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Abstract: It was recently proved that the knowledge of the transverse displacement of a nanoplate
in an open subset of its mid-plane, measured for any interval of time, allows for the unique deter-
mination of the spatial components { fm(x, y)}M

m=1 of the transverse load ∑M
m=1 gm(t) fm(x, y), where

M ≥ 1 and {gm(t)}M
m=1 is a known set of linearly independent functions of the time variable. The

nanoplate mechanical model is built within the strain gradient linear elasticity theory, according to
the Kirchhoff–Love kinematic assumptions. In this paper, we derive a reconstruction algorithm for
the above inverse source problem, and we implement a numerical procedure based on a finite element
spatial discretization to approximate the loads { fm(x, y)}M

m=1. The computations are developed for a
uniform rectangular nanoplate clamped at the boundary. The sensitivity of the results with respect
to the main parameters that influence the identification is analyzed in detail. The adoption of a
regularization scheme based on the singular value decomposition turns out to be decisive for the
accuracy and stability of the reconstruction.

Keywords: inverse problems; load reconstruction; nanoplates; strain-gradient elasticity; linear
dynamics
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1. Introduction

In this paper, we report the results of a systematic numerical study—the first one
published in the literature, to our knowledge—on the identification of transverse pressures
exerted on a nanoplate from the measurement of its transverse vibrational response in an
open subset of the mid-plane, for any interval of time. From the mathematical point of
view, the small transverse vibration u = u(t, x, y) of a clamped nanoplate, with constant
thickness and mid-plane Ω, made by homogeneous and linearly elastic isotropic material
is governed by the following boundary value problem with initial data [1]:

ρ0u,tt + p2∆2u− p1∆3u = F(t, x, y), in ]0, T [×Ω, (1)

u = u,n = u,nn = 0, on ]0, T [×∂Ω, (2)

u = u,t = 0, at {t = 0} ×Ω. (3)

In the above equation, F = F(t, x, y) is the transverse force per unit area; ρ0 is the
constant mass density per unit area; p1 and p2 are two (positive) stiffness coefficients taking
into account the two classical Lamé moduli, the thickness of the plate, and the three material
length scale parameters of the simplified strain gradient elasticity theory by Lam et al. [2]
within the Kirchhoff–Love kinematic framework (see Section 2.1 for details). We refer to [3]
for an updated review of the state-of-the-art size-dependent continuum models of plates.

Determining the forcing term F from time-history measurements of the nanoplate
deformation is of interest in several technological areas. Applications generally involve
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nanoplates used as sensors and may concern, for example, the early sensing of pressures
induced by shock waves either produced by explosions or strong chemical reactions in an
inaccessible environment [4,5], the detection of forces of small magnitude such as chemical
bonding and Van der Waals [6], or even the detection of weak variations of intraocular
pressures [7].

A first general result for this class of inverse problems was recently obtained in [1]
for the forcing term of the form F = ∑M

m=1 gm(t) fm(x, y), where M ≥ 1 is a finite integer
number. Under the assumption that the time-dependent functions {gm(t)}M

m=1 are known
in an interval [0, T0], with T0 > 0 arbitrarily small, and are linearly independent in any
interval I ⊂]0, T [, it was proved in [1] that the knowledge of the transverse displacement u
in an open subset ω of the mid-plane Ω for any interval of time is enough for the unique
determination of the spatial components { fm(x, y)}M

m=1 of the load.
It is worth mentioning that a rather extensive literature is available on the deter-

mination of loads from dynamic measurements acting on two-dimensional mechanical
models [8–12]. The published results mainly concern the small transverse motions of taut
membranes and classical Kirchhoff–Love plates, respectively governed by second-order
(Laplacian, in the case of constant coefficients) and fourth-order (bilaplacian) spatial differ-
ential operators. Without claim of completeness and restricting the attention to the use of
interior measurements on plates only, we mention the papers [13,14] that deal with rectan-
gular plates. In them, it is proved that the spatial part f (x) of loads of the form g(t) f (x)
can be uniquely identified when the temporal function g(t) is known and the transverse
deflection of the plate is measured along a line parallel to one of the sides stretching from
side to side for an arbitrary small interval of time, provided the line is well positioned, or if
the observation line does not stretch from side to side, the observation time interval is long
enough. For mid-plane Ω of more general shapes, Kim [15] proved a unique continuation
property for plates with smooth boundary ∂Ω, when the data are obtained over an open
set that contains ∂Ω. The mathematical tools used in these papers were different from the
one employed in [1], in which the idea of spherical means of the transverse displacement
was applied.

The proof of the uniqueness result presented in [1] suggests a constructive procedure
for determining the spatial component of the forcing term acting on a nanoplate. The
main objective of this paper is the development and the numerical implementation of
this reconstruction technique. The guiding idea is illustrated in Section 3. In short, it is
based on the approximation of the spatial components fm(x, y), m = 1, . . . , M, with their
truncated Fourier representation based on the eigenfunctions of the nanoplate, and on the
determination of the generalized coefficients of the corresponding Fourier series from the
measured transverse deflection of the nanoplate.

Section 4 shows the results of a selected collection of numerical simulations for a
nanoplate with rectangular domain Ω and clamped boundary. They represent the outcomes
obtained from a larger set of simulations. In the numerical analysis, we have examined in
detail the effect of the main parameters that influence the identification, namely the typical
size of the finite element mesh, the extent and position of the measurement subdomain
Ω̃, the number of terms used in the truncated series representation of the loads, and the
reduction to a regularization scheme based on the Singular Value Decomposition. Overall,
the results are encouraging and, among other things, show that the use of regularization is
decisive in ensuring sufficient accuracy and stability of the identification, especially in the
presence of multiple asynchronous loads (M ≥ 2).

2. Nanoplate Model and FE Validation

In this section, we introduce a mechanical nanoplate model and its discrete version,
which will be used to study the inverse problem of identifying spatial transverse forces
from dynamic data.
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2.1. A Strain-Gradient Elastic Nanoplate Model

Let us consider a nanoplate in the referential configuration Ω× [−h/2, h/2], where Ω
is an open, bounded, and connected subset of the plane representing the middle surface
of the nanoplate, and h is the uniform thickness, h << diam(Ω). In this sub-section,
we assume that the boundary ∂Ω of Ω is smooth. Domains Ω with piecewise smooth
boundaries (e.g., rectangular domains) will be considered later on.

We shall adopt the simplified strain gradient elasticity theory proposed by Lam et al. [2] to
model the mechanical behavior of the material in infinitesimal deformation. In this simplified
theory, for linear elastic center-symmetric isotropic materials, the number of independent
length scale parameters is reduced from five (as in the general Mindlin’s theory [16]) to three;
see also the recent paper by Munch et al. [17]. In particular, to simplify the presentation and in
view of the reconstruction results presented in the next sections, we assume that the material
is homogeneous, i.e., the elastic coefficients of the nanoplate are constant in space and time.

Under the kinematic assumptions of Kirchhoff–Love’s plate theory and assuming
clamped boundary conditions, the boundary value problem with initial data governing the
transverse displacement u = u(t, x, y) of the mid-plane of the nanoplate reads as (see, for
example, [1]) 

ρ0u,tt + p2∆2u− p1∆3u =
M

∑
m=1

gm fm, in ]0, T [×Ω, (4)

u = u,n = u,nn = 0, on ]0, T [×∂Ω, (5)

u = u,t = 0, at {t = 0} ×Ω, (6)

where t is the time variable, T > 0, (·),t = ∂(·)/∂t, and ∆ is the Laplacian operator. The
directional derivative of u along the outer unit normal n to Ω is denoted by u,n.

In Equation (4), the area mass density of the nanoplate is denoted by ρ0, ρ0 =
constant > 0, and the quantities p1, p2 are given by

p1 = µI(2`2
0 +

4
5
`2

1), p2 = µh(2`2
0 +

8
15

`2
1 + `2

2) +
EI

1− ν2 , (7)

where I = h3

12 , µ > 0 is the elastic shear modulus, E > 0 is Young’s modulus, ν ∈ (0, 1/2) is
the Poisson’s coefficient of the material, and the (constant, positive) length scale parameters
are denoted by `0, `1, `2. Finally, note that, by (6), the nanoplate is assumed to be at rest at
the initial time t = 0.

The functions fm = fm(x, y), m ∈ {1, . . . M}, describe the spatial component of the
transverse forces acting over the plate, whereas the functions gm = gm(t), gm ∈ C1([0, T [),
for m ∈ {1, . . . , M}, describe the temporal evolution of the loading.

The solution u = u(x, y, t) of the forced motion problem (4)–(6) can be represented in
a series of eigenfunctions S = S(x, y) of the clamped nanoplate. These eigenfunctions are
the (non-trivial) solutions S ∈ P = H6(Ω) ∩ H3

0(Ω) to the boundary value problem{
p̃2∆2S− p̃1∆3S = λ2S, in Ω, (8)

S = S,n = S,nn = 0, on ∂Ω, (9)

where we have defined p̃i = pi/ρ0, i = 1, 2.
By general results for self-adjoint operators, there exists a sequence {λ2

i }∞
i=1 of real

numbers λ2
i > 0 (counted with repeated values according to their multiplicity), with

limi→+∞ λ2
i = +∞, such that {(λ2

i , Si) ∈ R+ × P} is a non-trivial solution to (8) and (9)
for every i ≥ 1. Moreover, the family {Si}∞

i=1, with Si enumerated with repeated values
according to the multiplicity of the eigenvalues, is a complete Hilbertian basis of the
space P , and the eigenfunctions satisfy the orthogonality conditions (Si, Sj)L2(Ω) = δij/λ2

i ,
i, j ≥ 1, where we have defined (h1, h2)L2(Ω) =

∫
Ω h1h2dΩ for every h1, h2 ∈ L2(Ω), and δij

is the Kronecker delta.
Let us assume that the spatial load distributions fm = fm(x, y) belong to the dual

of the space P , fm ∈ P ′, for every m = {1, . . . , M}. Therefore, if we represent fm as
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fm
ρ0

= ∑+∞
k=1 αm,kλ2

kSk, for (αm,k)k∈N ∈ `2, then the unique solution u ∈ C ([0, T [,P) to the
forced motion problem (4)–(6) can be expressed as

u(t, x, y) =
M

∑
m=1

∫ t

0
gm(t− τ)

+∞

∑
k=1

αm,kλk sin(λkτ)dτ Sk(x, y). (10)

Numerical modeling of the dynamic response of the nanoplate is presented in the
next section.

2.2. Finite Element Model

For the discretization of the continuous nanoplate model and the solution of the force
identification problem, we employ the Finite Element Method (FEM). We adopt a finite
quadrilateral element with four nodes, one at each vertex. Each node has six degrees of
freedom corresponding to the following quantities:(

u,
∂u
∂x

,
∂u
∂y

,
∂2u
∂x2 ,

∂2u
∂x∂y

,
∂2u
∂y2

)
. (11)

This choice of the degrees of freedom allows the use of polynomials of sufficient
degree as shape functions to guarantee ◦C continuity across inter-element boundaries. The
absolute minimum degree required is m = 3 (because the order of the differential equation
is 2 m = 6). The procedure to obtain the elements and the necessary requirements of the
convergence of the method are discussed, for example, in [18]. The Finite Element model
obtained is used for generating the synthetic data as input for the inverse problem and also
the eigenpairs used in all computations.

In the simulations presented in the next section, the domain Ω is the set ]0, LX [×]0, LY[,
where LX = 40 h, LY = 30 h, being h= 1.905× 10−6m the thickness of the nanoplate. We
take numerical parameters for the physical properties from [19]. We assume l0 = l1 = l2 =
3.81× 10−7m (h/l0 = 5), Young’s modulus E = 1.44 GPa, Poisson’s coefficient ν = 0.239.
The volume mass density of the material is ρ̃0 = 2.33× 103 kg/m3, which corresponds to
ρ0 = ρ̃0h = 4.43865× 10−3 kg/m2. From E and ν, the Lamé moduli are µ = 6.82× 1010

Pa and λ = 62.4× 109 Pa. By (7) we obtain the parameters p1 = 1.60 × 10−20 N m3,
p2 = 1.70× 10−7 N m.

2.3. Comparison between Continuous and Discrete Model
2.3.1. Validation for the Eigenvalue Problem

To validate the finite element model, we first consider the eigenvalue problem and
compare the numerical results with the exact eigensolutions for a simply supported rect-
angular nanoplate placed over Ω =]0, LX [×]0, LY[. The eigenvalue problem consists in
finding λ2 ∈ R+ such that there exists a non-trivial solution S ∈ H6(Ω) to{

p̃2∆2S− p̃1∆3S = λ2S, in Ω, (12)

S = S,nn = S,nnnn = 0, on ∂Ω. (13)

Let us recall that for domains with piecewise regular boundaries, the formulation
of the eigenvalue problem generally includes additional local conditions on the corner
points. These conditions are identically satisfied in the case of the rectangular domain we
are considering here; we refer to [1] (Section 3.3) for more details.

The eigenpairs of (12) and (13) have the following closed form expression:
λ2

i,j =
1
ρ0

[
p1

(
(

iπ
LX

)2 + (
jπ
LY

)2
)3

+ p2

(
(

iπ
LX

)2 + (
jπ
LY

)2
)2
]

, (14)

Si,j =
2 sin( iπx

LX
) sin( jπy

LY
)

√
LX LYλi,j

, i, j = 1, 2, . . . . (15)
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We order the set {λi,j} increasingly to obtain the sequence (λn)n∈N and the correspond-
ing sequence (Sn)n∈N, where the eigenfunctions are normalized so that (Sn, Sn)L2(Ω) =

1/λ2
n, ∀n ≥ 1.
We ran a number of FE simulations, including those using meshes of 4× 3 and 6× 5,

of which we obtained the respective sets of eigenvalues and show them here, along with
the exact values. The first ten values (λn)10

n=1 are shown in Table 1. Note that λn is the
positive square root of the eigenvalue λ2

n. The errors shown in the table are evaluated as
Error = λexact−λFE

λexact
× 100 (expressed in %).

Table 1. Comparison between exact and FE results of the list (λn)10
n=1.

Exact (rad/s) (×106) 29.2 60.8 85.3 113.4 116.9
midrule 4× 3 mesh (Error %) −1.476 −1.125 0.059 0.085 −0.739
6× 5 mesh (Error %) −0.619 −0.534 −0.108 −0.180 −0.433

Exact (rad/s) (×106) 169.6 179.0 187.2 210.6 243.5

4× 3 mesh (Error %) −0.594 −0.458 −0.635 −1.193 −1.520
6× 5 mesh (Error %) −0.341 0.706 0.299 0.266 0.005

The eigenfunctions obtained by the FEM procedure with the 6× 5 mesh are indistin-
guishable from the exact ones. They are shown in Figure 1.

(a) First (b) Second (c) Third

(d) Fourth (e) Fifth (f) Sixtieth

Figure 1. First six eigenfunctions obtained by the FEM with a 6× 5 mesh.

For specific geometries, for instance when the domain is rectangular, the boundary
conditions are those as specified in the article and the material properties are constant, it is
possible to obtain closed formulas for the eigenpairs. For other geometries and physical
properties, in general, it is not possible. For the sake of generality, we chose to evaluate
numerically the eigenvalues and use these computed values.

2.3.2. Validation for the Forced Motion

We start considering the same simply supported nanoplate of the previous sec-
tion lying on the rectangle Ω =]0, LX [×]0, LY[ and driven by a dynamic load given by
gρ0 cos(ω0t)S1, where S1 is the first eigenfunction of the problem (12) and (13), with
ω0 = 8× 104 rad/s. The solution u of the forced motion problem satisfies
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ρ0u,tt + p2∆2u− p1∆3u = gρ0 cos(ω0t)S1, in ]0, T [×Ω, (16)

u = u,nn = u,nnnn = 0, on ]0, T [×∂Ω, (17)

u = u,t = 0, at {t = 0} ×Ω, (18)

where the number g = 9.8 ms−2 stands for the acceleration of gravity.
By supposing u(t, x, y) = ∑+∞

k=1 gk(t)Sk(x, y), substituting in (16), using (12) and the
orthogonality relations of the eigenfunctions, we obtain

u(t, x, y) =
gρ0(cos(ω0t)− cos(λ1t))

λ2
1 −ω2

0
S1(x, y), (19)

which is the exact solution of (16)–(18). We compare it with the solution obtained by the
Finite Element Method with meshes of 6× 5 and 4× 3 elements. The results for the point
( LX

2 , LY
3 ) and time interval [0, 10−3]s are shown in Figure 2. In Figure 2a we compare the

results obtained with meshes with 6× 5 and 4× 3 elements. When we put them together
with the graph of the exact solution (19) in Figure 2b, we see that it is indistinguishable
from the result obtained by the Finite Element Method with a mesh of 6× 5 elements.

x

-6.×10-20

-4.×10-20

-2.×10-20

2.×10-20

4.×10-20

6.×10-20

displacement

4x3 mesh

6x5 mesh

(a)

2.×10
-7

4.×10
-7

6.×10
-7

8.×10
-7

1.×10
-6
x

-6.×10
-20

-4.×10
-20

-2.×10
-20

2.×10
-20

4.×10
-20

6.×10
-20

displacement

4x3 mesh

6x5 mesh

Exact

(b)

Figure 2. Comparison of the numerical time histories of the displacement function at the point
( LX

2 , LY
3 ). (a) Comparison between the results for 4× 3 and 6× 5 meshes. (b) Comparison between

the results for 4× 3 and 6× 5 meshes with the exact solution.

In anticipation of the inverse problem, next we consider the load g1(t) f1(x) + g2(t) f2(x),
where gj(t) = cos(ωjt), j = 1, 2, with ω1 = 8× 104 rad/s, ω2 = 1× 105 rad/s when the
nanoplate starts from the rest. The spatial loads f1 and f2 are assumed of pyramidal shape as
shown in Figure 3.
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(a) (b)
Figure 3. Spatial loads. (a) Load f1. (b) Load f2.

f1 and f2 taken to be

f1(x, y) = 1.89× 10−9Λ
(

x− L1/2
0.3L1

)
Λ
(

y− L2/2
0.3L2

)
,

f2(x, y) = 1.89× 10−9Λ
(

x− L1/3
0.2L1

)
Λ
(

y− L2/3
0.2L2

)
,

(20)

where Λ : R → R is given by Λ(x) = 0, if |x| > 1 and Λ(x) = 1− |x|, if x ∈ [−1, 1]. The
magnitude 1.89× 10−9 N/m2 corresponds to ten times the weight per unit area of the
specimen. The forces f1 and f2 are given in Pa.

Let us denote by Nd f and N f the number of degrees of freedom of the FE model and the
number of terms used in the truncated series representation of the forcing terms, respectively.

By using the subset (Sn)
N f
n=1 ⊂(Sn)

Nd f
n=1 of the eigenbasis (Sn)

+∞
n=1 we obtain the pro-

jection of the loads f1 and f2 into the space generated by (Sn)
N f
n=1, that is, we obtain their

numerical truncated Fourier representations:

f j =

N f

∑
k=1

λ2
kαj,kSk, j = 1, 2. (21)

In the recovery algorithm, the loads f j, j = 1, 2, are substituted by their truncated
Fourier series representation, according to (21), which in turn become the target loads to
be identified. In Figure 4 are shown the corresponding approximations of f1 and f2 with
N f = 40.

(a) (b)
Figure 4. Target loads. (a) Load f1. (b) Load f2.
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The solution to the motion problem with the forced term g1(t) f1(x) + g2(t) f2(x) as
above is given by

u(t, x, y) =
M

∑
j=1

{
cos(ωjt)

[
+∞

∑
k=1

Aj,kSk(x, y)

]
−

+∞

∑
k=1

[
Aj,kSk(x, y) cos(λkt)

]}
, (22)

where M = 2, which reflects the fact that we have just two asynchronous load compo-
nents, and

Aj,k =
αj,kλ2

k

λ2
k −ω2

j
, j = 1, 2, k ≥ 1. (23)

The truncated version of (22) determined by the first Nd f eigenfunctions only is
obtained naturally.

In Figure 5, we show the results for the displacement history at the point ( LX
2 , LY

3 ) in
the time interval [0, 2× 10−6]s. The exact solution is evaluated via the spectral method by
Formula (22).

5.×10
-7

1.×10
-6

1.5×10
-6

2.×10
-6
time

5.×10
-25

1.×10
-24

1.5×10
-24

displacement

4x3 mesh

6x5 mesh

Exact

Figure 5. Comparison between the exact solution (solid line) and the approximate solution obtained
by the FEM. Displacement history at the point ( LX

2 , LY
3 ).

The results indicate that the FE solution is very close to the exact solution of the motion
problem (16)–(18) and, therefore, we decided to fix the 6× 5 mesh in performing the next
simulations in Section 4. This choice provides a good compromise between the required
accuracy and the computational burden.

In conclusion, we note that if we replace the eigenvalues and eigenfunctions corre-
sponding to different boundary conditions in Equation (22), then the expression of u given
by (22) would also represent the solution of the motion problem for the nanoplate under
other boundary conditions.

3. A Uniqueness Result on Spatial Load Recovering and a Reconstruction Algorithm

Let us suppose that all the parameters in (4)–(6) are known, except for fm ∈ P ′,
m ∈ {1, . . . , M}, which are the unknown functions of the inverse problem. We start recalling
a uniqueness result, proved in [1], on the determination of the spatial load components
{ fm}M

m=1 by measuring the transverse response of the nanoplate in a subset of Ω for an
arbitrarily small interval of time.

In addition to the previous assumptions on the loads, here we suppose that {g1, . . . , gM}
is a linearly independent set of functions on any interval I ⊂]0, T [, namely if there is
I ⊂]0, T [ such that ∑M

m=1 cmgm(t) = 0 for every t ∈ I, then cm = 0 for every m = 1, . . . , M.
The following uniqueness result was proved in [1].
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Theorem 1. Let us denote by uF1 , uF2 the solution to problem (4)–(6) corresponding to the set
F1 = { f1, . . . , fM}, F2 = { f̃1, . . . , f̃M}, respectively. Under the above assumptions, if there is a
nonempty open set Ω̃ ⊂ Ω and T0 > 0 such that uF1 |[0,T0[×Ω̃ = uF2 |[0,T0[×Ω̃, then fi = f̃i in Ω
for i = 1, . . . , M.

We refer to reference [1] (Section 5) for a complete proof of Theorem 1. Here, we
point out that the main mathematical tool on which the proof is based is different from
that adopted by the authors in other contexts. In [20], for example, it was possible to take
advantage of the fact that the set of eigenvalues of the problem constitutes a uniformly
discrete sequence, i.e., there is a minimum separation quantity between an arbitrary pair
of eigenvalues, and this allowed the application of specific properties of quasi-periodic
distributions to prove uniqueness in the determination of the spatial component of the load.
Adaptations of this idea were also developed by the authors to study the identification of
a prey by the spider in an orb-web [21,22]. Unfortunately, the sequence of eigenvalues of
the nanoplate, even for a rectangular domain, is not necessarily uniformly discrete, which
is precisely why a proof based on spherical means was adopted to recover some unique
continuation properties of the solution of the dynamic problem.

The methodology used in the proof of the above uniqueness result suggests a strategy
for an approximate reconstruction of the spatial load. Referring to [1] for more details, in
what follows we briefly describe the reconstruction algorithm that we shall use. Without
loss of generality, we consider the nanoplate clamped at the boundary (see the motion
problem (4)–(6) and the corresponding eigenvalue problem (8) and (9)).

We fix the observation time window [0, T0], 0 < T0 < T , and a spatial observation
set Ω̃ ⊂ Ω that, in practice, is taken to be the closure of a nonempty open set and may be
nonconnected. Following [20], we introduce the family of functions

φm,τ(ξ) =
sin((ξ − λm)τ)

(ξ − λm) τ
, ∀m ∈ N, ∀τ > 0. (24)

Observe that the Fourier transform of the functions φm,τ(ξ), which are going to be
used as test functions in the time variable, is compactly supported, since

φ̂m,τ(t) = Hτ(t) e−itλm , ∀m ∈ N, τ > 0, (25)

where Hτ(t) = 1
2τ χ]−τ,τ[, ∀τ > 0, and χI is the characteristic function of the set I.

As test functions in the space variable, we use the functions

ϕj(x) = Sj(x)χΩ̃, ∀j ∈ N. (26)

The number of unknown loads is M. In this paper we limit the number of unknown
forces to a maximum of 2, that is, we developed the analysis only for M = 1, 2. The
extension to the case of more loads is straightforward.

Using u given by an expression analogous to (22) (written for clamped boundary
conditions on ∂Ω), we define

V0,τ(q) = 〈u , φ̂q,τ ⊗ ϕq〉, V2,τ(q) = 〈
∂2u
∂t2 , φ̂q,τ ⊗ ϕq〉, q ∈ {1, . . . , Nd f }, (27)

observing that when we have just one load f = f1, only V0,τ(q) is used in the algorithm.
Physically, V0,τ corresponds to observing the displacement, whereas V2,τ is related to the
acceleration, which can be measured by accelerometers.

“We recall that ĉos(β·) = π(δβ + δ−β). It is simply the Fourier transform of the
function t 7→ cos(βt). It can be computed by recalling that cos(βt) = (eiβt + e−iβt)/2 and
using the fact that the Fourier transform of t 7→ eiβt is πδβ, where δβ is the Dirac’s Delta
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distribution with support on the set {β}. The following next two formulas are simple

consequences of (27) and the fact that ĉos(β·) = π(δβ + δ−β).”

M

∑
j=1

Nd f

∑
k=1

{
π〈Sk , ϕq〉

[
Φq,τ(ωj)−Φq,τ(λk)

]}
Aj,k = V0,τ(q), (28)

and if M = 2, we use also V2,τ . In this case,

M

∑
j=1

Nd f

∑
k=1

{
π〈Sk , ϕq〉

[
−ω2

j Φq,τ(ωj) + λ2
kΦq,τ(λk)

]}
Aj,k = V2,τ(q), (29)

where Φq,τ(ξ) = (φq,τ(ξ) + φq,τ(−ξ)) and 〈Sk , ϕq〉means just the integration of Sk ϕq over
Ω. From now on, we specialize the discussion to the case M = 2.

In Equations (28) and (29), the variables Aj,k, j = 1, M = 2, encapsulate the unknowns

(αj,k)
Nd f
k=1, j = 1, 2 (see Equation (23)), and the right hand sides V0,τ(q) and V2,τ(q) are

obtained by measurement, which constitutes our data. Recall again that when there is only
one load f = f1, we use only the observation data V0,τ(q).

Using (28) and (29), with q = 1, . . . , Nd f , and τ = T0, we set up a matrix equation of
the form

[TN][A] = [V], (30)

where [TN] is a (M Nd f ) × (M Nd f ) square symmetric matrix. Furthermore, explicitly
we have

[A] = [A1,1 A1,2 . . . A1,Nd f A2,1 A2,2 . . . A2,Nd f ]
t (31)

and
[V] = [V0,τ(1)V0,τ(Nd f ) . . . V2,τ(1)V2,τ(Nd f )]

t. (32)

The elements of the matrix [TN] are given by

(TN)i,j =



π〈Sj , ϕi〉
[
Φi,τ(ω1)−Φi,τ(λj)

]
, i ≤ Nd f , j ≤ Nd f

π〈Sj , ϕI〉
[
ΦI,τ(ω2)−ΦI,τ(λj)

]
, i > Nd f , j ≤ Nd f

π〈SJ , ϕi〉
[
−ω2

1Φi,τ(ω1) + λ2
J Φi,τ(λJ)

]
, i ≤ Nd f , j > Nd f ,

π〈SJ , ϕI〉
[
−ω2

2ΦI,τ(ω2) + λ2
J ΦI,τ(λJ)

]
, i > Nd f , j > Nd f ,

where I = (1 + mod(i, Nd f )) and J = (1 + mod(j, Nd f )). mod(a, b) is the integer remainder
of the Euclidean division of a by b.

The solution of (30) leads to the set (α̃j,k)
Nd f
k=1, j = 1, j = 1, M = 2, which is an approxi-

mation of the unknowns (αj,k)
Nd f
k=1, j = 1, . . . , M. By using (α̃j,k)

Nd f
k=1, j = 1, M = 2, and (21)

we obtain an approximation to the functions f j, j = 1, M = 2. In this way, we recover the
spatial loads.

To measure the discrepancy between the recovered functions and their respective
targets f j, we use the absolute quadratic error function Error( f j), evaluated as

Error( f j) =

√√√√Nd f

∑
k=1

λ2
k(α̃j,k − αj,k)2, j ∈ {1, . . . , M}. (33)

The relative error ErrorR( f j) is evaluated by the formula

ErrorR( f j) =
Error( f j)√
∑

Nd f
k=1 λ2

kαj,k

. (34)
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4. Applications

We illustrate applications of the reconstruction algorithm presented in the previous
section for the determination of the spatial forces f1 and f2 in Equation (22) in a rectangular
nanoplate Ω. In all these simulations, the nanoplate is supposed to be clamped at the
boundary. As already noted in Section 3, we consider the observation time interval [0, T0]
and we measure the dynamic response of the nanoplate over a rectangle Ω̃ ⊂ Ω centered
at (xc, yc) ∈ Ω and with sides 2a and 2b.

In what follows, to avoid committing an inverse crime [23], the observation data will
be perturbed by an error. The error is described by means of a normally distributed random
variable N(0, εe) with zero means so that z(1+ N(0, εe)) is the value of the data z corrupted
with the noise of level εe > 0.

Error is introduced by multiplying each element of [V], given by (32), by (1 + N(0, εe)).
At each time the random variable N(0, εe) is invoked, a different random number is generated.

For the reconstruction algorithm, we will focus mainly on three parameters that are
related to the size of the matrices involved and to the number of unknowns to be determined.
The first parameter is the number of degrees of freedom Nd f of the FE model, which

coincides with the number of available eigenpairs ((λ2
n, Sn))

Nd f
n=1. The second parameter is

the number N f , N f ≤ Nd f , of terms used in the truncated series representation of the forcing
loads f1, . . ., fM (see (21)). Finally, the third parameter is NTrunc, NTrunc ≤ N f , which is going
to be used to truncate the whole problem to achieve an SVD-based regularization scheme.

In the next subsections, the results of certain parametric simulations are presented
and discussed. The first set of simulations is geared to verify the influence of the size of
the observation set Ω̃ and its position inside Ω. The second set is aimed at evaluating
the influence of the character of the spatial load, considering bimodal and discontinuous
loads. In the remaining simulations, we analyze the influence of the presence of multiple
asynchronous loads and the aspect ratio of the nanoplate.

4.1. Influence of the Size of Ω̃ and Its Position Inside Ω

In this section we consider our specimen loaded with f = f1 (that is, M = 1), where
f1 is defined in (20). The solution to the direct problem is obtained by the Finite Element
Method with a mesh of 6× 4 elements. With this mesh, after the imposition of the boundary
conditions, we are left with Nd f = 120.

The load is cos(ω0t) f1, with ω0 = 7.65× 107 rad/s and ρ0 = 4.43865× 10−3 kg/m2.
For the representation of f1 by using (21), we use N f = 40 in this and subsequent sections.
The observation time interval is kept constant equal to [0, T0], T0 = 1.0 × 10−7s. For
comparison, we notice that the period of the forcing load is 2π/ω0 = 8.21× 10−8s and that
2π/λ1 = 2.921× 10−7. The error level in all simulations is εe = 0.02.

As expected, the smaller the observation set Ω̃ ⊂ Ω, the worse the quality of the recon-
struction. We compare the reconstruction results when Ω̃ =]xc − LX/4, xc + LX/4[×]yc −
LX/4, yc + LX/4[ and Ω̃ =]xc − LX/8, xc + LX/8[×]yc − LX/8, yc + LX/8[, with (xc, yc) =
(LX/2, LY/2). The results are shown in Figure 6, and in Table 2 we show the absolute and
relative errors in the reconstructions. For comparison, the target forcing term is shown in
Figure 4a.

Keeping the same size of the observation set Ω̃ =]xc − LX/4, xc + LX/4[×]yc −
LX/4, yc + LX/4[ used above, we move it away from the center. We show some results in
Figure 7. The best reconstructions are obtained when Ω̃ is closer to the center. The target
load is still the one shown in Figure 4a.

The absolute and relative errors in the recovery process are shown in Table 3.
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(a) (b)

Figure 6. Comparison of the reconstruction results when we vary the size of the observation set
Ω̃. (a) Ω̃ =]xc − LX/4, xc + LX/4[×]yc − LX/4, yc + LX/4[. (b) Ω̃ =]xc − LX/8, xc + LX/8[×]yc −
LX/8, yc + LX/8[.

Table 2. Absolute and relative errors. Influence of the size of the observation set.

Ω̃ Error( f1)(Pa) ErrorR( f1)

]xc − LX/4, xc + LX/4[×]yc − LY/4, yc + LY/4[ 6.24× 10−15 0.25
]xc − LX/8, xc + LX/8[×]yc − LY/8, yc + LY/8[ 1.349× 10−14 0.53

(a) (b)

Figure 7. Comparison of the reconstruction results when we vary the position of the observation
set Ω̃. (a) (xc, yc) = (LX/3, LY/3). (b) (xc, yc) = (LX/4, LY/4).

Table 3. Absolute and relative errors. Influence of the position of the observation set.

Position of the Center Error( f1)(Pa) ErrorR( f1)

(xc, yc) = (LX/3, LY/3) 4.55× 10−15 0.18
(xc, yc) = (LX/4, LY/4) 3.30× 10−14 1.32

4.2. Influence of the Character of the Spatial Load. Bimodal and Discontinuous Loads

All simulations of this section are developed with the observation set Ω̃ =]xc −
LX/4, xc + LX/4[×]yc − LX/4, yc + LX/4[, (xc, yc) = (LX/2, LY/2), and using the obser-
vation time window [0, T0] with T0 = 1.0× 10−4 s.

We start by considering a bimodal spatial load. Specifically, the load, in S.I. units, that
is, in Pa, to be recovered is given by

f (x, y) = 1.89× 10−9
[

Λ
(

x− 0.7L1

0.2L1

)
Λ
(

y− 0.7L2

0.2L2

)
+

+Λ
(

x− L1/3
0.2L1

)
Λ
(

y− L2/3
0.2L2

)]
.

(35)

The result shown in Figure 8 indicates that when there is only one force component,
that is, M = 1, the fact that whether the spatial load is unimodal does not influence the
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quality of the reconstruction. All parameters are the same as in the previous section, except
for the error level that now is a bit higher, precisely εe = 0.05. The absolute error of the
reconstruction is Error( f1) = 1.40× 10−29, and the relative error is ErrorR( f1) = 0.16.

(a) (b)

Figure 8. Comparison of the results when we vary the position of the observation set Ω̃. (a) Attainable
target load with two peaks. (b) Recovered load.

When we compare the quality of the reconstruction of continuous and discontinuous
loads, we may infer that the regularity of the function that represents the load does influence
the results in the expected way, in the sense that in reality what is being recovered is
the truncated Fourier series that approximates the target function. The quality of the
reconstruction is governed by the number of terms used in the truncated terms, and to
well represent a less regular function, more terms are necessary, which leads to more
numerical instabilities.

In Figure 9 we show the recovery result for the discontinuous load f (x, y) = 1.89×
10−9χA, where A =]LX − LX/3, LX + LX/3[×]LY − LY/3, LY + LY/3[, with error level
εe = 0.05.

(a) (b) (c)
Figure 9. Recovery of a discontinuous load. (a) Target load. (b) Attainable target load. (c) Recovered
load (error level εe = 0.05).

In Figure 10, we show the recovery results corresponding to two error levels, εe = 0.05.
and εe = 0.02.

The corresponding absolute and relative errors in the recovery process are shown in
Table 4.

Regularization Strategy

Up to this point, no special regularization strategies were employed, apart from
natural discretization, which provides a certain degree of regularization. This was done
to focus attention on the effects of the various parameters influencing the reconstruction.
On the other hand, the quality of reconstruction can be poor without any regularization,
as can be deduced from Figures 6b and 7a,b. In the next section, we will see that when
multiple asynchronous forces drive the dynamic system, the recovery process becomes more
challenging, and, therefore, the use of some regularization strategy becomes a necessity.
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(b)

Figure 10. Recovery of a discontinuous load. (a) Sections of the recovered load on the line y = LY/3.
Error level εe = 0.05. (b) Sections of the recovered load on the line y = LY/3. Error level εe = 0.02.

Table 4. Absolute and relative errors for the recovery of a discontinuous load.

Error Level Error( f1)(Pa) ErrorR( f1)

εe = 0.05 2.45× 10−14 0.30
εe = 0.02 5.30× 10−15 0.06

Let us now explain the regularization strategy adopted in our simulations. It is based
on the Singular Value Decomposition algorithm (see for instance [24,25]). In practice,
we truncate the list of eigenvalues of the problem, keeping only the lowest ones, which
is translated in the reduction of the order of the linear system (30). To implement the
regularization, we use only the lowest NTrunc eigenvalues, where NTrunc = 20, assuming
that all components of the unknown forces that correspond to eigenvalues greater than
λNTrunc are null. To avoid committing an inverse crime [23], we hold the first NTrunc = 20
terms of the right-hand side of (30). When we apply this SVD-based strategy to get the
recovered forces corresponding to Figure 7a,b, we obtain respectively the results shown
in Figure 11a,b.
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In the previous sections, where the implementation of this regularization strategy
was not used, the linear system to be solved (30) involved Nd f unknowns for each fm,
m = 1, . . . , M, which can be interpreted also as a regularization by projection, but Nd f is
relatively high. For instance, now in our simulations of this section, where NTrunc = 20,
Nd f = 120.

(a) (b)
Figure 11. Application of the SVD-based regularization strategy. (a) Recovery of the load correspond-
ing to Figure 7a when the regularization strategy is applied with NTrunc = 20. (b) Recovery of the
load corresponding to Figure 7b when the regularization strategy is applied with NTrunc = 20.

The absolute and relative errors in the recovery process are shown in Table 5.

Table 5. Absolute and relative errors for the recovery of a discontinuous load.

Error Level Error( f1) ErrorR( f1)

(xc, yc) = (LX/3, LY/3) 2.41× 10−30 0.06
(xc, yc) = (LX/4, LY/4) 1.63× 10−28 0.51

4.3. Multiple Asynchronous Loads

We show some results when the load driving the system is of the form (g1 f1 + g2 f2),
with f j, j = 1, 2, given in (20), and gj(t) = cos(ωjt), j = 1, 2. In this section, ω1 =

7.65× 107 rad/s, ω2 = 2.48× 108 rad/s. The corresponding direct problem was analyzed
in Section 2.3.2.

This case, when two asynchronous loads are involved, is more challenging than when
the loads are synchronous (cf. Section 4.2) for a specific reason that we explain now. Let
us return to Equation (28) and note that, for each q = 1, . . . , Nd f , it represents a line in
the linear system of Equation (30), as can be noticed when we look at (31) and (32). We
can split each line q ∈ {1, . . . , 2Nd f } of [TN] into two halves [TNq,1, . . . , TNq,Nd f ] and

[TNq,Nd f +1, . . . , TNq,2Nd f ]. The first half is related to the unknowns {A1,k}
Nd f
k=1, whereas the sec-

ond half to {A2,k}
Nd f
k=1. We see that the difference between the two halves [TNq,1, . . . , TNq,Nd f ]

and [TNq,Nd f +1, . . . , TNq,2Nd f ] is given by

[dq,1 dq,2 . . . dq,Nd f ], (36)

where {
dq,k

.
= π〈Sk , ϕq〉(Φq,τ(ω1)−Φq,τ(ω2)) if q ≤ Nd f , (37)

dq,k
.
= π〈Sk , ϕq〉(ω2

1Φq,τ(ω1)−ω2
2Φq,τ(ω2)) if q > Nd f

are very small numbers due to the nature of the functions involved, some numerical values
being presented in the next simulations. As a consequence, from a numerical point of view,
unless some special measures are not taken, the matrix [TN] will contain pairs of almost
identical columns.
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In other studies that we have been conducting in the past few years regarding the
identification of loads [21,22], instead of using the function φ given in (24), we used the
square of it. The relevant mathematical property is that both versions possess compactly
supported Fourier transforms. In physical terms, it amounts to say that the observation in
time occurs in a bounded interval. The advantage of using φ2 instead of φ is that its Fourier
transform is smoother but on the other hand, φ2 decays faster, which means that the terms
dq,k presented in (37) are even smaller. Therefore, the first of the special measures we took in
this present work is to use φ as in (24) and not the quadratic version as in our previous works.

The second special measure is to increase the internal precision of the calculations. We
are using the software Mathematica, in which the standard precision, understood as the
maximum number of extra digits to be used in functions, is 50. For the calculations that
follow, we increased the precision to 200.

As in all simulations of this section, the observation set is Ω̃ =]xc − LX/3, xc +
LX/3[×]yc − LX/3, yc + LX/3[, with (xc, yc) = (LX/2, LY/2) and the observation time
window is [0, T0], T0 = 1.0× 10−7s. The error level in all simulations is εe = 0.005, and
Nd f = 40.

In Figure 12, we show the reconstruction results of the load g1 f1 + g2 f2 described at
the beginning of this section when there is no special regularization strategy apart from the
natural discretization of the problem, which works as regularization method as explained
in [25].

The de facto target loads shown in Figure 4 clearly could not be identified correctly.

(a) (b)
Figure 12. Recovery of loads when there is no regularization. (a) Recovery of f1 when there is no
regularization. (b) Recovery of f2 when there is no regularization.

When we apply the SVD-based regularization strategy described above with NTrunc = 12,
we obtain the results shown in Figure 13.

(a) (b)
Figure 13. Recovery of loads when the SVD-based regularization is applied, with NTrunc = 12.
(a) Recovery of f1 with SVD-based regularization. NTrunc = 12. (b) Recovery of f2 with SVD-based
regularization. NTrunc = 12.
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Although the recovered functions shown in Figure 13 are clearly not the same as the
target ones shown in Figure 4, since, as expected, they are smoother than the targets, they
correctly indicate the location and magnitudes.

Although we can say that the location of the peaks of both f1 and f2 and the order
of their magnitudes were correctly estimated, the relative errors are high, as is shown in
Table 6.

Table 6. Absolute and relative errors. Influence of the application of the regularization strategy.

L2 Error Relative L2 Error

Error( f1) Error( f2) ErrorR( f1) ErrorR( f2)
No SVD 7.539× 10−22 7.207× 10−22 1099.0 1612.9
NTrunc = 12 4.011× 10−25 9.546× 10−26 25.25 18.56

This can be explained by the fact that due to the instability of the problem, to get
a meaningful answer we are forced to employ the SVD regularization strategy with a
low value for NTrunc. This means that f1 and f2 are estimated by using only the first few
eigenfunctions, which are not enough to approximate them well. The results are smoother
recovered functions, that approximate the targets, giving the information about their most
salient properties, but nonetheless stay relatively far from them. The fact that absolute
errors are very small means that even small deviations render the relative errors large.

We may infer from these results that the SVD-based strategy is a valuable instrument
in our armory aimed at recovering unknown loads, but some more research is needed to
explore new regularization schemes that improve the recovery process when two or more
asynchronous loads are present.

4.4. Influence of Other Parameters

In this section, we perform additional simulations to explore the influence of other
parameters in our inverse problem. Specifically, we investigate the influence of the aspect
ratio of the rectangular domain Ω, the thickness, and the mass density of the nanoplate on
the quality of the recovery of the load.

4.4.1. Influence of the Thickness

Applying our SVD-based regularization, we can verify the influence of the thickness
on the quality of the result obtained when we run the identification algorithm. In Figure 14,
we show the results corresponding to three thicknesses of the nanoplate. Except for the
thickness, the parameters are the same as Section 4.1, with observation time interval [0, T0],
T0 = 2.0× 10−8s and NTrunc = 20. The target function is shown in Figure 4a.

(a) (b) (c)
Figure 14. Influence of the thickness. (a) Recovered load. Plate thickness h0 = 5 l0. Relative
error ErrorR = 0.091. (b) Recovered load. Plate thickness h0 =7 l0. Relative error ErrorR = 0.11.
(c) Recovered load. Plate thickness h0 =2 l0. Relative error ErrorR = 0.05.

From several numerical experiments, the results seem to indicate that the thinner the
nanoplate, the better the recovery results.
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4.4.2. Influence of the Mass Density

Some numerical experiments have been carried out by changing the mass density
of the material. As in the last section, we apply our SVD-based regularization. Except
for the mass density, the parameters are the same as Section 4.1, with thickness h = 5 l0,
observation time interval [0, T0] for T0 = 2.0× 10−8s, and NTrunc = 20. The target function
is shown in Figure 4a.

The results of an extensive set of simulations seem to indicate that the less dense
is the material of the nanoplate, the better are the recovery results. Figure 15 shows a
representative set of results corresponding to three densities of the nanoplate.

(a) (b) (c)
Figure 15. Influence of the density. (a) Recovered load. Mass per unit area ρ0 = 4.444× 10−3kg/m2.
Relative error ErrorR = 0.09. (b) Recovered load. Mass per unit area 0.2 ρ0. Relative error
ErrorR = 0.013. (c) Recovered load. Mass per unit area 0.5 ρ0. Relative error ErrorR = 0.04.

4.4.3. Influence of the Aspect Ratio

Finally, we consider the influence of the aspect ratio LX
LY

on the spatial load reconstruc-
tion. We keep the same 6× 5 mesh used throughout the simulations, and to not severely
distort the geometry of each element, we change slightly LY. Precisely, fixing LX we use
in turn the values LY = 3LX

4 , LX, LX
2 . We recall that the sides parallel to the Ox axis of all

elements are equal to LX/6 and the sides of all elements have sides parallel to the Oy axis
equal to LY/5. The results are shown in Figure 16. It can be seen that the nanoplate with an
aspect ratio near a square renders the best recovery results.

(a) (b) (c)
Figure 16. Influence of the aspect ratio. (a) Recovered load. Aspect ratio LY

LX
= 3

4 . Relative error

ErrorR = 0.09. (b) Recovered load. Aspect ratio LY
LX

= 1. Relative error ErrorR = 0.04. (c) Recovered

load. Aspect ratio LY
LX

= 0.5. Relative error ErrorR = 2.06.

5. Conclusions

In this article, we developed a numerical implementation of a reconstruction technique
of the transverse loads acting on a nanoplate. The observational data are the transverse
displacement of the nanoplate in an open subset of its mid-plane, measured for an interval
of time.

The reconstruction algorithm is based on the proof of the uniqueness result presented
in [1], for the proof found therein suggests a constructive procedure. The loads treated
here are of the form ∑M

m=1 gm(t) fm(x, y), where M ≥ 1, {gm(t)}M
m=1 is a known set of linear

independent functions of the time variable, and the unknowns in this inverse problem are
the functions { fm(x, y)}M

m=1.
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A selected collection of numerical simulations for a nanoplate with a rectangular
domain and the clamped boundary was presented and discussed. After validating the
Finite Element algorithm for the direct problem, we analyzed the influence of several
parameters on the recovery results, namely, the regularity of the spatial load distribution,
the connectedness of the support of the spatial load distribution, the thickness of the
nanoplate, the density of its material. Concerning the observation process, we analyzed the
effect of the size of the observation set, in time and space, and also of its position inside the
specimen. We also considered the influence of the number of asynchronous loads driving
the system and the effect of a regularization strategy based on the SVD.

On the basis of our experience, we noticed that the use of a regularization strategy is
essential, and the one that we used, based on the SVD concept, seems to work well. The
factor that most influence the recovery results is the presence of asynchronous sources.
When more than one is present, the identification of the individual spatial loads becomes
extremely difficult. The reasons for this phenomenon were presented in Section 4.3. In our
opinion, further research is needed to clarify this issue and to obtain an efficient and stable
identification algorithm.

As for the other parameters, our results seem to follow what one should expect
from physical grounds. The better the recovery results if the time interval is bigger, the
observation spatial set is greater and centered around the center of the specimen. The
fact that the load is more or less irregular in space or if it is composed of more than one
connected component seems to be immaterial. On the other hand, the thickness, density of
the material, and aspect ratio of the nanoplate definitely have an influence. The lighter the
material, the thinner the specimen, and the closer the aspect ratio is to one, the better the
identification results.

These findings may be useful as guidelines for the design of nanosensors aimed at the
identification of unknown loads.

Finally, as is well known, the availability of stability estimates for our inverse problem
can be useful to prove the convergence of regularised inversion procedures and also to
quantify the rate of convergence; see, for example, [26]. This important issue has not been
investigated in the present research and will be the subject of future studies.
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