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Abstract: Breast cancer is the most common malignancy in women worldwide, and is responsible for
more than half a million deaths each year. The appropriate therapy depends on the evaluation of
the expression of various biomarkers, such as the human epidermal growth factor receptor 2 (HER2)
transmembrane protein, through specialized techniques, such as immunohistochemistry or in situ
hybridization. In this work, we present the HER2 on hematoxylin and eosin (HEROHE) challenge,
a parallel event of the 16th European Congress on Digital Pathology, which aimed to predict the
HER2 status in breast cancer based only on hematoxylin–eosin-stained tissue samples, thus avoiding
specialized techniques. The challenge consisted of a large, annotated, whole-slide images dataset
(509), specifically collected for the challenge. Models for predicting HER2 status were presented by 21
teams worldwide. The best-performing models are presented by detailing the network architectures
and key parameters. Methods are compared and approaches, core methodologies, and software
choices contrasted. Different evaluation metrics are discussed, as well as the performance of the
presented models for each of these metrics. Potential differences in ranking that would result from
different choices of evaluation metrics highlight the need for careful consideration at the time of their
selection, as the results show that some metrics may misrepresent the true potential of a model to
solve the problem for which it was developed. The HEROHE dataset remains publicly available to
promote advances in the field of computational pathology.
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1. Introduction
1.1. Breast Cancer Diagnosis

Breast cancer (BC) is the most common cancer worldwide, with more than two million
new cases and more than half a million deaths every year, representing roughly 25% of all
cancer cases in women [1]. BC detection usually starts with self-checkups via palpation or
regular screenings through imaging techniques (ultrasound and/or mammography). When
an abnormality is detected, a breast biopsy can be performed, consisting of the sampling of
breast tissue through a needle, which is processed and stained with hematoxylin and eosin
(HE) to allow visual observation of the tissue under an optical microscope by a medical
expert (i.e., a pathologist) (Figure 1A,B) [2].
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Figure 1. (A) HER2-negative BC (HE); (B) HER2-positive BC (HE); (C–F) HER2 IHC (score of 0, 1+, 2+,
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The microscopic evaluation of BC allows the determination of histological type accord-
ing to the WHO classification, which, in about 75% of the cases, is invasive carcinoma, not
otherwise specified (NOS) [2]. The remaining 25% of the cases are represented by more
than 15 special subtypes of BC, some of which are associated with a favorable prognosis,
and others with an unfavorable prognosis [3].

All invasive BCs are graded according to histological criteria based on the semi-
quantitative evaluation of three morphological features: the amount of glandular differ-
entiation, the degree of nuclear atypia, and the mitotic rate. Each morphological feature
is assessed independently with a scoring system of 1 to 3, and the scores are combined to
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achieve a final histological grade [4]. Several studies have shown that histological grade is
an independent prognostic factor in BC, along with lymph node status and tumor size [5].

Finally, current guidelines recommend routine evaluation of ER (estrogen receptor),
PgR (progesterone receptor), and HER2 (human epidermal growth factor receptor 2) status
in all patients with invasive BC, recurrences, and metastases [6,7]. The evaluation of these
biomarkers provides useful predictive information regarding response to targeted therapy.

1.2. HER2 Assessment

HER2 is a transmembrane protein receptor with tyrosine kinase activity, being am-
plified and/or overexpressed in approximately 15% of BC cases [7]. These BC cases are
classified as HER2-positive, being associated with aggressive clinical behavior, but also
with better responses to HER2-targeted therapies. Several clinical trials have shown an
association between these therapies, and a significant improvement in disease-free survival
and overall survival for patients with HER2 positivity [8–10], thus making the correct
identification of this BC subtype of paramount importance.

Usually, HER2 evaluation begins with the analysis of protein expression using specific
antibodies that recognize the protein by immunohistochemistry (IHC). In this test, the
following results can be achieved: negative (score 0 or 1+), equivocal (score 2+), positive
(score 3+), and indeterminate (Figure 1C–F). Equivocal and indeterminate samples require
a reflex test, consisting of the evaluation of HER2 amplification with either fluorescence or
bright-field in situ hybridization (ISH) assays (Figure 1G,H) [7]. IHC is easier to perform
than ISH; however, the latter test is more robust, but also more expensive [11], and can
ultimately classify BC samples as HER2-positive and HER2-negative, providing the basis
for the application of HER2-targeted therapy.

Typical of most ancillary tests in pathology laboratories, both IHC and ISH tests are
sensitive to pre-analytical conditions, such as ischemic time, type of fixative, and duration
of fixation [7]. The above-mentioned conditions can compromise the results of the tests,
being responsible for the presence of false-negative and false-positive results, which can
constitute a major impact on the effectiveness of the implemented treatment.

1.3. Digital Pathology

The approval of digital pathology (DP) systems by the US Food and Drug Adminis-
tration (FDA) has accelerated the implementation of DP in many pathology departments
across the globe [12]. There are several advantages described in the literature for using
whole-slide images (WSI) instead of glass slides. These include instant sharing of slides
for educational purposes or internal/external consultation of challenging cases, as well
as for the practice of telepathology [13]. Nevertheless, the main advantage of WSI is the
potential for the application of image analysis tools for in silico evaluation that could go
beyond traditional quantification analysis, such as IHC analysis, and achieve qualitative
analysis to create computer-aided diagnostic (CAD) tools.

1.4. Computer-Aided Diagnosis

CAD systems comprise image analysis and machine learning methodologies devel-
oped to assist physicians during diagnosis. Their use can not only speed up the diagnostic
process, but also increase the accuracy of diagnosis [14,15].

The rise in accessible computing power and large dataset sizes available has allowed
neural networks (NNs) to be used in image analysis. NN are networks of transfer functions
resembling networks of biologic neurons, hence their name. During the training process, the
input weights and internal parameters of each transfer function are adjusted independently
to minimize the difference between the output label and the correct label (also known as
ground truth). Convolutional neural networks (CNNs) have a specific configuration for
identifying and extracting features in images through alternating various convolutional
and pooling layers before sending the information (feature map) into a NN. The analysis of
the different pathways inside a NN after the training process to understand which features
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generate a given output is extremely difficult, especially in the case of NNs with multiple
deep layers (deep NNs), resulting in these models being known as “black boxes”. The
representation of the feature map (saliency map) of CNNs can be overlaid on the original
image to highlight the areas of the image the NN is using for the classification, being less
opaque than other deep learning methods [16]. NNs can learn practical features directly
from the training images by optimizing the classification loss function, opposed to the
hand-crafted feature extraction methods. As such, the construction of NNs requires less
field knowledge to apply to a given classification system. Despite this, it has been shown
that these deep learning methods can reach a greater performance in image classification,
including medical images [17–21].

In [22,23], methods for automatic nuclei segmentation and feature extraction were
developed, allowing the application of different classifiers to differentiate between benign
and malign BC. The more complex three-class problem, discriminating between normal
tissue, in situ carcinoma, and invasive carcinoma, was addressed in [24]. In [25], the four-
class problem (classifying breast tissue as normal tissue, benign, in situ carcinoma, and
invasive carcinoma) was tackled by manually extracting features, while in [17], a deep
learning approach was taken.

The methods described rely on imaging data to classify tissue into two, three, or four
classes, but none address the subsequent steps to assess HER2 status in invasive BC. This
problem was previously addressed in [26], where the authors described a model for the
density counting of fluorescence ISH amplification signals for HER2 status assessment.
The model nevertheless requires in situ hybridization to be performed. In [27,28], a deep
learning approach was developed to automatically segment cancer cells, and to quantify
HER2 expression in IHC images. In 2016, the HER2 Scoring Contest [29] was proposed to
compare and advance the state-of-the-art artificial intelligence-based methods to automate
HER2 scoring in IHC images. The methods were evaluated against a human consensus
ground truth. In addition, this paper reports on a “man versus machine” competition, in
which the automated methods outperformed expert pathologists.

The prediction of molecular subtypes in BC was attempted using image analysis
of HE and deep learning methods [30]. The work consisted in the evaluation of BC
histological images from the Carolina Breast Cancer Study in a tissue microarray (TMA)
with molecular classification performed using the PAM50 gene signature. The authors were
able to correctly classify high-grade tumors and ER status with accuracies above 80%. The
molecular classification accuracy was less impressive (77%), and it was not able to classify
the usual four subgroups, but only two larger subgroups (basal versus non-basal subtypes).
One of the limitations of this study was the use of TMAs, which, in this case, consisted of
just one to four tumor tissue cores per patient of 1mm diameter; this may be an insufficient
amount of tumor to be analyzed, and may have compromised the extraction of features for
subsequent image classification. Nevertheless, the work provided strong proof of principle
that molecular classification can be predicted based on the extraction of HE features.

The prediction of the expression of molecular biomarkers in breast cancer based only
on the evaluation of digitized HE-stained specimens was also attempted by Shamai and
colleagues [31]. In this work, a deep convolutional neural network (CNN) based on residual
network (ResNet [32]) architecture was developed to predict 19 biomarkers, including ER,
PgR, and HER2, from tissue morphology. For these three biomarkers, the areas under the
receiver operating characteristic curve (AUC) were 0.80, 0.75, and 0.74, respectively. The
data originated from a single institution (Vancouver General Hospital), and included only
TMA images from 5356 patients, rather than WSI, representing two important limitations.

Naik and colleagues [33] developed a multiple instance deep-learning-based neural
network to predict the same molecular biomarkers from HE-stained WSI. The algorithm,
based on ResNet50, was trained using a multi-country dataset of 3474 patients (Australian
Breast Cancer Tissue Bank and The Cancer Genome Atlas), and achieved AUCs of 0.92,
0.81, and 0.78, for ER, PgR, and HER2, respectively.
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Following the same rationale, Kather and co-workers [34] developed a deep learning
model based on ShuffleNet [35] to predict molecular alterations in 14 of the most common
solid tumor types, including breast cancer. The system trained on The Cancer Genome
Atlas dataset was able to infer, from histology images alone, at least one mutation in all
except one tested tumor type. In breast cancer, ER, PgR, and HER2 subtypes could be
predicted, with AUCs of 0.82, 0.74, and 0.75, respectively.

More recently, in 2022, Farahmand and colleagues [36] developed a deep-learning-
based model for predicting the HER2 status of tumor regions. By training the model on
manually annotated tumor regions, the authors were able to achieve an AUC of 0.90 in a
cross-validation protocol, although this value dropped to 0.81 in an independent test set.

1.5. HER2 on HE (HEROHE) Challenge

Challenges are excellent opportunities to advance towards state-of-the-art technologies
in any given field by gathering experts with different backgrounds to solve one scientific
question, and thus promoting a proper balance between competition and collaboration.

The HEROHE Challenge was developed with the aim of predicting the HER2 status
in invasive BC samples via the analysis of HE slides, without access to IHC or ISH assays.
Image analysis algorithms for HER2 prediction may not only decrease considerable costs
for pathology laboratories, but also serve as safety nets for the typical analysis of HER2 by
IHC and ISH. The HEROHE Challenge aimed to promote the creation of image analysis
algorithms able to, at least, replace a considerable amount of HER2 tests in BC. This
would reduce the costs of pathology exams, accelerate HER2 status determination, and/or
pinpoint cases that, despite being deemed conclusive by IHC, could benefit from additional
testing to reduce the existence of false-negative or -positive results. This tool could also be
used to select the sample most likely to be positive in the case of patients with multiple
samples, reducing the cost of analyzing all samples.

Although pathologists rely on IHC and/or ISH assays for the evaluation of HER2 in BC,
previous literature shows that HER2-positive BC is associated with different morphological
features compared to HER2-negative BC. These features consist of poor differentiation
(more solid tumors without tubule formation), higher nuclear pleomorphisms (high nuclear
grade), and higher level of mitosis, which are all aggregated in the establishment of
histological grade [2]. Many other morphological features might exist to differentiate
between these two molecular subtypes of BC, some of which can be subtle or difficult to
use through the visual evaluation of the pathologist. Nevertheless, this concept establishes
the morphological basis for the success of the proposed task. In addition, previous deep
learning models have been used to predict IHC images from the HE slides [37–39], thus
establishing the computational basis for the success of the HEROHE Challenge.

In this work, we outline the organizational steps of the HEROHE Challenge, the first
challenge developed to predict HER2 status from HE-stained WSI, and present the methods
and results obtained by the participating teams.

2. Materials and Methods
2.1. HEROHE Challenge Organization

The HEROHE Challenge was organized as a parallel event of the 16th European
Congress on Digital Pathology (ECDP2020). Although the ECDP2020 was canceled due
to the coronavirus pandemic, the HEROHE Challenge was performed successfully. The
HEROHE Challenge website was hosted on the Grand Challenge servers with the domain
https://ecdp2020.grand-challenge.org/ (accessed on 23 May 2022). The Grand Challenge
is one the largest platforms for medical imaging challenges, with, at the time of writing,
more than 40,000 users. Hosting HEROHE at the Grand Challenge website allowed for an
easy setup while maximizing the number of researchers reached. The challenge was also
advertised through the social media networks and official webpage of the ECDP2020, and
monetary prizes were awarded to the three best-performing methods.

https://ecdp2020.grand-challenge.org/
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Unlike previous challenges, where IHC images were part of the training and test
datasets, the goal here was to predict HER2 status directly from the morphological features
present on the HE-stained images. Thus, the training dataset consisted of 359 WSIs of
invasive BC tissue samples stained only with HE, and the corresponding image-wise
ground truth classification based on IHC and ISH. The cases did not include annotations
such as the location of the invasive carcinoma, and no IHC or ISH slides were provided.
The ground truth originated from IHC and ISH tests, resulting in a binary classification
(negative or positive). Table 1 summarizes the distribution of IHC scores and HER2 status
in the training dataset. One case with a score of 1+ exhibited HER2 amplification by ISH,
being classified as HER2-positive. There were 358 female cases and one male case, with
ages between 24 and 92 years (median of 58 years old). Cases originated from 22 different
laboratories, and all ISH tests were performed at Ipatimup Diagnostics (Portuguese national
reference center for HER2). Cases with HER2 heterogeneity were not included in the dataset.
All cases were classified by two experienced pathologists (CE and AP) according to the latest
American Society of Clinical Oncology/College of American Pathologists (ASCO/CAP)
guidelines for BC, scanned at Ipatimup Diagnostics with a 3D Histech Pannoramic 1000
digital scanner at 20x magnification, and saved in the MIRAX file format.

Table 1. Distribution of IHC scores and HER2 status in the training dataset.

IHC Score HER2-Negative HER2-Positive Total

0 43 (12%) 0 (0%) 43 (12%)
1+ 46 (13%) 1 (0%) 47 (13%)
2+ 126 (35%) 104 (29%) 230 (64%)
3+ 0 (0%) 39 (11%) 39 (11%)

Total 215 (60%) 144 (40%) 359 (100%)

On 1 October 2019, the HEROHE Challenge website and training dataset were released.
The test dataset was released on 6 January 2020. In total, 150 WSIs, correspondent to 150
cases, were acquired following the same conditions of the training dataset, including the
proportion of positive and negative cases (test dataset distribution was not previously
known by the participants). Table 2 summarizes the distribution of IHC scores and HER2
status in the test dataset. The case without IHC score was HER2-positive by ISH. There
were 149 female cases and one male case, with ages between 33 and 93 years (median of 57
years old), from 17 different pathology laboratories. All cases from the test and training
datasets originated from different patients to ensure independence between datasets.

Table 2. Distribution of IHC scores and HER2 status in the test dataset.

IHC Score HER2-Negative HER2-Positive Total

0 19 (13%) 0 (0%) 19 (13%)
1+ 18 (12%) 0 (0%) 18 (12%)
2+ 53 (35%) 32 (21%) 85 (57%)
3+ 0 (0%) 27 (18%) 27 (18%)

Not Tested 0 (0%) 1 (1%) 1 (1%)
Total 90 (60%) 60 (40%) 150 (100%)

We were also able to trace 116 cases, from both the training and the test datasets,
that showed positive (score of 3+) or negative (score of 0 or 1+) results by IHC, and the
corresponding ISH results were obtained either by an internal or external quality control
protocol. In these cases, there was only one false-negative case by IHC (mentioned above),
providing a sensitivity of 0.98, a specificity of 1.00, a positive predictive value of 1.00, and a
negative predictive value of 0.98 for the IHC analysis.

To participate and be eligible for the Challenge’s prizes, at least one member of each
competing team should be registered to ECDP2020 and submit, until 28 January 2020, the
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methods code, the test dataset prediction (hard and soft predictions), and a short method
description. The ECDP2020 registration requirement was later removed from the challenge
rules due to the cancellation of the congress.

2.2. Evaluation

For the ranking of the proposed methods, the F1 score, the harmonic mean between
precision and recall, was used:

F1 =
2

P−1 + R−1 = 2 × P·R
R + P

where P =
tp

tp+fp is the precision, R =
tp

tp+fn is the recall, tp (true positives) is the number
of positive cases classified as positive, fp (false positives), is the number of negative cases
classified as positive, and fn (false negatives), is the number of positive cases classified as
negative. In addition to the F1 score, other metrics were also assessed, namely the area
under the curve (AUC), precision, and recall, although these were not considered for the
ranking of each competing team. The receiver operating characteristic (ROC) curve is a
graphical plot of the true-positive rate (TPR), also known as recall, against the false-positive
rate (FPR) at various threshold values. FPR =

fp
fp+tn , where tn (true negatives) is the

number of cases classified as negative. Since the ROC curve is a two-dimensional curve, to
compare methods, the entire curve should be collapsed into one single real number; the
most common method to achieve this is to calculate the AUC [40].

2.3. Competing Solutions

A total of 21 teams or individual participants submitted their methods until the
challenge deadline. Below, we briefly describe the methods proposed by the six best teams,
which includes the teams achieving AUCs higher than 0.8.

2.3.1. Team Macaroon

The team Macaroon employed a two-stage method to solve the problem (https://
github.com/AndrewTal/HEROHE_Macaroon (accessed on 24 July 2022)). In stage A, a
ResNet34 model, pre-trained on the CAMELYON16 [19] challenge datasets, was used for
training a patch-based (256 by 256 pixels) classification model to differentiate normal tissue
patches from tumor patches (see [41] for training details). A probability map, PM_A, was
constructed using the results from each WSI. In stage B, each original WSI was down-
sampled (ratio 1:2), and a sliding window split it into 256-by-256-pixel patches to be
classified by the model from stage A. Potential tumor patches were extracted, and the HER2
status information of the WSI was added to each patch. The resulting dataset was used
for training a second ResNet34 model aiming to classify tumor patches as HER2-positive
or HER2-negative. Model B was used to generate the final probability map of the WSI
(denoted as PM_B). The models were trained using the Adam optimization method with
a learning rate initialized as 0.0003, without weight decay. After training, a new WSI is
classified as HER2-positive if more than 50% of the tumor patches (those where PM_A > 0.5)
are classified as positive by the network B (PM_B > 0.5), and is classified as negative
otherwise. The overall architecture of the resulting model is in Figure 2.

https://github.com/AndrewTal/HEROHE_Macaroon
https://github.com/AndrewTal/HEROHE_Macaroon
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2.3.2. Team MITEL

A five-stage procedure was used by team MITEL (see Figure 3). The full method
is described in [42]. A pre-processing step was implemented where each WSI was first
down-sampled (ratio = 1:2), and tiles were created by a sliding window of 512 by 512 pixels.
Only tiles with an average grey level of <85% were retained. In the second stage, Tumor
Detection, tiles were classified as tumor or normal tissue by DenseNet201 [43]. The model
used was pre-trained on ImageNet [44], and then fine-tuned on the BACH [18] dataset
for the tumor classification task. Tiles classified as normal tissue were discarded, while
the others were used in the following stage. In the third stage, HER2 Classification, the
remaining tiles were fed into ResNet152 (optimized for precision), and the model was trained
to predict the probability of a given tile being from an HER2-positive WSI. In the fourth
stage, results from all tiles of any given WSI were aggregated into three WSI-level features:

1. Overall positivity: mean positivity probability for all tiles in a WSI. If above 0.5, the
slide is positive for HER2;

2. Strength of positivity: mean positivity probability of positive tiles only. If above 0.66,
the slide is positive;

3. Extent of positivity: percentage of positive tiles. If 35% of the tiles for each slide are
positive, then the slide is positive.

Finally, in the fifth stage, each WSI was classified via majority voting based on the
results of the three conditions. The software and trained models are available online at
https://github.com/MITEL-UNIUD/HE2HER2/ (accessed on 20 July 2022).
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2.3.3. Team Piaz

The team Piaz used a four-stage procedure (https://github.com/IAmS4n/HEROHE
(accessed on 23 May 2022)) to classify each WSI in a multi-instance learning fashion (see
Figure 4). In stage one, the Shannon entropy of the WSI was computed to identify the
most informative regions, and then a threshold, based on the method of minimum value
in histogram [45], was found to construct a tissue mask. Next, 256 random patches of 222
by 222 pixels were extracted from the tissue mask’s valid regions at maximum resolution.
In the second stage, EfficientNetB0 [46], pre-trained on the BACH challenge [18] dataset,
was used and retrained on the HEROHE dataset to extract a 64-dimensional feature array
for each patch. The features were extracted using max pooling of the last CNN layer of
EfficientNet. In addition, there was a batch norm layer, followed by an absolute operation
after each max pooling event. In the third stage, a novel pooling function was developed to
aggregate the arrays resulting from each WSI into a single 64-dimensional feature array.
A different exponent (denoted as p) of a generalized mean function was used for each
feature in a spectrum that varies between p = 1, when the generalized mean is equal to the
arithmetic mean, and p = 16, when the generalized mean will approximate the maximum
function. In mathematical terms, let fij be the jth extracted feature of the ith patch, the jth

element of the output vector is
(

1
n ∑n

i=1 fi,j
pj
)1/pj

, where pj = 1 + 15(j − 1)/63. Finally, in
the fourth stage, the WSI classification probability was computed using a linear layer followed
by a sigmoid layer on the features resulting from the aggregated 64-dimensional array.

In the test phase, to decrease the patch sampling effect, the result of each WSI was
evaluated 64 times, and the final probability is the mean of these values.
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2.3.4. Team Dratur

The team Dratur used a method consisting of two parallel tracks (@20x and @5x tracks)
to classify each WSI (see Figure 5) (for details see https://doi.org/10.5281/zenodo.6900
746 (accessed on 25 July 2022)). Tumor regions were manually annotated in 3DHistech
CaseViewer, and exported to TIFF file format using 3DHistech SlideConverter. After
pre-processing for brightness adaption, the TIFF files were sliced with a sliding window
procedure, generating 256-by-256-pixel tiles at the original 20× magnification, and 256-by-
256-pixel tiles at 5× magnification. Tiles with less than 50% of tissue pixels were discarded.
A sample of tissue tiles was manually grouped for vital invasive carcinoma and non-
tumor (including ductal carcinoma in situ, DCIS, in the @5× track). Two EfficientNetB4
models were trained to enrich vital invasive tumors in both tracks. Strong and complex
data augmentations were applied in the training of all convolutional neural networks,
including the modification of hue and saturation, the addition of salt and pepper artifacts,
color noise, and block artifacts using the image library (https://github.com/aleju/imgaug
(accessed on 23 May 2022)), as well as affine augmentations from the Keras library. HER2-
positive and -negative cases were split into five partitions, keeping the class balance in each
partition. EfficientNetB4 and B2 models were then trained using a five-fold cross-validation
procedure to predict the HER2 status. The resulting soft predictions were fed into a small
dense convolutional network (two hidden layers with 32 and 16 nodes, L2 regularization,

https://github.com/IAmS4n/HEROHE
https://doi.org/10.5281/zenodo.6900746
https://doi.org/10.5281/zenodo.6900746
https://github.com/aleju/imgaug
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and drop out) trained with a three-fold split for cross-validation. The models were trained
using the Adam optimization method with a fixed learning rate of 0.001. The resulting
soft predictions were tested against the training dataset ground truth, and a threshold
of 0.47 was defined to generate the hard prediction for each WSI, resulting in the correct
classification of 86.39% of the training WSI, compared to a correct classification of 85.27%
at a threshold of 0.5.
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2.3.5. Team IRISAI

The team IRISAI used a two-stage model to solve the problem (see Figure 6). In the first
stage, a U-Net [47] model was trained from scratch on slides at 5× magnification, to segment
each WSI into “cellular” and “non-cellular” regions. Training images for this task resulted
from an interactive set of annotations and corrections performed using DeePathology
STUDIO software. In the second stage, 900,000 image patches of size 256 × 256 pixels
were extracted from the cellular regions at 20× magnification and used as training dataset.
A patch was considered cellular if at least 95% of its pixels were predicted as cellular by
the U-Net network of stage one. Patches for the weakly supervised task were labeled
by assigning to each one a value according to the corresponding WSI, with a smoothing
of 10% to accommodate for patch selection errors. In other words, patches originating
from a positive WSI were labeled as 0.9, while those originating from a negative WSI were
labeled as 0.1. Standard data augmentation was then applied to the resulting dataset,
and a Resnet50 classifier, pre-trained on ImageNet [44], was trained to predict the patch-
level labels using an Adam optimizer with default parameters. Finally, the WSI-level
HER2 score was computed by splitting it into tiles and measuring the ratio of cellular
tiles in that slide that had an output of above 0.5 from the Resnet50 classifier (https:
//github.com/jacobgil/irisai_herohe (accessed on 22 July 2022)).

https://github.com/jacobgil/irisai_herohe
https://github.com/jacobgil/irisai_herohe
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2.3.6. Team Arontier_HYY

The team Arontier_HYY employed a three-stage method to predict HER2 status (see
Figure 7). In the first stage, EfficientNetB3 (denoted as CNN-A) was trained from scratch to
classify image patches of 1024 by 1024 pixels as “tissue” or “background”. The training
dataset for CNN-A consisted of image patches labeled as “background” if they include
regions with stains or adipose tissue, as well as if they contain severely blurred regions
and patches with less than 25% of tissue (pixel intensities below 240); otherwise, they were
classified as “tissue”. After discarding images classified by CNN-A as “background”, in
the second stage, a model consisting of two parallel EfficientNets (denoted as CNN-B)
was used to extract a feature vector and a score representing the probability of a given
tissue patch being from an HER2-positive WSI. In one of the parallel paths, EfficientNetB1
was trained on around 250,000 image patches of 480 by 480 pixels, while in the other,
EfficientNetB5 was trained on around 100,000 image patches of size 912 by 912 pixels.
Tissue patches were labeled as 0 whenever they originated from an HER2-negative WSI,
and as 1 otherwise. Data augmentation was then implemented to generate a more robust
model, and the resulting dataset was used to train CNN-B. To minimize class imbalance
and inter-WSI variations, within each mini batch, all patch images originated from different
WSIs, and 50% were from randomly selected positive WSIs, while the remaining were from
randomly selected negative WSIs. In stage three, all feature vectors of any given WSI were
sorted in decreasing order by the corresponding score of CNN-B, and fed into a Long-Short
Term Memory (LSTM) network with two recurrent layers and one dropout layer, to assess
the final WSI prediction.

All patch images were extracted at 20× magnification. All networks were trained
around five epochs using the RAdam optimization method with a fixed learning rate of
0.001 and a cross-entropy loss function; batch size for stage two was 64, and for stage
three batch size was 1. Five-fold cross-validation was applied, and the final result was an
ensemble of the all models that selected based on the highest AUC at the WSI-level for each
fold of validation data (https://github.com/arontier/HEROHE_ECDP2020 (accessed on
21 July 2022)).

https://github.com/arontier/HEROHE_ECDP2020
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3. Results

The HEROHE Challenge was open for approximately 4 months, between 1 October
2019 and 28 January 2020. During this period, 863 participants registered and had access
to the training and test datasets. The labels of the test set were only revealed at the end
of the challenge, after the teams submitted their prediction scores and the ranking of the
challenge was known. In total, 21 teams or individual participants submitted their results,
and F1 scores were evaluated to assign the challenge’s final ranking. Table 3 summarizes
the evaluation metrics of the teams, including F1 score, AUC, precision, and recall.

Table 3. Final classification of the HEROHE Challenge according to F1 score.

Rank Team AUC Precision Recall F1 Score

1 Macaroon 0.71 0.57 0.83 0.68
2 MITEL 0.74 0.58 0.78 0.67
3 Piaz 0.84 0.77 0.55 0.64
4 Dratur 0.75 0.57 0.70 0.63
5 IRISAI 0.67 0.58 0.67 0.62
6 Arontier_HYY 0.72 0.52 0.73 0.61
7 KDE 0.62 0.51 0.75 0.61
8 joangibert14 0.66 0.48 0.78 0.60
9 VISILAB 0.63 0.51 0.73 0.60

10 MIRL 0.50 0.40 1.00 0.57
11 aetherAI 0.66 0.49 0.67 0.57
12 NCIC 0.63 0.52 0.62 0.56
13 biocenas 0.57 0.46 0.53 0.50
14 HEROH 0.59 0.46 0.53 0.49
15 Reza Mohebbian 0.61 0.51 0.43 0.47
16 mindmork 0.63 0.53 0.38 0.45
17 Institute of Pathology Graz 0.63 0.50 0.38 0.43
18 katherandco 0.44 0.44 0.40 0.42
19 QUILL 0.63 0.50 0.33 0.40
20 HEROHE_Challenge 0.48 0.37 0.27 0.31
21 UC-CSSE 0.47 0.31 0.27 0.29

Two teams developed methods that, by construction, did not quantify the probability
of a WSI belonging to one class (i.e., did not infer a soft prediction). The model developed
by the team Macaroon classified each WSI after comparing the number of patches classified
as tumor by one network and as positive by the second network. Thus, an approximation
was needed to compute the AUC. The soft predictions were set to 1 whenever a WSI was
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classified as positive, and to 0 otherwise. The model developed by team MITEL used
a majority voting to assign a class to each WSI. Considering that the proposed method
exported three soft predictions, the developers chose to consider, as a representative soft
prediction, the prediction resulting from the overall positivity, because it covered all the
WSI patches, thus being considered the most exhaustive among the three.

Evidently, the choice of threshold impacts the F1 score. The magnitude of this impact
was assessed, for each team, by varying a particular threshold from 0 to 1 by steps of 0.01,
and, for each threshold value, re-classifying all WSIs in the test dataset and computing the
corresponding F1 score. Each WSI was classified as positive if the submitted soft prediction
was greater than or equal to the threshold, and negative otherwise. The F1 score was then
evaluated based on the updated classifications. For each team, a theoretical maximum was
obtained. Table 4 summarizes the ranking of the teams according to the F1 score resulting
from the use of the updated threshold. The results reveal that three of the top four teams
could have achieved better performances, and the resulting ranking would have changed if
different thresholds were chosen. The maximum F1 scores for these teams were: (a) Piaz:
F1 = 0.73 for a threshold of 0.39; (b) MITEL: F1 = 0.70 for a threshold of 0.37; and (c) Dratur:
F1 = 0.69 for a threshold of 0.34.

Table 4. Classification of the HEROHE Challenge when the best possible threshold for the test dataset
is used.

Rank Team Threshold F1 Score

1 Piaz 0.39 0.73
2 MITEL 0.37 0.7
3 Dratur 0.34 0.69
4 irisai 0.39 0.68
5 Macaroon 0.01 0.68
6 Arontier_HYY 0.17 0.66
7 visilab 0.1 0.65
8 KDE 0.26 0.63
9 katherandco 0.83 0.62
10 QUILL 0.23 0.62
11 aetherAI 0.17 0.6
12 HEROH 0.12 0.6
13 joangibert14 0.5 0.6
14 biocenas 0.23 0.59
15 Institute_of_Pathology_Graz 0.42 0.59
16 mindmork 0.07 0.59
17 NCIC 0.49 0.59
18 Reza_Mohebbian 0.01 0.58
19 uc_csse 0.02 0.58
20 HEROHE_Challenge 0 0.57
21 MIRL 0 0.57

Although the F1 score was the ranking metric, other metrics were also assessed. The
precision and recall were assessed to compute the F1 score, while the AUC was measured to
allow comparisons to other recently published methods for HER2 prediction [31,33,34,36].
Two teams (MITEL and Dratur, 2nd and 4th place, respectively) achieved AUC results for
HER2 prediction similar to those presented in [31,33,34], while the team Piaz (3rd place)
achieved the highest AUC of 0.84. Figures 8 and 9 show the ROC analysis with ROC curves
and precision–recall curves, respectively, for the methods proposed by the six best teams in
the test dataset.



J. Imaging 2022, 8, 213 14 of 24J. Imaging 2022, 8, 213 14 of 24 
 

 

 
Figure 8. ROC curves for the methods proposed by the six best teams in the test dataset. 

 
Figure 9. Precision–recall curves for the methods proposed by the six best teams in the test dataset. 

Considering the distribution of cases among the four possible HER2 scores of the IHC 
test, the precision, recall, AUC, and 𝐹  score were also evaluated in the subset of equivocal 
IHC cases (53 HER2-negative and 32 HER2-positive cases with scores of 2+ in the IHC test; 
see Table 2). Table 5 summarizes the ranking of the teams according to F1 score in the 
subset of equivocal cases by IHC (score of 2+). 

  

Figure 8. ROC curves for the methods proposed by the six best teams in the test dataset.

J. Imaging 2022, 8, 213 14 of 24 
 

 

 
Figure 8. ROC curves for the methods proposed by the six best teams in the test dataset. 

 
Figure 9. Precision–recall curves for the methods proposed by the six best teams in the test dataset. 

Considering the distribution of cases among the four possible HER2 scores of the IHC 
test, the precision, recall, AUC, and 𝐹  score were also evaluated in the subset of equivocal 
IHC cases (53 HER2-negative and 32 HER2-positive cases with scores of 2+ in the IHC test; 
see Table 2). Table 5 summarizes the ranking of the teams according to F1 score in the 
subset of equivocal cases by IHC (score of 2+). 

  

Figure 9. Precision–recall curves for the methods proposed by the six best teams in the test dataset.

Considering the distribution of cases among the four possible HER2 scores of the IHC
test, the precision, recall, AUC, and F1 score were also evaluated in the subset of equivocal
IHC cases (53 HER2-negative and 32 HER2-positive cases with scores of 2+ in the IHC
test; see Table 2). Table 5 summarizes the ranking of the teams according to F1 score in the
subset of equivocal cases by IHC (score of 2+).
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Table 5. Classification of the HEROHE Challenge in the subset of equivocal cases by IHC (score of
2+).

Team AUC Precision Recall F1 Score

Macaroon 0.84 0.75 0.84 0.79
Arontier_HYY 0.88 0.67 0.81 0.73

MITEL 0.85 0.74 0.72 0.73
Dratur 0.85 0.71 0.75 0.73
IRISAI 0.85 0.72 0.72 0.72
KDE 0.77 0.67 0.75 0.71
Piaz 0.84 0.79 0.59 0.68

VISILAB 0.77 0.64 0.66 0.65
NCIC 0.70 0.58 0.69 0.63

biocenas 0.71 0.61 0.63 0.62
aetherAI 0.77 0.53 0.72 0.61
QUILL 0.78 0.79 0.47 0.59

joangibert14 0.70 0.46 0.72 0.56
MIRL 0.50 0.38 1.00 0.55

Reza Mohebbian 0.64 0.52 0.47 0.49
Institute of Pathology Graz 0.70 0.50 0.47 0.48

HEROH 0.63 0.46 0.50 0.48
Mindmork 0.61 0.43 0.31 0.36

katherandco 0.32 0.67 0.25 0.36
UC-CSSE 0.61 0.42 0.31 0.36

HEROHE_Challenge 0.50 0.37 0.22 0.27

Six teams achieved, in this subset, AUCs equal to or greater than 0.84, higher than
the AUCs achieved by the models presented in [31,33,34]. Moreover, team Arontier_HYY
achieved an AUC of 0.88, similar to the AUC achieved in [36] for cross-validation, and
higher than that achieved in an independent test set. Figures 10 and 11 show the results of
the ROC analysis, presented as ROC curves and precision–recall curves, respectively, for the
methods proposed by the six best teams in the subset of equivocal cases by IHC (score of 2+).
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Although the core methodologies differ between the submitted models, some pro-
cedures are common among approaches. For example, 20 out of the 21 teams developed
methods taking advantage of deep neural networks in one or more steps of their models,
and used Python as the main programming language. Reza Mohebbian was the only
team that developed a “classical” machine learning model (without deep neural networks),
coded on MATLAB. Teams HEROH, HEROHE_Challenge, Institute of Pathology Graz,
and katherandco, despite having used Python as the main programing language, also
used QuPath [48] in some steps of their methods. Another common step was the split of
each WSI into smaller patches. Only three teams used the entire WSI as the input: Reza
Mohebbian, who developed a non-deep-learning-based model; Institute of Pathology Graz,
who combined a hand-crafted feature extractor developed on QuPath with a custom CNN
for classification; and aetherAI, who adapted ResNet50 [32] to produce, as inputs, WSIs
resized to a 10,000-by-10,000-pixel canvas. Among, the 20 teams that used deep neural
networks in their methods, 12 chose to rely on models pre-trained on other publicly avail-
able datasets, ImageNet [44] being the most widespread, although other datasets were also
used [18,19,49,50]. Table 6 summarizes the main characteristics of the submitted methods,
including the approach method, use of pre-training and external datasets, ensemble size,
and size of the images.

Table 6. Main characteristics of the submitted methods. “Approach” lists the main methods used to
classify the WSI; “pre-trained” indicates whether the transfer learning approach was used; “ensemble”
indicates whether the method uses one or multiple models, and their number; “external sets” indicates
external datasets used in pre-trained models; “input size” indicates the size, in pixels, of the images
or tiles required by the model (WSI signifies that the entire WSI was input into the model at the same
time).

Rank Team Approach Pre-Trained Ensemble External Sets Input Size

1 Macaroon ResNet34 yes 2 CAMELYON16 256 × 256

2 MITEL DenseNet201 + ResNet152 yes 2 ImageNet +
BACH 512 × 512

3 Piaz EfficientNetB0 yes x BACH 222 × 222

4 Dratur EfficientNetB2 + EfficientNetB4 +
Custom dense model yes 5 ImageNet 256 × 256

5 IRISAI U-Net + ResNet50 no + yes 2 ImageNet 256 × 256

6 Arontier_HYY EfficientNetB1 + EfficientNetB3 +
EfficientNetB5 + LSTM no 4 x 1024 × 1024 + 480 × 840 +

912 × 912
7 KDE Custom + InceptionV3 no 3 x 128 × 128
8 joangibert14 ResNet101 yes x [49] 224 × 224
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Table 6. Cont.

Rank Team Approach Pre-Trained Ensemble External Sets Input Size

9 VISILAB SE-ResNet50 no x x 299 × 299
10 MIRL DenseNet201 yes x ImageNet 9192 × 9192

11 aetherAI Custom based on ResNet 50 v2 no x x WSI re-scaled to 10,000 ×
10,000

12 NCIC ResNet101 + ResNet50 [51] yes 2 ImageNet 1024 × 1024
13 biocenas Custom CNN model no 3 x 32 × 32
14 HEROH ResNet18 + ResNet50 yes 2 ImageNet 128 × 128

15 Reza
Mohebbian Custom (non-Deep Learning) no x x WSI

16 mindmork Kmeans + U-Net + Xception [52] no 3 x 256 × 256

17 Institute of
Pathology Graz

QuPath for color deconvolution and feature
extractor + Custom CNN no 2 x WSI

18 katherandco QuPath for tumor segmentation + ResNet50 no x ImageNet 512 × 512

19 QUILL SuperPixel patch splitting + DenseNet + Mean
Shift Clustering no 2 x WSI

20 HEROHE_
Challenge Custom CNN + Kmeans + XGBoost yes 3 CIFAR-10

dataset 200 × 200

21 UC-CSSE
Xception + DenseNet169 + ResNet34 +

ResNet101 + random forest + extra trees +
gradient boosting

yes 7
CAMELYON16
+ Data Science

Bowl 2018
299 × 299

4. Discussion

As in all challenges, the definition of the metric to access the final ranking is of
paramount importance. All metrics that may have been considered to evaluate the methods
assess different aspects of the results, thus, they produce different ranks. Since our dataset
was imbalanced, metrics such as accuracy (the percentage of total cases correctly classified),
which is often used to evaluate classifiers, are not reliable descriptors of the model’s
ability to solve the problem at hand. For example, a model that predicts all cases as
negative achieves an accuracy equal to the proportion of the negative cases, which, for
highly imbalanced datasets, could result in higher classifications. Other metrics are less
prone to the class imbalance problem. Among them, precision and recall are good choices;
nevertheless, both these metrics fail in some extreme scenarios. The proper balance between
these two metrics can be achieved by combining them into a single and more robust metric,
the F1 score, which only achieves values close to 1 if both the precision and the recall are
simultaneously close to 1.

The organizers did not opt for other performance metrics, such as the AUC, to better
simulate the clinical practice. Indeed, AUC is a global performance metric that does not
necessarily encode the behavior of a system at different regions of the ROC curve. For
instance, in clinical practice, it may be of interest to operate on a region of lower or higher
FPR, depending on the goal of the screening. However, two models with the same AUC
may exhibit different behaviors in these two extreme regions. With this in mind, it was
decided to instead ask participants to select a prediction threshold that would maximize
the F1 score. The main goal was to force the system to form an absolute/objective decision
regarding the sample being assessed, serving as a clear second opinion about the patient’s
HER2 status, i.e., the participants were asked a priori to select the operation point of their
system.

Previous studies addressing the problem of predicting the expression of molecular
biomarkers in breast cancer [31,33,34,36] reported the AUC as a primary performance
metric. Consequently, despite having considered the F1 score as the ranking metric for
the challenge, the AUC was also used here as a metric for performance assessment. The
models presented in Section 2.3. Competing Solutions corresponded to those that achieved
AUC > 0.8 in Table 3 or Table 5. Although models here presented are compared against
other models in the literature [31,33,34,36], it is important to acknowledge that, because the
evaluations were performed in different datasets, these comparisons are only indicative,
and are not evidence that the models presented here are better or worse than those men-
tioned above. The comparison between the rankings in Tables 3 and 5 shows that some
methods performed better on some data, and less well on others. For example, team Piaz
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ranked 3rd when the entire test dataset was evaluated, but its rank dropped to 7th when
only the equivocal cases were considered.

An important aspect to be considered by any researcher after training a neural network
is to decide on the threshold that will determine the final prediction. If the teams had
chosen different thresholds to generate their final predictions, their resulting F1 score could
have been better. For instance, with this test dataset, the model developed by the team Piaz
could have achieved an F1 score of 0.73 (instead of the actual 0.64) if the threshold was set
to 0.39 (instead of the used 0.5), thus being ranked at the top of the leaderboard. Of course,
the value 0.39 was obtained as the best choice for the test dataset, which, by definition,
was not available to teams. Nevertheless, the training dataset, or part of it (e.g., validation
dataset), should be used to fine-tune the threshold. It is worth noting that, even if the
optimum threshold was not the one resulting by the evaluation of the model performance
on the training dataset, others close to 0.39 (thresholds between 0.36 and 0.43) would also
generate a final F1 score greater than 0.70.

The comparison between the result that team MITEL reached (F1 = 0.67) and the
one that they would have had if they used the overall connectivity as the only evaluation
feature (F1 = 0.70 for a threshold of 0.37) reveals that, sometimes, a more complex model
does not outperform a simpler one.

The results obtained by the teams in the subset of equivocal cases (Table 5) reveal that
most of the top-ranked teams (eight of the top ten, including the top seven teams) achieved
better results on this subset than in the whole test dataset (Table 3). For example, team
Macaroon achieved an F1 score of 0.68 for the whole test dataset, but this rose to 0.79 when
considering just the equivocal cases. This difference is due to the increase in precision,
which increases from 0.57 to 0.75, while the recall increases from 0.83 to 0.84. Similar
changes occurred with other top-ranked teams (e.g., Dratur’s F1 score rose from 0.63 to
0.73, Arontier_HYY’s F1 score rose from 0.61 to 0.73). Equivalently, the AUC increased in
most of the teams. While on the full test dataset only one team achieved an AUC greater
than 0.8 (team Piaz with AUC = 0.84), on the subset of the equivocal cases, six teams had
an AUC above 0.8. The difference between the results achieved for these two groups of
cases can be explained by the distribution of cases per HER2 score on both the training and
test datasets, with a majority being classified as equivocal on the IHC test (about 60%). This
result suggests that HER2-equivocal cases with HER2 amplification are morphologically
different from HER2-positive cases by IHC (score of 3+). Indeed, there are studies showing
that not only are these cases morphologically different, but the latter group shows a higher
proliferative index, higher levels of HER2 amplification, and higher response rates to target
therapy [53–56]. The fact that equivocal cases are the cases sent for reflex ISH analysis, an
expensive specialized technique, provides the best performance in these cases of major
clinical relevance.

Following a common trend in medical image analysis, most of the teams (20 out of
21) used at least one deep neural network on their models. Given the complexity of the
task, many teams split the problem into more than one step, and relied on the combination
of more than one deep network to classify each WSI (Table 6). Since the training dataset
was comprised of 359 cases, 12 teams chose to use models pre-trained on other datasets.
This allowed them to train deeper networks, with up to millions of parameters, potentially
improving performance while reducing development and training time. Although most
of the models presented here rely on networks pre-trained with other datasets, with the
data collected in this challenge, the authors could not find statistical evidence to support
that the use of external datasets was a determining factor in the final ranking. As shown
in Table 6, the top-ranked teams used models pre-trained with external datasets, but so
did some of the lowest-ranked teams (e.g., the first- and last-place teams, Macaroon and
UC CSSE, used the CAMELYON dataset as an external source). A study comparing the
performance of a larger number of models would be needed to provide a definitive answer
to this question. Another common technique was splitting the entire WSI into small tiles
(18 out of 21 teams), applying the HER2 classifier to each tile, and later combining the
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information to get the WSI classification. Most teams (16 out of 21) decided to prune the
WSI first by applying a segmentation algorithm that identifies regions of interest (e.g., the
two top-ranked teams applied deep learning (DL) algorithms to identify tumor regions
while the third-ranked team relied on non-DL algorithms to segment tissue regions) and
only then using those regions in the classification step, thus reducing the computational
costs, while focusing the WSI classification on targeted regions.

In terms of clinical application, ideally, the next step would be to not only predict the
HER2 status in BC samples, but also predict the response of the patients to HER2-targeted
therapy. Previous literature shows that morphological clues can be found in the tumor
tissue, such as the presence of tumor-infiltrating lymphocytes (TILs), which can be good
predictors for HER2-targeted therapy. BC samples with a high number of TILs will more
often display complete pathological responses in the surgical specimen after neoadjuvant
(before surgery) HER2-targeted therapy and subsequent better disease-free survival [57,58].
Moreover, there might be additional features that could be extracted for predicting the
response to HER2-targeted therapy.

In specific settings of breast cancer, gene expression tests have already been recom-
mended to assess the risk of recurrence and guide oncologists in the difficult decision
to use chemotherapy [59,60]. These tests are very expensive and tissue destructive, two
major limitations that decrease their use in clinical practice. Furthermore, it has been
shown that nuclear morphology features, such as nuclear shape and architecture, can be
extracted from HE stained images to predict risk categories using the gene signatures [61].
Combining clinical information with HE stained images of HER2-positive patients has also
shown potential for predicting BC recurrence and metastasis [62]. This type of research and
prediction can take computational pathology to a level never experienced in medicine.

It would also be clinically relevant to understand why some models perform better
than others, and to identify the features that contribute most to predicting HER2 status.
Unfortunately, although deep-learning networks perform better than humans in several
domains, the complex and opaque black box nature of these networks limits its inter-
pretability [63,64].

In the HEROHE Challenge, it was decided to consider datasets with cases without
HER2 heterogeneity since it is the most frequent situation, and to avoid the introduction of
unnecessary noise into the training and test datasets. Additionally, heterogeneous cases
would require specific tumor annotations. HER2 heterogeneity corresponds to tumors
with both HER2-negative and HER2-positive areas, representing a minority of situations
(up to 1% of the cases), with patients requiring at least 10% of HER2-positive areas in
the BC to be elected for targeted therapy [7]. Although there are morphological features
more likely to be associated with HER2-positive BC (as discussed above), making the
distinction between HER2-positive and HER2-negative theoretically possible, in cases with
HER2 heterogeneity the different areas in the BC appear to be very similar, at least to the
pathologist’s assessment [65]. Finally, the proportion of cases in each IHC score was biased
towards the equivocal cases (score of 2+). This decision was because these are the cases that
require further assessment, namely, by the evaluation of HER2 amplification by ISH, and
thus considered by the challenge organizers as the most important cases. Future research
to address this problem should consider these aspects.

Roughly, 15% of BC cases are HER2-positive. Nevertheless, the datasets released here
failed to follow the real ratio between positive and negative cases. This decision was taken
based on the logistics required to release a dataset according to this ratio that still had
enough WSI per class. Such a dataset would require more than 3TB of disk space, and
would result in a dramatic increase in the communication time required to upload and
download all the data. On one hand, such a huge dataset could eventually prevent some
teams from participating due to the computational resources that would become necessary.
On the other hand, more data may have resulted in better models, although the higher
class imbalance could also present different challenges to teams during model development
and training.
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The rules of the challenge required each team to submit the code of the method, the
prediction of the test dataset, and a brief description of the method. In hindsight, the
challenge organizers acknowledge that participants should have been asked for more
data, namely learning curves, which are now impossible to obtain. Without the learning
curves of the individual teams, we cannot know whether a particular model was trained
for enough epochs or, on the contrary, whether it was trained for more epochs than it
should have been. Problems such as underfitting or overfitting could be identified if the
submission of learning curves was mandatory. However, it is important to note that each
epoch, considering tiling and data augmentation, consisted of training the model with
hundreds of thousands or even millions of images; thus, the smaller number of epochs may
not result in a poor model, but instead avoid overfitting. More data would be needed to
test this assumption.

5. Conclusions

The HEROHE Challenge was developed with the primary goal of promoting the
development of computer-aided diagnostic tools to predict the HER2 status in invasive BC
samples. Despite the complexity of the proposed task, 21 models were presented, combin-
ing different techniques, from standard image analysis to state-of-the-art DL algorithms,
and promising results were achieved.

Given the biased distribution of training and test datasets, with most cases classified as
equivocal by the IHC test, this work also presented the AUC and F1 score of the proposed
models in a subset of the test dataset with only equivocal cases (Table 5). Most of the teams
performed better in this subsample. Six teams achieved AUCs greater than or equal to 0.84,
outperforming the results presented in recently published studies. Team Arontier_HYY
achieved the highest AUC (0.88) for this dataset, and the top F1 score rose from 0.69 to
0.79 (team Macaroon). This fact suggests that some of the presented models identified
features on the HE slides scored of 2+ on the IHC test that can be used to predict HER2
status, something human experts are not able to do. The achieved results are not perfect,
and more data may lead to an improvement in the performance of the models, especially
in cases scored as 0, 1+, or 3+ by the IHC test that were under-represented in the challenge
datasets, and eventually in the equivocal cases as well.

The importance of the metric defined to assess the models’ performance was shown to
have a great impact on the final rank. In this work, the importance of a proper selection
of the final threshold to separate positive and negative cases was also emphasized by
presenting an example revealing that with a better choice of the threshold, the same
algorithm would result in a model with a significantly better performance. It was also
pointed that the choice of the network, hyperparameters, and all the features of a model has
to be carefully evaluated during the development, as well as later, taking into consideration
the evaluation of the model on the training and validation datasets. The difference between
the result of the team MITEL compared to the result they could have achieved with a
simpler model is a detail that is important to keep in mind.

Although the challenge is now closed, the website and datasets will remain public for
research purposes, thus further contributing to the development of novel solutions to this
field. These solutions may originate from practical clinical problems, such as quality control,
assisting in the identification of false-positive or false-negative results, or aiming to increase the
understanding of HER2-positive BC, through detailed morphological assessment of the tumor.
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