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Abstract: Lacticaseibacillus spp. are genetically close lactic acid bacteria species widely used in
fermented products for their technological properties as well as their proven beneficial effects on
human and animal health. This study, the first to include such a large collection of heterogeneous
isolates (121) obtained from international collections belonging to Lacticaseibacillus paracasei, aimed
to characterize the safety traits and technological properties of this important probiotic species,
also making comparisons with other genetically related species, such as Lacticaseibacillus casei and
Lacticaseibacillus zeae. These strains were isolated from a variety of heterogeneous sources, including
dairy products, sourdoughs, wine, must, and human body excreta. After a preliminary molecular
characterization using repetitive element palindromic PCR (Rep-PCR), Random Amplification of
Polymorphic DNA (RAPD), and Sau-PCR, particular attention was paid to safety traits, evaluating
antibiotic resistance profiles, biogenic amine (BA) production, the presence of genes related to the
production of ethyl carbamate and diaminobenzidine (DAB), and multicopper oxidase activity (MCO).
The technological characteristics of the strains, such as the capability to grow at different NaCl and
ethanol concentrations and different pH values, were also investigated, as well as the production
of bacteriocins. From the obtained results, it was observed that strains isolated from the same
type of matrix often shared similar genetic characteristics. However, phenotypic traits were strain-
specific. This underscored the vast potential of the different strains to be used for various purposes,
from probiotics to bioprotective and starter cultures for food and feed production, highlighting the
importance of conducting comprehensive evaluations to identify the most suitable strain for each
purpose with the final aim of promoting human health.

Keywords: probiotics; fermentations; food safety; food technology; Lacticaseibacillus spp.; lactic
acid bacteria

1. Introduction

The revised Lactobacillus genus, recently reclassified into 25 genera, comprises
261 bacterial species, including many renowned for their technological traits [1,2]. Among
these, the newly categorized Lacticaseibacillus genus is particularly noteworthy, containing
two genetically correlated species of significant interest—Lacticaseibacillus paracasei and Lac-
ticaseibacillus casei—from which Lacticaseibacillus zeae was further differentiated [3]. These
closely related species were formerly challenging to distinguish taxonomically before the
widespread use of Next-Generation Sequencing (NGS) techniques [4]. They are found in
diverse environments such as the gastrointestinal tract of animals and humans, as well as
various foods and beverages like milk, meat, vegetables, cereals, beer, and wine, and have
garnered significant interest [5]. The importance of Lbs. paracasei is particularly notable
for its role in modulating the gut microbiota, which is now understood to be far more
complex and influential than previously thought [6,7]. Numerous strains of Lbs. casei,
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Lbs. zeae, and Lbs. paracasei find application in food preservation and serve as starters for
fermented dairy, plant-based, and meat products. Furthermore, an expanding range of
commercial products leverage the probiotic properties of these lactic acid bacteria, either
alone or incorporated into foods, to promote human health by modulating gastrointestinal
microbiota and producing beneficial metabolites [8].

Given their increasing relevance, it becomes imperative to assess specific properties
of new strains to enhance understanding and explore new applications. The study of
Lbs. paracasei opens new avenues in the development of both traditional and innovative
probiotics, prebiotics, and postbiotics, enhancing their effectiveness and expanding their
use. This includes exploring how Lbs. paracasei can contribute to broader health benefits
beyond gut health, such as influencing the gut–brain axis; managing chronic inflammation;
and addressing autoimmune disorders, arthritis, obesity, skin disorders, and food allergies.
In this regard, it is crucial that these strains withstand the stresses of industrial processes and
adapt to the physicochemical characteristics of the matrix into which they are inoculated.

Despite their generally recognized as safe (GRAS) status, all strains used in the food
sector must undergo taxonomic identification and genetic and phenotypic characterization,
as recommended by EFSA [9–11]. Beyond identifying resistance and virulence factors
that may pose health risks to vulnerable individuals or genes transferable via horizontal
transmission to other microorganisms [12,13], it is essential to investigate the presence
of harmful metabolisms such as biogenic amines (BAs) and ethyl carbamate production.
BAs, primarily produced by the microbial decarboxylation of amino acids found in many
foods, can have toxicological effects if ingested in large amounts, causing allergic reactions,
vomiting, hypertension, and headaches [14,15]. However, certain Lacticaseibacillus spp.
strains possess enzymes capable of degrading these compounds, offering a potential
solution [16].

Therefore, this study aimed to investigate the genetic heterogeneity of a large collection
consisting of 121 Lbs. paracasei strains, which were also compared with 6 Lbs. casei and
2 Lbs. zeae strains. The smaller number of Lbs. casei and Lbs. zeae strains in this study is due
to the difficulty of isolating them in nature and obtaining them from collections. However,
considering their close genetic correlation, their inclusion in the characterization allowed
for better defining the borders among the species and aimed to shed light on possible
species-specific traits. The microorganisms, previously identified [4] using species-specific
PCRs and high-resolution melting analysis (HRM), underwent genetic characterization via
Rep-PCR, RAPD, and Sau-PCR. The evaluation also encompassed assessing the presence
of arcABC genes related to ethyl carbamate metabolism and BA production, as well as their
growth capabilities under various conditions, including different concentrations of NaCl
and ethanol, pH levels, antibiotic resistance, production of BAs, BA-degrading activity, and
production of antimicrobial compounds. This comprehensive assessment, conducted across
a significant number of strains, aimed to broaden our understanding of both the genetic
and phenotypic characteristics of these three species, which are of both technological and
food safety importance.

2. Materials and Methods
2.1. Bacterial Strains and Culture Conditions

The strains, originating from various sources or obtained from international collections,
were gathered by the University of Udine, University of Basilicata, and University of Molise,
resulting in a total of 129 strains belonging to the species Lbs. casei (6 strains), Lbs. zeae
(2 strains), and Lbs. paracasei (121 strains) (Table 1). Their identification was previously
conducted, as documented in a prior study, through species-specific PCR followed by
HRM (high-resolution melting) analysis [4]. The strains were cryopreserved at −80 ◦C in
cryovials containing DeMan, Rogosa, and Sharpe broth (MRS, Oxoid, Waltham, MA, USA)
supplemented with 20% glycerol. Prior to subsequent analyses, they were streaked twice
on MRS Agar and incubated under microaerophilic conditions at 30 ◦C for 48 h to check
their purity.
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Table 1. List of strains studied in this work, with their isolation source.

Origin Given Identification

Raw and heat-treated milk, yogurt, milking machines

Lbs. paracasei: LMG9192 1, DSM5622 2, P1E6 3, P2P3 3, Mo4 14, DialYac1 14, DialYac2 14, DialYac3 14,
DialYac4 14, DialYac5 14, DialYac6 14, DialYac7 14, DialYac8 14, DialDan1 14, DialDan2 14, DialDan3 14,
DialDan4 14, DialDan5 14, DialDan6 14, DialDan7 14, DialDan8 14

Lbs. paracasei subsp. tolerans: LMG9191 1, DSM20258 2

Green, creamy, seasoned cheeses
(Italian cheeses: Scamorza, Parmigiano Reggiano, Grana

Padano, Spressa, Asiago, Montasio, Canestrato di
Moliterno, Morlacco, Bellunese, Pecorino, Caciocavallo,
Provolone, Emmenthal, Raclette de Savoie; Chinese and

Tunisian cheeses)

Lbs. zeae: CI4368 11

Lbs. paracasei: LMG 6904 1, LMG25880 1, LMG25883 1, LMG12164 1, DBPZ0420 7, DBPZ0421 7, DBPZ0422 7,
DBPZ0424 7, DBPZ0434 7, DBPZ0435 7, DBPZ0450 7, DBPZ0451 7, DBPZ0472 7, DBPZ0475 7, DBPZ0476 7,
DBPZ0477 7, DBPZ0478 7, DBPZ0635 7, DBPZ0733 7, DBPZ0734 7, M266 7, M268 7, M299 7, M308 7, M348 7,
M354 7, M359 7, S1 7, S3 7, V3 7, W11 7, DSG03 7, DSG05 7, DSG07 7, ESG10 7, HSG09 7, PSG06 7, PSG09 7,
PSG10 7, P71 8, TH1229 8, SP57 8, L24 8, TH406 8, FSL346 9, FSL451 9, DBPZ0436 7, TMW1.1444 5, TMW1.1259
5, LACcas7 6, Cst7 10, 3LC 10, DBPZ0718 7, CF143 11, R61 12, F17 12, N24 14, H12 12

Fermented sausages Lbs. paracasei: CTC1675 13

Sourdoughs Lbs. casei: DBPZ0571 7

Lbs. paracasei: DBPZ0561 7, DBPZ0572 7, Q2 7, Q4 7, I1 4, I2 15, DBPZ0563 7, DBPZ0564 7, DBPZ0579 7, I3 15

Wine, must, cellar equipment Lbs. paracasei: LMG11961 1, LMG11963 1, LMG13717 1, LMG13731 1, B061 16, B161 16, B169 16, B171 16, B195
16, B196 16, B350 16

Beer, malt Lbs. paracasei: LACcas25 6, LACcas29 6, TMW 1.300 5

Corn steep liquor Lbs. zeae: DSM20178 2

Humans
(saliva, dental caries, blood, urethra, faeces of infants

and adults)

Lbs. casei: LMG23516 1, N87 15, N811 15, DSM4905 2, N2014 15

Lbs. paracasei: DSM20020 2, LMG9438 1, LMG11459 1, LMG23511 1, LMG23518 1, LMG23523 1, LMG23538 1,
LMG23543 1, LMG24098 1, LMG24101 1, LMG24132 1, DBTA34 17, N161 15, N42 15, N44 15, N76 15,

Unknown Lbs. paracasei: NRRL B-456 18

1 LMG: BCCM/LMG, Belgian Co-ordinated Collections of Micro-organisms (BCCM™), Ghent, Belgium. 2 DSM:
DSM, Deutsche Sämmlung von Mikroorganismen und Zellkülturen, Braunschweig, Germany. 3 Dipartimento di
Agraria, Università degli Studi di Sassari, Sassari, Italy. 4 Harmonium International Inc., Mirabel, QC, Canada.
5 Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Freising, Germany. 6 Dipartimento di
Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, Italy. 7 Scuola di Scienze
Agrarie, Alimentari e Ambientali, Università degli Studi della Basilicata, Potenza, Italy. 8 Università degli Studi di
Verona, Dipartimento di Biotecnologie, Strada le Grazie 15, Verona, Italy. 9 Istituto Zooprofilattico Sperimentale
della Sardegna, Sassari, Italy. 10 Istituto sperimentale Lattiero Caseario—I.L.C., Lodi, Italy. 11 Dipartimento di
Scienze e Tecnologie Agro-Alimentari, Unversità degli Studi di Bologna, Bologna, Italy. 12 Dipartimento di Scienze
delle Produzioni Agrarie e Agroalimentari, Università degli Studi di Catania, Catania, Italy. 13 Institut de Recerca
I Technologia Agroalimentaries (IRTA), Lleida, Spain. 14 Dipartimento di Scienze degli Alimenti, Università
degli studi di Udine, Udine, Italy. 15 Dipartimento di Agricoltura, Ambiente e Alimenti, Unversità degli Studi
del Molise, Campobasso, Italy. 16 Institute for Wine Biotechnology Department of Viticulture and Oenology,
Stellenbosh University, South Africa. 17 Dipartimento di Biotecnologie, Università degli Studi di Verona, Verona,
Italy. 18 ARS Culture (NRRL) Collection, United States Department of Agriculture, USA.

2.2. DNA Extraction from Pure Colonies

For DNA extraction, pure colonies were cultured for 48 h at 30 ◦C in MRS broth (Oxoid).
Subsequently, 2 mL of the cultures was centrifuged at 10,000× g for 10 min at 4 ◦C to pellet
and harvest the cells. The DNA extraction was performed using the MasterPureComplete™
DNA & RNA Purification Kit (Epicentre Biotechnologies, Madison, USA) following the
manufacturer’s instructions.

2.3. Rep-PCR, RAPD, and Sau-PCR Analyses

The molecular characterization was performed according to Iacumin et al. 2020 [17]. A
Rep-PCR analysis was performed using the (GTG)5 primer (5′-GTGGTGGTGGTGGTG-3′) [18],
using the following reaction mix: 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl2,
0.2 mM each dNTPs, 1 µM primer (GTG)5, 1.25 U/L Taq-polymerase (Applied Biosystem,
Waltham, USA), and 100 ng of DNA, for a total volume of 25 µL. The reactions were carried
out using a Euroclone Thermal Cycler (Celbio, Milan, Italy), and the amplification protocol
consisted of 31 cycles of denaturation at 94 ◦C for 3 s, followed by one step at 92 ◦C for 30 s,
annealing at 40 ◦C for 1 min, and extension at 65 ◦C for 8 min. The initial denaturation was
at 95 ◦C for 2 min and the final extension at 65 ◦C for 8 min.

The RAPD analysis was performed using the M13 primer (5′-GAGGGTGGCGGTTCT-3′) [19],
using the following reaction mix: 10 mM Tris-HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl2,
0.2 mM each dNTPs, 1 µM primer M13, 1.25 U/L Taq-polymerase (Applied Biosystem),
and 100 ng of the extracted DNA, for a total volume of 25 µL. The reactions were carried
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out in a Euroclone Thermal Cycler (Celbio) and the amplification protocol consisted of
35 repetitions of 94 ◦C for 1 min, 38 ◦C for 1 min, ramp to 72 ◦C at 0.6 ◦C/s, and 72 ◦C for
2 min. At the beginning of the reaction, an initial denaturation step at 94 ◦C for 5 min was
performed and a final extension at 72 ◦C for 5 min was carried out.

The Sau-PCR analysis was performed using one microliter of Sau3AI restriction
endonuclease (10 U/µL) to digest 200 ng of DNA overnight at 37 ◦C in a final vol-
ume of 20 µL. After the enzymatic restriction, the amplification was performed using
SAG1 primer (5′-CCGCCGCGATCAG-3′) [20], using the following reaction mix: 10 mM
Tris–HCl (pH 8.3), 50 mM KCl, 1.5 mM MgCl2, 0.2 mM dNTPs, 2 µM primer SAG1, 1.25 U/L
Taq-polymerase (Applied Biosystem), and 1 µL of the digested DNA, for a total volume of
50 µL. The reactions were carried out using an Euroclone Thermal Cycler (Celbio), using
the following protocol: 25 ◦C for 5 min, ramp to 60 ◦C at 0.1 ◦C/s, 60 ◦C for 30 s, 2 cycles of
95 ◦C for 1 min, 50 ◦C for 15 s, ramp to 25 ◦C at 0.1 ◦C/s, ramp to 50 ◦C at 0.1 ◦C/s, 50 ◦C
for 30 s, 35 cycles of 94 ◦C for 15 s, 46 ◦C for 1 min, 65 ◦C for 2 min, and a final extension at
65 ◦C for 2 min.

The PCR products obtained from these techniques were separated in a 1.5% (w/v)
agarose gel in TBE 0.5× at 120 V, for 6 h for RAPD and Rep-PCR and 4 h for Sau-PCR,
and stained for 30 min at the end of the electrophoretic run in TBE 0.5× buffer containing
ethidium bromide 0.25 µL/mL (Merck, Darmstadt, Germany). The digital images of the
gels were acquired through the BioImaging System GeneGenius imaging software v1.5.7.0
(Syngene, Bangalore, India).

The fingerprints analysis was carried out with the Gel Compare II software Version 4.1
(Applied Maths, Sint-Martens-Latem, Belgium), calculating their similarity using Pearson
product-moment correlation coefficients. Dendrograms were obtained by means of the un-
weighted pair group method using arithmetic average (UPGMA) clustering algorithms [21].

2.4. Growth Capabilities

The resistance of the strains to stressful conditions was assessed by cultivating them in
modified MRS broth. Initially, pure colonies were inoculated into MRS broth and incubated
at 30 ◦C for 24 h. Subsequently, the cultures were centrifuged at 1500× g for 5 min, and
the resulting pellets were washed twice with a maximum recovery diluent (0.1% w/v
bacteriological peptone and 0.85% w/v NaCl at pH 7). The cellular pellets were then
used to prepare standardized suspensions with an OD600 of 0.1 (corresponding to 107

cfu/mL), which were inoculated in triplicate for each experiment in the modified media
at a final concentration of 102 CFU/mL. The analysis was conducted in the wells of a
96-well microplate with a U-bottom, containing a final volume of 200 µL of MRS broth
modified with varying concentrations of NaCl (2%, 4%, and 6.5% w/v) or ethanol (12%
and 15% v/v) or adjusted to different pH levels using HCl (pH 3.2, 3.8, 4.2, and 4.6). The
microplates were then incubated at 30 ◦C, and the optical density at 600 nm was measured
after 3, 24, and 48 h using a TECAN SUNRISE microplate reader (Tecan, Switzerland).
Based on the change in optical density after 48 h of incubation, the strains were classified as
sensitive (OD600 from 0 to 0.3), intermediate (OD600 from 0.3 to 0.9), or resistant (OD600 from
0.9 to 1.5) to the tested growth conditions.

2.5. Antibiotic Resistance

The antibiotic resistance profiles of the strains were determined using an antibiotic-
susceptible disk diffusion assay (Oxoid) [22]. A panel of antibiotics was employed, in-
cluding cefoperazone 30 µg (CFP30), cefazolin 30 µg (KZ30), chloramphenicol 10 µg (C10),
clindamycin 10 µg (DA10), erythromycin 30 µg (E30), kanamycin 30 µg (K30), ofloxacin
5 µg (OFX5), quinupristin/dalfopristin 15 µg (QD15), rifampicin 30 µg (RD30), strepto-
mycin 25 µg (S25), tetracycline 10 µg (TE10), tobramycin 10 µg (TOB10), and vancomycin
30 µg (VA30). For each trial, bacterial suspensions with an OD600 of 0.1 were prepared
from a single colony inoculated in MRS broth and then incubated for 24 h at 37 ◦C. Sub-
sequently, the antibiotic-susceptible disk diffusion assay was conducted on MRS agar
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plates that had been previously inoculated with 100 µL of the bacterial suspension. The
plates were then incubated under microaerophilic conditions for 24 h at 37 ◦C. Following
incubation, the diameters of the inhibition zones were measured using calipers, and the
results were interpreted according to the method outlined by Charteris et al., 1998 [23], clas-
sifying each strain as sensitive (S), intermediate (I), or resistant (R) to each tested antibiotic.
Staphylococcus aureus ATCC25923, Escherichia coli ATCC35218, Pseudomonas aeruginosa ATCC
27853, Haemophilus influenza ATCC49247, Neisseria gonorrhoeae ATCC49226, Streptococcus
pneumoniae ATCC 49619, and Escherichia coli ATCC35218 were used as reference strains.

2.6. Antimicrobial Capabilities (Bacteriocin Production)

The production of antimicrobial peptides was assessed using an agar well diffusion
assay [24]. To obtain the cell-free supernatant, cultures incubated overnight in MRS broth
at 30 ◦C were centrifuged for 10 min at 7000× g. Subsequently, the supernatant was
filtered through a 0.2 µm pore-size cellulose acetate filter. The filtered supernatant was then
divided into three aliquots: one aliquot was used without any modification, one aliquot
was pH-adjusted to 6.5 as a control to avoid the antimicrobial effect caused by acidity,
and the last aliquot was treated with proteinase K (2 mg/mL, Merck) to deactivate any
peptides with potential antimicrobial activity and catalase (1 mg/mL, Merck) to remove the
hydrogen peroxide. The effects of these supernatants were tested on Brain Heart Infusion
(Oxoid) soft agar plates (0.01 g/mL agar) inoculated with Listeria monocytogenes ATCC7644,
Staphylococcus aureus DSM 4910, Escherichia coli DSA 21, or Salmonella enteritidis DSA 11
sourced from the strain collection of the University of Udine. Four wells, each 5 mm in
diameter, were made in each plate and filled with 100 µL of the overnight LAB cultures,
the filtered supernatant, the pH 6.5 filtered supernatant, or the pK-treated supernatant.
Following incubation of the plates for 24 h at 37 ◦C, the presence of inhibition zones around
the wells was observed to determine the antimicrobial activity. Trials were conducted
in triplicate.

2.7. Biogenic Amine (BA) Production

Biogenic amine production was evaluated following the method described by Bover-
Cid and Holzapfel, 1999 [25]. Briefly, a single bacterial colony was selected and inoculated
into MRS broth supplemented with 0.1% of each amino acid precursor (tyrosine free base,
histidine monohydrochloride, ornithine monohydrochloride, arginine hydrochloride, and
lysine hydrochloride; Merck), along with 0.005% pyridoxal-5-phosphate (Merck), and
then incubated overnight at 30 ◦C. This process was repeated five times, after which
the cultures were transferred to Bover-Cid agar and broth mediums and incubated for
48 h at 30 ◦C. A color change from yellow to purple in both agar and broth indicated a
positive result for specific biogenic amine production. Each trial was repeated in tripli-
cate. Additionally, a multiplex PCR assay was performed to detect the presence of hdc,
tyrdc, agdi, and odc genes, associated with the production of histamine, tyramine, ornithine,
and putrescine, respectively, confirming the target gene by sequencing the PCR amplifi-
cation products (Eurofins Genomics, Germany) according to the protocols described by
Coton et al., 2010 [26]. Enterococcus faecalis EF37 (for tyrdc and agdi), Streptococcus ther-
mophilus PRI60 (for hdc), and Lacticaseibacillus rhamnosus N132 (for odc) sourced from the
collection of the University of Udine were used as positive controls.

2.8. arcABC Gene Presence

The strains were screened for the presence of arcABC genes, coding for enzymes in-
volved in the arginine dihydrolase system (ADI) pathway in Lacticaseibacillus spp. To detect
the presence of arcABC genes, degenerate primers addressing arcA (arginine deiminase),
arcB (ornithine transcarbamylase), and arcC (carbamate kinase) genes that produced ampli-
cons of 266 bp, 181 bp, and 343 bp, respectively, were used as described by Araque et al.,
2009 [27]. Lactiplantibacillus plantarum 64 and Lpb. plantarum 70 (strain collection of the
Viticulture and Oenology Department, Stellenbosch University, South Africa) were used as
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positive controls. After PCR, amplicons were resolved by electrophoresis on 1.5% (w/v)
agarose gels in 0.5× TBE buffer supplemented with 0.025% (v/v) ethidium bromide (EtBr)
and sequenced to confirm the target gene (Eurofins Genomics).

2.9. Diaminobenzidine (DAB) Assay and Multicopper Oxidase (MCO) Detection

The diaminobenzidine (DAB) assay and multicopper oxidase (MCO) detection were
conducted according to the protocols outlined by Callejón et al., 2014 [28]. Initially, a
single colony was inoculated onto modified MRS agar supplemented with L-cysteine
(0.5 g/L) and biogenic amines (putrescine, tyramine, and histamine) at concentrations of
10 mg/L each, followed by overnight incubation at 37 ◦C. Subsequently, the overnight cul-
tures underwent centrifugation at 10,000× g for 10 min, and the resulting cell pellets were
washed twice with 25 mL of a 50 mM solution of sodium phosphate buffer (pH 7.4). After
the second wash, the cells were resuspended in 500 µL of the same buffer supplemented
with 1 mM phenylmethylsulfonyl fluoride (PMSF). The suspensions were transferred to
1.5 mL tubes containing 1 g of glass beads and subjected to agitation using a Qiagen Shaker
for 10 cycles of 40 s each, with the tubes being placed on ice for 5 min after 5 cycles. To
recover the cell extract, the tubes were then centrifuged at 10,000× g for 15 min. After,
25 µL of each sample was mixed with gel loading buffer 2× (Merck), loaded in a polyacry-
lamide gel (stacking 4% and non-denaturing 8%), and electrophoresed with a Miniprotean
(BioRad, Hercules, CA, USA) for 1 h at 30 mA in Tris–glycine buffer (25 mM Tris base and
192 mM glycine). After the electrophoretic run, the gel was used to assess DAB and MCO
activities. Amine-degrading activity was detected by placing the gel in a sodium phos-
phate buffer (50 mM, pH 7.4) containing 1 mM histamine, tyramine, and putrescine. After
15 min, the gel was transferred to a sodium phosphate buffer (50 mM, pH 7.4) supple-
mented with horseradish peroxidase (1000 U/L) and diaminobenzidine (DAB, 0.25 mM).
After 3 h, the gels were examined: a brown color on the active band meant the presence of
amine-degrading activity. MCO activity was assessed by immersing the gels in a sodium
acetate buffer (100 mM, pH 4) containing 10 mM 2,6-dimethoxyphenol (DMP). After
5 min, the gels were transferred to the same buffer supplemented with 1 mM CuSO4. After
10 min, the gels were observed, and the presence of an orange-yellow band indicated MCO
activity. Trials were conducted in triplicate for each strain.

3. Results and Discussion
3.1. Rep-PCR, RAPD, and Sau-PCR Molecular Characterization

The fingerprinting analysis revealed the formation of 21 clusters based on the Rep-PCR
results, with an 83% similarity coefficient (Figure 1A). Despite the absence of correlations
linked to species or geographical origin, three main clusters (V; IX; and, notably, cluster
XIV, consisting solely of strains isolated from foods) displayed a notable correlation based
on their isolation matrix (Figure 1B).

Similarly, the RAPD-PCR fingerprints were clustered with an 83% similarity threshold.
The strains formed 16 clusters and 13 single strains. The results revealed three primary
clusters (IV, VI, and VII), along with others (I, II, III, IX, and XV) (Figure 2A), which again
showed a strong correlation with food origin (Figure 2B).

In the Sau-PCR analysis, conducted with a more stringent similarity coefficient of 87%,
the comparison of fingerprints resulted in the formation of 22 clusters, leaving 18 strains
ungrouped (Figure 3A). Despite the increased discriminatory power of this similarity
threshold, it was evident that the primary clusters (II and XIII), as well as others (III and
XII), exhibited a heterogeneous composition of strains isolated from both food and human
matrices (Figure 3B).
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Figure 1. (A) Cluster analysis using Pearson product-moment correlation coefficients and unweighted
pair group method using an arithmetic average (UPGMA) of the profiles obtained by Rep-PCR analy-
sis of the different tested strains. A similarity coefficient of 83% was arbitrarily chosen. The identified
clusters are indicated with Roman numerals. Strain DBPZ0420 did not provide a comparable Rep
profile to the other strains, so it was not included in this figure. (B) The table within the figure shows
the composition of the clusters, also in relation to their source of isolation.

The differences in the obtained results, consistent with findings from the literature
utilizing Rep-PCR [29–31], RAPD [32], and Sau-PCR [20], testified the high genetic variabil-
ity of the strains, which was differently detected by the three techniques. Interestingly, no
distinct grouping based on species was observed; instead, clustering primarily occurred
based on the source of isolation. For instance, the RAPD analysis revealed a similarity of
over 80% between the Lbs. casei, Lbs. zeae, and Lbs. paracasei strains isolated from both hu-
man faeces and dairy products [33,34], thus resulting in non-discriminatory methodologies.
Conversely, a recent study suggests that Rep-PCR and RAPD, in conjunction with other
techniques, possess the capability to differentiate between the two species [35].
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3.2. Stress Resistance

The growth capabilities of various strains may reveal intriguing functional potentials
for both probiotic and technological applications. Through the experiments conducted in
this study, the capability of the strains to grow at different concentrations of NaCl (2, 4, and
6.5% w/v), ethanol (12–15% v/v), and different pH values (3.2, 3.8, 4.2, 4.6) did not show a
correlation with their isolation matrix or geographical origin. Instead, the results indicated
that resistance to different stresses was a strain-specific trait. In total, only thirteen strains
demonstrated resilience to all tested conditions: two Lbs. casei (DBPZ0571; N2014) and
eleven Lbs. paracasei (LMG11961; LMG23518; LMG24101; DBPZ0324; DBPZ0563; DBPZ0579;
Q4; M354; I3; DialDan5; DialYak5). As depicted in Figure 4, the majority of the analysed
strains exhibited sensitivity to low pH values, results consistent with findings from other
studies, in which only few strains managed to thrive at pH values lower than 3.5 [36–41],
3.0 [42], or even 2.5 [43], thus confirming the strain-specific nature of these characteristics.



Nutrients 2024, 16, 2212 9 of 20
Nutrients 2024, 16, x FOR PEER REVIEW 9 of 21 
 

 

 
Figure 3. (A) Cluster analysis using Pearson product-moment correlation coefficients and un-
weighted pair group method using an arithmetic average (UPGMA) of the profiles obtained by the 
SAU-PCR analysis of the different tested strains. A similarity coefficient of 87% was arbitrarily cho-
sen. The identified clusters are indicated with Roman numerals. (B) The table within the figure 
shows the composition of the clusters, also in relation to their source of isolation. 

3.2. Stress Resistance 
The growth capabilities of various strains may reveal intriguing functional potentials 

for both probiotic and technological applications. Through the experiments conducted in 
this study, the capability of the strains to grow at different concentrations of NaCl (2, 4, 
and 6.5% w/v), ethanol (12–15% v/v), and different pH values (3.2, 3.8, 4.2, 4.6) did not 
show a correlation with their isolation matrix or geographical origin. Instead, the results 
indicated that resistance to different stresses was a strain-specific trait. In total, only thir-
teen strains demonstrated resilience to all tested conditions: two Lbs. casei (DBPZ0571; 
N2014) and eleven Lbs. paracasei (LMG11961; LMG23518; LMG24101; DBPZ0324; 
DBPZ0563; DBPZ0579; Q4; M354; I3; DialDan5; DialYak5). As depicted in Figure 4, the 
majority of the analysed strains exhibited sensitivity to low pH values, results consistent 
with findings from other studies, in which only few strains managed to thrive at pH values 
lower than 3.5 [36–41], 3.0 [42], or even 2.5 [43], thus confirming the strain-specific nature 
of these characteristics.  

On the other hand, over 96.5% of the strains demonstrated resistance to NaCl at con-
centrations of 2% and 4%. However, at a concentration of 6.5%, resistance was observed 
in 81.5% of the strains. These findings are in agreement with several studies documenting 
the ability of Lacticaseibacillus spp. strains to grow at NaCl concentrations of 6–6.5% [44–
46], and some strains were also reported to survive above 12% of NaCl [47]. However, 
other studies have reported either the inability of strains to grow above 4% [48] or, on the 
contrary, to survive concentrations above 10% [42], emphasizing the strain-specific 

Figure 3. (A) Cluster analysis using Pearson product-moment correlation coefficients and unweighted
pair group method using an arithmetic average (UPGMA) of the profiles obtained by the SAU-PCR
analysis of the different tested strains. A similarity coefficient of 87% was arbitrarily chosen. The
identified clusters are indicated with Roman numerals. (B) The table within the figure shows the
composition of the clusters, also in relation to their source of isolation.

Nutrients 2024, 16, x FOR PEER REVIEW 10 of 21 
 

 

resistance to this factor, potentially attributable to modifications in cell wall structural 
properties [49]. Furthermore, 64.6% of the analysed strains exhibited the ability to tolerate 
ethanol concentrations of 12% v/v, with 40% extending their tolerance up to 15% v/v etha-
nol. These findings are consistent with other studies [50,51], although significant differ-
ences in strain responses are evident across the literature for Lacticaseibacillus spp. 

 
Figure 4. Stress resistance results for pH, NaCl (%), and ethanol (%) expressed as relative percentage 
of resistant, intermediate, or sensitive strains. 

3.3. Antibiotic Resistance  
The importance of studying the resistance profiles of Lbs. casei, Lbs. zeae, and Lbs. par-

acasei lies in their extensive use as microbial starters or probiotics [52], as well as their 
presence in diverse environments where they may coexist with pathogens without barri-
ers [53]. Lactobacilli are generally recognized as safe (GRAS). However, in certain in-
stances, especially in vulnerable individuals, specific strains have been linked to endocar-
ditis or bacteremia. Therefore, it is imperative to thoroughly assess the resistance factors 
in strains intended for human use. Intrinsic resistance, such as vancomycin resistance in 
heterofermentative lactobacilli, is not horizontally transferable, whereas resistance genes 
acquired via plasmids or transposons can be transferred [12]. For this reason, the Euro-
pean Commission proposed that the safety evaluation of microorganisms used in food 
production could prioritize the detection of transmissible antibiotic resistance markers 
[54]. 

Based on the evidence gathered in this study and consistent with findings from other 
researchers, it was observed that the majority of the strains (>80%) exhibited resistance to 
aminoglycosides such as kanamycin [23,44,55], streptomycin [23,44,56], and vancomycin 
[23,55,57,58], with this resistance being considered intrinsic to the species. Additionally, 
most strains displayed resistance to tobramycin, although documentation of this re-
sistance in the literature is limited [59], as well as resistance to ofloxacin [60]. However, 
many strains resulted in being sensitive versus all the other tested antibiotics, as con-
firmed for Lactobacillus spp. by other studies [23,52,53,61]. 

Among the results obtained, eight strains with particular resistance profiles were 
identified (Table 2). Among these, Lbs. paracasei DBPZ0478 exhibited resistance to most of 
the tested antibiotics, except for clindamycin, quinupristin/dalfopristin, and rifampicin. 
Some strains isolated from yogurt showed sensitivity to tobramycin but were resistant to 
erythromycin. Lbs. paracasei DialDan8 emerged as the most sensitive strain, demonstrating 
kanamycin resistance and intermediate resistance to erythromycin and tobramycin. Sur-
prisingly, Lbs. paracasei M308 and DialDan8 resulted in being sensitive to vancomycin. 
This finding contradicts established knowledge, which suggests that some LABs, includ-
ing Lbs. casei and Lbs. rhamnosus, are intrinsically vancomycin resistant [62]. However, in 

Figure 4. Stress resistance results for pH, NaCl (%), and ethanol (%) expressed as relative percentage
of resistant, intermediate, or sensitive strains.



Nutrients 2024, 16, 2212 10 of 20

On the other hand, over 96.5% of the strains demonstrated resistance to NaCl at con-
centrations of 2% and 4%. However, at a concentration of 6.5%, resistance was observed in
81.5% of the strains. These findings are in agreement with several studies documenting the
ability of Lacticaseibacillus spp. strains to grow at NaCl concentrations of 6–6.5% [44–46],
and some strains were also reported to survive above 12% of NaCl [47]. However, other
studies have reported either the inability of strains to grow above 4% [48] or, on the con-
trary, to survive concentrations above 10% [42], emphasizing the strain-specific resistance
to this factor, potentially attributable to modifications in cell wall structural properties [49].
Furthermore, 64.6% of the analysed strains exhibited the ability to tolerate ethanol con-
centrations of 12% v/v, with 40% extending their tolerance up to 15% v/v ethanol. These
findings are consistent with other studies [50,51], although significant differences in strain
responses are evident across the literature for Lacticaseibacillus spp.

3.3. Antibiotic Resistance

The importance of studying the resistance profiles of Lbs. casei, Lbs. zeae, and Lbs.
paracasei lies in their extensive use as microbial starters or probiotics [52], as well as
their presence in diverse environments where they may coexist with pathogens without
barriers [53]. Lactobacilli are generally recognized as safe (GRAS). However, in certain
instances, especially in vulnerable individuals, specific strains have been linked to endo-
carditis or bacteremia. Therefore, it is imperative to thoroughly assess the resistance factors
in strains intended for human use. Intrinsic resistance, such as vancomycin resistance in
heterofermentative lactobacilli, is not horizontally transferable, whereas resistance genes
acquired via plasmids or transposons can be transferred [12]. For this reason, the Euro-
pean Commission proposed that the safety evaluation of microorganisms used in food
production could prioritize the detection of transmissible antibiotic resistance markers [54].

Based on the evidence gathered in this study and consistent with findings from
other researchers, it was observed that the majority of the strains (>80%) exhibited re-
sistance to aminoglycosides such as kanamycin [23,44,55], streptomycin [23,44,56], and
vancomycin [23,55,57,58], with this resistance being considered intrinsic to the species.
Additionally, most strains displayed resistance to tobramycin, although documentation
of this resistance in the literature is limited [59], as well as resistance to ofloxacin [60].
However, many strains resulted in being sensitive versus all the other tested antibiotics, as
confirmed for Lactobacillus spp. by other studies [23,52,53,61].

Among the results obtained, eight strains with particular resistance profiles were
identified (Table 2). Among these, Lbs. paracasei DBPZ0478 exhibited resistance to most of
the tested antibiotics, except for clindamycin, quinupristin/dalfopristin, and rifampicin.
Some strains isolated from yogurt showed sensitivity to tobramycin but were resistant to
erythromycin. Lbs. paracasei DialDan8 emerged as the most sensitive strain, demonstrat-
ing kanamycin resistance and intermediate resistance to erythromycin and tobramycin.
Surprisingly, Lbs. paracasei M308 and DialDan8 resulted in being sensitive to vancomycin.
This finding contradicts established knowledge, which suggests that some LABs, including
Lbs. casei and Lbs. rhamnosus, are intrinsically vancomycin resistant [62]. However, in a
recent study, also Lbs. paracasei subsp. paracasei strain L1, resulted in being sensitive to
vancomycin [63].

Table 2. Differences in antibiotic resistance traits using Lbs. casei LMG23516 as reference strain.

Strain Origin Antibiotics

C
FP

30

K
Z

30

C
10

D
A

10

E3
0

K
30

O
FX

5

Q
D

15

R
D

30

S2
5

T
E1

0

T
O

B
10

V
A

30

Lbs. casei LMG 23516 Human faeces S S S S S R R S S R S R R
Lbs. paracasei DBPZ0478 Caciocavallo R R R S R R R S S R R R R

Lbs. paracasei M308 Canestrato
Moliterno S S S I S R R I S I S R S

Lbs. paracasei DialDan8 Yogurt S S S S I R S S S S S I S
Lbs. paracasei DialYak4 Yogurt S S S S R R I S S R S S R
Lbs. paracasei DialYak5 Yogurt S S S S R R I S S R S S R
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Table 2. Cont.

Strain Origin Antibiotics

C
FP

30

K
Z

30

C
10

D
A

10

E3
0

K
30

O
FX

5

Q
D

15

R
D

30

S2
5

T
E1

0

T
O

B
10

V
A

30

Lbs. paracasei DialYak6 Yogurt S S S S S R I S S R S R R
Lbs. paracasei DialYak7 Yogurt S S S S R R I S S R S S R
Lbs. paracasei DialYak8 Yogurt S S S S R R I S S R S S R

Legend: CFP30, Cefoperazone 30 µg; KZ30, Cefazolin 30 µg; C10, Chloramphenicol 10 µg; DA10, Clindamycin
10 µg; E30, Erythromycin 30 µg; K30, Kanamycin 30 µg; OFX5, Ofloxacin 5 µg; QD15, Quinupristin/Dalfopristin
15 µg; RD30, Rifampicin 30 µg; S25, Streptomycin 25 µg; TE10, Tetracycline 10 µg; TOB10, Tobramycin
10 µg; VA30, Vancomycin 30 µg. S—red colour, sensitive; R—green colour, resistant; I—yellow colour,
intermediate resistance.

3.4. Antimicrobial Activity and Bacteriocin Production

Antibiotic resistance has escalated in recent decades due to inappropriate antibiotic
usage in humans and animals. To address this issue, researchers are exploring alternative
substances to treat and prevent bacterial infections. The utilization of bacteriocins could
serve as an alternative to antibiotics. Additionally, the well-documented antimicrobial
capabilities of lactic acid bacteria (LABs) could be beneficial against foodborne pathogens
and in food preservation [64–68]. The production of lactic acid and hydrogen peroxide
by LABs can obstruct the growth of pathogens due to their bactericidal effect. The bac-
tericidal/bacteriostatic mechanism of lactic acid likely involves the cytotoxic properties
of non-dissociated lactic acid and the insolubility of dissociated lactate, resulting in cyto-
plasmic acidification and the disruption of proton gradient forces. Moreover, this process
may affect the transmembrane pH gradient and reduce the amount of accessible energy for
bacteria to grow [69,70].

In this study, the agar well diffusion test was employed to investigate the production of
peptidic antimicrobial compounds against Listeria monocytogenes ATCC7644, Staphylococcus
aureus DSM 4910, Escherichia coli DSA, and Salmonella enteritidis DSA. However, no strains
capable of producing bacteriocins have been identified. On the contrary, several strains
were capable of directly inhibiting the growth of the four tested pathogens (Figure 5A).
Moreover, thanks to the production of organic acids, several strains inhibited the growth
of L. monocytogenes, E. coli, and S. enteritidis. However, no inhibition was observed versus
S. aureus (Figure 5B). These properties have previously been reported in the literature,
where in several cases, strains of Lbs. casei and Lbs. paracasei have demonstrated the ability
to inhibit the growth of various pathogens, including Acinetobacter baumannii, Bacillus
cereus, Campylobacter jejuni, Citrobacter freundii, Cronobacter sakazakii, Enterobacter cloacae,
Enterococcus faecalis, Enterococcus faecium, E. coli, Klebsiella pneumoniae, L. monocytogenes,
Pasteurella multocida, Proteus mirabilis, Pseudomonas aeruginosa, Salmonella enterica, Salmonella
typhimurium, Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus,
and Streptococcus mutans [48,58,71–74]. Furthermore, to contrast the spread of antibiotic
resistance, further studies could explore the potential use of these lacticaseibacilli, their
supernatants, or cell extracts to counteract the virulence of different pathogens, as reported
in several studies [75].
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3.5. Biogenic Amine (BA) Production

The decarboxylation of amino acids, particularly in nutrient-scarce environments, can
serve as a crucial energy source for microorganisms [76]. Biogenic amines (BAs) are organic
bases with aromatic, aliphatic, or heterocyclic structures, commonly found in various bever-
ages and foods. They are primarily generated by the microbial decarboxylation of precursor
amino acids [14,77]. Histamine, tyramine, putrescine, and cadaverine are among the BAs
typically found in food and beverages. Although their presence often goes undetected due
to a lack of associated decline in sensory quality, high consumption of these amines can
pose toxicity risks to humans [78–82]. While putrescine and cadaverine are considered non-
toxic, they can interfere with histamine and tyramine detoxification processes or potentiate
histamine toxicity, respectively. Tyramine ingestion can lead to headaches, vomiting, and
hypertension, while histamine can induce breathing difficulties, rash, heart palpitations
(allergic-type reactions), low blood pressure, oedema, and vomiting [79,80,83]. The early
detection of potential BA-producing bacteria can prevent BA formation and accumulation
in food products [78,80] and aid in selecting starter cultures that do not produce BAs [76].

Using the method described by Bover-Cid and Holzapfel, 1999, none of the Lbs. casei
and Lbs. zeae strains produced BAs. However, among the Lbs. paracasei strains, strain
B195 produced tyramine, strain PSG10 produced agmatine, and strain B169 produced both
agmatine and tyramine. A multiplex PCR analysis of the genes involved in BA production
revealed that all Lbs. casei and Lbs. zeae strains were negative for all target genes, whereas
six strains of Lbs. paracasei were positive for the agdi gene. Additionally, Lbs. paracasei NRRL
B-456 tested positive for the tyrdc gene and Lbs. paracasei B350 was positive for the hdc
gene. Furthermore, Lbs. paracasei PSG10 tested positive for both the tydc and hdc genes
(Table 3). Comparing the results obtained from the two techniques, only one strain yielded
concordant results. Despite the identification of these genes through molecular techniques,
it was not possible to observe the production of the related BAs. This discrepancy may be
attributed to possible gene silencing or very low expression, making it difficult to detect
the products using conventional plate growth methods [84,85]. Conversely, according to
Buňková et al. (2009), the formation of chemicals with alkaline reactions may have led to
colour changes in the pH indicator in the decarboxylase medium, resulting in false-positive
reactions [77]. Therefore, PCR analysis could be considered a better and more accurate
method for revealing the potential of strains to produce biogenic amines, as it detects strains
possessing genes for corresponding enzyme production. However, it should be underlined
that the presence of a single gene does not always translate into its expression. Indeed,
environmental conditions directly influence microbial metabolism. Therefore, it remains
extremely important to test both the genotypic and phenotypic aspects of microorganisms.
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Table 3. Differences between detected genes and positive reaction in decarboxylase medium in Lbs.
paracasei strains. Legend: +, positive; −, negative.

Gene Biogenic Amine

Strain tyrdc odc agdi hdc Tym Agm or Putr Putr Cad

NRRL
B-456 + − − − − − − −

B085 − − + − − − − −
B161 − − + − − − − −
B169 − − + − + + − −
B195 − − + − + − − −

LacCas7 − − + − − − − −
B350 − − − + − − − −

PSG10 + − − + − + − −
N2014 − − + + − − − −

3.6. arcABC Gene Presence

In this part of the study, the three genes encoding the main enzymes involved in
the arginine deiminase (ADI) pathway were investigated: arcA (arginine deiminase), arcB
(ornithine transcarbamylase), and arcC (carbamate kinase). During the ADI pathway, lactic
acid bacteria produce carbamoyl phosphate and citrulline, which can naturally react with
ethanol to form ethyl carbamate, a potential carcinogenic compound found mainly in wine
and various fermented foods [86,87].

Among all the tested strains for the presence of the arcA, arcB, and arcC genes, only
five Lbs. paracasei strains (P71; P2P3; B169; B195; DSMZ5622) tested positive for at least
one of the genes. Specifically, Lbs. paracasei strains P71 and P2P3 (isolated from cheese and
goat milk, respectively) were positive for the arcB gene, while Lbs. paracasei B169, B195,
and DSM5622 (isolated from wine, wine, and dairy products, respectively) tested positive
for the arcC gene. None of the Lbs. casei and Lbs. zeae strains showed the presence of
these genes.

As previously mentioned, one of the main precursors of ethyl carbamate (EC) is
citrulline, which could be derived from LAB metabolism. While extensive studies on the
presence of these genes in Lacticaseibacillus spp. are lacking, some authors have investigated
other facultative or obligate heterofermentative LABs. Specifically, Lentilactobacillus hilgardii,
Lpb. plantarum, and Oenococcus oeni have been shown to degrade arginine [86,88,89], while
Lentilactobacillus buchneri has been observed to excrete citrulline [90]. Furthermore, strains
belonging to Levilactobacillus brevis, Lentilactobacillus hilgardii, Fructilactobacillus florum, Llb.
buchneri, Lpb. plantarum, O. oeni, Pediococcus pentosaceus, and Leuconostoc mesenteroides
resulted in being positive to the presence of arcABC genes [27,91].

3.7. Biogenic Amine (BA)-Degrading Activity: Diaminobenzidine (DAB) Assay and Multicopper
Oxidase (MCO) Detection

In fermented foods, particularly those undergoing spontaneous fermentation, the
presence of biogenic amines is frequently observed [92]. Individuals with deficiencies in
the natural mechanisms of biogenic amine detoxification are particularly vulnerable to
these compounds [79,93]. These metabolites not only affect the sensory attributes of the
food but also pose a health hazard to consumers, potentially leading to food poisoning [94].
To mitigate these risks, the food industry utilizes specific starter microorganisms carefully
selected for their non-production of the amines. These microorganisms not only exert a
bioprotective effect by inhibiting the growth of undesired microorganisms but also possess
the capability to degrade existing biogenic amines through specialized enzymes [95]. Vari-
ous methods are employed to control the formation of biogenic amines in food, including
the incorporation of additives and preservatives, supplementation with enzymes such as
monoamine oxidase (MAO) and diamine oxidase (DAO), and the utilization of bacteria
harbouring these enzymes [28,76,93]. MAO and DAO enzymes catalyze the conversion of
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amines into non-toxic by-products, which can then be safely eliminated from the body [83].
Hence, the ability to degrade biogenic amines was assessed in the tested strains using
the DAB assay. While no extracts exhibited bands indicative of MAO/DAO presence,
16 strains displayed mono-copper oxidase (MCO) activity, as detected by DMP staining
(Table 4). This characteristic was evidenced by the appearance of yellow-orange bands
at consistent positions on the gels, suggesting the presence of similar enzymes across
all positive strains. These findings are corroborated by previous studies where several
bacterial strains, including Lbs. paracasei, which tested negative in the DAB assay, yielded
positive results in DMP staining. This underscores the ability of certain Lacticaseibacillus spp.
strains to utilize histamine, tyramine, putrescine, and DMP as substrates and to catalyze
the oxidation of these compounds [28,96]. Given the low number of MCO positive strains,
it was not feasible to discern a definitive pattern concerning their origin and isolation
source. Nevertheless, six out of the sixteen strains were isolated from dairy products, an
ecological niche where strains exhibiting these capabilities have been previously isolated
and documented in the literature [97].

Table 4. Strains positive for multicopper oxidase activity.

Strain Source Strain Source

Lbs. zeae DSM20178 Corn steep liquor Lbs. paracasei R61 Pecorino cheese
Lbs. casei N87 Body excreta Lbs. paracasei F17 Pecorino cheese

Lbs. casei N2014 Body excreta Lbs. paracasei H12 Pecorino cheese
Lbs. paracasei NRRL B-456 Unknown Lbs. paracasei N76 Body excreta
Lbs. paracasei DBPZ0564 Altamura sourdough Lbs. paracasei B195 Wine
Lbs. paracasei DBPZ0572 Altamura sourdough Lbs. paracasei LACcas25 Elixir

Lbs. paracasei V3 Canestrato Moliterno Lbs. paracasei TMW 1.1444 Pecorino cheese
Lbs. paracasei ESG10 Parmigiano Reggiano Lbs. paracasei TMW 1.1259 Parmesan cheese

3.8. Phenotypic Clustering

Based on all the phenotypic characterization results, we conducted a clustering analy-
sis of the different strains. As can be observed in Figure 6, the most discriminating factors
were antibiotic resistance and tolerance to various pH, ethanol, and NaCl conditions. The
heatmap colour variation reflects the significance of the correlation among these traits. All
strains formed interconnected subgroups, but Lbs. paracasei TMW 1.1444, TMW 1.1259, and
V3 (highlighted in blue) emerged as the most distinct strains across all tested characteristics.

Furthermore, the traits under study segregated into two main clusters (I and II).
Cluster I exhibited correlations among almost all growth capabilities (pH tolerance and
resistance to different NaCl and ethanol concentrations) along with intrinsic resistance
to antibiotics (vancomycin and tobramycin). On the other hand, Cluster II encompassed
the presence/absence of genes related to biogenic amines (BAs) and ethyl carbamate
production, detection of mono-copper oxidase (MCO), and most antibiotic resistance traits.
Additionally, a growth capability at pH 3.2 was found within this second group.

Based on these factors, it was possible to gather the analysed strains in four main
clusters: the cluster highlighted in red is made up of strains with low resistance to various
stress factors and to some antibiotics. On the contrary, it is possible to see how all the other
factors analysed were distributed unevenly within the considered strains, underlining once
again the strain-specificity of many of the characteristics analysis. Finally, also in this case,
it was not possible to observe a clear distinction between the phenotypic characteristics of
Lbs. casei, Lbs. zeae, and Lbs. paracasei, with a mixture of the different species among all the
different clusters obtained.

However, given the high genotypic and phenotypic heterogeneity of the strains, these
clusters do not consist of strains with completely homogeneous characteristics. In this
context, representing all tested characteristics through a heatmap can provide a valuable
tool following these screening studies. This can facilitate the selection of the best strain
based on the desired traits for each potential technological application.
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Figure 6. Heatmap of strains obtained by the comparison of the several characteristic studied. Each
number indicates a characteristic: 1 to 13, antibiotic resistance (cefoperazone 30 µg, cefazolin 30 µg,
chloramphenicol 10 µg, clindamycin 10 µg, erythromycin 30 µg, kanamycin 30 µg, ofloxacin 5 µg,
quinupristin/dalfopristin 15 µg, rifampicin 30 µg, streptomycin 25 µg, tetracycline 10 µg, tobramycin
10 µg, and vancomycin 30 µg); 14 to 22, growth abilities (pH 3.2, 3.8, 4.2, and 4.6; NaCl 2%, 4%, and
6.5%; and ethanol 12% and 15%); 23, MCO production; 24 to 27, BA production evaluated using the
Bover-Cid et al., 1999, method (histamine, tyramine, putrescine or agmatine, and cadaverine); 28 to
31, genes involved in BA production (the tyrdc, odc, agdi, and hdc genes); and 32 to 34, genes involved
in ethyl carbamate production (arcA, arcB, and arcC genes). Strain DBPZ0420 did not provide a
comparable Rep profile to the other strains, so it was not included in this analysis. The different
colours in the left side underline the different clusters A (
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4. Conclusions

In this study, 121 Lbs. paracasei strains isolated from various origins or acquired from
international collections were genetically and phenotypically characterized to assess their
technological and safety properties, comparing them to 6 Lbs. casei and 2 Lbs. zeae strains.
The application of these techniques revealed a significant degree of genetic variability, re-
sulting in numerous clusters from Rep-PCR, RAPD, and Sau-PCR analyses, often associated
with the source of isolation but not delineating the different species.
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The assessment of safety traits and technological properties uncovered substantial
variability in strain behaviours, confirming the strain-specific nature of these attributes.
Notably, certain strains exhibited unique characteristics with broad potential applications.
For example, Lbs. casei N2014 showed the agdi and hdc genes alongside MCO activity,
while Lbs. paracasei B169 and B195 harboured the arcC and agdi genes, with the latter also
showcasing MCO activity.

Moreover, the identification of specific strains resistant to a wide spectrum of an-
tibiotics, such as Lbs. paracasei DBPZ0478, underscores the importance of understanding
microbial resistance profiles.

The extensive genetic diversity among the strains highlights their vast potential appli-
cations. With the increasing prominence of functional foods and probiotics, the availability
of diverse strains facilitates tailored product development. For instance, formulations
targeting individuals with heightened susceptibility could utilize strains selectively sensi-
tive to antibiotics, while strains with non-transferable resistances could augment certain
antibiotic therapies to mitigate adverse effects.

Furthermore, exploring the metabolism of these microorganisms could lead to reduced
reliance on food additives. A growing body of research attests to the bioprotective efficacy
of these microorganisms, paving the way for their potential substitution or supplementation
of antimicrobials and antioxidants, thereby directly benefiting consumer health.

To elucidate the distribution of various traits among strains, the results were consoli-
dated into a unified matrix, accentuating the strain-specificity of the tested attributes. This
comprehensive approach unveiled the diverse capabilities of individual strains, providing
insights for targeted applications across various domains. Such detailed screening is crucial
for characterizing microorganisms with potential probiotic, postbiotic, and gut microbiota-
modifying effects, as well as anti-inflammatory potential, opening doors to innovative
health interventions and functional food development.
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