations are not available for YouCook2 they can be computed using WordNet and
the Lesk algorithm, as described in Sec. 6.3.1. Furthermore, as both EPIC-Kitchens-100
and YouCook2 share the kitchens domain, the class knowledge of the former can also
be used for the latter [298].

Implementation details. For EPIC-Kitchens-100 we use the TBN [134] features
from the dataset provider comprising of 25 uniformly sampled RGB, flow, and audio
feature vectors for each clip. For YouCook2 we use ImageNet-pretrained ResNet-152
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Method rel-∆ nDCG mAP
MME 48.5 38.5
MME ✓ 49.6 ↑1.1 39.2 ↑0.7
JPoSE 53.5 44.0
JPoSE ✓ 56.2↑2.7 45.8↑1.8
HGR 32.2 36.0
HGR ✓ 50.2 ↑18 45.6 ↑9.6

Table 6.1: nDCG and mAP results on EPIC-Kitchens-100 with three different methods,
using TBN (RGB, Flow, Audio) features. We report in bold the best results (and un-
derline the second best). With “↑X” we represent an improvement of X when compared
to the above result.

features from the VALUE benchmark [158]. For the three methods we use the open
source codebases provided in the respective papers and follow their hyper-parameter
setting. We release our code and models on GitHub to support reproducibility.

6.4.2 Relevance-based margin results

EPIC-Kitchens-100. To validate the effectiveness of the proposed relevance-based
margin, we explore three methods (MME, JPoSE, and HGR as described in Sec. 6.3.3)
on EPIC-Kitchens-100. In Tab. 6.1 we report nDCG and mAP values, averaged between
text-to-video and video-to-text. In all three cases, we observe a large improvement in
both metrics, showing that the relevance-based margin works on very different models.
It also works well with both offline mining with randomly sampled triplets (for MME
and JPoSE), and online mining with hard negatives (for HGR): by using the relevance-
based margin, MME gains +1.1 nDCG and +0.7 mAP, JPoSE +2.7 nDCG and +1.8
mAP, and finally HGR obtains +18 nDCG and +9.6 mAP. Such a large improvement
is possibly due to how the triplets are sampled: in JPoSE, the negatives do not share
the verb class of the anchor, leading to a relevance lower than 0.5; but, there is not
such a guarantee in HGR, since batches are formed randomly. Hence, by employing
a relevance-based margin in HGR we automatically deal with situations in which the
negatives have a considerable relevance and adapt the margin accordingly. Finally, in
App. 6.5 we report the public leaderboard for the retrieval challenge, confirming the
improvement we observe over current state-of-the-art methods.

YouCook2. In the previous experiment we used the class knowledge which accom-
panies the dataset. But, by computing synsets knowledge in a similar way to what is
done in EPIC-Kitchens-100, the proposed relevance-based margin can still successfully
help the training process. This setting poses two additional challenges: first of all, in
EPIC-Kitchens-100 most of the captions follow a precise structure, i.e. they contain a
verb and a noun, which is not the case when dealing with other datasets, where free-
form descriptions are often adopted. This may make it more difficult for the PoS-tagger
to correctly tag the words. Secondly, there may be words which are put in the wrong
category by WordNet.

For this dataset, we use the same class knowledge used in EPIC-Kitchens-100, as it
transfers well across both datasets since they share the cooking domain [298], and for
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Method rel-∆ nDCG mAP

MME
46.9 19.3

✓ 47.3 ↑0.4 19.5 ↑0.2

JPoSE
49.6 20.5

✓ 50.4 ↑0.8 21.5 ↑1.0

HGR
41.0 23.0

✓ 46.5 ↑5.5 26.1↑3.1

Table 6.2: nDCG and mAP using MME, JPoSE, and HGR on YouCook2. We use
ResNet-152 (pretrained on ImageNet) features from the VALUE benchmark [158].

words which do not appear in any class, a new singleton class is created.
In Tab. 6.2 we report the nDCG and mAP values obtained with MME, JPoSE, and

HGR. From the table, one can see that even in this different setting the relevance-based
margin is able to provide useful information to the model. For example, the addition
of the proposed technique in HGR leads to a gain of +5.5 nDCG and +3.1 mAP when
compared to the results obtained with a fixed margin.

6.4.3 Ablation studies

We perform the ablation studies on EPIC-Kitchens-100 using JPoSE.
Varying the fixed margin. In Sec. 6.4.2 we show that the proposed relevance-

based margin leads to improved nDCG and mAP on both EPIC-Kitchens-100 and
YouCook2. But, what if one would only need to carefully tune the fixed margin to
obtain similar results? To answer to this question, we focus on JPoSE and vary the
fixed margin ∆ in {0.1, 0.2, . . . , 1.5} (default value used in JPoSE is 1.0). We keep the
rest of the hyper-parameter setting as in [299, 45] and use the officially provided TBN
features. We plot in Fig. 6.2 nDCG, mAP, average R@1 for each of the tested margins.
While small margins lead to worse results overall, it can be seen that increasing the
margin does not improve significantly neither the nDCG nor the mAP. Moreover, the
recall rates are affected only marginally as well. When compared to the performance
shown by the adoption of the relevance-based margin, it can be observed that our tech-
nique manages to achieve higher nDCG and mAP values, while also keeping similar
recall rates (on average, 6.3% R@1). Finally, it is worth noticing that by using the
relevance-based margin we are released from the margin hyper-parameter: this is also
of practical importance, because by using a fixed margin its optimal value is not known
in a testing scenario, hence one would also need to perform an expensive search on the
validation set in order to achieve better performance.

Losses ablation. A peculiarity of JPoSE is that it uses multiple contrastive loss
terms to learn both global- and PoS-restricted joint embedding spaces. To do so, the
authors employ a global loss and a PoS-level loss, both in the cross- and within-modality
settings. We perform an ablation study in Tab. 6.3 to give evidence that the relevance-
based margin can be helpful even when restricting the amount of loss terms used. Note
that when applying the technique to the PoS-level terms (e.g. verbs) we consider the
term for the opposite PoS (e.g. nouns) in Eq. 6.1 to be 1. As shown in Tab. 6.3,
the adoption of the relevance-based margin leads to an improvement of +1.6 nDCG and
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Figure 6.2: Using JPoSE on EPIC-Kitchens-100, we show how changing the fixed mar-
gin in the loss function affects the performance, measured through nDCG and mAP in
the upper figure, and average R@1 in the lower one. For reference, we also plot discon-
nected dots to show the performance when we use the proposed relevance-based margin.
Notice that the optimal fixed-margin hyper-parameter would not be known in a testing
scenario; it would need to be estimated through an expensive hyper-parameter search
on a validation set.
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cross- within-
rel-∆ glob PoS glob+PoS nDCG mAP

✓ 53.1 43.3
✓ ✓ 54.7 ↑1.6 44.5 ↑1.2

✓ ✓ 53.4 43.7
✓ ✓ ✓ 56.2 ↑2.8 45.6 ↑1.9

✓ ✓ ✓ 53.5 44.0
✓ ✓ ✓ ✓ 56.2 ↑2.7 45.8↑1.8

Table 6.3: nDCG and mAP using JPoSE on EPIC-Kitchens-100. During training,
JPoSE considers both cross- and within-modality contrastive losses, both at sentence-
and PoS-level. Applying the relevance-based margin helps at each level.

Modalities rel-∆ nDCG mAP

RGB
36.8 28.8

✓ 38.4 ↑1.6 30.4 ↑1.6

RGB+Flow
49.6 41.0

✓ 52.5 ↑2.9 42.8 ↑1.8

RGB+Flow+Audio
53.5 44.0

✓ 56.2 ↑2.7 45.8↑1.8

Table 6.4: TBN offers RGB, flow, and audio features. The proposed relevance-based
margin interacts with each modality in an incremental way. We use JPoSE on EPIC-
Kitchens-100.

+1.2 mAP when using only the cross-modal global-level loss terms, whereas +2.8 nDCG
and +1.9 mAP are gained when also adding the cross-modal PoS-level terms.

Modalities ablation. For EPIC-Kitchens-100 we have RGB, flow, and audio fea-
tures. To show that the improvements obtained when applying the relevance-based
margin are not due to the model accessing multiple modalities related to the video, we
perform another ablation in Tab. 6.4 by considering RGB-only and RGB+flow features.
In both cases the proposed technique shows its usefulness. In particular, by employing
the relevance-based margin we observe +1.6 nDCG and +1.6 mAP when using RGB-
only, +2.9 nDCG and +1.8 mAP when using both RGB and flow, and +2.7 nDCG and
+1.8 mAP when adopting all the three modalities.

6.4.4 Qualitative analysis

First of all, the proposed technique leads to variable margins, therefore the distribution
of the values may help explaining why we observe such a positive influence on the final
performance. In Fig. 6.3 we plot the frequencies of the margins (with bins of size 0.1)
observed during the training of JPoSE on YouCook2, where for each of the training
examples 10 triplets are sampled. It can be seen that a great part of the margins used
are in the final bin (between 0.9 and 1.0), for which the relevance is quite low since the
margin is computed as ∆a,p,n = 1−R(a, n) (see Eq. 7). In these cases, the margin will
be similar to the default case of JPoSE, i.e. 1.0. Yet, around 20% of the training triplets
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Figure 6.3: Log-scale distribution of the margins used during training. Over each bin
we report the frequency. Numbers refer to one epoch, with 10 triplets sampled for each
example (e.g. with 10337 examples for YouCook2, we end up with around 103k triplets).
Although a great part of the triplets are separated with the highest margin (i.e. lowest
relevance), around 20k triplets are distanced by various margin values.

end up having smaller margins. In these situations, the varying margins help the model
achieve better performance by providing a semantic supervision on the structure of the
embedding space, since the relevant items are kept at a distance which is proportional
to the relevance.

Secondly, in Fig. 6.4 we visualize a few video-to-text examples from the testing set,
by plotting for each of them the relevance values of each caption in both the full ranking
list and the top 50 retrieved captions. By plotting the full ranking list, it is possible to
see that the relevance-based margin helps improving the nDCG, as relevant captions are
retrieved first. This can also be seen in the top 50 of Fig.6.4.a, 6.4.b, and 6.4.c where
with the relevance-based margin no irrelevant captions are retrieved and, especially in
Fig. 6.4.c, the ranking is almost ideal. Yet we can still find examples where the proposed
technique fails to achieve the expected improvements. In Fig. 6.4.d, using the relevance-
based margin a few irrelevant captions are retrieved, such as ‘take container’ and ‘take
milk container’. This behavior is likely related to the fact that during training captions
like ‘close container’ and ‘close milk container’ are relevant (0.5) for a video depicting
the action ‘close fridge’, since they share the same verb class. This leads to an increase
in the similarity of the respective descriptors. Hence, during inference, also captions
like ‘take container’ and ‘take milk container’ might have a significant similarity with
the video descriptor of ‘close fridge’.

Finally, we aim at further analyzing the effectiveness of the proposed technique
from another point of view. To do so, we select three types of information. First of
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with fixed Δ (nDCG=60.0)

with rel-Δ (nDCG=78.2)

with fixed Δ (nDCG=68.8)

with rel-Δ (nDCG=81.1)

a) GT=continue wiping sink

b) GT=take spoon

full ranking list top 50 of the ranking list

with fixed Δ (nDCG=76.0)

with rel-Δ (nDCG=92.0)

c) GT=take bottle

d) GT=close fridge

with fixed Δ (nDCG=71.4)

with rel-Δ (nDCG=59.4)

Figure 6.4: Video-to-text qualitative results on EPIC-Kitchens-100 testing set using
JPoSE. For each of the examples we show a few frames and the groundtruth (GT)
caption, and we plot both the full ranking list and the top 50 retrieved captions when
adopting the fixed margin and then the relevance-based margin. On the left we also
visualize the color bar which is used for the relevance (light colors mean high relevance,
dark colors low relevance). In particular, Figures a, b, and c are success cases, whereas
Figure d represents a failure case.
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all, we pick a caption and compute its embedding (q), pick the corresponding video
descriptor (v), and compute their similarity s(v, q) through dot product. Then, we
look for 10 similar captions (i.e. different captions which either share the noun or the
verb class), pick the corresponding video descriptors indexed by V+, and compute an
aggregated similarity value s(v+, q) = 1

10

∑︁
vi∈V+

s(vi, q). Finally, we also randomly

select 10 dissimilar captions (i.e. sharing neither the verb nor the first noun class), pick
their video descriptors, and compute s(v−, q). We compare the results using JPoSE
on the testing set of EPIC-Kitchens-100, and report several examples in Figure 6.5. In
Figures 6.5.a and 6.5.b the usage of a fixed margin leads to a far too high similarity of
the videos in V+ with the query q when compared to its groundtruth video descriptor v,
which hurts both nDCG, mAP, and the recall rates. In Figures 6.5.c and 6.5.d the videos
in V− and those in V+ are not properly separated, hence wrongly giving the model the
impression that they are similarly relevant to the query q. In all these cases, adopting
a relevance-based margin is a successful strategy to correct these wrong predictions,
leading to a more robust model.

6.5 Comparison with the EPIC-Kitchens-100 Chal-
lenge leaderboard

The release of the EPIC-Kitchens-100 dataset [45] was accompanied by a public challenge
for the multi-instance retrieval problem (alongside other challenges, e.g. for Action
Recognition). To further prove the results we show in Section 6.4, we took part into the
challenge by employing the proposed relevance-based margin on the JPoSE method [299]
(see Section 3). We show the results of both the participants at the time of submission
and those that took part into the previous challenge (which ended in November 2021)
in Figure 6.6. The previous best result was obtained by Hao et al. (more details in the
technical report [46]), which achieved on average 44.23% mAP and 53.56% nDCG. As
can be seen, we achieve 45.86% mAP (+1.63%) and 56.21% nDCG (+2.65%).

6.6 Conclusions

Learning a joint embedding space using a margin-based contrastive loss is the dominant
approach to deal with text-video retrieval. In the literature it is shown that by using
such a framework, competitive performance on rank-unaware metrics, such as the recall
rates, can be obtained. Yet, rank-aware metrics, such as the nDCG, need to be taken
into account, as multiple descriptions can have numerous levels of relevance to a given
query [298]. In this Chapter, we proposed to move away from the fixed margin which
is typically used in such a framework, and introduced a relevance-based margin. In
particular, we adopted the proposed technique into three increasingly more complex
models on two datasets and gave empirical evidence that we can easily improve the
performance measured through nDCG and mAP. Moreover, we showed that even by
performing an expensive search of the fixed margin hyper-parameter, it does not reach
the same performance as when using the relevance-based margin. Furthermore, the
proposed technique can also have a positive impact on video retrieval applications as not
needing to tune the margin can lead to less GPU hours required to fully train the model.
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Figure 6.5: Using JPoSE, we compute a similarity score s(v, q) for the groundtruth
pair (colored in blue), s(v+, q) for videos with similar captions (colored in green), and
s(v−, q) for videos with dissimilar captions (colored in brown). Note that, when selecting
V+, for the examples on the left we change the noun class, whereas on the right we
change the verb class. See Sec. 6.4.4 for more details. The captions of the videos used
are reported on the right. Each of the four examples are taken from EPIC-Kitchens-100
testing set and for each of them we report first what happens with fixed margin, then
with the proposed relevance-based margin.
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Figure 6.6: We report the public leaderboard for the EPIC-Kitchens-100 Challenge at
time of submission (below), and also the leaderboard for the previous challenge which
ended in November 2021 (above). It can be seen that we achieve around +1.6% mAP
and +2.6% nDCG over the previous best results, achieved by Hao et al. (details in the
technical report [46]).

Finally, we focused our experiments on text-video retrieval, but the relevance-based
margin can be easily extended to other domains where similar margin-based ranking
losses are used, e.g. in image retrieval [335]. Moreover, we showed the effectiveness of
the proposed approach by applying it to loss functions where the margin is explicitly
defined and used to separate positive and negative pairs, e.g. [247, 29]. Yet, there are
also popular loss functions which do not make use of it, such as NCE [92] and MIL-NCE
[193]. Future work is required to adapt the relevance-based margin to non-margin based
loss functions.





7
Learning video retrieval models

with relevance-aware online
mining

7.1 Introduction

When looking for a video via a multimedia search engine, the user usually describes
its expected contents by means of a natural language query. Usually, the multimedia
search engine responds with a ranking list of visual items, which, according to the
underlying decision-making system, best fit the contents described by the given user
query. Commonly, the models for text-video retrieval are created by leveraging the
contents of both the video clip and the captions associated to it in a training dataset.
Most of the state-of-the-art methods build a joint textual-visual embedding space via
deep learning, e.g. [26, 57]. In particular, the underlying neural network organizes such
a space by learning to produce a similar representation both for a video clip and the
caption which describes it: by doing so, the representation of the sentence is aligned to
that of the video, making them share the joint visual-textual embedding space. This
makes it possible to naturally use a textual query, mapped into the same embedding
space, to obtain a ranking of all the videos, and vice versa the ranking of the captions can
be obtained by using a video. To learn a model capable of producing representations in
a joint text-video embedding space, a peculiar type of loss functions, called contrastive
loss functions, is often used [36, 205, 247]. These functions aim at maximizing the
similarity of videos and captions which are paired in the dataset, and minimize that of
examples which do not. In particular, given a video, its caption represents a positive
example for it, whereas all the other captions form the negative examples.

A great effort was spent by the community on developing methodologies to select
the negative examples, e.g. by selecting - or mining - one [247], two [29], or more
negatives [262]. Other researchers focused on identifying which negatives contribute
to the loss: in particular, those which contribute the most are called hard negatives,
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Figure 7.1: Two examples video clips from the MSR-VTT dataset [310].

whereas those which contribute highly but are not more similar to the query than a
positive example form the semi-hard negatives [247]. Noteworthily, all these techniques
assume that videos and captions which are not paired in the dataset can be used as
negative examples. This assumption hardly holds in real world scenarios. Consider the
example in Figure 7.1, which is commonly found in many public datasets. By following
such an assumption, the second caption could be chosen as a negative for the first video,
therefore forcing their descriptors to be different at training time. Yet, by looking at the
videos and by reading their captions, it is clear that no real difference in their semantics
is present and they should not be contrasted.

Meanwhile, the community investigated less on the usage of positive examples mainly
because of how video-text datasets are usually built: in fact, there is no groundtruth
label to define two videos as semantically similar, as for those in Fig. 7.1. A first
attempt, involving the creation of action labels, was proposed in [298, 299] to perform
the mining of both positives and negatives offline, that is by selecting them without
taking into account their contribution to the loss.

To address these issues, in this Chapter we introduce a novel strategy to effectively
improve the online selection of positives and negatives by leveraging the overlap of
semantic concepts shared by the captions attached to the videos. Since the selection
is performed by leveraging the concept of relevance, we called our strategy RANP, or
Relevance-Aware Negatives and Positives mining. By doing so, it is possible to select
the negatives avoiding the situation shown in Fig. 7.1. Moreover, we also introduce a
novel strategy to identify the captions which are not related to a video in the dataset
but share similar semantics with it, and use them as positive examples in a properly
reformulated loss function.

The proposed strategy can be applied to two different state-of-the-art methods and
to two commonly used contrastive loss functions. As regards the methods, we first val-
idate the strategy on a method using hierarchical learning and graph reasoning [26],
and then on a Transformer-based method [257]. As for the losses, we consider the
Triplet loss, which maximizes the cosine similarity of a query and a positive example,
while enforcing a margin to the similarity between the query and one negative at a
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time [247]; and the NCE loss defined in [193] which maximizes the similarity of the
positive pair while minimizing that of all the negatives within the batch. We con-
duct an extensive experimental analysis on two public datasets, EPIC-Kitchens-100 [45]
and MSR-VTT [310]. In particular, we perform several ablation studies and achieve
state-of-the-art results on both datasets, showing the robustness of our strategy. The
qualitative analysis of text-to-video examples from the testing set show that models
trained with our strategy generalize well and produce ranking lists which have many
more highly relevant samples at the top. Moreover, we provide evidence that our tech-
nique successfully reaches state-of-the-art results by using hard, semi-hard, and all the
negatives, presenting the flexibility of the proposed strategy. Finally, to support repro-
ducibility, we publicly release the code supporting both models and loss functions at
https://github.com/aranciokov/ranp.

A preliminary version of this Chapter was published as [70]. In this Chapter we
extend our strategy to an additional and highly different method [257], and to an ad-
ditional loss function [193], further validating its robustness and flexibility. Moreover,
we achieve new state-of-the-art results on MSR-VTT, perform qualitative analyses to
understand its behavior, and finally we show the flexibility of the proposed strategy by
analyzing how using hard, semi-hard, and all the negatives affect the final performance.

After this introduction, in Section 7.2 we present the related works on cross-modal
video retrieval and to contrastive losses. In Section 7.3 we describe a popular contrastive
loss, providing details about an important shortcoming which limits their semantics
awareness. Then, to address this limitation, in Section 7.4 we introduce our training
methodology, whereas several experiments and analyses are discussed in Section 7.5.
Finally, Section 7.6 concludes the Chapter.

7.2 Related work

Video retrieval. Cross-modal text-video retrieval is usually dealt with by learning a
joint textual-visual embedding space [26, 40, 57, 257]. Since videos are composed of
many modalities, many techniques to learn joint representations were introduced [76,
175, 194, 201, 288]. For instance, MoEE [194] and T2Vlad [288] are based on NetVLAD
[6], whereas Collaborative Experts (CE) [175] introduced a gating mechanism for the
visual and audio-related features directed by several pretrained experts. Multimodal
Transformers were used in MMT [76] and Everything-at-once [257]. From the language
point of view, TeachText [40] leveraged the availability of multiple language models.
Differently from these, several works focus on learning structured embeddings following
the structure of the input data, e.g. by working on the part-of-speech (JPoSE [299]) or
by learning global and local representations via semantic roles (HGR [26]). However, the
community mostly focused on instance-based video retrieval, assessing the performance
by ignoring the quality of the full ranking list. Wray et al. [298] introduced a ‘semantic’
version of video retrieval, which uses rank-aware metrics to perform the evaluation.

Contrastive loss and mining techniques. Contrastive losses [92, 93, 100] are
often used for cross-modal tasks because of their capability to maximize the descriptors’
similarity for video and caption pairs in the dataset. Early works computed the loss
on two samples at a time [93], whereas triplets [247], quadruplets [29], and ‘N+1’-
tuples [262] were later used. Yet, training on all the possible tuples from the dataset
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Figure 7.2: By adopting the typical approach (Eq. 7.3), a caption which is not paired
to the input video is selected as hard negative based solely on its similarity. Yet, this
may lead to semantically similar captions being wrongly selected as negatives, despite
their high relevance to the video (see Sec. 7.3). With our proposed technique, RANP
(see Sec. 7.4), we avoid this while also finding new positive captions and, consequently,
the learning also increases their similarity to the video.

is unfeasible (e.g. the amount scales cubically with triplets), and many of them may
not even contribute to the loss. Therefore, a subset of the tuples are selected through
mining techniques, either from the dataset (‘offline’) or from the batch (‘online’). The
former is often avoided because of the need to re-sample them during training, making
it burdensome. Nonetheless, it was used in several domains, e.g. deep metric learning
[95, 269] and video retrieval [298, 299]. Online mining forms the tuples within the
batch and is widely used [40, 57, 71, 257]. When negatives are involved in the loss
computation, e.g. in [247], the loss is usually computed either on all negatives (e.g.
[76, 194]), despite it may lead to some extra computation, or on a lesser amount of
negatives, such as those which share a highly similar representation to the positive pair
[26, 57]. Nonetheless, recent research also presented the usefulness of easy examples
[313, 314]. Positive examples have also been mined in some fields, e.g. in cross-modal
[100, 314] and near-duplicate video retrieval [125]), yet they use labels available in the
dataset. For instance, SVD [125] contains 1206 videos in the query set for which more
than 10000 video pairs are labeled as positive. An attempt which creates action labels,
was proposed for offline mining in [298]. In representation learning for images or videos,
positive samples were also created via transformations [28, 97, 207, 220].

Differently from previous works, we introduce semantic knowledge to the training
process by computing an overlap of the semantic concepts shared among videos and
captions. Moreover, we devise a two-step method to discover new positives within the
batch and use them to improve the training.
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7.3 Training a video retrieval model with contrastive
loss and mining

Given a video v⋆ and a pool of candidate textual descriptions, the objective of video-
to-text retrieval is to orderly retrieve each of the descriptions based on how well they
describe the video, thus producing a ranking list in which such a order is given by a
similarity function (computed with s(·, ·), e.g. cosine similarity). The caption paired to
v⋆ in the dataset, q⋆, is expected to be ranked first. In text-video retrieval, the evaluation
metrics typically focus on the rank of q⋆. But, the same video clip may be described by
different yet semantically similar natural language captions. To capture these semantic
nuances, we focus on the more recent problem of semantic video retrieval and uses rank-
aware metrics, such as the Normalized Discounted Cumulative Gain [122], or nDCG,
to evaluate the quality of the full ranking list. For a holistic view on the problem, the
text-to-video counterpart is also considered and obtained by swapping the role of q⋆ and
v⋆.

Text-video retrieval models are often trained by means of a contrastive loss, aiming
at the maximization of similarity of the descriptors computed for pairs of visual and
textual data. To do so, the triplet loss (Schroff et al. [247]) is often used [26, 57, 61, 76]:
instead of relying solely on s(v⋆, q⋆), i.e. the similarity between the anchor and the
positive, it also uses a third component in the equation, called negative. In particular,
if the video v⋆ is the anchor, the negative example is a textual description not paired to
v⋆ in the dataset; conversely, if the anchor is q⋆, then the negative is a video clip. The
triplet loss is based on this term:

Ln(v⋆, q⋆, q−) = max(0,∆n + s(v⋆, q−)− s(v⋆, q⋆)) (7.1)

where ∆n is a fixed margin, and q− represents the negative caption. By optimizing
Eq. 7.1, ∆n is enforced between s(v⋆, q⋆) and the similarity between the video and the
negative query, in order to satisfy the following constraint:

s(v⋆, q−) + ∆n < s(v⋆, q⋆) (7.2)

The optimization of Eq. 7.1 can be performed in several ways. Typically, all the negative
captions in the mini-batch are used, e.g. in [76, 194], but this means that the loss for
many easy negative captions, i.e. already satisfying Eq. 7.2, is computed although they
do not contribute meaningfully to it. Therefore, the selection of a single example is often
preferred. To this end, the online hard negative mining selects the most similar example
to the anchor within the batch, e.g. in [26, 57]. While these examples are informative to
the training process, their usage from the very start may lead the optimization process
to a local minimum where the model collapses [247]. To avoid it, semi-hard negatives,
i.e. highly similar to the anchor but less than the positive example, are often preferred
and can be used also to start the training process [247, 100].

7.3.1 Online hard negative mining

Online hard negative mining consists in sampling the hardest negative within the batch,
and then using it to do one parameters update step to optimize Eq. 7.1. Formally, given
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(v⋆, q⋆) and defining Q as the set of captions in the mini-batch, the hardest negative is
the most similar example to the anchor, after the exclusion of q⋆:

q− = argmaxq∈Q\{q⋆}s(v
⋆, q) (7.3)

When looking for the semi-hardest, the set {q | s(v⋆, q) > s(v⋆, q⋆)} is also excluded. Yet,
these filtered sets may still contain captions which should not be considered negative:
in fact, they may contain captions which, although not paired to v⋆, describe in part
or entirely the content of the video clip. For instance, let q⋆ be ‘cut carrots’, q1 ‘slice
carrots’, q2 ‘open milk container’, and s(v⋆, q1) > s(v⋆, q2) as in Fig. 7.2. Based on Eq.
7.3, q1 is chosen as the hardest negative because it is not q⋆, hence a valid candidate,
and it has the highest similarity to v⋆. This means that for the model such a video may
be described by ‘cut carrots’, but not by ‘slice carrots’, which is considered as irrelevant
as ‘open milk container’. Note that with our techniques we avoid these bad selections
from the start by using the semantics of the data, whereas, by solely excluding q⋆ and
letting s(·, ·) guide the mining, these situations are likely to happen all the time during
training.

7.4 Proposed method: relevance-aware online min-
ing of positives and negatives

In order to improve the selection of the negatives and the positives, we leverage the
shared semantics of videos and captions: in particular, we do so by quantifying the
overlap of shared semantic concepts, which are identified in terms of nouns, verbs, and
their synonyms. As an example, let: (x1) ‘pick up a flowerpot and a sunflower’, (x2)
‘pick an helianthus and a flowerpot’, (x3) ‘pot the lily in a flowerpot’, (x4) ‘put the
cake in the oven’. We expect x2 and x1 to be quite similar (‘helianthus’ and ‘sunflower’
are synonyms), hence x2 is highly relevant to x1; x3 is slightly relevant because of
‘flowerpot’, but the flowers and actions are different; and x4 is irrelevant. Hence we look
for a notion of relevance which captures semantic relations, such as synonyms, and use
them to determine a continuous value representing how semantically close two captions
are. For such a task, we adopt the definition for a relevance function R(xi, xj) given by
Damen et al. [45]:

R(xi, xj) =
1

2

(︃ |xVi ∩ xVj |
|xVi ∪ xVj |

+
|xNi ∩ xNj |
|xNi ∪ xNj |

)︃
(7.4)

where xVi and xNi represent, respectively, the set of verb and noun classes identified
in the i-th caption. Classes are used here to include both a token, e.g. ‘helianthus’,
and its synonyms, e.g. ‘sunflower’. When xi or xj is a video, two situations arise.
If vi is paired to only one caption qi in the dataset, the noun and verb classes of qi
are used for vi. Conversely, if there are multiple captions, then a word set made of
the classes which are shared among many different captions of vi is built, as in [298].
Formally: xNi = {cN |cN ∈ K(xi)|ρ,N}, where cN is a noun class, D(xi) represents the
captions of xi, and K(xi)|ρ,N is the set of classes for the part-of-speech N appearing in
at least ρ · |D(xi)| captions. Formally, K(xi)|ρ,N is defined as {c |PoS(c) = N ∧ |{d|d ∈
D(xi) ∧ c ∈ d}| ≥ ρ · |D(xi)|}, where PoS(·) predicts the part-of-speech of a class. The
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same steps are used for xVi . Finally, looking at the example, the following are computed:
R(x1, x2) = 1, R(x1, x3) = 0.16, and R(x1, x4) = 0.

7.4.1 RAN: Relevance-aware online hard negative mining

In Sec. 7.3.1 we provide an intuitive description of a shortcoming of current techniques
used to mine negative examples. Formally, if we define a threshold τ to separate irrele-
vant from relevant content, then {q |R(v⋆, q) ≥ τ, q ∈ Q\{q⋆}} may be non empty: as a
consequence, a relevant caption may be selected as a negative, leading to the aforemen-
tioned shortcoming. Note that the same holds for semi-hard negative mining. Then,
by optimizing the triplet loss, the similarity of q− to v⋆ gets decreased, although q−
describes at least part of the contents of v⋆, given its positive relevance. We address
this issue by introducing RAN, which binds the sampling procedure to the relevance
function, hence avoiding the selection of a ‘false negative’. This is done by improving
Eq. 7.3 and by filtering the relevant content from the negatives’ pool, by the following
equation:

q− = argmaxq∈Q\{q |R(v⋆,q)≥τ}s(v
⋆, q) (7.5)

When using semi-hard negatives, the following set is excluded from the selection in Eq.
7.5: {q |R(v⋆, q) ≥ τ ∧ s(v⋆, q) > s(v⋆, q⋆)}. Therefore, the relevance function R is
fundamental in the sampling procedure, and the exclusion of an example is no longer
based solely on its relation to v⋆ in the dataset.

7.4.2 RANP: Relevance-aware online hard positive mining

By using RAN, only irrelevant samples are used as negatives, and relevant ones are not
seen as negatives anymore. Yet, this means that relevant captions and videos could
still play a role in the optimization process, but they are not currently used. Therefore,
we propose RANP, a two-steps strategy to discover additional relevant samples, thus
adding positive mining which is not pursued for text-video retrieval. To do so, the
first step consists in finding a relevant caption q+ for v⋆, i.e. R(v⋆, q+) ≥ τ , which
has a far too dissimilar representation when compared to v⋆. This could be given by
argminq∈Q\{q⋆}s(v

⋆, q) yet, by doing so, easy negative captions which are not violating
Eq. 7.2 could be chosen. Therefore, the relevance function is selected as a means to
identify a ‘pool of positives’ from which relevant samples can be mined. This pool is
defined by excluding the irrelevant samples found in {q |R(v⋆, q) < τ}:

q+ = argminq∈Q\{q |R(v⋆,q)<τ}s(v
⋆, q) (7.6)

As the second step, the loss is extended by including a new term which aims at
increasing the similarity of v⋆ and q+. This can be done by having a new triplet loss
term, where q+ plays the role of q⋆. Formally:

Lp(v⋆, q+, q−) = max(0,∆p + s(v⋆, q−)− s(v⋆, q+)) (7.7)

Finally, given a mini-batch of B clip and caption pairs, the final loss is computed by
summing the video-to-text Lv−t and the text-to-video loss Lt−v. In particular, Lv−t is
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defined as:

Lv−t =
1

|B|
(︁ ∑︂

v∈B
q+←Eq.7.6
q−←Eq.7.5

Lp(v⋆, q+, q−) +

∑︂
v∈B

q−←Eq.7.5

Ln(v⋆, q⋆, q−)
)︁ (7.8)

whereas Lt−v is computed by switching v and q.

7.5 Experimental results

We validate our methodology on two large scale vision and language datasets: EPIC-
Kitchens-100 [45] and MSR-VTT [310]. EPIC-Kitchens-100 [45] provides 67217 clips
for training and 9668 for testing. A set of 4834 clips from the training set is used for
validation and fast assessment of the performance, as done in the retrieval baselines of
[45]. Each clip is annotated by a brief caption describing an activity in the kitchen,
and by verb and noun semantic classes. MSR-VTT [310] comprises 10000 clips about
multiple scenarios, each annotated by 20 free-form captions. We follow the official split
(from [310]) of 6513, 497, and 2990 clips for training, validation, and testing. For MSR-
VTT, we compute the semantic classes with a pipeline made of spaCy, WordNet [198],
and Lesk algorithm [155] as in [298]. We use ρ = 0.25 (see Sec. 7.4).

We consider two recent methods for all the experiments. HGR [26] performs
graph reasoning on hierarchical representations of video and caption. To cover re-
cent state-of-the-art Transformer-based methods for text-video retrieval, we also in-
clude Everything-at-once in its text-video version [257]. On both datasets, the
training lasts for 50 epochs with a batch size of 64. For EPIC-Kitchens-100 we use offi-
cially provided TBN features [45], whereas for MSR-VTT we use ImageNet-pretrained
ResNet-152 features and Kinetics400-pretrained 3D-ResNeXt-101 features from [257].

The evaluation on the testing set is performed with the best validation model. We
use two metrics for evaluation, Normalized Discounted Cumulative Gain (nDCG) [122]
and Mean Average Precision (mAP) [10], as in [298]. For MSR-VTT we do not use
mAP because, due to the different computation of semantic classes for the videos, the
relevance values are always lower than one. More details in the Supplementary.

7.5.1 Distribution of relevance among the hard negatives

Fig. 7.3 presents the distribution of relevance values among the hard negatives selected
in one epoch of training. On EPIC-Kitchens-100 (Fig. 7.3.a) more than 50% of the
negatives have a positive relevance to the input caption, and 13% of them are 100%
relevant, that is they share the same noun and verb classes. Overall, four modes for the
relevance values are identified: 0 (45%), 50 (36%), 100 (13%), 25 (3%). By using RAN,
the distribution changes considerably: for instance, by using τ = 0.75 (orange bar) it
changes as in Fig. 7.3.b, avoiding negatives which are highly relevant (>75%).

As mentioned in Sec. 7.4, for MSR-VTT the video classes are chosen among those
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Figure 7.3: Distribution of relevance values among the hard negatives mined in one epoch
(batch size 64) on EPIC-Kitchens-100 (a) and MSR-VTT (c). In (b), we visualize the
change when using RAN with τ = 0.75 (orange bar).

which appear in at least ρ, e.g. 25%, of the captions paired to that clip. It follows that
even the captions paired to a video may not be 100% relevant: thus, finding relevant
samples within random mini-batches is more difficult (Fig. 7.3.c), leading to much lower
modes: 0 (85.2%), 10 (4.7%), 5 (4%), 15 (1.7%).

7.5.2 Influence of the threshold τ on the proposed techniques

The previous analysis is useful to highlight some peculiar values which can be used for τ .
Therefore we use them, along HGR and the proposed training strategies, reporting the
results in Fig. 7.4: for EPIC-Kitchens-100 we visualize (7.4.a) the nDCG and (7.4.b)
the mAP, whereas for MSR-VTT (7.4.c) the nDCG. On both datasets we keep ∆n =
∆p = 0.2 (as in [26]), since by changing ∆n and ∆p only small changes in performance
are achieved (experiments in Supplementary). Noteworthily, compared to the original
model, the usage of the proposed strategies consistently leads to improvements.

According to the previous analysis, lower values of τ should avoid the selection of
several ‘bad negatives’ and help the training process. This is confirmed by Fig. 7.4, since
the lower the value for τ , the higher the performance on both metrics. For instance,
τ = 0.15 avoids more than 50% of bad selections on EPIC-Kitchens-100 and, in fact,
around +23% nDCG and +8% mAP is measured. Detailed results in Supplementary.

Secondly, by training HGR with RAN, it achieves up to +12.9% nDCG (48.8%) and
+7.0% mAP (46.5%) over the original model; on MSR-VTT it improves by up to +3.4%
nDCG (28.7%). The improvements on EPIC-Kitchens-100 are far higher thanks to the
simplicity of the captions, which allows for an easier search and removal of relevant
captions from the negatives’ pool. Conversely, the relevance values for the captions in
MSR-VTT are generally smaller, due to how they are computed (see Sec. 7.4), therefore
it is more difficult to find relevant captions.

Finally, the additional positive example found with RANP leads to further improve-
ments on both datasets, since it helps pushing to the top of the ranking lists multiple
captions and videos which are relevant to the query. On EPIC-Kitchens-100, they mea-
sure up to +23.1% nDCG (with τ = 0.40) and +7.7% mAP (with τ = 0.15), whereas up
to +5.8% nDCG is observed on MSR-VTT with τ = 0.10. Based on these observations,
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Figure 7.4: We compare the influence of RAN and RANP on the performance obtained
by HGR. On EPIC-Kitchens-100: (a) nDCG (b) mAP; on MSR-VTT (c) nDCG. Dis-
cussion in Sec. 7.5.2.

in the following experiments we use τ = 0.15 for EPIC-Kitchens-100 and τ = 0.10 for
MSR-VTT.

7.5.3 About the optimization strategy for negatives

RANP serves as a strategy to separate relevant negatives from those irrelevant. Then,
the optimization is often performed by looking at the negatives which produce the
highest loss: intuitively, these hard examples should be the most useful to guide the
training, yet as mentioned in Schroff et al. starting the training with them may also lead
to a bad local minimum [247]. To this end, they proposed to use semi-hard negatives,
but using all the negatives in the batch could also be a solution, although it leads to
heavier and potentially useless computations because many negatives may produce a null
loss. To investigate the differences in performance achieved by these different strategies
and how they interact with the additional constraints imposed by RANP, we explore
four of them: All refers to the usage of all the negatives; Semi+All means that initially
semi-hard negatives are used, followed by an additional training with the All strategy;
Semi+Hard starts with semi-hard negatives, and then uses hard negatives; finally, Hard
means that hard negatives are used from the very start. Note that in our experiments
the Hard strategy is only used with HGR, as it leads Everything-at-once to a collapsed
model.

The results are presented in Table 7.1. Two major observations can be made. First
of all, in all the considered cases the improvement obtained by using RANP is consistent
and considerable, across both metrics, models, and datasets. Secondly, on MSR-VTT
the best results on both models are achieved when using the Semi+All strategy. Con-
versely, on EPIC-Kitchens-100 hard negatives are preferred, leading to 58.8% nDCG and
47.2% mAP by using HGR, and to 59.5% nDCG and 45.1% mAP by using Everything-
at-once after a warmup with semi-hard negatives. Such a different behaviour may be a
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Table 7.1: Influence of the negative selection strategy in the triplet loss (discussed in
Sec. 7.5.3). The symbol ✓is used to mark the usage of RANP during training.

Opt RANP MSR-VTT EPIC-Kitchens-100
Everything-at-once [257] nDCG (%) nDCG (%) mAP (%)

All 24.8 34.5 35.0
All ✓ 33.6 57.7 41.6

Semi+All 21.3 33.3 33.9
Semi+All ✓ 34.4 58.6 46.0

Semi+Hard 20.6 32.7 33.5
Semi+Hard ✓ 29.9 59.5 45.1

HGR [26] nDCG (%) nDCG (%) mAP (%)
All 26.7 37.1 40.8
All ✓ 34.4 57.5 42.4

Semi+All 26.0 34.9 39.1
Semi+All ✓ 35.4 55.6 42.8

Semi+Hard 23.8 34.4 38.1
Semi+Hard ✓ 27.8 54.0 45.5

Hard 25.3 35.9 39.5
Hard ✓ 31.1 58.8 47.2

consequence of the distribution of the relevance values highlighted in Sec. 7.5.1, making
harder negatives less informative in MSR-VTT. Moreover, considering that, by using
the official split of MSR-VTT, the similarity of a clip with each of its captions is in-
creased in the process, performing the optimization on all the negatives may pose an
easier problem resulting in a model which generalizes better.

7.5.4 Ablation study

In Table 7.2 we present two ablation studies on MSR-VTT using HGR (Table 7.2.a) and
Everything-at-once (Table 7.2.b), serving respectively as a single-modal (appearance-
only) and multi-modal (appearance and motion) model. For the former, we used the
Hard strategy, whereas All was used for the latter. The results provide empirical evi-
dence that improving the selection of the negatives by using RAN already leads to an
improvement over original models (+3.4% in HGR, +2.7% in Everything-at-once). By
also mining positives with RANP, further improvements are achieved, leading to +6.3%
over HGR and +8.8% over Everything-at-once. Note that similar results are obtained
while using other strategies, e.g. +7.7% is achieved by HGR with RANP using the All
strategy (see Table 7.1).

7.5.5 Effects of large scale pretrain

Large scale pretraining is often performed to leverage transfer learning and, possibly, to
ease the training process. In Shvetsova et al. [257] the authors pretrained their proposed
model on HowTo100M [195], a large scale dataset of tutorial clips. By leveraging the
pretrained weights for Everything-at-once shared by the authors, we explore the effects
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Table 7.2: Ablation study on MSR-VTT using a (a) single-modal model (appearance-
only) and a (b) multi-modal (appearance and motion) model. Discussion in Sec. 7.5.4.

(a) Appearance-only nDCG
Model t2v v2t avg
HGR 24.6 26.1 25.3
HGR+RAN 27.4 30.1 28.7
HGR+RANP 29.1 34.1 31.6

(b) Multi-modal nDCG
EAO 23.9 25.6 24.8
EAO+RAN 26.4 28.6 27.5
EAO+RANP 31.5 35.7 33.6

Table 7.3: Influence of HowTo100M-pretrain on Everything-at-once [257] and subse-
quent finetuning with several strategies. Experiments performed on the official split of
MSR-VTT.

PT Opt RANP nDCG (%) Mean R@1 (%)
All 24.8 6.9

✓ All 23.1 8.6
All ✓ 33.6 4.3

✓ All ✓ 34.4 5.5
Semi+All 21.3 8.2

✓ Semi+All 21.5 8.4
Semi+All ✓ 34.4 6.7

✓ Semi+All ✓ 35.6 6.2

PT Details nDCG (%) Mean R@1 (%)
✓ Zero-shot 21.5 9.2

Train w/ NCE 26.1 9.3
✓ Fine-tune w/ NCE 28.3 10.5

of such a technique in the semantic video retrieval task, both on EPIC-Kitchens-100
and on the official split of MSR-VTT.

According to the results shown in Table 7.3, starting the training process from the
pretrained weights has a positive effect on both nDCG and recall rates in most of the
cases. For instance, while using the NCE loss originally used by the model it leads to
+2.2% nDCG (28.3%), +1.2% (9.2%) and +1.3% (+11.8%) R@1. In particular, a state-
of-the-art nDCG of 35.6% is obtained by performing the finetuning with the Semi+All
strategy and RANP.

7.5.6 Extension of RANP to NCE

In this section, we show that RANP may be extended to other contrastive loss functions,
making them more suitable for the semantic text-video retrieval task. We focus on the
softmax version of the NCE as detailed in Miech et al. [193] and also used in Shvetsova
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Table 7.4: Experiments using the extension of NCE to a RANP-like strategy (called
NCE-RANP here). See Sec. 7.5.6 for details. For MSR-VTT, the influence of the
pretrain is also tested, confirming previous observations (see Sec 7.5.5).

MSR-VTT EPIC-Kitchens-100

NCE-RANP
w/o PT w/ PT
nDCG nDCG nDCG mAP
26.1 28.3 36.2 37.4

✓ 28.7 31.1 57.1 41.4

et al. [257]. It is defined as follows, with temperature ρ and batch size B:

L(vj , qj) = −log
exp(vTj qj/ρ)∑︁B
i=1 exp(vTj qi/ρ)

(7.9)

This is also done in the opposite direction, hence normalizing qTj vj with respect to all
the vi. RANP aims at identifying the hardest positive (Eq. 7.6) and increasing its
similarity to the video (Eq. 7.7). To bring this idea into Eq. 7.9, an additional term
which uses the newly found positive in place of the original qj , may be introduced as
follows:

LNCE−RANP (vj , qj) =− log
exp(vTj qj/ρ)∑︁B
i=1 exp(vTj qi/ρ)

− log
exp(vTj q+/ρ)∑︁B
i=1 exp(vTj qi/ρ)

(7.10)

where q+ is selected as in Eq. 7.6. Table 7.4 shows the results obtained by using this
variation, which we call NCE-RANP. On the official split of MSR-VTT, its usage leads
to an improvement of more than 2.6% nDCG, reaching up to 31.1% nDCG with the pre-
training. Secondly, on EPIC-Kitchens-100 we also observe a considerable improvement,
reaching 57.1% nDCG (+20.9%) and 41.4% mAP (+4%).

7.5.7 Qualitative analysis

A qualitative analysis is performed on the testing set to understand and visualize how
the training with RANP affects the final performance. Fig. 7.5 shows the full ranking
list of the 9668 clips produced by the four models (HGR and Everything-at-once, trained
with or without RANP) for three different queries on EPIC-Kitchens-100. By training
with RANP, the ranking lists produced on the test set have most of the relevant videos
at the top of the ranking list, e.g. it can be clearly seen in the first two queries, “wipe
counter” and “put down bins”. In the third query, “put tablecloth into cupboard”, it
can still be observed that more relevant videos have low ranks than in the two models
trained without RANP. Nonetheless, some highly relevant videos have high ranks, e.g.
in HGR trained with RANP there is one near the middle of the list.

Fig. 7.6 presents a more detailed visualization of the top 5 retrieved videos. As in
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Table 7.5: Comparison on state-of-the-art methods for EPIC-Kitchens-100. In-depth
discussion at Sec. 7.5.8. Ego-VLP and UniUD-UB-UniBZ are not fairly comparable to
our method, since the former uses a huge amount of additional egocentric data (3 millions
annotated clips), and the latter uses an ensemble of models, including HGR+RANP.

EPIC-Kitchens-100 nDCG (%) mAP (%)
Model t2v v2t avg t2v v2t avg
HGR [26] 37.9 41.2 35.9 35.7 36.1 39.5
EAO [257] 35.2 37.3 36.2 33.9 40.8 37.4
MME [299] 46.9 50.0 48.5 34.0 43.0 38.5
JPoSE [299] 51.5 55.5 53.5 38.1 49.9 44.0
Hao et al. [46] 51.8 55.3 53.5 38.5 50.0 44.2
IIE-MRG [244] 54.1 56.6 55.3 38.1 47.5 42.8
Falcon et al. [71] - - 56.2 - - 45.8

Ours
EAO+RAN 37.9 38.6 38.2 35.5 41.2 38.3
HGR+RAN 47.1 49.7 48.4 43.1 49.9 46.5
EAO+RANP 57.5 61.6 59.5 39.6 50.6 45.1
HGR+RANP 56.5 61.2 58.8 42.3 52.0 47.2

Ego-VLP [169] 59.6 63.3 61.4 41.0 53.9 47.4
UniUD-UB-UniBZ [69] 58.9 63.2 61.0 44.4 55.2 49.8

the previous case, we explore three queries on EPIC-Kitchens-100. By looking at the
query “continue wiping sink”, Fig. 7.6.a shows that HGR trained both with or without
RANP, and Everything-at-once trained with RANP are able to retrieve highly relevant
examples. In particular, the fifth video retrieved by “HGR base” (which is also the
third retrieved by “EAO+RANP”) has similar appearance features but a relevance of
0.50 because it is captioned by “wipe off kitchen”, making its noun class unrelated to
the more precise “sink”. Conversely, without RANP, Everything-at-once retrieves some
videos which have similar motion but less precise appearance features (second, fourth,
and fifth are not about “sinks”). In Figures 7.6.b and 7.6.c the lists are more varied,
although displaying some advantages in models trained with RANP, such as in Fig.
7.6.b where both HGR and Everything-at-once are able to retrieve more highly relevant
videos in the top five. It is interesting to observe how training with RANP may lead
to ranking lists in which the clips have a moderate relevance, despite not sharing the
visual features: for instance, in Fig. 7.6.c “HGR+RANP” retrieves clips about “cutting”
(same verb), whereas without RANP it looks for “bags” which are “opened”, though
not “cut” through.

7.5.8 Comparison with state-of-the-art

In Tables 7.5 and 7.6 we report the results obtained with our strategies and compare
them to other methods, both on EPIC-Kitchens-100 and MSR-VTT. In particular, we
report the results obtained with the Hard strategy for HGR and with Semi+All for
Everything-at-once (EAO in tables).

EPIC-Kitchens-100. In Table 7.5 we compare to MME and JPoSE, proposed
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Figure 7.5: Qualitative examples of text-to-video retrieval from the testing set. The full
ranking lists (of length 9668) are shown and the (color scale on the left) color represents
the relevance to the query. The query is shown in red, along the optimal ranking lists.
Both HGR and Everything-at-once display a similar behavior in bringing many more
relevant videos to the top of the ranking list. More details in Sec. 7.5.7.
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Figure 7.6: Qualitative examples of text-to-video retrieval from the testing set of EPIC-
Kitchens-100. The border is colored green, yellow, orange, brown, or red based on the
relevance to the query (respectively, 1.00, 0.75, 0.50, 0.25, 0.00). Discussion in Sec.
7.5.7.



7.6 Conclusions 121

by Wray et al. [299] and used in [45] as the baselines for the challenge. We include
Hao et al. [46] from the 2021 edition [46], IIE-MRG [244], UniUD-UB-UniBZ [69],
and Ego-VLP [169] from the 2022 edition of the EPIC-Kitchens-100 Challenge [47].
Moreover, we also include the method by Falcon et al. [71]. It needs to be noted that
the two methods which currently and jointly hold the state-of-the-art, i.e. UniUD-UB-
UniBZ and Ego-VLP, are not fairly comparable to our method, since the former uses an
ensemble of several methods, including HGR trained with RANP, and the latter performs
an additional pretraining with more than 3 millions of egocentric clips. Therefore, we
compare to the current single-model state-of-the-art, that is the method proposed in
[71]. Both on HGR and Everything-at-once, the addition of RANP leads to considerable
improvements: HGR+RANP obtains around +2.6% (58.8% compared to 56.2%) nDCG
and +1.4% mAP (47.2% compared to 45.8%); on Everything-at-once the improvement
measures up to +3.3% (59.5%) nDCG, yet the previous state-of-the-art maintains a
small margin of +0.7% mAP. The comparison between our two RANP-trained methods
shows that Everything-at-once leads to higher nDCG (59.5% vs 58.8%), whereas HGR
achieves higher mAP (47.2% vs 45.1%), meaning that the latter allows to retrieve more
highly relevant captions and videos to the top of the ranking list. This may be due to the
hierarchical learning aspect of HGR, which can be quite important in EPIC-Kitchens-
100 considering the structure of the available captions.

MSR-VTT. For MSR-VTT, we compare to MoEE (Miech et al. [194]), CE (Liu et
al. [175]), HGR, and Everything-at-once. We report for each of these models the amount
of modalities used, since each differs in this regards. We evaluated CE and MoEE both
using only appearance features and using all the seven available modalities within the
open source codebase of [175]. Both these models, even by using one modality, achieve
higher scores (29.0% and 29.4%) than HGR and Everything-at-once (25.3% and 26.1%):
considering that the latter two perform better when looking at instance-based metrics,
such as the recall rates, this shows that semantic video retrieval needs to be dealt
with by using different tools and strategies. In fact, if HGR and Everything-at-once
are trained with RANP considerable improvements are observed, respectively achieving
35.4% (+10.1%) and 34.4% (+9.3%) nDCG, which are better than the nDCG obtained
by CE and MoEE trained with seven modalities (32.6% and 32.8%). Although the
pretrain helps Everything-at-once achieve 35.6% nDCG, it is not as fair to be compared
with the other models which are not pretrained on large scale datasets.

7.6 Conclusions

State-of-the-art methods for text-video retrieval are typically trained by using a con-
trastive loss, e.g. the triplet loss [247] or the NCE loss [193]. At training time, a neural
network learns to output similar descriptors for each paired video and caption, while
considering all the other samples as completely irrelevant. We showed this assumption
hardly holds in practice, and that it leads to a suboptimal selection of negatives which
share similar semantics as the query. Moreover, because only the video and caption
pairs in the dataset are considered valid, there are many captions which could be used
as positives for a video, but are not. To address these two shortcomings, we proposed a
novel strategy, which uses the overlap of semantic concepts between captions to improve
the selection of the negative examples, while also discovering new positives for a given
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Table 7.6: Comparison on several state-of-the-art methods for the official split of
MSR-VTT. ‘Num. mod.’: number of modalities used for training. ‘PT’: pretrain on
HowTo100M.

MSR-VTT nDCG (%)
Model Num. mod. PT t2v v2t avg
CE 1 28.9 30.0 29.4
MoEE 1 28.4 29.5 29.0
HGR 1 24.6 26.1 25.3
CE 7 32.2 32.9 32.6
MoEE 7 33.3 32.3 32.8
EAO 2 25.6 26.7 26.1
EAO 2 ✓ 27.8 28.8 28.3

Ours
HGR+RAN 1 27.4 30.1 28.7
EAO+RAN 2 26.4 28.6 27.5
HGR+RANP 1 29.1 34.1 31.6
HGR+RANP 1 33.0 37.8 35.4
EAO+RANP 2 32.5 36.3 34.4
EAO+RANP 2 ✓ 33.5 37.8 35.6

query which were not originally paired to it in the dataset. We show the effectiveness of
our strategy by applying it both to a graph-based [26] and to a recent state-of-the-art
Transformer-based method [257] for text-video retrieval, and to two different contrastive
loss functions, achieving considerable improvements over the original models. We vali-
date our strategy on two datasets, EPIC-Kitchens-100 and MSR-VTT, conducting an
extensive experimental analysis, comprising several ablation studies and successful ex-
periments on the usage of hard, semi-hard, and all the negatives. Finally, by performing
qualitative analyses on the testing set, we present evidence that the proposed strategy
leads to ranking lists which include many more highly relevant examples at the top of
the list when compared to models trained without it.

7.7 Appendix

7.7.1 Evaluation metrics

We mostly use two metrics for evaluation as was in [298]: the Normalized Discounted
Cumulative Gain (nDCG) [122] and the Mean Average Precision (mAP) [10]. The nDCG
is computed by normalizing the DCG with the Ideal DCG (IDCG), which is computed
on a optimally ordered list, i.e. it follows a descending order of relevance. Following the

definition given in [45], we compute the DCG as DCG(a,Q) =
∑︁Nr

k=1
R(a,qk)

log2(k+1) , where a

is a caption and Q is the ranking list of the captions associated to the video clips, limited

to the top Nr relevant. Then, the nDCG for a is computed as nDCG(a,Q) = DCG(a,Q)
IDCG(a,Q) .

Similarly, it can be computed for a video clip v and the list of all the captions. Finally,
the mean of these two values is computed for all the videos and all the captions, obtaining
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Table 7.7: Influence of ∆p and ∆n on the final performance: ∆p is varied in {0.10, 0.15,
0.20, 0.25, 0.30}, while ∆n is set to 0.2.

EPIC-Kitchens-100 MSR-VTT
∆n ∆p nDCG (%) mAP (%) nDCG (%)
0.20 0.10 58.7 47.1 31.2
0.20 0.15 59.0 46.6 31.3
0.20 0.20 59.0 46.1 31.1
0.20 0.25 59.2 46.0 31.6
0.20 0.30 59.0 45.6 31.6

the final nDCG which is used to report the scores:

nDCG(V,Q) =
1

2

(︁∑︂
v∈V

nDCG(v,Q)

IDCG(v,Q)

+
∑︂
q∈Q

nDCG(q, V )

IDCG(q, V )

)︁ (7.11)

The mAP is computed in terms of the Average Precision (AP), which in turn is
based on the Precision at k, P (k) [10] and on r(k), which is an indicator function used
to discriminate relevant, i.e. with R(a, qk) = 1, from irrelevant examples, i.e. with
R(a, qk) < 1. In fact, differently from nDCG which considers continuous values for the
relevance, the mAP only considers two values for it, 0 or 1. The AP for a caption a is

defined as AP (a) =
∑︁N

k=1 P (k)·r(k)
Nr

, where N is the length of the ranking list, including
both both irrelevant and the Nr relevant examples. A similar definition holds for a video
v. Finally, the mAP is computed on all the captions and all the videos, obtaining the
average mAP used in the tables:

mAP (V,Q) =
1

2

(︁∑︂
v∈V

mAP (v) +
∑︂
q∈Q

mAP (q)
)︁

(7.12)

7.7.2 Varying the fixed margins

The final loss described in Eq. 8 includes two loss terms which impose a fixed margin
on the pairwise similarities, as described in Eqs. 1 and 5. These two margins, ∆n and
∆p, are set to 0.2 in this Chapter. Here we aim at briefly exploring how such a value
can influence the final performance. In particular, we keep ∆n = 0.2 and vary ∆p in
a wider set of values. The results are reported in Table 7.7. As for τ , we use 0.4 for
EPIC-Kitchens-100 and 0.1 for MSR-VTT, since these values lead to the best average
nDCG in our experiments. As reported, varying ∆p has only a small influence on the
final performance: on EPIC-Kitchens-100, it leads to small variations (up to -0.3% if
decreased, up to +0.2% if ∆p is increased) in terms of nDCG, and up to +1% mAP; on
MSR-VTT it leads to up to +0.5% nDCG.
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Table 7.8: The lower the threshold τ , the less relevant examples are selected as negatives,
leading to better performance.

EPIC MSR-VTT
τ nDCG (%) mAP (%) nDCG (%)

35.9 39.5 25.3
RAN 0.75 37.4 43.1 25.2

RANP 0.75 40.2 46.4 -
RAN 0.40 48.8 46.4 26.4

RANP 0.40 59.0 46.1 28.0
RAN 0.15/0.10 48.4 46.5 28.7

RANP 0.15/0.10 58.8 47.2 31.1

7.7.3 Detailed performance on the influence of τ

In Section 7.5.2, the influence of the threshold τ on the final performance obtained by
HGR is visualized on both EPIC-Kitchens-100 and MSR-VTT in Fig. 4. The detailed
results are reported in Table 7.8.



8
Conclusions and future

directions

8.1 Summary and main contributions

To solve problems which deal with multiple data modalities, such as video, audio, and
text, deep learning proved to be a valuable tool in recent years. In fact, by relying
on deep neural networks to automatically extract discriminative features based on a
target objective, hence not having to manually craft them, several breakthroughs were
possible in fields such as image recognition [98, 146], skin cancer classification [65], and
self-driving cars [16]. However, to obtain these results, deep neural networks need to
overcome the generalization gap, which otherwise limits the performance of the trained
model on different sets of data drawn from the same distribution. Since the model needs
to learn representations for the input data which are general enough and not tailored
to the training data, a popular way to overcome this gap consists in adding more ex-
amples to the training set, in the hope of covering those peculiar cases for which the
model was not working correctly. Although for smaller datasets manual collection and
annotation is a viable solution, it does not scale well, due to high costs and the need
for many trained annotators. Therefore, crowdsourcing became one of the most pop-
ular ways to collect annotated data, because it raises the opportunity to create tasks
which are solved by human annotators across the globe, providing annotations in ex-
change for small amounts of money. For instance, crowdsourcing led to the collection
of popular benchmark datasets in text-video [289, 310] and text-image understanding
[145]. However, recent state-of-the-art approaches often involve enormous neural net-
works, comprising billions of parameters, which require even bigger datasets, leading to
enormous and possibly unsustainable costs for the collectors. For instance, the foun-
dational model Flamingo [3] comprises 80 billion parameters and was trained with a
mixture of text-video and text-image pairs, for a total of around 500 million pairs. To
collect these impressive amounts of data, there is a need for more scalable and cheaper
approaches than crowdsourcing. In particular, given the amount of multimodal data
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publicly available on the Internet, e.g. the 500 hours of content uploaded to YouTube
every minute [25], very large scale datasets were recently collected by crawling through
the Internet and automatically downloading multimodal contents and the associated
textual descriptions. Although improvements in several tasks were recently achieved by
using web scraped datasets [257, 3, 19], a question naturally arises: is the collection of
more and more data the only way to overcome the challenge offered by the generalization
gap? On the one hand, there are many fields in which collecting more data is difficult,
and annotating them is even more prohibitive due to really high costs, for instance in
medical fields which require expert knowledge to provide curated labels. On the other
hand, processing all these data requires an ever increasing computational power, leading
to increased carbon emissions [268].

In this thesis we showed that there are indeed other ways to reduce the generalization
gap and improve deep learning-based solutions without having to resolve to the collection
of more annotated data. In particular, we showed that it is possible to achieve such an
objective by leveraging semantic aspects of the available data which often go unnoticed.

The first part presents different approaches to create new labels which are greatly
helpful at improving the generalization on different vision and language tasks. In partic-
ular, Chapter 2 introduces, for the video question answering task, three data augmen-
tation techniques which create new questions and answer sets based on the semantics
of the available annotation. These techniques were based on a statistical analysis of
the annotations, which showed that some biases were affecting them, and that some
positional labels (e.g. objects which are visible on the “left” of something) were too
sparsely used. The proposed techniques made it possible to alleviate the highlighted
biases and to create new instances of the positional labels which increased the robust-
ness of the trained model. In Chapter 4, we pursued a different approach, less based on
semantics: the proposed pipeline consisted in a captioning module and a text-to-image
synthesis model, which made it possible to learn the former on a small labelled dataset
and use it to automatically annotate a large scale unlabelled dataset, which is then
used to train the latter. By using the proposed pipeline, we provided evidence that it
is possible to transfer labels from a smaller, curated dataset, to larger scale, unlabelled
datasets, therefore making it possible to create new labels which follow the semantics of
the unlabelled data. Finally, following the trail designed by the two previous chapters,
in Chapter 3 we propose a method which uses both semantics and latent space repre-
sentations to create new labels and examples: in fact, in the proposed technique a new
latent representation of a caption (or video) is created by mixing in the representation
of another caption which shares similar concepts at the semantic human-readable level.
Moreover, by working in the latent space there are several advantages, including cheaper
computations, the possibility to extend the same technique to multiple modalities, but
also less concerns on privacy and data shareability, since only features are required to
be shared, making it possible to apply these techniques to fields which have these issues.

In the second part of this Thesis, the focus is put on the customization of the
training objective. We present several evidence that, by designing additional tasks or
custom loss functions, it is possible to achieve better solutions by leveraging the available
data to a greater extent and therefore without requiring additional annotations. In
Chapter 5 we proposed a multi-task learning framework for video question answering.
In particular, we designed this additional training objective by leveraging the structure of
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the questions, which often involve common patterns, making them groupable. Therefore,
by automatically adding a label to each of the questions, we were able to extend the
typical learning framework, which is oriented on identifying the correct answer, to a
more complex one which also predicts the type of the question, which may contain useful
information to improve the training. In Chapters 6 and 7 we customize contrastive loss
functions for the text-video retrieval task. In particular, in Chapter 6 we identify a fixed
parameter in a contrastive loss function and redefine it in terms of the semantic overlap
occurring between different captions. By doing so, at training time the similarity of the
latent representation of different captions is defined in terms of how close they are; since
the training is conducted contrastively, that is by optimizing such a similarity function,
there is an introduction of semantic knowledge into the training process which greatly
helps the generalization. In Chapter 7 the same semantic overlap is used to separate
the captions into relevant or irrelevant with respect to a given query. By doing so, we
address a shortcoming of the training objectives typically used for text-video retrieval,
and also introduce a novel strategy used to discover new captions within the dataset
which can be used to improve the training process. With these techniques, we achieved
state-of-the-art results on multiple datasets, and also won a world-wide competition held
at CVPR on multi-instance retrieval. Noteworthily, we obtained better results than a
larger model which used more than 3 million video clips, compared to the 67 thousands
that we used.

8.2 Future developments

• On text-video retrieval. Recent state-of-the-art methods for text-video re-
trieval [184, 257] learn to output a similar representation for both a video and its
associated caption in a joint embedding space. This makes it possible to use a
natural language query, mapped into the same embedding space, to retrieve and
rank the videos in the dataset. In Chapters 6 and 7 we showed that this approach
does not lead to high quality ranking lists, meaning that there are often many un-
related videos at the top of the ranking list, and that the introduction of semantic
knowledge into the training process alleviates this problem. Nonetheless, all these
approaches assume that the caption provided with a video captures all of its visual
contents, yet this is often not the case because of the subjectivity and the presence
of cultural biases in the captioning process: in fact, different human annotators
may describe the same scene in different ways, for instance by using a diverse
lexicon, by putting the attention on specific details, or by describing part of the
background. Therefore, rethinking the methodology used to learn text-video re-
trieval models by putting less emphasis, and possibly removing the reliance, on the
availability of a highly descriptive caption may represent an interesting direction.

• On semantics and deeper understanding of concepts. In the last few years,
several concerns were raised about deep networks exploiting biases within datasets,
language priors, and also visual priors [7, 119, 334]. As an example, in the VQA
dataset [5] most of the binary questions, whose possible answers are either yes or
no, can be answered correctly by choosing yes without even looking at the image
[334]. These issues give a false impression on the progress in multimodal tasks,
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and several authors addressed it by introducing new datasets, tasks, or metrics
[86, 275, 298]. For instance, Thrush et al. [275] recently presented a novel task
based on the matching of two images and captions containing the same set of words,
only in a different order, and showed that most of the state-of-the-art vision-and-
language models perform as badly as random chance. While the usage of multi-task
learning may alleviate part of the problem, qualitative analyses may still show lack
of understanding of higher level concepts and semantics. Considering that deep
learning is being used to realize applications affecting millions of users across the
globe, making sure the model is understanding what the user is asking is of utmost
importance.
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9
Neural Turing Machines for the

Remaining Useful Life
Estimation problem

9.1 Introduction

One of the most important problems in the Prognostics and Health Management field
is called Remaining Useful Life (RUL) estimation which consists in estimating how
long it will take for a mechanical device under analysis to reach a situation where the
likelihood of a failure is above a given threshold [121]. On the one hand, estimating
the RUL precisely and reliably can have a great impact on maintenance-related costs,
since it is possible to foresee when a failure will happen and thus plan accordingly the
required intervention. On the other hand, failing such an estimation can have not only
crucial economic consequences, but also a decrease in the reliability of a brand and may
also create life-threatening situations, e.g. the disastrous crumbling of the I-35W in
Minneapolis, Minnesota [114] or the more recent Morandi Bridge in Italy [197].

Common approaches for the RUL estimation can be divided into model-based and
data-driven. Model-based approaches estimate the remaining life by leveraging math-
ematical or physical models of the degradation phenomena [274, 160]. These methods
often require extensive expert knowledge, expensive verification, and for some compo-
nents it is quite challenging to establish an accurate physical model. Differently from
these approaches, data-driven methods rely on the availability of historical sensor data
to build a degradation model. When it is not possible to observe multiple instances
of each fault mode, for instance in industrial contexts where a fault may create life-
threatening situations, these sensor data can be obtained via simulation software, e.g.
in [245, 246], or experimental rigs, e.g. in [2, 260]. Many of the works following the
data-driven approach manually design features in both the time and frequency domains
and use them to learn a model through self-organizing maps [208], hidden Markov mod-
els [32], etc. While statistics play a major role in deciding which features to use and
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how to combine them effectively, this feature engineering step can be time consuming
and may still rely on prior knowledge. Conversely, deep learning makes it possible to
automate the feature extraction process and work directly on the raw sensor data. The
more successful deep learning-based approaches for this problem leverage sequence mod-
els to extract useful features from the sensor measurements and to identify temporal
dependencies in the data. In particular, Long Short-Term Memory networks (LSTM)
[103] are widely used as the key component to automate the feature extraction process
[340, 284, 63, 305, 304].

An interesting neural network architecture which has not been explored until re-
cently for the RUL estimation problem [68, 67] is the Neural Turing Machine (NTM).
NTMs [88] are sequence models which, differently from LSTMs, interact with an ex-
ternal memory decoupled from the computation. As shown by Graves et al. [88], this
makes it possible to achieve better performance on several algorithmic tasks, including
the “associative recall”, which resembles sequence modeling and consists in asking the
model to recall an item from a list by querying it with the preceding item. This prob-
lem shares some similarities to the estimation of the RUL: if the list consisted of sensor
measurements and associated RUL values, the current measurements could be used as
a query to obtain the associated RUL value. Therefore, NTMs may also provide a more
reliable tool than LSTMs for the RUL estimation problem.

In this Chapter, it is shown that even by using a simple model made of a single
NTM and a decoder based on fully-connected layers it is possible to outperform widely
adopted LSTM-based models, while also using fewer learnable parameters (28% less) and
therefore with a smaller memory footprint. This is empirically validated with multiple
experiments on two public datasets, the C-MAPSS dataset [245] and the PHM Society
2020 Data Challenge dataset [260]. Furthermore, the proposed method obtains com-
petitive results with several state-of-the-art architectures which use deeper networks,
bidirectional reasoning, or additional pretraining. Therefore, the experimental results
show that providing access to an external memory can be beneficial to deal with the task,
possibly implying that NTMs can be a better building block to design more complex
architectures and to automatically extract features from the available time series.

The major contributions of this Chapter can be summarized as follows:

• A thorough empirical study is performed to explore the usage of NTMs as the main
feature extraction component for the Remaining Useful Life estimation problem.

• Consistent empirical evidences are provided to show that NTMs are a powerful
and efficient model which outperforms the more popular LSTM-based models,
while being also less parameter-demanding and thus more memory-efficient which
makes it possible to use in memory-constrained environments. Given the similar
underlying nature of the two sequence models, it is possible to integrate the NTM
within other architectures and improve the final performance.

• The proposed simple model achieves an estimation error comparable and even
competitive with respect to the error obtained by other architectures found in
literature, which are more complex, use ensemble of models, and additional pre-
training.

• Multiple experiments are performed on two public datasets dealing with aircraft
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engines (C-MAPSS) and particle filtration systems (PHM Society 2020 Data Chal-
lenge), showing the strengths of the proposed model while also highlighting some
limitations related to industrial contexts.

• The source code is released, to ensure reproducibility and to provide a strong,
open source baseline otherwise difficultly found in the community.

In Section 9.2 the scientific literature related to this Chapter is introduced. Then, in
Section 9.3 the details about the methodology are described, by focusing on the appli-
cation of the Neural Turing Machine to the RUL estimation task. All the experiments
performed throughout this Chapter are described in Section 9.4. Finally, in Section
9.5 some conclusions are drawn about the work done and possible future works are
mentioned.

9.2 Related Work

Model-based and data-driven methods. Estimating the remaining useful life of a
system has been a strategic research problem for several decades [22, 89]. Traditional
approaches can be divided into model-based and data-driven.

The former are based on the availability of mathematical or physical models of the
degradation phenomena, such as spall propagation models for rolling bearing elements
[17] or crack growth models for a system experiencing fatigue [37]. Model-based methods
require an in-depth understanding of the underlying system and the failure modes.
Furthermore, these approaches are built in a case-by-case scenario, making them difficult
to be applied in different contexts without spending a considerable effort.

Methods following a data-driven approach rely on the availability of historical sen-
sor data to build a degradation model. In situations where the machinery is frequently
maintained and faults are never observed, the sensor data can be obtained through
simulation models [245, 246] or through experimental rigs [2, 260]. Notable examples
of data-driven methods include statistical methods, such as Auto Regressive Integrated
Moving Average [206, 345] and hidden Markov models [32, 192], and Artificial Intelli-
gence methods, e.g. by using self-organizing maps [208] and Support Vector Machines
[112]. Differently from the model-based approach, the data-driven methodology does
not require a deep understanding of the underlying system. Yet, in data-driven methods
which do not employ deep learning the features are manually designed and extracted
from the raw data, therefore this feature engineering step can be time consuming and
may still rely on domain knowledge.

Deep Learning-based methods. Differently from previous approaches, deep
learning makes it possible to automate the process of feature extraction from the raw
sensor data. The attention towards these techniques has been promoted thanks to the
availability of public datasets (e.g. [245, 2]) and the possibility to exploit high quality
sensors to frequently measure the evolution of different characteristics of the mechanical
system under analysis.

Basing their works over the assumption that time series can be interpreted as images
and the success obtained in computer vision tasks, approaches based on Convolutional
Neural Networks (CNN) were explored for RUL estimation. Babu et al. [9] and Li et
al. [162] explored deep CNN-based methods, whereas Cornelius et al. [38] leverages
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heteroscedastic and epistemic uncertainties to improve the RUL estimation in a deep
CNN-based network. Nonetheless, the temporal dependencies occurring in sensor data
hardly are learned by these techniques.

Therefore, sequence models (e.g. LSTM networks) are often exploited because of
their ability to model the evolution of the measured features. Both a Multilayer Per-
ceptron and a RNN were used in [99]. Due to the length of the time series considered
in this field, RNNs can have problems remembering the important information and
capturing long term dependencies, which has encouraged several researchers to exploit
memory-based networks to store key information, such as GRUs [13, 283, 181] or LSTMs
[340, 284, 63, 304, 13, 329]. Recently, [305] proposed an ensemble of bidirectional LSTM-
based models, each trained on the input data framed with windows of a different size,
in order to have each model focus on temporal dependencies that require more or less
time to develop. A sequence model which was only recently used in some works [68, 67]
on RUL estimation consists in the NTM. Graves et al. introduced this sequence model
in [88], where they show that NTMs outperform LSTM networks in five tasks with in-
creasing complexity, including: the “copy” task, which requires the model to observe
a sequence and copy it in output; the “repeated copy”, which is an extension of the
previous task and asks the model to repeat the copy a given number of times; the “as-
sociative recall” task, which resembles sequence modeling and consists in recalling an
input item that follows a given “query” item in a previously processed list of items; the
“dynamic n-gram”, which tests the capabilities of the models to learn a probability dis-
tribution; finally, the “priority sort” task, which requires the model to learn how to sort
a sequence based on a priority vector. NTMs were introduced within the RUL estima-
tion field by Falcon et al. in [68] and [67], where they obtained a lower prediction error
than previously published works. Yet, in these works the NTM is used within bigger
and complex architectures, so it is not clear how much the NTM is helping the whole
approach. Conversely, in this Chapter the attention is driven towards the contribution
given by the NTM when used as the whole feature extraction mechanism. In particular,
even by using a single NTM as the feature extractor better performance are achieved
than more popular LSTM-based methods, while also using around 28% fewer learnable
parameters. Furthermore, these results are empirically validated by performing multiple
experiments on two public datasets, the C-MAPSS dataset [245] and the PHM Society
2020 Data Challenge dataset [260].

9.3 The proposed Approach

A schematic overview of the proposed approach is shown in Fig. 9.1. First of all, the raw
input time series are preprocessed following three simple steps: they are normalized using

MinMax, i.e. x′i = 2(xi−Xmin)
Xmax−Xmin

−1 where Xmax, Xmin represent maximum and minimum
value of featureX; labeled, during training, with a piece-wise linear degradation function
[99], limiting the RUL to 125; and cut into shorter time series using a sliding window
technique. After the preprocessing, they are fed to the cells of the NTM. The hidden
states computed by the NTM are interpreted as the feature vectors for the given time
series. Each feature vector is then mapped to estimate RUL values through a simple
decoder made of two stacked fully connected layers.
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Figure 9.1: A graphical overview of the proposed approach. The time series are first
cut into shorter windows, then fed to the network. The Neural Turing Machine is used
as the feature extractor. Finally, two stacked fully connected networks are used to map
the extracted features to a sequence of RUL values.
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Figure 9.2: At time t, the NTM updates the hidden state ht+1 (red) by using its memory
M , input vector ot, and previous hidden state ht. It is functionally separated into
attention (yellow) with weights αt and βt, read/write operations (blue), and memory
slots (green).

9.3.1 Neural Turing Machine

In the NTM, shown in Fig. 9.2, the memory bank M ∈ Rl×s is made of l memory
locations, i.e. M = [m1,m2, ...,ml], where each of them is a vector with s features, i.e.
mi ∈ R1×s. Considering as input a windowed time series T ∈ Rtl×f , made of tl vectors
of size f , the NTM sequentially processes T by extracting, storing, and eventually
retrieving some of the most important information from each of the tl measurement
vectors using learnable read and write operations. In this way, the operations performed
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by the NTM use many memory vectors, whereas LSTM networks rely on one memory
vector and thus it is likelier that previously obtained information is rewritten and lost.
The NTM also updates an hidden state ht ∈ R1×s at each time step, which acts as a
summary of the measurement vectors received so far and their interactions over time.
The sequence of hidden states H = {hi | i ∈ N+, i ≤ tl} is then used as the automatically
extracted features of T . Hence, the feature extraction process depends entirely on the
NTM and its interactions with the raw sensor data, whereas Falcon et al. used the NTM
on top of an LSTM [67] or in conjunction with a CNN and self-attention layers [68],
therefore making unclear the contribution given by the NTM in the whole approach.
As shown in Fig. 9.2 the input to the NTM at time step t is represented by ot ∈ R1×f

and consists of the measured value of f different sensors. Three types of operation are
sequentially performed by the NTM: write, read, and hidden state update.

Write operation. At time t, the memory bank is updated by writing new infor-
mation obtained by the current sensor measurements ot and the previous hidden state
ht−1. In this way, it stores new knowledge from the input, while maintaining some of
the previously captured information. The information to be written into the memory,
i.e. the content vector ct ∈ R1×s, is computed as follows:

ct = δp1(σ([ot, ht−1]Whc + bc)) (9.1)

where δp1 is the dropout [266] operator with probability p1 ∈ [0, 1], [·] is the concate-
nation operator, ot ∈ R1×f represents the current sensor measurements vector, and
ht−1 ∈ R1×s the previous hidden state. Whc ∈ R(f+s)×s and bc ∈ R1×s are trainable
parameters. To determine how much the memory should be modified, an attention
mechanism is used in order to compute a weight for each of the l memory locations.
This is done as following:

at = δp1
(va tanh([ct, ht−1]Wha + ba)) (9.2)

αt,i =
exp(at,i)∑︁l
j=1 exp(at,j)

for i = 1, ..., l (9.3)

In particular, αt = {αt,1, . . . , αt,i, . . . , αt,l} represents the attention weights and Eq. 9.3
satisfies

∑︁
i αt,i = 1. Wha ∈ R(s+s)×l, va ∈ R, and ba ∈ R1×l are trainable parameters.

Differently from previously published NTM-based networks, the dropout operator is
added both in Eq. 9.1 and Eq. 9.2 in order to mitigate overfitting situations and to
improve the generalizability. Each memory slot mi is then updated in the following
way:

mi = αt,ict + (1− αt,i)mi for i = 1, ..., l (9.4)

using the attention weights to balance how much of the new information (in ct) should
be saved inside the memory. This also helps the model to understand the underlying
relations between the evolution of the different sensors: the new information is spread
unevenly throughout all the memory locations, making it possible to store in each of
them different key information.

Read Operation. After the update of the memory bank M , the NTM reads from
M the new data which is used to update the hidden state. This operation is performed
in a similar way to the write operation. First of all, as in Eq. 9.2 and Eq. 9.3, attention



9.3 The proposed Approach 137

weights are computed on ct and ht−1. As for the write operation, the computation of
the attention is regularized by the dropout operator. Then, the attention weights are
used to compute a weighted average of the vectors currently contained in the memory,
obtaining a read vector rt. Since M contains information gathered from all the sensor
measurements and their interaction over time, rt represents an informative summary of
the current health-related state of the mechanical system.

Dropout-augmented read and write operations. As mentioned before, both
the write and read operations are augmented in this work by adding the dropout oper-
ator. As shown by Srivastava et al., this operator may mitigate overfitting and improve
the performance on many heterogeneous tasks [266]. This is possible by reducing the
co-adaptation: at training time, the parameters of the neurons are updated in a way
such that they try to fix the mistakes made by other neurons, i.e. they co-adapt. By
using the dropout, a fraction of the neurons is randomly shut off at training time, there-
fore making the neurons less prone to rely on co-adaptation. Since this phenomenon is
unlikely to generalize, reducing it may lead to improved generalization.

Hidden State Update. Finally, the hidden state is updated with the knowledge
gathered from the updated memory bank, the previous hidden state, and the current
input measurements:

ht = σ(otWoh + rtWrh + ht−1Whh + bh) (9.5)

where Woh ∈ Rf×s, Wrh ∈ Rs×s, Whh ∈ Rs×s, and bh ∈ Rs are trainable parameters.
The sequence of hidden states h1, h2, . . . , hN are grouped in a matrix H ∈ Rtl×s and
used as the automatically extracted features for the input time series.

9.3.2 RUL Decoder

After the features are extracted by the NTM, a simple decoder (see Fig. 9.1) is employed
to learn a mapping from these features to RUL values:

d1 = δp2
(σ(HWdh

+ bdh
)) (9.6)

d2 = d1Wdo + bdo (9.7)

where Wdh
∈ Rs×fc, Wdo ∈ Rfc×1, bdh

∈ Rfc, and bdo ∈ R are trainable parameters,
and σ is the sigmoid function. As the output of this step, d2 ∈ Rtl×1 is obtained, which
represents the sequence of predicted RUL values.

9.3.3 Loss function

To train the model and obtain optimal weights and biases from a labelled and prepro-
cessed training dataset, the Mean Square Error (MSE) of the predicted RUL is opti-
mized with respect to the groundtruth values. It is defined as: MSE = 1

n

∑︁n
i=1(RUL′i−

RULi)
2, where n is the total number of data samples, RUL′i and RULi represent re-

spectively the predicted and groundtruth RUL for the i-th data point.
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Description of the characteristic Units

Total temperature at fan inlet °R
Total temperature at LPC outlet °R
Total temperature at HPC outlet °R
Total temperature at LPT outlet °R
Pressure at fan inlet psia
Total pressure in bypass-duct psia
Total pressure at HPC outlet psia
Physical fan speed rpm
Physical core speed rpm
Engine pressure ratio –
Static pressure at HPC outlet psia
Ratio of fuel flow to static pressure at HPC outlet pps/psi
Corrected fan speed rpm
Corrected core speed rpm
Bypass ratio –
Burner fuel-air ratio –
Bleed enthalpy –
Demanded fan speed rpm
Demanded corrected fan speed rpm
HPC coolant bleed lbm/s
LPT coolant bleed lbm/s

Table 9.1: Description of the 21 sensors available in the C-MAPSS dataset, from [246].

9.4 Experimental Results

9.4.1 Datasets under analysis

To evaluate the proposed methodology, two public datasets are considered: the NASA
C-MAPSS Turbofan Engine Degradation Simulation Dataset [245] and the PHM Society
2020 Data Challenge [260].

The C-MAPSS dataset consists of 4 subdatasets (named FD001, FD002, FD003,
and FD004) of multiple multivariate time series. Every measurement vector contained
in each series is made of three operational settings and 21 sensor values, each recording
distinct physical characteristics of the considered system. These include temperature
and pressure measured at the fan inlet, and the temperature measured for each module
in the gas path (HPC, HPT, and LPT). A full list of the considered characteristics can
be found in Table 9.1 (from Saxena et al. [246]), whereas Figure 9.3 (left) presents a
simplified diagram of the turbofan engine. The data points come from different turbofan
engines of the same type, which have different levels of initial wear. While training series
are run-to-failure, testing series have a positive RUL which represents the target label.
Table 9.2 shows a summary of the number of time series, fault and operational conditions
found in each subdataset.

In the experiments performed in this Chapter, some of the raw input features are
ignored because they are constant and thus not informative. In particular, 14 sensor
measurements out of the total 21 sensors are kept, whose indices are 2-4, 7-9, 11-15, 17,
and 20-21. A similar selection is also done in [63, 67, 62].
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Figure 9.3: (left) Diagram of the turbofan engines considered for the C-MAPSS dataset
[246]. (right) Diagram of the experimental rig used for the PHM Society 2020 challenge
[260].

Moreover, the three operational settings can be used in datasets FD002 and FD004
to identify six operational conditions, as reported in [245]. These settings affect the
measurements because an engine behaves differently based on its operational condition
(e.g. whether the airplane is taking off or it is cruising above the clouds). Hence, for
these two datasets, KMeans [185] is used to cluster the measurements into six groups.
Then, the data within each cluster are normalized using MinMax, in order to use the
same scale to treat data sampled in the same condition [9]. Each of the measurement
vectors in FD002 and FD004 is then augmented concatenating the one-hot encoding of
the operational condition, thus increasing the input size from 14 to 20. A similar data
preprocessing approach was also reported in [340, 68, 9].

Finally, a value tl for the window size is decided and used over all the four datasets.
To determine tl, five different values are tested: 30, 40, 50, 60, and 70. For easier
reproducibility, Table 9.2 reports the amount of windowed time series observed during
training after the train/validation split.

The second dataset, abbreviated to “PHM20”, is released as part of the PHM So-
ciety 2020 Data Challenge [260] and consists of sensor measurements collected from
an experimental rig used to simulate failures in a particle filtration system, which are
widely used in industrial environments. This type of system is subject to clogging due
to the presence of contaminants in the liquids and, in this case study, such a clog can be
identified when the pressure difference is higher than 20 psi. The public dataset consists
of 24 experiments for training and 8 for validation. Each experiment is annotated with
the concentration (from 40% up to 47.5% with 2.5% increments) and the size of the par-
ticles (in the range 45-53um, or in the range 63-75um), and consists of several thousands
of measurements, sampled at 10 Hz. Each sample is annotated with three sensors: the
flow rate measured with a flowmeter, and both the upstream and downstream pressures
which are measured with pressure transducers. A schematic of the experimental rig is
shown in Fig. 9.3 (right). For each time step, five input features are considered: the
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Dataset FD001 FD002 FD003 FD004

Train time series 100 260 100 248

Test time series 100 259 100 248

Operating conditions 1 6 1 6

Fault conditions 1 1 2 2

Max length (testing) 303 367 475 486

Min length (testing) 31 21 38 19

Training samples with

tl=30 12100 32756 15499 38350

tl=40 11400 30936 14799 36610

tl=50 10700 29116 14099 34870

tl=60 10000 27296 13399 33130

tl=70 9300 25476 12699 31390

Table 9.2: Summary of the subdatasets of the C-MAPSS dataset.

three sensors, the concentration value, and the size of the particles. Then, these values
are normalized with MinMax. In this Chapter, the RUL is considered to be 0 when
the pressure difference is higher than 20 psi and the time series are labelled with the
piece-wise degradation function (with 125 as the maximum value), as in Ince et al. [115].
As in the previous case, five values for the window size tl are considered but, since the
time series in PHM20 are longer than those in C-MAPSS, these values are bigger than
before: 70, 140, 210, 280, and 350.

9.4.2 Model evaluation

To evaluate the performance, the main metric used consists in the Root Mean Square
Error (RMSE). Furthermore, for the C-MAPSS dataset the Scoring Function is also
considered, whereas the Mean Absolute Error (MAE) is used for the PHM20 dataset.

Scoring Function

The Scoring Function was initially proposed in [245] and is defined as:

S =

n∑︂
i=1

si , where si =

{︄
e

−ei
13 − 1, ei < 0

e
ei
10 − 1, ei ≥ 0

(9.8)

where S is the computed score, n is the total number of data samples, and ei =
RUL′i − RULi is the difference between estimated and groundtruth RUL at the i-th
data point. The asymmetric nature of this function penalizes more the “too optimistic”
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Figure 9.4: Average testing RMSE (with standard deviation) on FD001 using the best
validation model. Hyperparameters s, l, and fc shown on x axis.

predictions, meaning that it gives a higher score (i.e. worse) when the model predicts v̂
but the true RUL is v such that v < v̂, thus leading to an unpredicted early failure of
the considered system. On the other hand, it penalizes less an “early” prediction (i.e.
v̂ < v): although such prediction may trigger a superfluous maintenance, it should not
lead to unexpected failures, possibly avoiding more severe consequences.

Root Mean Square Error and Mean Absolute Error

RMSE and MAE are commonly used to evaluate prediction accuracy, both giving equal
weights for both early and late predictions. A key difference between the two metrics
is how much they punish observations which are further from the mean: in particular,
RMSE is a quadratic scoring rule, therefore it is more sensitive to large errors in the
predictions.

9.4.3 Implementation details

The training is performed for 50 epochs, using a variable learning rate, starting from
0.005 and decaying it by a factor of 0.6 every 15 epochs. For C-MAPSS, the training
time series (before cutting them into windows) are split with a 70/30 ratio to create the
training and validation splits. For the PHM20 dataset, the original validation set is used
as the testing set, and the training set is split with a 80/20 ratio to define the train and
validation splits. 10 runs are performed and for each the best model on the validation
set is selected and used for testing. During training, the mini-batch gradient descent
(batch size 100), and RMSProp (momentum 0.9, weight decay 0.0005) are employed.
The dropout rates are set to p1 = 0.1 and p2 = 0.25.

The bias bh is initialized to zero, and the weights va and vb are sampled from a normal
distribution with mean 0 and standard deviation 0.01. All the other weights and biases
are initialized by sampling from a uniform distribution in the range [−

√
k,
√
k], where

k = 1
in fts and in fts is the number of input features of the weight or bias (e.g. for

Whb ∈ R(s+s)×l, k = 1
s+s ). The memory bank and hidden state are initialized with

zeros.
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Method s, l, fc values Param. count RMSE
LSTM [340] 32, 64, 8 31,761 16.14
Our NTM 32, 128, 64 22,945 15.23±0.66

LSTM 32, 48, 8 23,057 16.40
Our NTM 64, 64, 64 35,105 15.46

Table 9.3: Comparison of RMSE over FD001 with respect to the LSTM-based solution
proposed in [340]. Better results, more efficiently (about 28% fewer parameters).

Finally, PyTorch 1.3.0 is used to implement the proposed solution1.

9.4.4 Discussion of the results on the CMAPSS dataset

Grid search results. To determine the best combination of the hyperparameters used
in the proposed approach, i.e. the two sizes s and l of the NTM, and the hidden size, fc,
of the decoder, multiple runs are performed on FD001. By using fc = 8, high RMSE
values (around 12% higher than other combinations) are obtained, possibly implying
that such a low number of neurons in the decoder is not enough to learn a meaningful
RUL estimation function. Higher values for fc lead to better accuracy, although s and
l influence the overall performance as well, as shown in Fig. 9.4.

Parameter efficiency of the NTM. By using the external memory, the NTM may
learn better features with less parameters. To investigate this, a fair comparison to the
LSTM-based solution proposed in [340] is made, because they perform hyperparameter
optimization as well. Table 9.3 reports a lower estimation error for the NTM (15.23
compared to 16.14), while also using 28% fewer parameters (22945 compared to 31761),
making it a better approach when dealing with memory-constrained environments, e.g.
embedded. Furthermore, even if the two networks had a similar amount of parameters,
the NTM would still perform better, as reported in Table 9.3 (15.46 compared to 16.14
using around 32000 parameters, and 15.23 to 16.40 using 23000 parameters).

Window sizes. The size of the windows used during training (see Sec. 9.3) can
be seen as another hyperparameter, since longer series may be more difficult to deal
with but may also be more informative. Fig. 9.5 reports the error obtained over the
four datasets using the five best combinations of hyperparameters (s, l, fc) found in
the previous experiment, and five different sizes for the windows, i.e. 30, 40, 50, 60,
and 70. For dataset FD001 (Fig. 9.5.a), short windows are more beneficial than longer
time windows. The easier nature of this dataset may explain this, since the RUL values
are influenced only by one operating condition and one fault condition. Conversely, for
FD002 to FD004 these short time windows are not optimal, as the events which lead to
a fault likely require more time to develop. All the following experiments use 70 as the
window size.

Qualitative analysis. Figure 9.6 displays the predictions (blue) and groundtruth
values (red) over the four datasets, showing that the proposed model can effectively
estimate the RUL of unseen time series in the testing set. To give further evidence of
this, Fig. 9.7 presents some examples of prediction on the testing set, showing that

1The code is released at: https://github.com/aranciokov/NTM-For-RULEstimation
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a) FD001 b) FD002

c) FD003 d) FD004

Figure 9.5: Average testing RMSE (with standard deviation) using five combinations of
s, l, and fc (see Sec. 9.4.4), and five values for the window size. Over FD001, shorter
time windows lead to better results, whereas longer windows are preferred for the other,
more complex datasets. Best viewed in color.

the RUL progression can be reliably predicted. Moreover, the accuracy increases as the
fault gets closer.

Limitations of the piece-wise function. In the experiments presented both in
this Chapter and in the literature, e.g. by Zheng et al. [340] and Babu et al. [9], the
estimation error observed on FD002 and FD004 is higher than FD001 and FD003. This
is mainly due to two factors. First, datasets FD002 and FD004 are more difficult, due
to multiple operating conditions affecting the captured measurements. Secondly, the
de facto standard degradation function [99] used to label the C-MAPSS dataset is not
a perfect solution. In fact, since it limits the maximum RUL value observed during
training, it is hard for any model to correctly predict at testing time RUL values which
are higher than such a maximum. As an example, FD004 contains 67 (out of 248) times
series with a RUL higher than 125 and the model fails these predictions (see Fig. 9.6.d).
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d) Predictions for FD004

b) Predictions for FD002

c) Predictions for FD003

a) Predictions for FD001

Figure 9.6: Comparison between predicted (blue) and groundtruth RUL values (red).

Figure 9.7: Examples of prediction (red) made by the proposed model during testing.
The model generalizes well over unseen test examples. Note that the true RUL for
testing series is only known for the last time step: a linear degradation is shown here
for comparison.
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Methods FD001 FD002 FD003 FD004
MLP [9] 1.8×104 7.8×106 1.7×104 5.6×106

CNN [9] 1.3×103 1.4×104 1.6×103 7.9×103

LSTM [340] 3.4×102 4.4×103 8.5×102 5.5×103

Our NTM 3.8×102 5.5×103 3.0×102 5.2×103

BiLSTM [284] 2.9×102 4.1×103 3.2×102 5.4×103

GADLM [62] 2.3×102 3.4×103 2.5×102 2.8×103

NTM-Hybrid [68] 2.1×102 6.0×103 2.7×102 4.8×103

Table 9.4: Comparison on the C-MAPSS dataset using the Scoring function (see
Sec. 9.4.4 for the discussion).

Methods FD001 FD002 FD003 FD004
MLP [9] 37.56 80.03 37.39 77.37
CNN [9] 18.45 30.29 19.82 29.16

LSTM [340] 16.14 24.49 16.18 28.17
Our NTM 16.05±1.2 26.21±0.6 13.90±0.6 27.67±0.7

DCNN [162] 13.32 24.86 14.02 29.44
BiLSTM [284] 13.65 23.18 13.74 24.86
GADLM [62] 12.56 22.73 12.10 22.66
Sim-Sup [108] 18.33 - 12.73 -

MTW-BLSTM [305] 12.61 - - -
Multi-Local [183] 14.1 - - -
NTM-Hybrid [68] 12.53 27.04 13.73 28.11

Table 9.5: Comparison on the C-MAPSS dataset using the RMSE (see Sec. 9.4.4 for the
discussion).

A new challenge is thus brought to light: the function proposed in [99] is in fact widely
accepted and used [340, 284, 305, 68, 9, 162], yet this study shows it may not be the
most appropriate solution for the task. Few works are actively working on alternative
labeling functions, e.g. [63], but no definitive solutions are available to date.

Comparison with similar architectures. In Tables 9.4 and 9.5, the results
obtained using s = 32, l = 128, fc = 64 are presented and compared to other published
works. In particular, since the focus of this Chapter is to explore the NTM as the
main feature extraction component, it is more fair to compare to architectures following
similar principles. As shown in both the Tables, models leveraging the sequential nature
of the data, i.e. LSTM and NTM, obtain a lower estimation error. Moreover, the NTM
excels in both metrics on the datasets involving multiple fault conditions (FD003 and
FD004), and in terms of RMSE on FD001 (Table 9.5).

Comparison with more complex architectures. For a more comprehensive
comparison, published works with more complex architectures, pretraining, etc are also
considered in Tables 9.4 and 9.5. Compared to the deep CNN used by Li et al. [162],
the NTM achieves a lower RMSE when multiple fault conditions affect the sensor mea-
surements (13.90 and 27.67 compared to 14.02 and 29.44). Interestingly, although using
only one direction to analyze the data, it achieves lower scores (3.0×102 and 5.2×103
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s l fc RMSE

16 128 64 11.35
32 128 64 7.03
64 128 64 5.87
128 128 64 7.10

64 16 64 10.11
64 32 64 5.50
64 64 64 5.45
64 128 64 5.87

64 64 16 16.46
64 64 32 7.32
64 64 64 5.45
64 64 128 6.12

64 64 64 5.45

Table 9.6: Hyperparameters optimization on PHM20 dataset.

compared to 3.2×102 and 5.4×103) than bidirectional LSTMs [284]. Multiple models
(e.g. Xia et al. [305]) and additional pretraining (e.g. Ellefsen et al. [62]) lead to more
accurate predictions, but these techniques could be also applied to NTM-based solu-
tions. Moreover, all the LSTM-based solutions could be further improved by replacing
the LSTM with an NTM.

Finally, there are other recent papers employing LSTM (e.g. [304]) or CNN compo-
nents (e.g. [172]) which perform better. Yet, a fair comparison is difficult to make: their
experimental setting is different as the testing labels are also rectified by the piece-wise
function, which is not done in this Chapter.

9.4.5 Discussion of the results on the PHM20 dataset

Hyperparameters tuning. As for the C-MAPSS dataset, the influence of the hy-
perparameters of the NTM (s, l, and fc) is explored on the PHM20 dataset. Since it
contains longer time series, the window size tl is initially fixed to 210. Here, s, l, and
fc are varied in {16, 32, 64, 128}. The average RMSE (on 10 runs) is reported in Table
9.6. Two observations can be made. First of all, 64 represents an optimal value among
those analyzed for the three hyperparameters, leading to an RMSE of 5.45. Secondly,
the size s of the memory locations and the number fc of neurons in the decoder are
highly influential on the final performance.

Temporal context and external memory. By continuously interacting with the
external memory, NTMs may be able to deal with longer time series than LSTMs. This
may be strategic in industrial settings, where sensor measurements can be collected
frequently over long periods of time. To confirm this surmise, the performance of the
two networks are compared as the length of the temporal context tl increases. For the
LSTM the same hyperparameters as in Zheng et al. [340] are used, whereas for the NTM
s = 64, l = 64, and fc = 64. Table 9.7 reports the performance both in terms of MAE
and RMSE. For the NTM, tl = 280 represents an optimal value, whereas for the LSTM
tl = 70 leads to best results, although the error is far higher than the one achieved with
the NTM. Two observations can be made. Firstly, the surmise is confirmed, since the
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Our NTM LSTM [340]

window size tl MAE RMSE MAE RMSE

70 4.44 6.82 4.97 7.05
140 4.54 6.74 5.38 7.77
210 3.74 5.45 5.09 7.30
280 3.73 5.37 5.45 7.59
350 4.97 6.93 5.45 8.42

Table 9.7: Comparison on PHM20 dataset between the proposed model and the LSTM-
based model from [340]. Performance is measured both with RMSE and MAE.

MAE RMSE

Random Forest 3.97 7.31
Gradient Boosting 3.82 6.81
LSTM 4.97 7.05

Our NTM 3.73 5.37

Table 9.8: Comparison with state-of-the-art methods on PHM20 dataset, including the
first two methods from [115] and the results obtained by the LSTM-based model (based
on [340]).

NTM manages to deal with longer sequences, whereas the LSTM shows a decreasing
accuracy as the sequences become longer. Secondly, the NTM has a better prediction
capability than the LSTM on all the values tested for tl, obtaining an estimation error
as low as 5.37 RMSE and 3.73 MAE compared to 7.05 RMSE and 4.97 MAE obtained
by the LSTM.

Comparison with state-of-the-art. Table 9.8 reports a comparison to state-
of-the-art methods which took part into the PHM Society 2020 Data Challenge [260],
alongside the LSTM-based model used in previous experiments. The winner of the
challenge (Lomowski et al. [177]) used a non-comparable methodology, therefore it is
not included here. Ince et al. [115] used Machine Learning techniques, including random
forest and gradient boosting (implemented with Scikit-learn [213] and CatBoost [219]).
For these two methods, the results obtained by running the public implementation
provided by the authors are reported. With the proposed approach a lower estimation
error is obtained, measured both with MAE and RMSE.

9.4.6 Discussion of NTM applicability to industrial contexts

The previous subsections show that a more accurate prediction is achieved if the NTM
is used to automatically extract the features from the input series. In particular, on
both the C-MAPSS and the PHM20 dataset a lower estimation error is observed when
compared to a popular LSTM-based model. Nonetheless, a superior accuracy may not
be the only factor which needs to be taken into account when implementing a RUL
estimation system.

Training times and size of the dataset. In a scenario in which the historical
data form a sizable dataset, the NTM may require a bigger time investment to perform
the training. As an example, on a system with a NVIDIA RTX A5000, an i7-9700K,
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and 32GB of RAM, training the NTM on the PHM20 dataset takes around 1 hour
(single run), whereas it takes 10 minutes for the LSTM-based model. This is mainly
due to the availability of a CUDNN implementation for the LSTM, which uses low level
routines to reduce the running time of each operation. Conversely, the implementation
of the NTM relies on higher level tools, making it slower. Nonetheless, the NTM and
the LSTM share similar primitives, therefore a CUDNN implementation for the NTM
is theoretically possible and may reduce the gap. With the current implementation,
learning from very big datasets by means of a NTM-based system may become far too
resource-consuming.

Low latency scenario. Industrial systems may need to predict the RUL with a
negligible latency. In a similar scenario, the NTM may not be optimal. In fact, on
the same system as before, the NTM estimates the RUL in around 55 ms (tested on
200 sequences of length 70), whereas the LSTM takes around 3 ms. As before, this is
due to the usage of high level tools for the NTM, and it may be alleviated by changing
implementation. Nonetheless, at the current state, if the RUL estimation system needs
to perform a prediction with a really low delay (near real-time), then a LSTM-based
implementation is preferable although with an inferior accuracy.

9.4.7 Summary of the main results

To ease the reading of the experimental section, the main results and major takeaways
are summarized here:

• the NTM achieves lower estimation error than the LSTM, while also using fewer
learnable parameters (hence, a smaller memory footprint);

• a longer temporal context is beneficial for the NTM, whereas the prediction accu-
racy of the LSTM worsens as the sequences become longer;

• the piece-wise degradation function commonly used to label the CMAPSS dataset
limits the predictions made by the model, which becomes unable to predict high
RUL values at testing time;

• the NTM performs better than approaches following a similar architecture, espe-
cially when multiple fault conditions affect the measurements;

• the simple architecture proposed in this Chapter competes with state-of-the-art
approaches which use additional optimization steps and more complex or deeper
architectures;

• it takes longer to train the NTM, when compared to the LSTM;

• the NTM provides a prediction with a longer delay than the LSTM.

9.5 Conclusions and future work

In this Chapter, the Neural Turing Machines are thoroughly analyzed for the Remaining
Useful Life estimation problem. The advantages provided by having access to the addi-
tional memory are confirmed by an extensive experimental section which shows that the
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NTM can automatically extract useful features directly from the raw sensor measure-
ments, obtaining better performance than MLP-, CNN-, and LSTM-based solutions:
these performance are observed in terms of absolute estimation error, but also in three
relative directions, that is parameter efficiency (fewer learnable parameters), memory
efficiency (lesser memory footprint), and better usage of temporal context (longer se-
quences provide useful information to the NTM, whereas for the LSTM this does not
hold). These results are empirically confirmed on two public datasets: the widely used
C-MAPSS dataset [245] provided by NASA, and the recently released PHM Society 2020
Data Challenge [260]. The evidences also suggest that the NTM outperforms the LSTM
when multiple operating conditions and fault modes affect the sensor measurements:
this may be strategic in industrial settings, since complex machinery contain several de-
teriorating components. Moreover, since these faults may require more time to develop,
being able to learn from a longer temporal context may be fundamental to catch them
before they happen, therefore raising further interest towards the NTM. Furthermore,
even though in this Chapter the NTM is used as the only feature extraction compo-
nent, it can still achieve comparable and even competitive results to state-of-the-art
techniques using ensemble of models, additional pretraining, etc. Therefore, combining
the NTM with other state-of-the-art techniques may lead to additional improvements.

There is still room for research. In the experimental results, it is shown that the
labeling function [99] commonly used for this task may not be the best choice and can
highly affect the final performance. This is especially crucial for the datasets where the
time series in the testing set have a higher groundtruth RUL than the maximum value
used during the labeling step and therefore used to perform the training process. To
address this, the community is actively seeking new solutions (e.g. Elsheikh et al. [63])
but, to date, no definitive solutions are found. Finally, some limitations of the NTM
were also highlighted and contextualized to industrial scenarios, leaving further space
for extensions and future works.
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