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by Davide MARTINCIGH

In this thesis we discuss Wheeler automata, a subclass of finite states automata
(NFAs) ordered by co-lexicographic order on strings, which allows efficient stor-
age and substring query mechanisms. Wheeler automata form an important data
structure for languages, as the determinization process via powerset construction is
polynomial, making classical problems solvable in polynomial time.

We investigate computational problems related to recognizing Wheeler automata
starting from NFAs and reduced NFAs, noting that non-determinism generally leads
to intractability. We also examine state complexity in Wheeler DFAs and prove that
intersection of languages is computationally simpler, and we provide a construction
for the minimum Wheeler DFA.

Additionally, we explore the Krohn-Rhodes Decomposition Theorem (KRDT)
for two compression-oriented classes of automata: path-coherent and Wheeler au-
tomata. These classes are efficiently encodable and indexable. We prove that au-
tomata in these classes can be decomposed into a cascade with a number of compo-
nents linear to the original automaton’s states. For Wheeler automata, only two-state
resets are needed, avoiding full KRDT through a simpler inductive argument.

Lastly, we extend the analysis of Wheeler automata to arbitrary NFAs using a pa-
rameter called width, which indicates how far an automaton is from being Wheeler.
Specifically, we focus on the difference between the width calculated on DFAs and
that calculated on NFAs recognizing a given language, showing that their distance
can be exponentially large and providing useful lower bounds for the latter.
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1

Introduction

This thesis combines two cardinal concepts of computer science, automata and or-
ders, with the intent of analyzing what happens when we enhance the former with
the latter. The first ingredient is automata. Finite state automata (NFAs) represent ab-
stract models of computation of fundamental importance in computer science, since
they are capable of capturing the essential dynamics of systems that exhibit discrete
and sequential behavior. One of the primary appeals of NFAs lies in their elegance
and accessibility. With a finite number of states and transitions between them, these
automata provide a concise and intuitive framework for describing complex pro-
cesses. This simplicity facilitates analysis, enabling us to reason rigorously about
the behavior of systems and develop clever solutions. NFAs find utility in diverse
areas such as artificial intelligence, bioinformatics, and cryptography, where model-
ing sequential processes and recognizing patterns are paramount.

The second ingredient is orders. In computer science, ordered data structures
play a critical role in algorithm design and optimization. Ordered arrays, trees, and
graphs form the basis for efficient data storage, retrieval, and manipulation, pow-
ering algorithms for search, sorting, and graph traversal. In this work we explore
what happens if we impose a (reasonable) order to the states of a NFA. In the lit-
erature we find many different ways to impose a (partial) order on the states of a
NFA. In [1, 2, 3] partially-ordered NFAs are defined as automata where the reach-
ability relation induces a partial order on their states. In [4], instead, a total order
preserved by pairs of transitions with the same label was introduced. In [5] a further
requirement was introduced: the order of the states must follow the (fixed) order of
the alphabet. This is the definition of Wheeler graphs, a simple and unified perspec-
tive on several algorithmic techniques related to suffix sorting (in particular, to the
Burrows-Wheeler transform [6], an ubiquitous string permutation in text compres-
sion and indexing — see also [7]). Wheeler graphs admit efficient data structures
for solving string matching on the graph’s paths and enable a representation of the
graph in a space proportional to that of the edges’ labels — as well as enabling more
advanced compression mechanisms, see [8, 9, 10, 11, 12, 13, 14, 15].

The definition of Wheeler graphs has been lifted to automata in [16], where it
has been proved that we can decide in polynomial time whether a deterministic au-
tomaton (DFA) is Wheeler. In contrast, in [17] it was proved that deciding whether
a NFA is Wheeler is a NP-complete problem. In [16] it has been analyzed how this
specific notion of order on automata influences the class of recognized languages,
the Wheeler languages. This class of languages exhibits several positive properties
that reflect those of regular languages. For instance, the class of languages recog-
nized by Wheeler NFAs (WNFAs) coincides with the one recognized by Wheeler
DFAs (WDFAs). Moreover, given a Wheeler language there exists a unique (up to
isomorphism) WDFA that recognizes the language while minimizing the number of
states: as a matter of fact, it is possible to prove a convex version of the Myhill-
Nerode theorem suited for Wheeler languages. Some properties are actually an
improvement on the one of regular languages: it is well-known that, despite rec-
ognizing the same class of languages, a DFA recognizing a regular language can
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be exponentially larger than a NFA recognizing the same language. This is not the
case for Wheeler automata where the distance between a WDFA and a WNFA rec-
ognizing the same language can always be made linear, avoiding the blow-up of
the number of states. This result is of significant importance because it allows, in
various decision problems, to easily overcome the difficulties intrinsically linked to
non-determinism, often allowing the design of algorithms that work in polynomial
time. In [18], the complexity of the powerset construction algorithm on families of
subregular languages is categorized in great depth. This study proves that the out-
put of the powerset construction is exponential in the size of the input NFA for the
most widely studied classes of subregular languages, such as ordered [4], star-free
[19], comet [20], and suffix/prefix/infix-closed languages. In the worst case, the re-
sulting DFA for each of the aforementioned classes may have at least 2n − 1 states,
where n is the number of states of the input NFA. The class of finite languages [21]
and unary regular languages [22] are two examples of previously recognized fam-
ilies with a sub-exponential upper bound. Nonetheless, the former is a subclass of
Wheeler languages and the latter is very restrictive regarding the types of languages
it contains.

Another important result for this class is that the membership problem is decid-
able, and in polynomial time if the language is presented through a DFA. This result
is nontrivial because, if a language is Wheeler, it is not guaranteed that its mini-
mum automaton is Wheeler. However, there exists a combinatorial property of the
minimum automaton that allows us to decide whether the language it recognizes
is Wheeler. In [16] it was still open the problem of determining the complexity of
deciding whether a NFA recognizes a Wheeler language, which we will address in
this thesis.

One of the weaknesses of Wheeler automata derives from the fact that their defi-
nition requires the existence of a total order on the set of states. As one might expect,
a consequence of this restrictive requirement is that not all automata are Wheeler,
and indeed, it has been shown that Wheeler automata are a subclass of the relatively
small class of counter-free automata [16]. In an attempt to transfer the excellent
properties of Wheeler automata to any NFA, a parameter called the width of an au-
tomaton, denoted by p, was introduced in [23]. This parameter, in a sense, measures
how far an automaton is from being Wheeler. More precisely, if we allow a partial
order to be defined on the set of states of an NFA A, the width of A measures how
far the “best” order on the states of A is from being total (where by “best” we mean
the one that comes closest to being total). In [23], it was shown that several problems
solvable in polynomial time on Wheeler automata and in non-polynomial time on
general NFAs turn out to be fixed parameter tractable (FPT) using p as a parame-
ter; that is, they can be solved in polynomial time under the assumption that p is a
constant. Some examples, among others, are the following: given an NFA A with n
states and width p,

• the well-known explosion in the number of states occurring when computing
the powerset DFA Pow(A) is exponential in p, rather than in n;

• A can be encoded using just Θ(|Σ| log p) bits per edge, rather than Θ(|Σ| log n);

• string matching on A’s paths and testing membership in the automaton’s ac-
cepted language can be solved in time proportional to p2 per matched charac-
ter.

In this thesis we will address various problems related to Wheelerness, divided
in three macro topics.
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1. Complexity. In Chapter 2, we study the complexity of various problems re-
lated to Wheeler automata and languages. In particular, we examine the state
complexity of some operations between WDFAs, showing that better bounds
are obtained compared to DFAs. Additionally, we describe an algorithm that
allows us to transition from the minimum DFA recognizing a language L to
the minimum WDFA recognizing it. This transition is non-trivial because, in
general, the size of the minimum WDFA can be exponentially larger than the
one of the minimum DFA. Finally, we study the complexity of some classic
problems (e.g. membership and universality) for two special classes of NFAs.

The first class is that of Generalized Wheeler automata (GWNFAs), where any
possible ordering of the starting alphabet is allowed. The definition of WN-
FAs, in fact, assumes that the starting alphabet has a prefixed order, and it is
natural to ask the following questions: can changing the order of the alphabet
change the Wheelerness of an automaton? If so, how complex is the problem
of deciding whether there exists an appropriate ordering of the alphabet that
makes an NFA Wheeler? How do these results reflect on the class of languages
recognized by GWNFAs?

The second class is that of reduced NFAs, i.e., automata without “redundant”
states, where by “redundant” states we mean pairs of states reached by the
same set of strings. These pairs of states are redundant because they can be
collapsed together into a single super-state to obtain an NFA with one less state
that recognizes the same language. This class of NFAs is interesting because
in [16] it was shown that Wheeler membership for reduced NFAs is decidable
in polynomial time, unlike that for general NFAs. In this thesis, we address
an open question, namely whether reduced NFAs allow us to decide other
Wheeler-related problems in polynomial time.

2. Krohn-Rhodes Decomposition Theorem (KRDT). In Chapter 3 we focus on
KRDT [24], a central result in automata and semigroup theories: it states that
any (deterministic) finite-state automaton can be disassembled into a collection
of automata of two simple types, that can be arranged into a combination – cas-
cade – that simulates the original automaton. The elementary building blocks
of the decomposition are either resets or permutations.

The full-fledged theorem features two orthogonal dimensions of complexity:
the type and the number of building blocks appearing in the cascade, and a
deep step in the proof is the characterization of the permutations appearing
in the decomposition. This characterization implies, in the case of counter-free
automata, that the resulting cascade contains no permutations [25, 26].

We start analysing KRDT for two compression-oriented classes of automata:
(i) path coherent: state-ordered automata mapping state-intervals to state-inter-
vals; (ii) Wheeler. In [5] Wheeler automata were proved to be a subclass of
path coherent automata.

We prove that each automata in these classes can be decomposed as a cascade
with a number of components which is linear in the number of states of the
original automaton and, for the Wheeler class, we prove that only two-state re-
sets are needed. Our line of reasoning avoids the necessity of using full KRDT
and proves our results directly by a simple inductive argument.

3. Width. In Chapter 4, we focus on non-Wheeler NFAs, specifically those with
width p ≥ 2. We study two natural extensions of the concept of width to
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languages, defined as follows: the deterministic (non-deterministic) width of
a language L is the smallest among the widths of the DFAs (NFAs) that rec-
ognize L. It has been proved in [23] that these two measures do not always
coincide: there are languages for which the non-deterministic width is strictly
smaller than the deterministic one. Moreover, it has also been shown in [23]
that for every integer n ≥ 1, there exists a language whose deterministic width
coincides with its non-deterministic width, and both are equal to n. An open
problem, which is addressed in this thesis, concerns the possible distance be-
tween these two measures: we know they can differ, but by how much? We
will prove that the distance between these two measures can be made arbitrar-
ily large1.

Additionally, we will analyze the notion of entanglement for DFAs as given in
[23]. This is a measure closely related to deterministic width: it has been shown
that the entanglement of the minimum automaton of a language L coincides
with the deterministic width of L. In this thesis, we will extend the definition
of entanglement by attempting to define a similar measure that, when calcu-
lated on the minimum automaton, captures the non-deterministic width of a
language. Unfortunately, this task is challenging because the reference mini-
mum automaton is deterministic, whereas we are trying to capture a measure
calculated on non-deterministic automata. Using the minimum DFA seems to
be unavoidable for two reasons: the first one is the lack of uniqueness (up to
isomorphism) of the minimum NFA that recognizes a regular language. The
second one is that, in general, the NFA that achieves the minimum width is not
one of those that minimize the number of states; often, to reduce the width,
it is necessary to duplicate states to “untangle” the strings that reach them.
Nonetheless, we prove that these new measures (both computed on the mini-
mum DFA) are lower bounds to the non-deterministic width of a language.

All the results explicitly proven in this thesis are original work. With the ex-
ception of the one contained in Chapter 4, they have all been published in the
following articles:

• Giovanna D’Agostino, Davide Martincigh, and Alberto Policriti. “Order-
ing Regular Languages: a Danger Zone”. Proceedings of the 22nd Italian
Conference on Theoretical Computer Science, Bologna, Italy, September
13-15, 2021. Vol. 3072, pag. 46-69.
https://ceur-ws.org/Vol-3072/paper5.pdf.

• Giovanna D’Agostino, Davide Martincigh, and Alberto Policriti. “Order-
ing regular languages and automata: Complexity”. Theoretical Computer
Science, 2023. Vol. 949.
https://doi.org/10.1016/j.tcs.2023.113709.

• Giovanna D’Agostino, Luca Geatti, Davide Martincigh, and Alberto Poli-
criti. “A Linear-size Cascade Decomposition for Wheeler Automata”.
Proceedings of the 24th Italian Conference on Theoretical Computer Sci-
ence, Palermo, Italy, September 13-15, 2023. Vol. 3587, pag. 181-191.
https://ceur-ws.org/Vol-3587/0763.pdf.

• Giovanna D’Agostino, Luca Geatti, Davide Martincigh, and Alberto Poli-
criti. “Cascade Products and Wheeler Automata”. Theoretical Computer

1Without exceeding the upper bound shown in [23], where it was proved that the deterministic
width is at most exponentially larger than the non-deterministic one.
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Science, 2024. Vol. 1013.
https://doi.org/10.1016/j.tcs.2024.114754.
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Chapter 1

Notation and literature results

1.1 Automata and orders

We assume that the reader has a good understanding of automata theory, as de-
scribed for example in [27]. Nevertheless, we will present the necessary results and
notation.

We denote by A = (Q, q0, δ, F, Σ) a finite automaton (NFA), with Q as set of
states, q0 initial state, δ : Q × Σ → 2Q transition function, and F ⊆ Q final states.
Sometimes we shall describe the transition function δ using edges, where the edge
(q, q′, a) stands for q′ ∈ δ(q, a). The size of A, denoted by |A|, is defined to be |Q|.
An automaton is deterministic (DFA) if |δ(q, a)| ≤ 11, for all q ∈ Q and a ∈ Σ. As
customary, we extend δ to operate on strings as follows: for all q ∈ Q, a ∈ Σ and
α ∈ Σ∗

δ(q, ε) = {q}, δ(q, αa) =
⋃

v∈δ(q,α)

δ(v, a).

We assume that every automaton is trimmed, that is, every state is reachable from
the initial state and every state can reach at least one final state. Note that this as-
sumption is not restrictive, since removing every state not reachable from q0 and
every state from which is impossible to reach a final state from an NFA, can be done
in linear time and does not change the accepted language. It immediately follows
that:

• there might be only one state without incoming edges, namely q0;

• every string that can be read starting from q0 belongs to the set of prefixes,
Pref(L), of the language L.

We denote by L(A) = {α ∈ Σ∗ : δ(q0, α) ∩ F ̸= ∅} the language accepted
(or recognized) by the automaton A. We say that two automata are equivalent if
they accept the same language. The languages accepted by automata form the class
of regular languages and are closed under boolean operations (union, intersection,
complementation), concatenation, and the Kleene star. Given two languages L1,L2
recognized by two DFAs we can build the intersection automaton and the union
automaton recognizing the languages L1 ∩ L2 and L1 ∪ L2 respectively. Both of
these constructions rely on the direct product between the two automata, formally
defined below.

Definition 1. Let D1 = (QD1 , qD1
0 , δD1 , FD1 , Σ), D2 = (QD2 , qD2

0 , δD2 , FD2 , Σ) be two
DFAs recognizing the languages L1,L2 respectively. The direct product of D1 and D2,
denoted by D1 ×D2, is the triple (QD1×D2 , δD1×D2 , Σ) defined as follows.

1Notice that, for us, deterministic DFAs do not need to be complete, i.e. the transition function can
be partial.
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• QD1×D2 := QD1 ×QD2 is the set of states;

• δD1×D2 : QD1×D2 → QD1×D2 is the function defined, for each (q1, q2) ∈ QD1×D2 ,
as

δD1×D2(q1, q2) :=
(
δD1(q1), δD2(q2)

)
.

The intersection automaton is the DFA(
QD1×D2 , (qD1

0 , qD2
0 ), δD1×D2 , FD1 × FD2 , Σ

)
,

which recognises the intersection language L1 ∩ L2.
The union automaton is the DFA(

QD1×D2 , (qD1
0 , qD2

0 ), δD1×D2 , FD1 ×QD2 ∪QD1 × FD2 , Σ
)
,

which recognises the union language L1 ∪ L2.

We will often make use of the notion of the input and output language of a state of
an NFA, defined as follows.

Definition 2 (Input and output language). Let A = (Q, q0, δ, F) be a NFA and let q
be a state in Q. We say that the input language of q, denoted by Iq, is the set of strings
leaving q0 and entering q. Formally, Iq is the language recognized by the automaton
(Q, q0, δ, {q}).
Similarly, we say that the output language of q, denoted by Oq, is the set of strings
leaving q and entering a final state. Formally, Oq is the language recognized by the
automaton (Q, q, δ, F).

As it is well known, every NFA is equivalent to a DFA obtained by the powerset
construction.

Definition 3 (Powerset construction). Let A = (Q, q0, δ, F) be a NFA. The deter-
minization ofA, obtained used a technique called powerset construction, is the trimmed
version of the DFA D = (QD, qD0 , δD, FD) defined as follows.

• QD := Pow(Q). That is, the set of states of D is the set of all possible subsets
of Q.

• qD0 := {q0}.

• For each S ∈ Pow(Q) and for each character c in the alphabet, the transition
function is defined as

δD(S, c) :=
⋃
q∈S

δ(q, c).

• FD := {S ∈ Pow(Q) | S ∩ F ̸= ∅}.

Notice that some of the states of the DFA D in Definition 3 might not be reach-
able, hence the requirement of trimming it.

One of the main basic results of automata theory is the fact that, given a regular
language, there exists a unique up to isomorphism, state-wise minimum DFA that
recognizes such language. The states of this minimum DFA correspond to the classes
of the following equivalence relation.



1.1. Automata and orders 9

Definition 4 (Myhill-Nerode equivalence). Let L ⊆ Σ∗ be a language. Given a string
α ∈ Σ∗, we define the right context of α as

α−1L := {γ ∈ Σ∗ : αγ ∈ L},

and we denote by ≡L the Myhill-Nerode equivalence on Pref(L) defined as

α ≡L β ⇐⇒ α−1L = β−1L.

The following theorem guarantees the uniqueness of the minimum automaton.

Theorem 1 (Myhill-Nerode). Given a language L ⊆ Σ∗, the following are equivalent:

1. L is a regular language (i.e. L is recognized by a NFA).

2. ≡L has finite index.

3. L is a union of classes of a right invariant equivalence over Σ∗ of finite index.

4. L is recognized by a DFA.

If L is a regular language we will denote by DL its minimum automaton, which
can be defined using Theorem 1 as shown in the following proposition.

Proposition 2. Given a regular language L ⊆ Σ∗, there exist a unique (up to isomorphism)
state-wise minimum automaton DL = (Q, q0, δ, F) defined as follows.

• Q := {[α]L | α ∈ Pref(L)}, where [α]L is the Myhill-Nerode equivalence class of the
string α (see Definition 4).

• q0 := [ε]L.

• For each string α and for each character a in the alphabet, the transition function is
defined as

δ([α]L, a) := [α · a]L.

• F := {[α]cL | α ∈ L}.

Notice that the automaton DL in Proposition 2 has a finite number of states due
to condition 2 of Theorem 1. Moreover, the output languages (see Definition 2) of
the states of DL must be pairwise distinct. In fact, assume that two states have the
same output language: we can obtain a new automaton by erasing one of them and
redirecting all its incoming edges to the second one. It is easy to prove that this
new automaton recognizes the same language and clearly has one less state. Notice
also that an immediate consequence of Proposition 2 is the fact that the set of input
languages of the states of DL coincides with the Myhill-Nerode equivalence classes
contained in L.

In this thesis we will be mainly concerned with a specific class of automata, the
Wheeler auotomata, and the class of languages they recognize, Wheeler languages.
As we shall see, these classes are subclasses of the following very well-known and
studied classes of NFAs and regular languages.

Definition 5 (Counter-free automata and star-free languages). Let A = (Q, q0, δ, F)
be a DFA. A sequence of states p0, p1, . . . , pk with k ≥ 1 is called a counter if and only
if pi ̸= pj for all 0 ≤ i < j ≤ k and there exists a string α such that δ(pi, α) = pi+1 for
all 0 ≤ i ≤ k, where pk+1 := p0.
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A DFA is called counter-free if and only if it has no counters. A regular language is
called star-free if can be obtained starting from finite languages and using all boolean
operations and concatenation.

In [28] it was proved that the language recognized by a counter-free DFA is star-
free. Moreover, to decide whether a regular language is star-free one can use the
following theorem, proved again in [28]. We will see that a similar result holds for
the class of Wheeler languages in Theorem 16.

Theorem 3. A regular language is star-free if and only if its minimum DFA is counter-free.

In Figure 1.1 are depicted two minimum automata: one is counter-free, hence
recognizing a star-free language, whereas the other has counters, hence recognizing
a language that is not star-free.

p0 p1

a

a

(a) The minimum DFA DL1 recognizing
the language L1 = (aa)∗, containing the
counter p0, p1 (with α = a).

p0 p1

a

b

(b) The minimum DFA DL2 recognizing
the language L2 = (ab)∗. It is easy to
check that DL2 contains no counters.

FIGURE 1.1: SinceDL1 contains a counter, the language L1 is not star-
free; clearly, L1 is able to “count” modulo 2. Conversely,DL2 does not
contain a counter hence the language L2 is star-free. As a matter of
fact, we can write L2 = (ab)∗ as (aΣ∗ ∩ Σ∗b) \

(
Σ∗aaΣ∗ ∪ Σ∗bbΣ∗

)
; if

we replace Σ∗ with ∅̄ (that is, the complement of the empty set) in the
previous expression we obtain a regular expression for L2 that makes

no use of the Kleene star.

1.2 Wheeler automata and languages

In this section we will state some results related to Wheeler automata, a subclass of
NFAs whose states admit a special order. Wheeler automata are the focus of this
entire thesis but, before giving the formal definition, we need to fix some notation
on orders.

We assume that there is a fixed total order ⪯ on the alphabet Σ of finite au-
tomata (in our examples, the alphabetical order). We extend ⪯ to strings in Σ∗ co-
lexicographically, that is, for α, β ∈ Σ∗, we have α ⪯ β if and only if either α is a suffix
of β, or there exist α′, β′, γ ∈ Σ∗ and a, b ∈ Σ, such that α = α′aγ and β = β′bγ
and a ≺ b. In the following, we will always compare strings of characters using
the co-lexicographic order instead of the lexicographic one. This is due to the fact
that the order of the states of a Wheeler automaton, which will be defined later,
induces an order on the strings reaching them, but only if we compare the strings
co-lexicographically.

Given two strings α, β ∈ Σ∗, we denote by α ⊣ β the property that α is a suffix of
β.

If (Z,≤) is a partial order, we denote by (Z,<) its corresponding strict partial
order. Given a partial order (Z,≤) we say that a subset I ⊆ Z is convex if, for any
x, y, z ∈ Z with x < y < z, if x, z ∈ I then y ∈ I.
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The class of Wheeler automata has been recently introduced in [29]. An automa-
ton in this class has the property that there exists a total order on its states that is
propagated along equally labeled transition. Moreover, the order must be compati-
ble with the underlying order of the alphabet:

Definition 6 (Wheeler Automaton). A Wheeler NFA (WNFA) A is a NFA
(Q, q0, δ, F, Σ) endowed with a binary relation < such that: (Q,<) is a linear order
having the initial state q0 as minimum, q0 has no in-going edges, and the following
two (Wheeler) properties are satisfied. Let v1 ∈ δ(u1, a1) and v2 ∈ δ(u2, a2):

(W1) a1 ≺ a2 → v1 < v2

(W2) (a1 = a2 ∧ u1 < u2) → v1 ≤ v2.

A Wheeler DFA (WDFA) is a WNFA in which the cardinality of δ(u, a) is always less
than or equal to one.

In Figure 1.2 is depicted an example of a WDFA.

q0

q1 q2

q4 q3 q5

a c

c

d
c

c

f

f

FIGURE 1.2: A WDFA D recognizing the language Ld = ac∗ ∪ dc∗ f .
Condition W1 of Definition 6 implies input consistency and induces
the partial order q1 < q2, q3 < q4 < q5. From condition W2 it follows
that δ(q1, c) ≤ δ(q4, c), thus q2 < q3. Therefore, the only order that
could make D Wheeler is q0 < q1 < q2 < q3 < q4 < q5. The reader
can verify that condition W2 holds for each pair of equally labeled

edges.

Remark 4. A consequence of Wheeler property (W1) is that A is input-consistent, that
is all transitions entering a given state u ∈ Q have the same label: if u ∈ δ(v, a)
and u ∈ δ(w, b), then a = b. Note that, for a fixed (i.e. constant in size) alphabet,
requiring an automaton to be input-consistent is not computationally demanding. In
fact, given an NFA A = (Q, q0, δ, F, Σ) we can build an equivalent, input-consistent
one just by creating, for each state q ∈ Q, at most |Σ| copies of q, that is, one for each
different incoming label of q. This operation can be performed in O

(
|Q| · |Σ|

)
time.

A nice property of WNFAs is that the Wheeler order of its states is reflected on
the "order" of their input languages. To define such an order over languages, which
are sets of strings, we give the following general definition.

Definition 7 (Prefix-suffix relation). Let (L,≤) be a total order and let I1, I2 be two
subsets of L. We define the prefix-suffix relation among subsets of L as follows:

I1 ≤ps I2 ⇐⇒ ∀α ∈ I1∀β ∈ I2
(
{α, β} ̸⊆ I1 ∩ I2 → α ≺ β

)
.
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Proposition 5 ([23]). Let A be a WNFA with set of states Q and Wheeler order <. Then,
given two states q, q′ ∈ Q,

q ≤ q′ =⇒ Iq ⪯ps Iq′ ,

where ⪯ps is the prefix-suffix order induced by the co-lexicographic order (Σ∗,≺).

q0

q1

q3

q2

q4

q5

a

aa
c

a

b

b

FIGURE 1.3: A WNFA A. The Wheeler order of its states satisfying
(W1) and (W2) is q0 < q1 < q2 < q3 < q4 < q5.

Example 1. Consider the WNFA A in Figure 1.3. The input languages of the states of
A are

Iq0 = {ε}, Iq1 = {a}, Iq2 = a · a∗, Iq3 = aa · a∗, Iq4 = a · a∗b, Iq5 = a · a∗c.

Just by looking at the common ending character of the strings in each input language
we can immediately verify that the implication q ≤ q′ =⇒ Iq ⪯ps Iq′ holds for most
pairs of sates. For instance, all strings in Iq3 end with a and all strings in Iq5 end with
c, hence Iq3 ≺ps Iq5 . The only non-trivial inequalities to check are Iq1 ⪯ps Iq2 ⪯ps Iq3 .
By applying Definition 7 we have Iq1 ⪯ps Iq2 iff

∀α ∈ Iq1∀β ∈ Iq2

(
{α, β} ̸⊆ Iq1 ∩ Iq2 → α ≺ β

)
.

Since a is the only string in Iq1 the formula above is equivalent to

∀β ∈ Iq2 \ {a} (a ≺ β),

which is indeed true. Similarly, by applying Definition 7 we have Iq2 ⪯ps Iq3 iff

∀α ∈ Iq2∀β ∈ Iq3

(
{α, β} ̸⊆ Iq2 ∩ Iq3 → α ≺ β

)
.

Since a is the only string in Iq2 not belonging to Iq2 ∩ Iq3 the formula above is equiv-
alent to

∀β ∈ Iq3 \ {a} (a ≺ β),

which is true. Therefore, the input languages are ordered as follows:

Iq0 ≺ps Iq1 ≺ps Iq2 ≺ps Iq3 ≺ps Iq4 ≺ps Iq5 .

Consider the previous result restricted to DFAs. Since given two states q ̸= q′

of a DFA it always holds Iq ∩ Iq′ = ∅, the condition Iq ≺ps Iq′ translates to ∀α ∈
Iq∀β ∈ Iq′(α ≺ β). Therefore we have the following proposition, where we extend
the definition of ≺ to set of strings in the natural way: for X, Y ⊆ Σ∗, we denote by
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X ≺ Y the relation defined as

∀α ∈ X∀β ∈ Y(α ≺ β).

Proposition 6 ([23]). Let D be a DFA. Then the relation

q <D q′ ⇐⇒ Iq ≺ Iq′

is a partial order. Moreover, this order is total if and only if D is Wheeler.

This result is important because it makes possible to decide in polynomial time
whether a DFA is Wheeler: for each state q, pick the shortest string αq entering it and
order the states reflecting the co-lexicographic order of the strings {αq : q ∈ Q}; then
check if the order satisfies the Wheeler conditions.

Lemma 7 ([30]). The Wheeler Automata Recognition problem is in P for DFAs.

In contrast, in [17] the following Theorem was proved.

Theorem 8. The Wheeler Automata Recognition problem is NP-complete for NFAs.

The proof of this Theorem consists of a reduction from the Betweenness problem,
which is stated below and has been shown to be NP-complete [31].

Definition 8 (Betweenness). Input: a list Y of n distinct elements Y = y1, ..., yn and
k < n3 ordered triples (a1, b1, c1), ..., (ak, bk, ck) each composed of three different ele-
ments belonging to Y.
Output: yes/no answer. The answer is “yes” if and only if there exists a total order
< of Y such that, for each k, either ak < bk < ck or ak > bk > ck.

Among the many NP-complete problems studied in the literature, Betweenness
is not one of the most popular: it involves ordering elements, which is rarely a cru-
cial characteristic of combinatoric problems. It should not be surprising that this
problem is related to Wheelerness, where we are interested in ordering the states
of an automaton. In fact, we will also use the Betweenness problem in Section 2.3
to prove the NP-completeness of a new problem that emerges when we drop the
restriction that the alphabet’s order is fixed.

Another interesting theorem about Wheeler automata is the following, which
states that the exponential blow-up in the number of states associated to the power-
set construction does not occur on WNFAs.

Theorem 9. (see [16]) If A = (Q, s, δ,<, F) is a WNFA with |Q| = n and L = L(A),
then there exists a unique minimum-size WDFA B with at most 2n− 1− |Σ| states such
that L = L(B).

Corollary 9.1. The class of languages recognized by WNFAs coincides with the class of
languages recognized by WDFAs.

In [29] it is shown that WNFAs have a property called path coherence, that we shall
use in Chapter 3.

Lemma 10 (Path coherence). Let A = (Q, q0, δ, F, Σ) be a WNFA according to the order
(Q,<). Then for every interval of states I = [qi, qj] and for all α ∈ Σ∗, the set J of states
reachable starting from any state in I by reading α is also an interval. In particular, given a
string α ∈ Σ∗ the set Iα = δ(q0, α) is an interval. Moreover, given a state q ∈ Q its input
language Iq is a convex set in (Pref(L),≺)
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We now present an analogous of the classical Myhill-Nerode Theorem (1) for
Wheeler languages. In order to state it, we replace the equivalence ≡L by the equiv-
alence ≡c

L defined below.

Definition 9. The input-consistent, convex refinement ≡c
L of ≡L is defined as fol-

lows. α ≡c
L β if and only if

• α ≡L β,

• α and β end with the same character,

• for all γ ∈ Pref(L), if min(α, β) ⪯ γ ⪯ max(α, β), then α ≡L γ ≡L β.

Remark 11. Notice that≡c
L-classes are convex for any regular language L, but in non-

Wheeler languages there is an infinite number of them, as stated in the following
theorem.

Theorem 12 (Myhill-Nerode for Wheeler Languages [30]). Given a language L ⊆ Σ∗,
the following are equivalent:

1. L is a Wheeler language (i.e. L is recognized by a WNFA).

2. ≡c
L has finite index over Pref(L).

3. L is a union of classes of a convex, input-consistent, right invariant equivalence over
Pref(L) of finite index.

4. L is recognized by a WDFA.

Using the Myhill-Nerode Theorem for Wheeler languages we can prove that
there exists a minimum (in the number of states) WDFA recognizing L, and such
WDFA is unique up to isomorphism with a construction similar to the one given in
Proposition 2.

Proposition 13. Given a regular language L ⊆ Σ∗, there exist a unique (up to isomor-
phism) state-wise minimum WDFA DW

L = (Q, q0, δ, F) defined as follows.

• Q := {[α]≡c
L
| α ∈ Pref(L)}, where [α]≡c

L
denotes the equivalence class of the string

α for the relation defined in Definition 9).

• q0 := [ε]≡c
L

• For each string α and for each character a in the alphabet, the transition function is
defined as

δ
(
[α]≡c

L
, a
)

:= [α · a]≡c
L
.

• F := {[α]≡c
L
| α ∈ L}.

Remark 14. As in the classic case, the input languages of the states of the minimum
WDFA are, in fact, the ≡c

L-equivalence classes, this time consisting of convex sets of
strings, and the Wheeler order between them is given by the≺-order over subsets of
strings. In particular, given a Wheeler language L and two distinct Wheeler classes
W1, W2 of L (corresponding to the input languages of two distinct states of DW

L ) it
always holds either W1 ≺W2 or W2 ≺W1.
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q0

q1 q2

q3 q4
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(a) The minimum DFA DL recogniz-
ing L.
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q1 q2
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b
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(b) The minimum WDFA DW
L recognizing

L.

FIGURE 1.4: The minimum DFA and WDFA recognizing a Wheeler
language L. To obtain DW

L , states q3 and q4 have been split due to
input-consistency and convexity requirements.

In Figure 1.4, the minimum DFA and the minimum WDFA recognizing a Wheeler
language L are depicted. Consider the Myhill-Nerode equivalence classes of L, that
is, the input languages of the states of DL:

Iq0 = {ε}, Iq1 = {b}, Iq2 = {ba}, Iq3 = {a, c}, Iq4 = {aa, ca, d, bad}.

Starting from these classes, we can easily obtain the ≡c
L-classes of Definition 9. First,

we refine the equivalence in order to make these classes input-consistent, that is,
each new class will contain strings ending with the same character. Therefore we
split the class Iq3 into two classes, Iq3a = {a} and Iq3c = {c}. We do the same for
the class Iq4 , obtaining Iq4a = {aa, ca} and Iq4d = {d, bad}. Second, we refine this
input-consistent equivalence in order to make these classes convex. The only class
that is not already convex is Iq4a = {aa, ca}: as a matter of fact, we have aa ≺ ba ≺ ca
with ba ∈ Iq2 ̸= Iq4a . Therefore we split Iq4a into Iq1

4a
= {aa} and Iq1

4a
= {ca}. We

end up with 8 distinct input-consistent, convex, right invariant equivalence classes
which will be the states of DW

L . The edges are trivially inherited from DL. Notice
that in the previous example things were easy due to the fact that the language L
considered is finite. We will see how to generalize this procedure to the general case
using Algorithm 1 in Section 2.2.

An important consequence of the Myhill-Nerode Theorem for Wheeler languages,
especially for testing Wheelerness, is stated in the following Lemma (proved in [16]).

Lemma 15. A regular language L is Wheeler if and only if all monotone sequences in
(Pref(L),≺) become eventually constant modulo ≡L. In other words, for all sequences
(αi)i≥0 in Pref(L) with

α1 ⪯ α2 ⪯ . . . αi ⪯ . . . or α1 ⪰ α2 ⪰ · · · ⪰ αi ⪰ . . .

there exists an n such that αh ≡L αk, for all h, k ≥ n.

Lemma 15 shows how it is possible to recognize whether a languageL is Wheeler
simply by verifying a property on the strings of Pref(L): trying to find a WDFA that
recognizes L is no longer needed to decide the Wheelerness of L. As shown in
Theorem 16 (see [16]), we can verify whether the property mentioned in Lemma 15
is satisfied just analysing the structure of the minimum DFA recognizing L.
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Theorem 16. Let DL be the minimum DFA of L, with initial state q0 and dimension n =
|DL|.
L is not Wheeler if and only if there exist µ, ν and γ in Σ∗, with γ �⊣ µ, ν, such that:

1. µ ̸≡L ν and they label paths from q0 to states u and v, respectively;

2. γ labels two cycles, one starting from u and one starting from v;

3. µ, ν ≺ γ or γ ≺ µ, ν.

The length of the strings µ, ν and γ satisfying the above can be bounded:

4. |µ|, |ν| ≤ |γ| ≤ n3 + 2n2 + n + 2.

Since in this work we make an extensive use of Theorem 16, here is a simple
example on how and why it works. Consider the two languages Ld,Lb recognized
by the automaton Ad on the left and Ab on the right in Figure 1.5, respectively. As
shown in Figure 1.2, the language Ld is Wheeler, while Lb is not Wheeler, and this
can be easily proved using Theorem 16. In fact, consider the automaton Ab. By
setting µ := a, ν := b and γ := c, one can verify conditions 1-3 of the theorem
are satisfied. Notice that condition a ̸≡Lb b follows immediately from the fact that
δ(q0, a) ̸= δ(q0, b) in the minimum DFA Ab. If we try to transpose the same rea-
soning to the automaton Ad by setting µ = a, ν = d and γ = c, condition 3 of
Theorem 16 is no longer satisfied. We can not find 3 strings satisfying conditions 1-3
of Theorem 16, confirming that Ld is Wheeler.

q0

q1

q2 q3

a

d

c

c

f

(a) The minimum DFA DLd recognizing
Ld = ac∗ ∪ dc∗ f .

q0

q1

q2 q3

a

b

c

c

f

(b) The minimum DFA DLb recognizing
Lb = ac∗ ∪ bc∗ f .

FIGURE 1.5: The minimum DFAs recognizing the languages Ld
(Wheeler) and Lb (not Wheeler).

The polynomial bound given by condition 4 of Theorem 16 allows to design an
algorithm that decides whether a minimum DFA recognizes a Wheeler language:
using dynamic programming (see [30]), it is possible to keep track of all the relevant
paths and cycles inside the DFA and check, in polynomial time, whether there exists
three strings satisfying the conditions of the theorem. Hence:

Theorem 17 ([32]). Starting from a DFA recognizingL, the problem of recognizing whether
L is Wheeler is in P.

Actually, if we want to to decide whether a DFA recognizes a Wheeler language
there is an approach way faster than the one previously described: in [33] it was
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proved that it is sufficient to compute the minimum DFA DL, build the direct prod-
uct DL × DL and check for cycles after removing some states. This results in a
quadratic algorithm.

As a last note, recall that in the previous section we introduced the class of
counter-free automata and star-free languages (see Definition 5). The relation be-
tween these two classes and the Wheeler class is stated in the following proposition.

Proposition 18. Any Wheeler DFA is counter-free. Equivalently, any Wheeler language is
star-free.

Proof. LetA be a WDFA and suppose, by way of contradiction, thatA has a counter,
say p0, p1, . . . , pk for some k > 1 and some string α. Let < be the Wheeler order over
the set of states of A and assume w.l.o.g that pk−1 < pk, the case pk−1 > pk being
symmetric. Since δ(pk−2, α) = pk−1 and δ(pk−1, α) = pk it can be easily proved by
induction on the length of α, using condition (W2) of Definition 6, that pk−2 < pk−1.
This argument can be reiterated inductively k times in order to prove that

pk < p0 < p1 < · · · < pk−1 < pk,

a contradiction. Hence A is counter-free. We now prove the second statement of
this proposition. Let L be a Wheeler language. By definition, L is recognized by
a WDFA. From the first statement it follows that WDFA is counter-free, hence the
language it recognizes is star-free.

From the previous proposition, it follows that the presence of a counter in a DFA
D prevents it from being Wheeler. If the given DFA is minimum, this result can be
proved directly using Theorem 16: let p0, p1, . . . , pk be a counter for some k > 1 and
some string α. Then γ := αk is a string labeling two cycles starting from u := p0 and
v := p1. Exploiting the fact that u, v are states belonging to a counter, one can easily
find two strings µ, ν reaching u, v such that either µ, ν ≺ γ or γ ≺ µ, ν, fulfilling the
conditions of Theorem 16. Therefore, the language recognized by D is not Wheeler,
which in turn implies that D is not Wheeler. This proof can be extended to any DFA
—not just the minimum ones— due to the fact that Theorem 16 actually holds for
generic DFAs, as we will prove in Lemma 35 in Chapter 2. However, note that the
presence of counters is not the only obstacle to an automaton’s Wheelerness: as seen
in the example in Figure 1.5(b), automata without counters may not be Wheeler. In
other words, Wheeler automata are a proper subclass of counter-free automata and,
equivalently, Wheeler languages are a proper subclass of star-free languages.

The notation and results listed so far are just a small part of the overall picture
regarding the known fact about Wheelerness. For further details, reference is made
to works [16] and [23], which serve as the background upon which this thesis is
based. One thing to be aware of is that in these two works, two different definitions
of Wheelerness are used: the first is more useful when discussing automata, the
second is more useful when discussing languages. In this thesis, we will make the
same distinction when necessary (see Definition 6 and 11).
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Chapter 2

Wheeler complexity

In this chapter we will study some properties related to both Wheeler automata and
Wheeler languages. In [16], the first paper that studied Wheeler languages, some
problems remained unexplored.

1. What is the complexity of deciding whether a NFA recognizes a Wheeler lan-
guage?

2. How to compute the minimum WDFA recognizing a language given by its
minimum DFA?

3. The notion of Wheelerness depends not only on the structure of an accepting
automaton but also on the order of its alphabet. A natural generalization of this
notion is the one that drops the request for the alphabet to have a fixed order: if
we are allowed to choose any order, what would change? In particular, would
we still be able to decide in polynomial time whether exists an order —of the
alphabet— that makes a DFA or language Wheeler?

4. In [16] it was shown that there exists a subclass of NFAs, the reduced automata,
properly containing the DFA class and admitting a representative for any reg-
ular languages, for which we can decide whether they are Wheeler in poly-
nomial time (in contrast with the general case [17]). This raises the following
questions: how hard it is to decide whether a NFA is reduced? And is it possi-
ble to transpose this result to languages, so that we can decide in polynomial
time whether there a exists a reduced NFA recognizing a Wheeler language?

Before answering to these questions in Sections 2.2, 2.3 and 2.4, in Section 2.1
we will study the state complexity of a couple of operations Wheeler automata are
closed for, namely the intersection and the cascade product (see Def. 10).

2.1 State complexity

A significant property on the interplay between deterministic and non-deterministic
Wheeler Automata is that, given a size-n WNFA A, there always exists a WDFA
that recognizes the same language whose size is at most 2n (see Theorem 9). The
announced amount of states can be computed using the (classic) powerset construc-
tion. In other words, the blow-up of the number of states that we might observe
when converting NFAs to DFAs, does not occur for Wheeler non-deterministic au-
tomata. This property is a direct consequence of an important feature of Wheeler
automata: for any state q, the set of strings recognized by q—namely Iq—is a convex
set over Pref(L) with respect to the co-lexicographic order.

State complexity is also used to measure the complexity of operations on regular
languages. In this section we prove that the convex property of a Wheeler DFA can
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also be exploited to prove that the state complexity of the intersection of Wheeler
languages is significantly better than the state complexity of the intersection of gen-
eral regular languages.

The state complexity of a regular language L is defined as the number of states of
the minimum DFA DL recognizing L. The state complexity of an operation on reg-
ular languages is a function that associates to the state complexities of the operand
languages the worst-case state complexity of the language resulting from the opera-
tion. For instance, the state complexity of the intersection of L1 and L2 is mn, where
m and n are the number of states of DL1 and DL2 respectively. The bound mn for the
intersection can easily be proved using the state-product construction for DL1 and
DL2 , and it is a known fact that this bound is tight [34].

It is natural to define the Wheeler state complexity of a Wheeler language L as
the number of states of the minimum WDFA DW

L recognizing L. In the following
theorem, we show what it is the Wheeler state complexity of the intersection of two
Wheeler languages L1 and L2.

Lemma 19. Let D1 and D2 be two WDFAs recognizing the languages L1 and L2 respec-
tively. Then, the direct product D := D1 ×D2 recognizing the language L := L1 ∩ L2 is
Wheeler and it has at most |D1|+ |D2| − |Σ| − 1 states.

Proof. First we prove that |D1|+ |D2| − |Σ| − 1 is an upper bound to the number of
states of D. In general, for DFAs, the following holds: let p be a state of a DFA D′1
and let Ip be its input language. Let q be a state of a DFA D′2 and let Iq be its input
language. Then, the input language of the state (p, q) of the direct product D′1 ×D′2
is

I(p,q) = Ip ∩ Iq.

In particular, if Ip ∩ Iq = ∅ then the state (p, q) has an empty incoming language and
hence it is unreachable. It immediately follows that the number of reachable states
of D′1 × D′2 is at most equal to the number of non-empty intersection of the form
Ip ∩ Iq. In our case, D1 is Wheeler, so let p0 < p1 · · · < pn−1 be the Wheeler order
among the states of D1. From Proposition 5 it follows that the input languages are
ordered as follows:

Ip0 ≺ps Ip1 ≺ps · · · ≺ps Ipn−1 .

Similarly, let the input languages of the states of D2 be ordered as

Iq0 ≺ps Iq1 ≺ps · · · ≺ps Iqm−1 .

To obtain an upper bound to the number of states of D is then sufficient to count
the number of non-empty intersections of the form Ipi ∩ Iqj , for 0 ≤ i ≤ n− 1 and
0 ≤ j ≤ m− 1. Due to input-consistency, all strings belonging to the input language
of a given state of D1 or D2 end with the same character. Languages Ipi and Iqj that
end with different characters of the alphabet must have empty intersection, hence
we will focus only on input languages whose elements end with a specific character,
say a. Notice that we need to treat separately the languages Ip0 = Iq0 = {ε}, which
always lead to the non-empty intersection Ip0 ∩ Iq0 = {ε}.

Let Ipa
1
, . . . , Ipa

na
be the input languages of D1 that end with a and let Iqa

1
, . . . , Iqa

ma
be the input languages of D2 that end with a. We suppose both lists are ordered
by ≺ps. Let k be the number of non-empty intersections of the form Ipa

i
∩ Iqa

j
, and

let α1 ≺ · · · ≺ αk be an ordered list containing one representatives for each non-
empty intersection. For any 1 ≤ s < k, consider the strings αs and αs+1. There must
exist four unique indexes i, j, i′, j′ such that αs ∈ Ipa

i
∩ Iqa

j
and αs+1 ∈ Ipa

i′
∩ Ipa

j′
. From
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αs ≺ αs+1 it follows that both i ≤ i′ and j ≤ j′ hold, since the input languages of both
D1 and D2 are pairwise disjoint and ordered by ⪯ps. On the other hand, it can not
be the case that both i = i′ and j = j′ hold, because αs and αs+1 belong to different
intersections. Therefore we have that i′ + j′ ≥ i + j + 1. The values of the function
f (αs) = i + j can range from 2 to na + ma, hence there might be at most na + ma − 1
different representatives. Taking the sum over every possible characters of Σ and
adding the class W1

0 ∩W2
0 = {ε}, we get an upper bound of

1 + ∑
a∈Σ

(na + ma − 1) = 1 + ∑
a∈Σ

na + ∑
a∈Σ

ma − |Σ| =

= 1 + (n− 1) + (m− 1)− |Σ| = n + m− |Σ| − 1

different possible representatives.
Second, we prove that D is Wheeler. From Proposition 6 it follows that D is

Wheeler iff the order <D is total. Therefore, it it sufficient to prove that given two
distinct —reachable— states (p, q), (p′, q′) ofD, either (p, q) <D (p′, q′) or (p′, q′) <D
(p, q) holds. Hence, let (p, q), (p′, q′) be two distinct states of D such that Ip ∩ Iq ̸=
∅ ̸= Ip′ ∩ Iq′ and assume, by way of contradiction, that (p, q), (p′, q′) are incom-
parable. It can not be the case that both Ip ⪯ps Ip′ and Iq ⪯ps Iq′ hold (with at least
one inequality being strict since (p, q), (p′, q′) are distinct), otherwise we would have
I(p,q) ≺ps I(p′,q′) and hence (p, q) <D (p′, q′), a contradiction. Similarly, it can not be
the case that both Ip′ ⪯ps Ip and Iq′ ⪯ps Iq hold. Therefore, consider the case where
Ip ≺ps Ip′ and Iq′ ≺ps Iq (the other case can be treated symmetrically), and let α, β be
two strings in Ip ∩ Iq and Ip′ ∩ Iq′ respectively. From Ip ≺ps Ip′ it follows that α ≺ β,
whereas from Iq′ ≺ps Iq it follows that β ≺ α, a contradiction. Therefore the order
<D is total and D is Wheeler.

Similarly to the case of determinizing a WNFA, where we used the classic pow-
erset construction without generating “too many” states, the classic direct-product
construction computes a WDFA that recognizes the intersection of the languages ac-
cepted by two WDFAs W1 and W2 without producing non-necessary states. This
time, the number of states generated will be at most the sum of the number of states
ofW1 andW2. Moreover, we can use Lemma 19 to analyze the state complexity of
the operation intersection over WDFAs, as stated in the following corollary.

Corollary 19.1. Let DW
L1

and DW
L2

be the minimum WDFAs recognizing the languages L1
and L2 respectively. Then, the minimum WDFA recognizing L := L1 ∩ L2 has at most
|DW
L1
|+ |DW

L2
| − |Σ| − 1 states.

This bound is tight.

Proof. We apply Lemma 19 to the WDFAs DW
L1

and DW
L2

to derive that their direct
product is a WDFA with at most |DW

L1
| + |DW

L2
| − |Σ| − 1 states that recognizes L.

The thesis immediately follows.
To show that the bound is tight (at least for |Σ| = 2), consider the following

families of languages over the alphabet Σ = {a, b}, with a ≺ b:

An := {α ∈ Σ∗ : an+1 is not a factor of α}
Bm := {β ∈ Σ∗ : bm+1 is not a factor of β}.

We can easily prove that all these languages are Wheeler. The minimum DFA recog-
nizing Bm, see Figure 2.1, is almost a WDFA: the only unmet condition is the require-
ment that the initial state has no incoming edges. Therefore, it is sufficient to split
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the state q0, resulting in an automaton with m + 2 states. A list of representatives of
the ≡c

Bm
-classes is

ε, a, b, . . . , bm.

q0 q1 q2 q3
b b b

a
a

a
a

(a) The minimum DFA DB3 .

q0

q1

q2 q3 q4

a

b

b b

a

a aa

b

(b) The minimum WDFA DW
B3

.

FIGURE 2.1: The minimum DFA and the minimum WDFA recogniz-
ing the language B3.

The minimum WDFA recognizing An has more states than the minimum DFA: for
1 ≤ i < n we have that ai and bai belongs to the same MN-class, which does not
contain an. Since ai ≺ an ≺ bai, we have to split the≡An -class containing both ai and
bai into two different ≡c

An
-classes. The automaton has 2n + 1 states, see Figure 2.2.

A list of representatives of the ≡c
An

-classes is

ε, a, . . . , an, ban−1, . . . , ba, b.

We already proved that the language L := An ∩ Bm might have at most (2n +
1) + (m + 2)− |Σ| − 1 = 2n + m different ≡c

L-classes, hence it is sufficient to show
that there are at least 2n + m different ones. We claim that the 2n + m strings

ε, a, . . . , an, ban−1, . . . , ba, b, . . . , bm

all belong to different ≡c
L-classes. Strings that end with a different amount of a′s (or

b′s) belong to different ≡L-classes, so there is nothing to prove. Therefore we only
have to check, for each 1 ≤ i < n, that ai and bai belong to different ≡c

L-classes, and
again this is true since ai ≺ an ≺ bai.

As we proved in Lemma 19, if we are given two WDFAs and we compute their
direct product we obtain a DFA that is still Wheeler. It is natural to ask whether
there are more operations preserving the Wheeler properties. As far as the classic
operations on DFAs are concerned (booleans, concatenation, and Kleene star), the
answer is no: in [16] it was proved that intersection (that is, the direct product) is
the only “classic” automata operation for which Wheeler automata are closed in
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q0 q1 q2 q3a a a

b
b

b
b

(a) The minimum DFA DA3 .

q0 q1 q2 q3

q4

q5

q6

a a a

a

a

a

b b
b b

b

bb

(b) The minimum WDFA DW
A3

.

FIGURE 2.2: The minimum DFA and the minimum WDFA recogniz-
ing the language A3.

full generality. In addition, we will show now that there exists one more operation
preserving Wheelerness, which can be considered as a generalization of the direct
product of two automata.

One can picture the direct product of two DFAs D1 = (Q1, δ1, . . . ) and D2 =
(Q2, δ2, . . . ) rather simply as follows: starting from the (usually excessively large)
set of states Q1×Q2, in order to determine the existence of an edge ((q, r), a, (q′, r′)),
check whether the two edges (q, a, q′) and (r, a, r′) were present in the original DFAs.

This construction can be generalized to obtain the cascade product (see [25]). The
idea is to combine the two DFAs with the first one working as usual (receiving a
string as an input), while the second one takes as input both the string and the run
of the first automaton over this string, as depicted in Figure 2.3.

B

Σ

C

FIGURE 2.3: The automata B and C. The two arrows from Σ to C and
from B to C indicate that, at each step, the automaton C reads both

the input letter from Σ and the current state of the automaton B.

Since the second automaton receives as input both the output —the run— of the
first automaton on a string and the string at the same time, its alphabet must be made
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of pairs: the first component of such a pair is a state of the first automaton, whereas
the second component must be a character of the alphabet Σ of the first automaton.
Formally, we define the cascade product as follows.

Definition 10 (Cascade product). Let B = (QB , Σ, δB) be DFA and C = (QC , QB ×
Σ, δC) be a second DFA whose alphabet is the cartesian product of QB and Σ. The
cascade product B ◦ C = (QB◦C , Σ, δB◦C) is the automaton with set of states QB◦C :=
QB ×QC and transition function defined by

δB◦C
(
(q, r), a

)
=
(
δB(q, a), δC(r, (q, a))

)
.

Clearly the cascade product, defined for DFAs, is still a DFA. Note that
both δB and δC might be partial functions, thus we are implicitly requiring that
δB◦C((q, r), a) ̸= ⊥ if and only if δB(q, a) ̸= ⊥ ∧ δC(r, (q, a)) ̸= ⊥.

Figure 2.4 shows an example of cascade product between two automata.

q0 q1 q2

a

b

c

c

c
B

Σ

r0 r1

f d, g, h

e

C

(a)

q0
r0

q0
r1

q1
r0

q1
r1

q2
r0

q2
r1

a

c

b
c

c

(b)

FIGURE 2.4: In 2.4(a), the automata B and C. C-transitions are: d =
(q0, a), e = (q0, b), f = (q0, c), g = (q1, c), h = (q2, c). The links from
Σ and B to C indicate that, at each step, C reads both the input letter
from Σ and B’s current state. In 2.4(b), the cascade product B ◦ C of B

and C.

Notice that the direct product between automata can be seen as a particular
case of the cascade product: given two automata B, C the direct product B × C is
equal to the cascade product B ◦ C ′, where C ′ is obtained from C by replacing each
edge (r, a, r′) with |SB| edges

(
r, (q, a), r′

)
, one for each q ∈ SB. This way, we have

δC′(r, (q, a)) = r′ = δC(r, a), therefore the cascade product operates as follows:

δB◦C
′(
(q, r), a

)
=
(
δB(q, a), δC

′
(r, (q, a))

)
=
(
δB(q, a), δC(r, a))

)
;

this definition coincides with the one of δB×C .
We will make good use of this new operation in Section 3, but for now we will

just show a nice property preserved by it: as it holds for the direct product, Wheeler
automata are closed under the cascade product and the state complexity of this op-
eration is linear in the Wheeler case. Actually, we will prove this result for a class
of automata slightly larger than Wheeler automata, that is, a class that avoids the
input-consistency requirement. Working with input-consistent automata might be
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cumbersome due to the larger amount of states, but we can eliminate this restriction
by giving an alternative, less strict definition of Wheeler automata as given in [23].
The new class of automata is a proper superclass of the old one but the class of rec-
ognized languages is exactly the Wheeler class. For this reason, we still refer to these
automata as Wheeler automata.

Definition 11. Let D = (Q, q0, δ, F) be a DFA. We say that D is Wheeler if there
exists a total order < on Q having the initial state q0 as minimum that satisfies the
following two axioms:

(W1’) For every u, v ∈ Q, if u < v, then, if u = δ(u′, a), v = δ(v′, b), it holds a ⪯ b;

(W2’) For every a ∈ Σ, if u = δ(u′, a), v = δ(v′, a), and u < v, then u′ < v′ (it must be
u′ ̸= v′ because u and v are distinct).

Notice that, since we are requiring that < is a total order, axiom (W2’) is equiv-
alent to: for every a ∈ Σ, if u = δ(u′, a), v = δ(v′, a), and u′ < v′, then u ≤ v. We
will freely use both versions in the following. This alternative definition of Wheeler
automata is useful not only because it allows us to work with non-input-consistent
automata but also because it allows us to generalize the notion of Wheelerness to
any automaton: if we allow the order on states to be partial rather than total, the
new definition fits generic NFAs. This way, we can introduce a measure, called the
width of the automaton, which indicates how far the partial order is from being total,
or how far the automaton is from being Wheeler. We will explore this topic in more
detail in Chapter 4.

It can easily be proved that a Wheeler automaton (accordingly to Definition 11)
recognizes a Wheeler language by transforming it into an input-consistent automa-
ton: this new automaton is Wheeler accordingly to Definition 6. For this reason, we
will freely switch between this two definitions. In particular, we will use Definition
11 for the following lemma and in Section 3 and Section 4.

Lemma 20. If B = (Q, Σ, q0, δB) is Wheeler with respect to the orders (Σ,≺) and (Q,<Q)
and C = (R, Q× Σ, r0, δC) is Wheeler with respect to the co-lexicographic order on the set
of pairs1 Q× Σ and the order (R,<R) then B ◦C (restricted to accessible states) is a WDFA
with respect to (Σ,≺) and the lexicographic order over Q× R.

Moreover, the lexicographic order on Q × R-accessible states coincides with the co-
lexicographic order and if B has n1 states and C has n2 states then the cascade product
B ◦ C has at most n1 + n2 − 1 states.

Proof. We use the symbols⪯ (≺) to denote both the (strict) order on Σ and the (strict)
co-lexicographic order on (Q × Σ). If u is an automaton state, λ(u) denote the set
of characters labeling transitions arriving in u. Let ≤ (<) denotes the (strict) lexico-
graphic order over (Q,<Q) × (R,<R). Following Definition 11, we have to prove
that:

[W1’] if δB◦C((q′1, r′1), a
)
= (q1, r1) and δB◦C((q′2, r′2), b

)
= (q2, r2), with (q1, r1) <

(q2, r2), then a ⪯ b;

[W2’] if (q1, r1) < (q2, r2) then δB◦C((q1, r1), a) ≤ δB◦C((q2, r2), a), for all a ∈ Σ.

[W1’]: From the hypothesis we know that

δB◦C((q′1, r′1), a
)
=
(

δB(q′1, a), δC(r′1, (q′1, a)
))

= (q1, r1)

1That is: (q, a) ≺ (q′, b) ⇔ (a ≺ b) ∨ [(a = b) ∧ (q <Q q′)] and dually for the lexicographic order
over pairs.
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and
δB◦C((q′2, r′2), b

)
=
(

δB(q′2, b), δC(r′2, (q′2, b)
))

= (q2, r2).

Suppose q1 <Q q2. Then, since a ∈ λ(q1) and b ∈ λ(q2) and B is Wheeler, we have
a ⪯ b. If instead q1 = q2 then r1 <R r2. Then, since (q′1, a) ∈ λ(r1) and (q′2, b) ∈ λ(r2)
and C is Wheeler, we have (q′1, a) ⪯ (q′2, b) in the co-lexicographic order on Q× Σ,
implying a ⪯ b.

[W2’]: Suppose (q1, r1) < (q2, r2) and let

(q′1, r′1) = δB◦C((q1, r1), a
)
=
(

δB(q1, a), δC(r1, (q1, a)
))

and
(q′2, r′2) = δB◦C((q2, r2), a

)
=
(

δB(q2, a), δC(r2, (q2, a)
))

We have to prove that (q′1, r′1) ≤ (q′2, r′2). If q1 <Q q2 then q′1 = δB(q1, a) ≤
q′2 = δB(q2, a). Moreover, from q1 <Q q2 we have (q1, a) ≺ (q2, a) hence r′1 =
δC(r1, (q1, a))≤Rr′2 = δC(r2, (q2, a)). This proves that (q′1, r′1) ≤ (q′2, r′2) in the case
q1 <Q q2.

If q1 = q2 then q′1 = δB(q1, a) = δB(q2, a) = q′2 and r1 < r2 holds. In this case
r′1 = δC(r1, (q1, a)) ≤R δC(r2, (q1, a)) = δC(r2, (q2, a)) = r′2. Hence r′1 ≤R r′2 and, since
q′1 = q′2 this proves (q′1, r′1) ≤ (q′2, r′2).

We now prove that the number of reachable states in B ◦ C is at most n1 + n2− 1.
Notice that a state (q, r) in B ◦ C is reachable iff

I(q,r) = {α ∈ Σ∗ : (q, r) ∈ δB◦C((q0, r0), α)} ̸= ∅.

In the following, if ν is a string (of states, or letters) we denote by ν[i] the leftmost
i-th element of the string and by ν−[i] the rightmost i-th element of the string.

Notice that, if |α| = k, then

α ∈ I(q,r) ⇔ α ∈ Iq and (πα[1], α[1]) . . . (πα[k], α[k]) ∈ Ir,

where πα[1] = q0 and πα is the B-computation made by B on reading α.
We first claim that, given α, β with |α| = k and |β| = h and corresponding B-

computations πα, πβ then

(πα[1], α[1]) . . . (πα[k], α[k]) ⪯ (πβ[1], β[1]) . . . (πβ[h], β[h])⇔ (πα, α) ⪯ (πβ, β)
(2.1)

(where the orders appearing are both colex orders: on the left the colex ordering of
string in the alphabet Q× Σ, on the right the colex order of pairs of strings (Q∗, Σ∗),
where the strings in Q∗, Σ∗ are co-lexicographically ordered). Notice that this prop-
erty does not hold for general DFAs, but only because B and C are Wheeler.

We may suppose that α ≺ β: if α = β then πα = πβ and the result follows; if
β ≺ α we can proceed symmetrically.

Suppose α = α′γ and β = β′γ with α′ ≺ β′ ending in different letters (or α′ = ϵ).
Since we are dealing with colex orders, then the equivalence 2.1 holds for α′ and β′.

If |γ| = n, we prove that

π−α [n] ⪯ π−β [n], . . . , π−α [1] ⪯ π−β [1] (2.2)

(where α′ ends in π−α [n] and β′ ends in π−β [n]).
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Since α′ ≺ β′ and α′, β′ end respectively in π−α [n], π−β [n], we have π−α [n] ≤Q

π−β [n] in the B-Wheeler order ≤Q. If π−α [n] = π−β [n] then π−α [i] = π−β [i], for i =

1, . . . , n because B is a DFA. If π−α [n] < π−β [n] then, since

π−α [n− 1] = δB(π−α [n], γ[1]), π−β [n− 1] = δB(π−β [n], γ[1])

we have π−α [n− 1] ≤ π−β [n− 1], and so forth, proving that π−α [i] ≤ π−β [i] for all i.
From the validity of the equivalence 2.1 for α′ and β′ and 2.2 we easily obtain

2.1 for α and β. Notice that 2.1 means that we can identify strings over the al-
phabet Q× Σ and the colex order between these strings, that is, C-inputs, with co-
lexicographically ordered pairs in (Q∗, Σ∗).

We now claim that

I(q,r) ̸= ∅ ∧ I(q′,r′) ̸= ∅ ∧ (q, r) <lex (q′, r′) ∧ q < q′ ⇒ r ≤ r′ (2.3)

(where <lex in the lexicographic order of the states in B ◦ C). Suppose α ∈ I(q,r),
β ∈ I(q′,r′). Then α ∈ Iq, (πα, α) ∈ Ir, β ∈ Iq′ , (πβ, β) ∈ Ir′ .

If q <Q q′ then, since B is Wheeler, we have α ≺ β. Then we have (πα, α) ≺
(πβ, β); since (πα, α) ∈ Ir and (πβ, β) ∈ Ir′ and C is Wheeler, this implies r ≤ r′.

From the claim the bound n1 + n2 − 1 follows. Moreover, from 2.3 it also holds
that

(q, r) <lex (q′, r′)⇔ (q, r) <colex (q′, r′).

Remark 21. Notice that the upper bound in Lemma 20 is worse than the bound in
Lemma 19. This is to be expected since we are using Definition 11 instead of Defi-
nition 6: the latter allows —in general— for smaller automata recognizing a given
language. Using Definition 11 in Lemma 19 would result in the same upper bound.

2.2 Computing the minimum WDFA

Despite the good behaviour that Wheeler automata show regarding determiniza-
tion, cascade products, and intersection, there are cases when the state complexity
of a construction turns out exponential. In fact, it is known [30, 33, 35] that a blow-up
of states can occur when switching from the minimum DFA recognizing a language
L to its minimum WDFA. In this section we provide an algorithm to compute the
minimum WDFA DW

L starting from the minimum DFA DL of a Wheeler language L
and from a L-fingerprint, that is, a set of strings containing exactly one representative
of each ≡c

L-class of L. Then we describe how to extract a fingerprint of L starting
from DL.

Definition 12 (Fingerprint). Let L be a Wheeler language, and let m be the number
of equivalence classes of ≡c

L. A set of strings F = {α1, . . . , αm} ⊆ Σ∗ is called a
fingerprint of L if and only if for each ≡c

L-class C it holds |F ∩ C| = 1.

We start by proving the existence of an upper bound to the length of the elements
of a fingerprint.

Lemma 22. Let DL be the minimum DFA recognizing the Wheeler language L over the
alphabet Σ and let W1, ..., Wm be the pairwise distinct Wheeler equivalence classes of ≡c

L.
Then, for each 1 ≤ i ≤ m, there exists a string αi ∈ Wi such that |αi| < n + n2, where
n := |DL|.
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Proof. Suppose, reasoning by contradiction, that there exists a class Wi such that for
all α ∈ Wi it holds |α| ≥ n + n2 and let α ∈ Wi be a string of minimum length.
We use the minimality of α to find three strings µ, ν, γ that meet the requirements of
Theorem 16, contradicting the hypothesis that L is Wheeler; to do so, we analyze the
computation of DL over α. Consider the first n + 1 states q0 = t0, ..., tn of DL visited
by reading the first n characters of α. Since DL has only n states, there must exist
0 ≤ i, j ≤ n with i < j such that ti = tj. Let α′ be the prefix of α of length i (if i = 0
then α′ = ε), let δ ̸= ε be the factor of α of length j− i labeling the cycle ti, ..., tj, and
let ζ be the suffix of α such that α = α′δζ, as depicted in Figure 2.5. Notice that ζ ̸= ϵ
since |α| ≥ n + n2. By construction, the strings α and β := α′ζ end in the same state,
hence α ≡L β. Moreover, from |β| < |α| and the minimality of α in its class it follows
that α ̸≡c

L β.
Suppose that α ≺ β, the other case being completely symmetrical. Since α and β
share the same suffix ζ ̸= ε, they end with the same character. Moreover, since
the strings α and β are Myhill-Nerode equivalent but not ≡c

L equivalent there must
exists a string η such that α ≺ η ≺ β and η ̸≡L α (see Def.9).
From ζ ⊣ α, β it follows that ζ ⊣ η, so we can write η = η′ζ for some η′ ∈ Σ∗.
Recall that by construction α = α′δζ with |α′δ| ≤ n, hence |ζ| ≥ n2. Consider the
last n2 + 1 states r0, ..., rn2 of DL visited by reading the string α and the last n2 + 1
states p0, ..., pn2 visited by reading the string η (these two paths have the same label
which is a suffix of ζ). Since DL has only n states, there must exist 0 ≤ i, j ≤ n2 with
i < j such that (ri, pi) = (rj, pj). Notice that it can’t be ri = pi, otherwise from the
determinism of DL it would follow rn2 = pn2 ; from the minimality of DL it would
then follow α ≡L η, a contradiction.
Let ζ ′′ be the suffix of ζ of length n2 − j, and let γ be the factor of ζ of length j− i
labeling the cycles ri, ..., rj and pi, ..., pj. Since |ζ| ≥ n2, there exists ζ ′ ∈ Σ∗ such that
ζ = ζ ′γζ ′′. We can then rewrite α, η and β as

α = α′δζ = α′δζ ′γζ ′′

η = η′ζ = η′ζ ′γζ ′′

β = α′ζ = α′ζ ′γζ ′′,

where, in DL, the strings α′ζ ′ and α′δζ ′ both reach ri whereas the string η′ζ ′ reaches
pi. Let k be an integer such that |γk| is greater than |α′δζ ′| and |η′ζ ′|. Set µ := η′ζ ′;
from α ≺ η ≺ β it follows that α′δζ ′ ≺ µ ≺ α′ζ ′. If γk ≺ µ set ν := α′ζ ′, otherwise set
ν := α′δζ ′. In both cases, the hypothesis of Theorem 16 are satisfied, since γk labels
two cycles starting from the states ri and pi, that we have proved to be distinct. We
can conclude that L is not Wheeler, a contradiction, and the thesis follows.
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α, β :
q0 = t0 ti = tj tn r0 ri = rj rn2

α′

δ

ζ ′

γ

ζ ′′

η :
q0 p0 pi = pj pn2

η′ ζ ′

γ

ζ ′′

FIGURE 2.5: Strings α, β, η and the significant states they pass
through. The string ζ = ζ ′γζ ′′ is highlighted in blue.

The upper bound of Lemma 22 was improved in [35] from n2 + n to 2n. This
improvement reflects on all the results we will show in this section. Therefore, we
will present all the results using the parameter value UB which, as demonstrated so
far, is equal to n2 + n. It is worth keeping in mind that this value can be replaced
with 2n.

We show now how to compute the minimum WDFA recognizing a Wheeler lan-
guage L if we are given its minimum DFA DL and one of its fingerprints.

Proposition 23 (Fingerprint to min WDFA). Let DL be the minimum automaton recog-
nizing the Wheeler language L with |DL| = n, alphabet Σ with |Σ| = σ, and let W1, ..., Wm
be the pairwise distinct equivalence classes of ≡c

L. Assume that we are given a fingerprint
of L, whose elements have length less than UB = n2 + n. Then it is possible to build the
minimum WDFA recognizing L in O(UB · σ ·m log m) time.

Proof. Let {α1, ..., αm} be a fingerprint of L and let DL be the minimum DFA recog-
nizing L. We can assume without loss of generality that α1 ≺ ... ≺ αm. We build
the minimum Wheeler automaton DW

L = (Q, α1, δ, F, Σ), where the set of states is
Q = {α1, ..., αm} and the set of final states is F = {αj : αj ∈ L}. The transition
function δ can be computed as follows. For all 1 ≤ j ≤ m and for all c ∈ Σ, check
whether αj · c ∈ Pref(L). If αj · c /∈ Pref(L), there are no edges labeled c that exit
from αj. If instead αj · c ∈ Pref(L), in order to define δ(αj, c) we just have to deter-
mine the ≡c

L-class of the string αj · c (see Theorem 9). We first locate the position of
αj · c in the intervals defined by α1 ≺ ... ≺ αm using a binary search. There are three
possible cases.

1. αj · c ⪯ α1. Then by the properties of ≡c
L it easily follows αj · c ≡c

L α1 and we
define δ(αj, c) = α1.

2. αm ⪯ αj · c. Similarly to the previous case, we have αj · c ≡c
L αm and we define

δ(αj, c) = αm.

3. There exists s such that αs ⪯ αj · c ⪯ αs+1. It can not be the case that both
αjc ̸≡L αs and αjc ̸≡L αs+1, since {α1, ..., αm} is a fingerprint of L and ≡c

L-
classes are convex sets in Pref(L). Hence we distinguish three cases.

(a) αs ≡L αj · c ̸≡L αs+1. Then αj · c ≡c
L αs and we define δ(αj, c) = αs.

(b) αs ̸≡L αj · c ≡L αs+1. Then δ(αj, c) = αs+1.
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(c) αs ≡L αj · c ≡L αs+1. Since {α1, ..., αm} is a fingerprint of L, we know that
strings between αs and αs+1 must belong to either the ≡c

L class of αs or to
the ≡c

L class of αs+1. Since αs ≡L αs+1, it is either c = end(αjc) = end(αs),
in which case αj · c ≡c

L αs and we define δ(αj, c) = αs, or c = end(αs+1), in
which case αj · c ≡c

L αs+1 and we define δ(αj, c) = αs+1 (where by end(β)
we denote the last letter of the string β, for β ∈ Σ+).

The time complexity of the described algorithm is the following: determining
whether αj · c ∈ Pref(L) and, if it does, locating its position among α1 ≺ ... ≺ αm
using binary search requires O(UB + UB · log m) time. To determine the ≡L-class
of αj · c it is sufficient to check its run on DL using O(UB) time, for a total time of
O(UB · log m). We need to perform these operations for each state αi ∈ Q and for
each character c ∈ Σ, amounting to a total time of O(m · σ ·UB · log m).

To complete the construction of the minimum WDFA, we show how to extract a
fingerprint of a Wheeler language L starting from its minimum DFA. We first need
to prove the following Lemma.

Lemma 24. Given a DFA D with n states, a state q and a string γ /∈ Iq with |γ| ≤ UB =
n2 + n, we can find in polynomial time, if it exists, the greatest (smallest) string in Iq that
is smaller (greater) than γ (w.r.t. the co-lexicographic order of the strings) and has length at
most UB.

Proof. As proved in [16, 35], we can extract in polynomial time a n×UB table storing,
for each (i, j) ∈ n×UB, the smallest and the greatest string in Iqi of length at most
j. Given a string α, we use the notation α−[i] to denote the i-th to last character of α
(or ε if i > |α|), and the notation α−i to denote the suffix of α of length i. In particular
we have α−i+1 = α−[i + 1] · α−i . In this Lemma we are interested only in strings with
length less than UB, therefore every string (subset of strings) that will be mentioned
has to be intended as an element (subset, respectively) of Σ≤UB = {α ∈ Σ∗ : |α| ≤
UB}.

We want to find the greatest string in Iq that is smaller than γ. Note that if γ is
the suffix of a string α, then γ ≺ α so we do not have to consider strings ending with
γ. Note also that the greatest string smaller than γ must maximize the length of the
longest suffix it has in common with γ. Therefore, we look for all the states of D
starting from which it is possible to read the longest proper suffix of γ that ends in
q. To do that, for each 1 ≤ i < |γ| we build the set Si = {p ∈ Q : p

γi⇝ q}. We
start from the set S0 = {q} and to build Si+1 from Si we simply follow backward the
edges labeled γ−[i + 1]. Every time we determine a set Si, we check if there exists at
least one incoming edge with a label strictly less than γ−[i + 1]. If this is the case, we
keep in memory Si as the last set we built with such property; previously stored sets
can be overwritten. This procedure ends either when we find an Si that is empty or
when we successfully build the last set S|γ|−1. If we did not store any of the Si we
have built, then there is no string in Iq smaller than γ. If instead we have stored at
least one Si, we consider the last one stored (that is, the only one that has not been
overwritten), say Sk. Clearly, the computation of any string in Iq smaller than γ that
maximizes the length of the longest suffix it has in common with γ must reach a
state of Sk at its k-th to last step. Therefore, let c be the greatest label smaller than
γ−[k + 1] that enters Sk (note that c must exists since we stored Sk), and let S be the
set of states that can reach Sk by an edge labeled c. Using the table described at the
very beginning of this lemma, we can easily find, if it exists, the greatest string ᾱ of
length at most UB−(k + 1) that can reach a state of S. Then, the greatest string in Iq
that is smaller than γ is ᾱ · c · γk.
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To find the smallest string in Iq that is greater than γ, we split the problem into
two sub-problems: 1) find the smallest string in Iq that is greater than γ but does
not have γ as a suffix and 2) find the smallest string in Iq that has γ as a suffix. The
first problem is a symmetric version of the one discussed above, and can be solved
in a similar way: we use exactly the same sets Si, but this time we store a set Si if
there exists at least one incoming edge with a label strictly greater than γ−[i + 1].
To also solve the second problem, instead of stopping when computing S|γ|−1 we
carry on and compute S|γ|. We do this since the following conditions hold: there
exists at least one string in Iq that has γ as a suffix iff S|γ| is not empty and there is at
least one string of length at most UB− |γ| that can reach a state of S|γ|. If S|γ| ̸= ∅,
we use again the table to determine, if it exists, the smallest string β̄ of length at
most UB− |γ| that can reach a state of S|γ|. Lastly, we compare β̄ · γ with the string
obtained by solving the first problem and we choose the smaller one.

As a last step, we describe an algorithm (Algorithm 1) that generates a finger-
print of a language L starting from the minimum DFA DL. The algorithm uses the
subroutines described in Lemma 24: given the minimum DFA DL with set of states
Q = {q0, . . . , qn−1} and two strings m, m′ ∈ Pref(L(D)) with m ∈ Iqk (for some
0 ≤ k ≤ n− 1),

• MinMaxPair returns the set of pairs (m0, M0), . . . , (mn−1, Mn−1), where mi is
the co-lexicographically smallest string in Iqi of length at most UB = n2 + n,
and Mi is the greatest.

• GreatestSmaller(m, m′) returns the greatest string in Iqk smaller than m′ of
length at most UB.

• SmallestGreater(m, m′) returns the smallest string in Iqk greater than m′ of
length at most UB.

Notice that m is needed in the last two subroutines in order to identify k.

Algorithm 1 Min DFA to fingerprint

Require: The minimum DFA DL recognizing L
Ensure: A fingerprint of L

1: τ ←MinMaxPairs ▷ We initialize a set of |DL| pairs of strings

2: while there exist c = (m, M), c′ = (m′, M′) ∈ τ such that m ≺ m′ ≺ M do
3: M1 ← GreatestSmaller(m, m′)
4: m2 ← SmallestGreater(m, m′)
5: τ ← τ \ {c}
6: τ ← τ ∪ {c1, c2}, where c1 = (m, M1), c2 = (m2, M)
7: end while

8: τ ← Expand(τ)
9: return the first component of each element of τ

After exiting the while cycle, the algorithm uses the subroutine Expand that,
given a set of pairs τ with components in Pref(L), does the following. For each
pair (m, M) ∈ τ such that end(m) ̸= end(M), it checks the incoming edges of the
state q = δ(q0, m) of DL. For each character c such that end(m) ≺ c ≺ end(M), it
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FIGURE 2.6: The minimum DFA recognizing L.

selects a state q′ such that δ(q′, c) = q—if any exists—and finds, using reachability,
a string αc such that δ(q0, αc) = q′. Then, it adds to τ the pair (αc · c, αc · c). As a
last step, it replaces the pair (m, M) with the pairs (m, m) and (M, M). Note that
if end(m) =end(M), then Expand leaves the pair (m, M) unchanged. Figure 2.7
illustrates—on a high level—how the algorithm works, showing the evolution of the
set τ for the language L with 3 different Myhill-Nerode classes A, B, C—colored in
red, blue and green respectively—whose minimum automaton is depicted in Figure
2.6.

Each line represents the set Pref(L) co-lexicographically ordered. The Wheeler
classes ofL are W1, . . . , W7; the classes W2, W3, W4 are distinct due to the ending char-
acter of the strings they contain: strings in W2 end with d, strings in W3 end with e
and strings in W4 end with f . For the sake of readability, we will use the improved
upper bound UB= 2n instead of UB= n2 + n, hence considering strings of length at
most 6.
τ0: at the beginning we have 3 pairs—one for each Myhill-Nerode class. These pairs,
output by the routine MinMaxPairs, are the following: (mA, MA) = (ε, g f g f g f ),
(mB, MB) = (d, g f g f gg), (mC, MC) = (g, eg f g f g). In Figure 2.7, the two compo-
nents of each pair are linked.
τ1: at the first iteration of the while cycle, the algorithm spots two “intersecting”
pairs (mA, MA), (mB, MB) and splits the former into (mA, MA1), (mA2, MA). The
string MA1 is the greatest string smaller than d that reaches A in DL of length at
most 6; that is, MA1 = ε. The string mA2 is the smallest string greater than d that
reaches A in DL of length at most 6; that is, mA2 = gd.
τ2: at the second iteration, the algorithm spots two intersecting pairs (mB, MB),
(mA2, MA) and splits the former into (mB, MB1),(mB2, MB). The string MB1 is the
greatest string smaller than gd that reaches B in DL of length at most 6; that is,
MB1 = eg f g f d. The string mB2 is the smallest string greater than gd that reaches B
in DL of length at most 6; that is, mB2 = gg.
Expand(τ2): in τ2 all pairs are ordered—that is, they do not intersect. The subroutine
Expand replaces the pair (mA2, MA) ∈ τ2 with the pairs (mA2, mA2), (e, e), (MA, MA),
where e is the shortest string that ends with e and reaches A in DL.
The first component of each pair of Expand(τ2) is our output fingerprint:

ε, d, gd, e, g f g f g f , g, gg.
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τ0 :
W1 W2 W3 W4 W5 W6 W7

mA mB MA mC MC MB

τ1 :
W1 W2 W3 W4 W5 W6 W7

mA MA1 mB mA2 MA mC MC MB

τ2 :
W1 W2 W3 W4 W5 W6 W7

mA MA1 mB MB1 mA2 MA mC MC mB2 MB

Expand(τ2):
W1 W2 W3 W4 W5 W6 W7

mA MA1 mB MB1 mA2 e MA mC MC mB2 MB

FIGURE 2.7: The evolution of the set τ for the language L with 3 dif-
ferent Myhill-Nerode classes A, B, C—colored in red, blue and green

respectively.

To prove the correctness of the algorithm, we show some properties that hold
for the pairs in τ. Let τi denote the set τ at the end of the i-th iteration of the while
cycle, let c = (m, M), c′ = (m′, M′) be the pairs selected on Line 2 and let c1 =
(mc1 , Mc1) = (m, M1), c2 = (mc2 , Mc2) = (m2, M) be the pairs added to τi on Line 6.
That is, m ≺ m′ ≺ M and the pairs c1, c2 will substitute the pair c at the end of the
while cycle. A trivial property that can be proved by induction on i is the following:
if d = (md, Md) ∈ τi, then md ⪯ Md and md ≡L Md. Moreover, by construction we
have Mc1 ≡L mc2 ≡L m. The next property is an invariant of the while cycle, where
we use the following definition.

Definition 13. Let d = (md, Md) and f = (m f , M f ) be two pairs such that md ⪯ Md
and m f ⪯ M f . We say that d and f are ordered if either Md ≺ m f or M f ≺ md.

Proposition 25. Let d = (md, Md) and f = (m f , M f ) be two distinct pairs in τi such that
md ≡L m f . Then d and f are ordered.

Proof. We proceed by induction on i. Base step: if i = 0 there is nothing to prove,
since in τ0 distinct pairs have components belonging to different ≡L-classes. In-
duction step: assume that the invariant holds for τi and let d = (md, Md), f =
(m f , M f ) ∈ τi+1 be two pairs such that md ≡L m f . Let c = (m, M), c′ = (m′, M′)
be the pairs selected on Line 2 at stage i and let c1 = (mc1 , Mc1) = (m, M1), c2 =
(mc2 , Mc2) = (m2, M) be the pairs added to τi on Line 6.
If {d, f } ∩ {c1, c2} = ∅, then d, f ∈ τi and the thesis follows from the inductive hy-
pothesis.
If {d, f } = {c1, c2}, then d, f are ordered by construction.
If {d, f } ∩ {c1, c2} ̸= ∅ and {d, f } ̸= {c1, c2}, suppose w.l.o.g. that d ∈ {c1, c2} and
f /∈ {c1, c2}. From m f ≡L md ∈ {mc1 , mc2} and mc1 = m ≡L mc2 it follows that
m f ≡L m. Since c, f ∈ τi, m f ≡L m, and c = (m, M), from the inductive hypothesis
it follows that c, f are ordered, thus it immediately follows that both c1, f and c2, f
—and hence d, f — are ordered since the intervals [mc1 , Mc1 ], [mc2 , Mc2 ] are subsets of
[m, M].
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In particular, for a fixed i, if two pairs (m, M), (m′, M′) ∈ τi have components
belonging to the same Myhill-Nerode equivalent class, then it can not be the case
that m ≺ m′ ≺ M. Therefore, it holds that the two pairs c = (m, M), c′ = (m′, M′)
selected on Line 2 are such that m ̸≡L m′.

Definition 14. Let W be a Wheeler class of a Wheeler language L and let τ be a set
of pairs. We say that W is represented by τ iff there exists a pair d = (md, Md) ∈ τ
such that either md ∈ W or Md ∈ W. We say that W is enclosed by τ iff there exists a
pair d = (md, Md) ∈ τ such that W ⊆ [md]≡L and md ≺W ≺ Md.

Note that a Wheeler class can either be represented or enclosed by a pair, but not
both.

Proposition 26. Let W be a Wheeler class of a Wheeler language L. Then, for all i ≥ 0, W
is either represented or enclosed by τi.

Proof. We proceed by induction on i. For i = 0, consider the Myhill-Nerode class
C of L containing W. From Remark 14 we have that the Wheeler classes are or-
dered, hence let Wm, WM be the smallest and greatest, respectively, Wheeler classes
included in C. From Lemma 22 it follows that there exist strings αm ∈ Wm and
αM ∈ WM of length at most n2 + n. Therefore, the pair (mC, MC) created by
the routine MinMaxPair is such that mC ∈ Wm and MC ∈ WM. Hence, either
W ∈ {Wm, WM} so W is represented, or Wm ≺W ≺WM so W is enclosed.

Now assume the thesis holds for τi and let W be a Wheeler class. If W is repre-
sented by τi+1, there is nothing to prove. If instead W is not represented by τi+1, note
that each component of a pair in τi is still a component of some pair in τi+1. Therefore
W can not be represented by τi either, and from the inductive hypothesis it follows
that W is enclosed by τi. Let d = (md, Md) ∈ τi be a pair that encloses W, that is,
W ⊆ [md]≡L and md ≺ W ≺ Md. Let c = (m, M), c′ = (m′, M′) be the pairs selected
on Line 2, with c substituted by c1 = (m1, M1), c2 = (m2, M2) in line 6. If d ̸= c then
d ∈ τi+1, thus W is enclosed by τi+1. If d = c, then md = m and m ≺ W ⊆ [m]≡L .
Since c, c′ are not ordered, from Proposition 25 it follows that m ̸≡L m′ and, since
W is convex in Pref(L) (see Remark 11), there are two possible cases. If W ≺ m′,
then either W is the greatest Wheeler class smaller than m′, in which case W is rep-
resented by M1—the second component of c1—; or W is a Wheeler class such that
m ≺ W ≺ M1, in which case W is enclosed by c1. Similarly, if m′ ≺ W then either W
is represented by m2 or W is enclosed by c2. In all cases, W is either represented or
enclosed by τi+1 and the thesis follows.

Definition 15. Let L be a Wheeler language and let d = (md, Md) be a pair of strings,
with md, Md ∈ Pref(L). We denote by w(d) the number of Wheeler classes W of L
such that md ≺W ≺ Md.
Given a set of pairs τ, we denote by w(τ) the value

w(τ) := ∑
c∈τ

w(c).

Note that, for any pair d, the value w(d) is a non negative integer. Moreover, if
w(d) = 0 then md, Md belong to the same Wheeler class.

Proposition 27 (Termination of Algorithm 1). If L is Wheeler, on input DL Algorithm
1 terminates.

Proof. To prove that the algorithm terminates, we show that at each iteration of the
while cycle the value w(τ) strictly decreases—that is, w(τi+1) < w(τi) for all i. The
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only pairs that are not common to τi and τi+1 are c, c1, c2, where c, c1, c2 are the pairs
mentioned in line 2 and 6 of algorithm 1; thus it is enough to prove that w(c1) +
w(c2) < w(c). Note that if W is a Wheeler class such that m ≺ W ≺ M, it can not
be the case that both m ≺ W ≺ M1 and m2 ≺ W ≺ M holds, since by construction
we have M1 ≺ m2. Therefore we have w(c1) + w(c2) ≤ w(c). To prove that the
inequality is strict, consider the Wheeler class containing m′, say W ′ (where c′ =
(m′, M′) is the pair mentioned in line 2 of the algorithm 1). From m ≡L M and
m ̸≡L m′ (see Proposition 25) it follows that m ≺ W ′ ≺ M, thus W ′ contributes to
the value w(c). From M1 ≺ m′ ≺ m2 it follows that neither m ≺ W ′ ≺ M1 nor
m2 ≺W ′ ≺ M holds. Therefore, W ′ does not contribute to either w(c1) nor w(c2), so
we have w(c1) + w(c2) ≤ w(c)− 1.

Lemma 28. Let d = (md, Md) ∈ τi be a pair of strings and let W be a Wheeler class such
that md ≺W ≺ Md but W ⊈ [md]≡L . Then there exist a pair di = (mi, Mi) ∈ τi such that
d, di meet the while condition of Line 2 of Algorithm 1.

Proof. Consider a Wheeler class W such that md ≺ W ≺ Md and W ⊈ [md]≡L , for
some pair d = (md, Md) ∈ τi. We claim that we can find a pair f = (m f , M f ) ∈ τi
such that md ≺ m f ≺ Md or m f ≺ md ≺ M f , that is d, f meet the while condition of
Line 2.

Proposition 26 states that W is either represented or enclosed by τi. If W is rep-
resented by τi, let f = (m f , M f ) ∈ τi be a pair that represents W, that is, either
m f ∈ W or M f ∈ W. If m f ∈ W it immediately follows that md ≺ m f ≺ Md. If
instead M f ∈ W we have md ≺ M f ≺ Md, with md ̸≡L m f . If md ≺ m f we have
md ≺ m f ⪯ M f ≺ Md, otherwise we have m f ≺ md ≺ M f . In all cases, d, f meet the
while condition of Line 2.
If W is enclosed by τi, let f = (m f , M f ) ∈ τi be a pair that encloses W, that is,
m f ≺ W ≺ M f with W ⊆ [m f ]≡L . From md ≺ W ≺ Md and m f ≺ W ≺ M f it
immediately follows that md ≺ M f and m f ≺ Md, thus, since md ̸≡L m f and hence
md ̸= m f , either md ≺ m f ≺ Md or m f ≺ md ≺ M f holds. In both cases, d, f meet
the while condition of Line 2.

An immediate consequence of Lemma 28 is the following corollary.

Corollary 28.1. Let τp be the last set built before exiting the while cycle of Algorithm 1 and
let d = (md, Md) ∈ τp be a pair of strings. Then, the only Wheeler classes W such that
md ≺W ≺ Md are the enclosed ones—if any exists.

Proposition 29 (Correctness of Algorithm 1). If L is Wheeler, on input DL Algorithm 1
outputs a fingerprint of L.

Proof. Let τp be the last set built before exiting the while cycle of Algorithm 1. We
need to prove that the collection of the first components of the pairs in Expand(τp)
is a fingerprint of L, that is Expand(τp) represents each Wheeler class of L exactly
once. Proposition 26 states that every Wheeler class is either represented or enclosed
by τp, and clearly classes represented by τp are also represented by Expand(τp).
Moreover, it can be easily proved, by induction on i, that given a Wheeler class W of
L, there exists at most one pair in τi that represents W. Hence each Wheeler classes
represented by τp is represented by exactly one pair in τp. It remains to be proved
that each Wheeler class enclosed by τp is represented by Expand(τp).

Clearly, all pairs in τp are ordered, otherwise we would still be inside the while
cycle.

Consider now a pair d = (md, Md) ∈ τp that encloses a Wheeler class W.
Since all pairs in τp are ordered, md ≡L Md holds, and, from Corollary 28.1, every
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Wheeler class W between md and Md is a subset of [md]≡L , it follows that every string
α ∈ Pref(L) that belongs to the interval [md, Md] also belongs to the Myhill-Nerode
class [md]≡L : otherwise, the class [α]≡c

L
⊆ [md, Md] would contradict Corollary 28.1.

Therefore, the only possibility for W to be a Wheeler class that differs from [md]≡c
L

is that the strings in W end with a character different from end(md). The Expand
routine checks, for each pair in τp, the existence of such Wheeler classes by looking
at the incoming edges of the state δ(q0, md) and proceeds to select one representative
for each.

Since Expand(τp) represents every Wheeler class and the two components of any
pair in Expand(τp) belong to the same Wheeler class, we can safely extract the first
components of the pairs in Expand(τp) to obtain a fingerprint of L.

Notice that in Proposition 23 a generic fingerprint of the Wheeler language L
is needed to compute DW

L . Algorithm 1 does indeed produce a fingerprint, but it
actually does something more: for every Wheeler class of L, it outputs its smaller
and its greatest string among the ones of length at most UB = n2 + n. As a matter
of fact, this is the intuition that led to Algorithm 1: since Wheeler classes are convex
sets of strings, only two strings are needed to represents each class —the smallest
and the greatest. This way, we are able to represent an entire Wheeler class using
only a finite number of strings, which enable us to process sets of strings in one go.
Lemma 22 is of utmost importance for this result: it states that we can consider only
strings of length at most UB, which ensures the existence of a smaller and a greatest
string with the required property.

Notice also that we can make a simple comparison between Hopcroft’s algorithm
for computing the minimum DFA (see [36]) and the proposed algorithm for comput-
ing the minimum WDFA. Hopcroft’s algorithm starts with a large set of states and
at each step collapses those it realizes to be equivalent. Algorithm 1 does the exact
opposite: it starts with a small set of states (those of the minimum automaton) and
divides them whenever it realizes they violate the convexity condition. To obtain the
minimum WDFA, Algorithm 1 must therefore ensure to make the minimum number
of cuts when deciding to divide states.

2.3 Generalized Wheelerness

Changing the underlying order of the alphabet might turn a Wheeler language into a
not Wheeler one and vice versa. For instance, consider again the Wheeler languages
Ld and the regular (but not Wheeler) language Lb depicted in Figure 1.5. If we
change the order of Σ from a ≺ c ≺ d ≺ f to a ≺ d ≺ c ≺ f , the Wheeler language
Ld turns into a non-Wheeler language (isomorphic to Lb under the isomorphism φ
between alphabets that fixes characters a, c, f and sends d into φ(d) = b). Hence, by
not fixing an a priori order of the alphabet Σ we extend the class of languages.

Definition 16 (Generalized Wheelerness). A NFA A over the alphabet Σ is called a
Generalized Wheeler Automaton (GWNFA) if and only if there exists an ordering of
the elements of Σ that makes AWheeler.
A language L is called generalized Wheeler (for short GW) if and only if there exists a
GWNFA that recognizes L.

How big is the class of GW languages? Clearly, it extends the class of Wheeler
languages which is a subclass of star-free languages (see Proposition 18). Therefore
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FIGURE 2.8: The minimum DFA recognizing L = a(aba)∗a ∪
ba(aba)∗b. The absence of counters implies that L is star-free.

we are interested in discovering the relationship between the classes of GW and star-
free languages. In the next proposition, we show that the former is a proper subclass
of the latter, hence GW languages must be studied separately.

Proposition 30. If |Σ| ≥ 2, then the set {L ⊆ Σ∗ : L is GW} is a proper subset of
{L ⊆ Σ∗ : L is star-free}.

Proof. First we prove that GW languages are a subclass of star-free languages. From
proposition 18 it follows that Wheeler languages are a subclass of star-free lan-
guages. Since star-free expressions, and thus star-free languages, are closed under
permutations of the alphabet, even GW languages must be a subclass of star-free
languages.

To prove that the inclusion is strict, we show an example of a star-free language
that is not GW. Let a, b be two distinct characters of Σ, and consider the language
L = a(aba)∗a ∪ ba(aba)∗b. As shown in Figure 2.8, L is star-free. But L is not GW:
consider the sequence (αi)i≥2 with α2n = a(aba)n and α2n+1 = ba(aba)n. Since, for
all i, the string αi is a prefix of αi+1, independently from how a and b are ordered we
have

aaba ≺ baaba ≺ aabaaba ≺ baabaaba ≺ · · · ≺ a(aba)i ≺ ba(aba)i ≺ . . .

Moreover, for all i we have a(aba)i ̸≡L ba(aba)i, since a(aba)i · a belongs to L but
ba(aba)i · a does not. We can then apply Lemma 15 to conclude that L is not Wheeler.
Since this result does not depend on the order of the alphabet, L is not GW.

As stated in Lemma 7, we can decide in polynomial time whether a DFA is
Wheeler. On the contrary, deciding whether a NFA is Wheeler is NP-complete (see
[17]). Since deciding whether an NFA is a GWNFA adds a level of complexity to
deciding whether an NFA is Wheeler, it is reasonable to expect that the former prob-
lem is at least as difficult as the latter. We will show that in fact both problems have
the same degree of complexity (NP-complete), as stated in Proposition 31. We ac-
tually prove a stronger result in Proposition 32: even deciding whether a DFA is a
GWNFA is NP-complete. Since the proof of Proposition 32 is complicated, we de-
cided to present also its weaker version, i.e. Proposition 31, which uses a simpler
reduction from the problem of deciding whether a NFA is Wheeler. It is worth notic-
ing that the proof of Proposition 31 can be adapted to work even on DFAs, hence
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FIGURE 2.9: The gadget Gi, connected to q0 and to the sinks qe and
q f .

giving an alternative way to prove that deciding whether a DFA is a GWNFA is
NP-complete. Nonetheless, Proposition 32 is still stronger, since it also proves that
deciding whether a DFA recognizes a GW language is NP-complete.

Proposition 31 (GWNFA complexity). Let A be a NFA. Deciding whether A is a
GWNFA is NP-complete.

Proof. The problem is in NP, since we can use non-determinism to guess both the or-
der of the alphabet and the Wheeler order among the states and then check whether
such orders makes the NFA Wheeler in polynomial time. This can be done by check-
ing whether this two orders satisfy conditions (W1) and (W2) in Definition 6.

To prove the hardness, we show a polynomial reduction from the problem of
deciding whether a NFA is Wheeler. Let A be a NFA with initial state q0, over the
alphabet Σ = {a1 . . . , aσ} ordered by the relation a1 ≺ · · · ≺ aσ. We want to build a
new automaton A′ such that A′ is a GWNFA if and only if A is Wheeler. A′ will be
an automaton of size |A|+O(σ) over the alphabet Σ′ of size O(σ). Notice that, since
Wheelerness implies input-consistency, we may suppose w.l.o.g. that A is input
consistent.

The automatonA′ will be built starting fromA and adding extra states and tran-
sitions. We define the new alphabet as

Σ′ = {a1, . . . , aσ, x1, . . . , xσ−1, e, f },

with xi, e, f /∈ Σ, and we add two final states qe and q f . We then build σ− 1 gadgets,
one for each ai ∈ Σ with i ̸= σ, each one connected to A ∪ {qe, q f } as depicted in
Figure 2.9. This completes the construction of the automaton A′. Notice that A′ is
input-consistent but is not deterministic (even if A is) due to the new Σ-transitions
starting from q0.

We want to show that A is Wheeler according to the order (Σ,≺) if and only if
A′ is a GWNFA.
(=⇒) Define the order ≺′ over Σ′ by setting

a1 ≺′ ... ≺′ aσ ≺′ x1 ≺′ ... ≺′ xσ−1 ≺′ e ≺′ f .
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q0 q1
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i q3
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i q5
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FIGURE 2.10: All the edges labeled xi of A′. Starting states in the top
layer are ordered from left to right, as well as the ending states in the

bottom layer.

We show that A′ is Wheeler according to (Σ′,≺′) by ordering its states. Since A is
Wheeler, there already exists an order of its states that makes AWheeler. Therefore,
we simply need to extend this order to the states of A′. First of all, we will order, for
each i, the states with incoming edge xi. Since xi /∈ Σ, the only states to compare are
the one belonging to the gadget Gi, which we order according to their superscript:

q4
i < q5

i < q6
i < q7

i .

Secondly, for each 1 ≤ i ≤ σ we will sort the states with incoming edges labeled ai.
Notice that the automaton A must contain states —at least one— with incoming la-
bel ai so we need to consider such states as well. For each state q ofAwith incoming
edges labeled ai we set

q3
i−1 < q < q1

i < q2
i ;

notice that for i = 1 the state q3
i−1 does not exist, and for i = σ states q1

i , q2
i do not

exist: in this cases, we erase the missing states from the inequality above. Lastly,
whenever there are two states whose incoming edges have distinct labels we order
them according to such labels, with q0 preceding every other state.

The extended ordered that we defined is total and satisfies by construction condi-
tion (W1) of Definition 6. To prove that it also satisfies condition (W2), we consider,
for each character a ∈ Σ′, the set of edges of A′ labeled a.
If a ∈ {e, f } there is nothing to prove: there is only one state with incoming edges
labeled e ( f ), namely qe (q f ), hence condition (W2) is trivially satisfied.
If a = xi for some i, the only edges labeled xi are the one belonging to gadget Gi.
These edges are depicted in Figure 2.10 along with their starting and ending states.
In the figure, starting states are arranged in the top layer whereas ending states (pos-
sibly duplicated if they were both starting and ending ones) are arranged in the bot-
tom one, with all edges going from the top to the bottom. Since states in both layers
are ordered from left to right (according to the extended order we defined), condi-
tion (W2) —applied only to this set of edges— is satisfied if and only if edges never
cross, which is indeed true.
If a = ai for some i, from the assumption that A is Wheeler it follows that pairs of
edges of A labeled ai satisfy condition (W2). Therefore it is sufficient to select any
edge (q, ai, q′) of A and show that it satisfies condition (W2) along with edges la-
beled ai introduced in gadgets Gi−1 and Gi. These edges are depicted in Figure 2.11
and they never cross, hence condition (W2) holds. Notice that this is still true when
q = q0, that is, when the edge (q, ai, q′) starts from the initial state.

The order of the states ofA′ that we described makesA′ Wheeler with respect to
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q0 q q6
i q7

i

q3
i−1 q′ q1

i q2
i

FIGURE 2.11: The edges labeled ai of A′ which were not edges of A,
along with the edge (q, ai, q′) of A. Starting states in the top layer are
ordered from left to right, as well as the ending states in the bottom
layer. If i = 1 we need to erase state q3

i−1 and hence also state q0 and
the edge connecting them. If i = σ we need to erase states q1

i , q2
i and

hence also states q6
i , q7

i and the edges connecting them.

(Σ′,≺′), hence making it a GWNFA.
(⇐=) IfA′ is a GWNFA, then there exists an order≺′ over Σ′ that makesA′ Wheeler.
Since A is a sub-automaton of A′, it follows that even A is Wheeler according to ≺′.
Let ≺̃ be the restriction of ≺′ over the alphabet Σ; we want to show that ≺̃ is the
same order as ≺. Assume by contradiction that ≺̃ ̸=≺. If for all 1 ≤ i < σ we
have ai≺̃ai+1, then ≺̃ =≺, a contradiction. Hence there exists 1 ≤ i < σ such that
ai+1≺̃ai. Since ≺′ extends ≺̃, this implies that ai+1 ≺′ ai. We will show that A′ is not
Wheeler according to ≺′, a contradiction. Define the strings µ := xi, ν := ai+1xi and
γ := xiaixi. From µ ⊣ γ and ai+1 ≺′ ai we have µ, ν ≺ γ. The string γ labels two
cycles in A′ starting from two distinct states, i.e. q4

i and q5
i . Moreover, µ and ν label

two paths that start from the initial state q0 and end in q4
i and q5

i respectively. Since
q4

i and q5
i are not Myhill-Nerode equivalent, we can apply Theorem 16 to conclude

that L(A′) is not Wheeler according to≺′. HenceA′ cannot be Wheeler with respect
to ≺′, a contradiction. Thus ≺̃ and ≺ coincide.
We have shown thatA is Wheeler according to≺′, and that≺′ extends≺. Therefore
we can conclude that ≺′=≺, hence A is Wheeler according to ≺.

To prove the next proposition, we will show a reduction to the Betweenness prob-
lem (see Definition 8).

Proposition 32 (GWDFA and GW languages hardness). Let L ⊆ Σ∗ be a language and
A be a DFA. Both the problems of deciding whetherA is a GWNFA and deciding whether L
is GW are NP-complete.

Proof. We can prove that both problems are in NP using an argument similar to the
one employed in the proof of Proposition 31: we simply guess an order of the states
in A (in the minimum automaton for L(A), respectively) and then use Lemma 7
(Theorem 17, respectively).

To prove the hardness, we show a polynomial reduction from the betweenness
problem to both of the problems described; we will use exactly the same reduction
for both problems. We start from an instance I = (Y, K) of the betweenness prob-
lem, where Y is the set Y = {y1 . . . , yn} and K ⊆ P(T3) is a collection of k triples
(a1, b1, c1), . . . , (ak, bk, ck), each composed of distinct elements, for some 1 < k < n3.
We build a DFA A of size O(n + k), over an alphabet of size O(n + k). The alphabet
is Σ = Y ∪ {x1 . . . , xk, e, f }, where we introduce a new character xi for each triple
(ai, bi, ci) ∈ K and two extra “ending” characters e and f . To build A, we start with



2.3. Generalized Wheelerness 41

q0

qj

qm

q1
hj

q3
hjq5

hj

q1
ij

q3
ijq5

ij

q2
im

q4
imq6

im

qe

q f

a i =
ah =

y j

ci = ym

xh

xi

xi

xi

bi

xi

e

xi

bi

xi

f

xh

bh

xh

e

FIGURE 2.12: The gadgets Gi (in green) and G′i (in blue) related to the
i-th triple. Notice that if ah = ai = yj for h ̸= i we also have a Gh

gadget (in red) different from Gi and the same holds for ci-gadgets

the initial state q0 connected with n states q1, . . . , qn through the edges (q0, yj, qj) for
each 1 ≤ j ≤ n. We also add two sinks qe and q f , the only final states.

For each i ∈ {1, . . . , k}, if j ∈ {1, . . . , n} is such that ai = yj we add a gadget Gi

with states q1
ij, q3

ij, q5
ij (see Figure 2.12), transitions

δ(qj, xi) = q1
ij, δ(q1

ij, xi) = q3
ij, δ(q3

ij, bi) = q5
ij, δ(q5

ij, xi) = q1
ij,

and δ(q1
ij, e) = qe.

We repeat the same process with ci: given the integer m such that ci = ym, we add a
gadget G′i with states q2

im, q4
im, q6

im and transitions

δ(qm, xi) = q2
im, δ(q2

im, xi) = q4
im, δ(q4

im, bi) = q6
im, δ(q6

im, xi) = q2
im

and δ(q2
im, f ) = q f . Lastly, we remove the states among q1, . . . , qn that don’t have

outgoing edges. More formally, we define the sets A := {a1, . . . , ak} and C :=
{c1, . . . , ck} and we remove from A all the states qj such that yj /∈ A ∪ C. This end
the construction of the automaton A, which is an input consistent DFA.2

We show that the instance I = (Y, K) of the betweennes problem is satisfiable if
and only if A is a GWNFA, if and only if L(A) is GW.
(=⇒) Since I = (Y, K) is satisfiable, there exists an ordering of the elements of Y
satisfying I which we present as the bijection π : Y → {1, ..., n}. We order Σ as
follows:

π−1(1) ≺ ... ≺ π−1(n) ≺ x1 ≺ · · · ≺ xk ≺ e ≺ f .

2Notice that if ch = yj then ah ̸= yj because the element in the triple (ah, bh, ch) are distinct. Hence,
there is at most one xi-transition leaving qj.
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This ordering induce a partial order on the states of A defines as follows. Following
Proposition 6, to obtain a Wheeler order < on A we need only to ensure that if q, q′

are such that q < q′ then Iq ≺ Iq′ . Therefore, states with different incoming labels
are ordered by such labels and we only need to order the states of A with the same
incoming label.
For each 1 ≤ i ≤ k, the only states of A with incoming label xi are q1

ij, q3
ij, q2

im, q4
im,

where j and m are integers such that ai = yj and ci = ym. Since, by construction, the
order π satisfies the instance I, then only two cases can occur: either π(ai) < π(bi) <
π(ci), or π(ci) < π(bi) < π(ai). In the first case, we set q1

ij < q2
im < q3

ij < q4
im.

To realize that this is in fact the correct order of the states, consider the following
languages:

I1 := Iq1
ij
= {α ∈ Σ∗ : δ(q0, α) = q1

ij} = aixi(xibixi)
∗

I2 := Iq2
im
= cixi(xibixi)

∗

I3 := Iq3
ij
= aixixi(bixixi)

∗

I4 := Iq4
im
= cixixi(bixixi)

∗.

Since, by construction, we have ai, bi, ci ≺ xi, it follows that I1, I2 ≺ I3, I4. Moreover,
from π(ai) < π(bi) < π(ci) we also have that I1 ≺ I2 and I3 ≺ I4, which completes
the ordering. Symmetrically, if π(ci) < π(bi) < π(ai) then we set q2

im < q1
ij < q4

im <

q3
ij.

We still need to order the states of A whose incoming labels belong to Y. For each
1 ≤ p ≤ n, the states with incoming label yp belong to the sets Vp

5 := {q5
ij : bi = yp}

or Vp
6 := {q6

ℓm : bℓ = yp} or Vp, where Vp = {qp} if qp is a state of A (i.e. if
yp ∈ A ∪ C) and Vp = ∅ otherwise. If Vp = {qp}, we set qp as the smallest state. We
then sort the states of Vp

5 and Vp
6 by their first subscript, that is: q5

ij < q6
ℓm if i < ℓ.

When the first subscript is equal, i.e. the two states that we want to confront are q5
ij

and q6
im (with ai = yj and ci = ym), then we set q5

ij < q6
im if π(ai) < π(bi) < π(ci)

and we set q6
im < q5

ij if π(ci) < π(bi) < π(ai). We can check that this order is correct
by considering the following incoming languages:

I5 := Iq5
ij
= aixixibi(xixibi)

∗

I6 := Iq6
ℓm

= cℓxℓxℓbℓ(xℓxℓbℓ)∗.

First, notice that if q5
ij ∈ Vp

5 and q6
ℓm ∈ Vp

6 then bi = bℓ = yp. If i < ℓ then, by
construction, we have xi ≺ xℓ, hence I5 ≺ I6. Symmetrically, if ℓ < i then we have
I6 ≺ I5. Lastly, if i = ℓ then the order between I5 and I6 is determined solely by ai
and cℓ = ci.

Since there is only one state with incoming label e and only one state with in-
coming label f , we have finished. The order described makes AWheeler, thus A is
a GWNFA and L(A) is GW.
(⇐=) Assume that the instance I = (Y, K) of the betweenness problem is unsatisfi-
able. We prove that L(A) is not GW. Assume by contradiction that L(A) is GW, then
there exists an ordering π′ of the elements of Σ such that L(A) is Wheeler according
to this order. Recall that Y ⊆ Σ and consider the order π := π′|Y. Since (Y, K) is
unsatisfiable, π must violate one of the constraints, i.e. there exists an 1 ≤ i ≤ k
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such that either π(ai), π(ci) < π(bi) or π(bi) < π(ai), π(ci). Define the strings
µ := aixi, ν := cixi and γ := xibixi; then it is either µ, ν ≺ γ or γ ≺ µ, ν (here the
co-lexicographic order ≺ is calculated with respect to π′). By construction, γ labels
two cycles in A starting from two distinct states, q1

ij and q2
im, which are not Myhill-

Nerode equivalent. Moreover, µ and ν label two paths that start from the initial state
q0 and end in q1

ij and q2
im respectively. We can then apply the Theorem 16 to conclude

that L(A) is not Wheeler according to π′, a contradiction. Therefore L(A) is not
GW, which automatically implies that A is not a GWNFA.

2.4 Complexity on reduced NFAs

Among the two possible ways of presenting regular languages by automata, that is
DFAs or NFAs, computational problems tend to be significantly harder in general
when referred to the non-deterministic class. Typical examples are: checking empti-
ness, computing the intersection, checking universality and much more. In the realm
of Wheeler automata and languages a new class emerges: the class of reduced au-
tomata, formally defined below.

Definition 17. An NFA A = (Q, S, δ, F, Σ) is called reduced if q ̸= p implies Iq ̸= Ip.

Clearly, the class of reduced NFAs contains properly the class of DFAs. When
Wheelerness is concerned, the class of reduced NFAs is interesting because it has
been proved that deciding whether an NFA is Wheeler is an NP-complete problem
[17], whereas deciding whether a reduced NFA is Wheeler turns out to be in P [16] as it
is for DFAs [30]. An intuition behind this result is as follows: Proposition 5 provides
a necessary condition for two states of an NFA to be ordered according to a Wheeler
order, namely that their input languages are ordered with respect to the relation⪯ps.
In a non-reduced automaton, multiple states may share the same input language. In
this case, Proposition 5 is of no help in searching for a Wheeler ordering, and it
becomes necessary to find, for each set of states with the same input language, an
order among them that is compatible with the ordering of the remaining states. In
contrast, starting from a reduced NFA eliminates this problem and we can rely on
the input languages of its states to find a possible Wheeler ordering.

Clearly, any NFA can be turned into a reduced one simply by merging all the
states that recognize the same input language. Finding states to be merged is com-
plex: the language-equivalence problem for NFAs can easily be proved as complex
as deciding whether two states of an NFA recognize the same input language and,
therefore, the latter is PSPACE-complete.

A natural question is now whether switching from NFAs to reduced NFAs sim-
plifies some otherwise difficult problem. In this section we prove that this is not
always the case: some problems remain hard even when restricted to the class of
reduced NFAs. We will prove three main results. First, the universality problem
remains hard for reduced NFAs (see Lemma 33). However, since the class of re-
duced NFAs emerges in connection with the Wheelerness property, we may hope
that hard problem related to Wheelerness become easier when restricted from NFAs
to reduced NFAs. Unfortunately, we shall prove that this is not the case. Indeed, for
our second result we will consider an interesting aspect of the relationship between
DFAs, NFAs, and reduced NFAs related to Wheelerness and indexability. Given an
NFA A, the partial order <A, defined on the set of A-states by

q <A q′ ⇔ Iq ≺ps Iq′ ∧ Iq ̸= Iq′ ,
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FIGURE 2.13: The automaton A′ with only d-transitions depicted.

allows to represent A using an index, that is, a succint structure that supports fast
matching queries [23]. The order <A is related to Wheelerness since, for DFAs, <D
is total iff D is Wheeler, and, remarkably, the partial order <D can be computed in
polynomial time [23]. Here we prove that these good properties do not hold for
reduced NFAs (see Theorem 34 and Figure 2.14). Third, moving from automata to
languages, we will prove that deciding whether a NFA recognizes a Wheeler lan-
guage is PSPACE-complete, even for reduced NFAs (see Theorem 36).

2.4.1 Universality and the ps-order for reduced NFAs

We start from the universality problem, which remains difficult even for reduced
NFAs.

Lemma 33. The universality problem for reduced NFAs is PSPACE-complete.

Proof. This problem belongs to PSPACE, since it is a restriction of the universality
problem over generic NFAs. To prove hardness, we show a reduction from the uni-
versality problem on NFAs.

Given an NFAA = (Q, q0, δ, F, Σ), we can assume w.l.o.g. that the initial state has
no incoming edges and that it is the only state with such property. We build a new
automaton A′ = (Q∪ P, q0, δ′, F, Σ∪ {d}), where P = {p1, . . . , pn−1} is a set of n− 1
new states and d is a new character. For each q ∈ Q we add the self loop (q, d, q).
If we add only these transitions, it holds that L(A) = Σ∗ iff L(A′) = (Σ ∪ {d})∗.
We can now add to the automaton as many d-transitions as we please without vio-
lating the property L(A) = Σ∗ iff L(A′) = (Σ ∪ {d})∗: the right-to-left implication
still holds if we only add d-transitions, whereas the left-to-right implication holds
since adding transitions may only expand the recognized language, but (Σ ∪ {d})∗
is already maximal (with respect to the inclusion). Therefore we add the transitions
(q0, d, q1) and (q0, d, p1). Moreover, for each 1 ≤ i ≤ n − 1 we add the transitions
(pi, d, qi+1) and (pi, d, pi+1) (see Figure 2.13).

To conclude the proof that the reduction is correct, we need to show that A′ is
reduced. Since q0 has no incoming edges except from (q0, d, q0), we have

Iq0 = d∗

Ipi = d∗ · di for 1 ≤ i ≤ n− 1.

Since A was trimmed and since each q ∈ Q \ {q0} is not an initial state, we have
Iq ∩ Σ+ ̸= ∅ for each q ∈ Q \ {q0}. Thus Iq ̸= Ip for each q ∈ Q \ {q0} and for
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FIGURE 2.14: A reduced NFA A such that the order <A is total. The
only non-trivial inequality to verify is q3 <A q4, which follows from
the fact that Iq3 = {ac, bc} ≺ps {ac, bc, c} = Iq4 . Notice that A is not
Wheeler: states q3, q4 can not be ordered. In fact, assume that q3 < q4
holds in the Wheeler order. Then, we could apply W2 to the edges
(q2, c, q3), (q1, c, q4) to derive that q2 < q1, which contradicts W1. A
similar contradiction derives if we assume q4 < q3 and we consider

the edges (q1, c, q3), (q2, c, q4).

each p ∈ P ∪ {q0}. Moreover, for each 1 ≤ i < j ≤ n we have di ∈ Iqi \ Iqj , hence
Iqi ̸= Iqj .

We will use the previous lemma to prove our second result. The partial order
<A is defined using the family of input languages {Iq : q ∈ Q} and the prefix-suffix
order ⪯ps (see Definition 7), which can be lifted to the collection of states of an NFA.

Definition 18. Given two states q and p of an NFAA, we say that q <A p iff Iq ⪯ps Ip
and Iq ̸= Ip.

Note that if D is a DFA, then <D simplifies:

q <D p ⇐⇒ ∀α ∈ Iq ∀β ∈ Ip
(
α ≺ β

)
,

and this order satisfies the properties of a Wheeler order, with the exception of not
necessarily being total. As a matter of fact, it can be proved that the DFA D is
Wheeler if and only if <D is a total order. In general, for a reduced NFA A, this
equivalence does not hold, since there are examples of reduced, non-Wheeler NFAs
where <A is total (see Figure 2.14).

Nevertheless, knowing the <A order of an NFA allows us to build a compress-
ible index, so a natural question is how difficult is to compute such order. In the
following theorem we show that this is not an easy task.

Theorem 34. Given two states q and p of an NFAA, deciding whether q <A p is PSPACE-
complete. The same result holds even if A is reduced.

Proof. First of all we need to prove that the problem is in PSPACE. We will show
instead that its complement is in NPSPACE, then the thesis follows from Savitch’s
Theorem [37], which states that NPSPACE = PSPACE, and the fact that PSPACE is
closed under complementation.

The complement of our problem consist of answering to the question whether
q ≮A p. To do so, first we check whether Iq = Ip. As we have already mentioned,
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this problem is in PSPACE, so we can get the answer in polynomial space. If Iq = Ip,
then q ≮A p and we answer "yes". Otherwise, we have

q <A p ⇐⇒ ∀α ∈ Iq ∀β ∈ Ip
(
{α, β} ̸⊆ Iq ∩ Ip ⇒ α ≺ β

)
,

or equivalently

q ≮A p ⇐⇒ ∃α ∈ Iq ∃β ∈ Ip
(
{α, β} ̸⊆ Iq ∩ Ip ∧ β ≺ α

)
.

Let d be the number of states of the DFA D generated by the determinization of A
using the powerset construction; clearly it holds d ≤ 2n, where n = |A|. We claim
that if q ≮A p, then there exist two strings α, β of length at most d2 + d such that

α ∈ Iq ∧ β ∈ Ip ∧ {α, β} ̸⊆ Iq ∩ Ip ∧ β ≺ α. (2.4)

Assume that α, β satisfy (2.4), with either |α| or |β| (possibly both) greater than d2 + d.
We distinguish two cases.
1) The last d2 characters of α and β differs; this also includes the case where the
length of one them is strictly less than d2. Suppose that |β| ≥ |α| (if |β| < |α| just
switch the role of α and β in what follows). Consider the d + 1 states of D visited by
reading the first d characters of β. Since D has d states, at least one of them appears
twice, implying that we visited a cycle. By erasing from the first d characters of β the
factor corresponding to such cycle, we obtain a string β′ reaching the same state as
β in D. Since D is obtained from A using the powerset construction, this means that
β and β′ reach the same set of states in A. Hence, α and β′ still satisfy (2.4).
2) The last d2 characters of α and β coincide; in particular |α|, |β| ≥ d2. Consider
the last d2 + 1 states r0, ..., rd2 of D visited by reading the string α, and the last d2 + 1
states p0, ..., pd2 visited by reading the string β. Since D has only d states, there must
exist 0 ≤ i, j ≤ d2 with i < j such that (ri, pi) = (rj, pj), implying that α and β visited
two cycles labeled by the same string. By erasing from the last d2 characters of α and
β the factor corresponding to such cycles, the same argument used in case 1) shows
that we obtain two strings α′, β′ which still satisfy (2.4).
In both cases, we were able to shorten the length of the longest string. By repeating
this process as many times as needed, we will eventually obtain two strings both
shorter than d2 + d, with d ≤ 2n.

Now that we have bounded the length of α, β with the constant 22n + 2n, we
can use non-determinism to guess, bit by bit, the length of α and β and store this
guessed information in two counters a, b respectively, using O

(
log(22n + 2n)

)
=

O(n) space for each. These counters determine which string among α and β is longer
and we start guessing the characters of such longest string from the left to the right,
decreasing by one its counter whenever we guess a character. Note that we are not
storing the guessed characters, since this would require too much space. When the
counter reaches the same value of the other counter, we start guessing the characters
of both the first and the second string at the same time and we carry on until both
counters reach the value 0. While guessing the characters of α (respectively, β) we
update at each step the set of states of A reachable from q0 by reading the currently
guessed prefix of α (β), so that in the end we obtain the sets δ(q0, α) and δ(q0, β). With
this information, we can check whether α ∈ Iq and β ∈ Ip and {α, β} ̸⊆ Iq ∩ Ip. To
complete checking condition (2.4), we need to show how to decide whether β ≺ α.

To confront co-lexicographically α and β, we use a variable ρ that indicates
whether α is less, equal or greater than β. We initialize ρ based on the counters
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a, b as follows:

ρ :=


= if a = b
⊣ if a < b
⊢ if b < a.

We leave ρ unchanged until we start guessing simultaneously the characters of α
and β. When we guess the character c1 for α and the character c2 for β, we set

ρ :=


≺ if c1 ≺ c2

≻ if c1 ≻ c2

ρ if c1 = c2.

Note that if at the end ρ has value ⊣, it means that α ⊣ β, thus α ≺ β. Similarly,
if ρ has value ⊢ then β ≺ α. Otherwise, we have α ρ β. Thus we are always able
to determine the co-lexicographic order of α and β. Therefore, deciding whether
q ≮A p is a problem in PSPACE, and so it is its complement.

To prove hardness, we show a reduction from the universality problem over (re-
duced) NFAs.

q0

s1

s2

q1

q2

qe

q f

A

a1

a1

a1

a2

a2

a3
a3

Σ Σ Σ
Σ

y, z

y

FIGURE 2.15: The automaton A′ built starting from the automaton A
with S = {s1, s2} recognizing the language L = {ε, a2, a1a3}. Edges
entering a final state in A have been duplicated and redirected to qe.

Green edges are labeled Σ = {a1, a2, a3}.

Given an NFA A = (Q, S, δ, F, Σ) recognizing the language L = L(A), where
Q = {q1, . . . , qn}, S is the set of initial states, and Σ = {a1, . . . , aσ}, we build a new
NFA A′ = (Q′, q0, δ′, F ∪ {qe, q f }, Σ′) by adding a new initial state q0 and two final
states {qe, q f } (see Figure 2.15). The new alphabet is Σ′ = Σ∪ {y, z}, where aj ≺ y ≺
z for each 1 ≤ j ≤ σ. For each qi ∈ S, we add a transition from q0 to qi labeled a1.
Adding q0 has the sole purpose of having an initial state without incoming edges.
Note that we can not make the usual assumption that A has only one initial state
which moreover has no incoming edges: if we start from a reduced NFA and we
build an equivalent NFA with the required property, there is no guarantee that the
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new automaton will still be reduced. The state qe represents the new final state
that gathers all the strings in a1 · (L \ {ε}). To achieve this goal, for each transition
(qi, aj, qi′) of δ such that qi′ ∈ F we add a new transition (qi, aj, qe). The state q f
gathers all the strings in a1 · Pref(L) · Σ, and this can be easily achieved by adding a
transition (qi, aj, q f ) for each i ≥ 1 and j ≥ 1. Lastly, we add the transitions (q0, y, qe),
(q0, y, q f ) and (q0, z, q f ). In this way, ifA is reduced thenA′ is also reduced, because
Iq0 = {ε}, for each i ≥ 1 it holds IA

′
qi

= a1 · IAqi
, the states qe, q f are the only ones that

can read the string y, and q f is the only state that can read the string z.
Let Lε denote the language L \ {ε}. By construction, we have

Iqe = a1 · Lε ∪ {y}
Iq f = a1 · Pref(L) · Σ ∪ {y} ∪ {z}.

We want to show that L = Σ∗ iff qe <A′ q f ∧ Σ ∪ {ε} ⊆ L.
Note that Σ ∪ {ε} ⊆ L is a necessary condition for L to be universal, and such

condition can be checked in polynomial time using reachability on A, therefore the
reduction is still polynomial.
(⇒) If L = Σ∗, it clearly follows that Σ∪ {ε} ⊆ L . Moreover we have Pref(L) · Σ =
Σ+ and we obtain

Iqe = a1 · Σ+ ∪ {y}
Iq f = a1 · Σ+ ∪ {y} ∪ {z}.

It follows immediately that qe <A′ q f .
(⇐) Assume that qe <A′ q f ∧ Σ ∪ {ε} ⊆ L. Note that—actually, in general— Lε ⊆
Pref(L) ·Σ holds. We first prove that from the hypothesis it follows Lε = Pref(L) ·Σ.
Assume by contradiction that Lε ̸= Pref(L) · Σ and let β be a string in Pref(L) · Σ \
Lε. Then we have

y ∈ Iqe , a1 · β ∈ Iq f , {y, a1 · β} ⊈ Iqe ∩ Iq f

but y ≻ a1 · β, a contradiction. Thus Lε = Pref(L) · Σ.
We can then prove by induction on |α| that α ∈ Σ+ implies α ∈ Lε. If |α| = 1

then α ∈ Σ and by hypothesis we have Σ ⊆ Lε. If |α| = n + 1 > 1, then α = α′ · aj for
some α′ ∈ Σ+ and some aj ∈ Σ. By induction hypothesis we have α′ ∈ Lε ⊆ Pref(L),
and from Lε = Pref(L) · Σ it follows α ∈ Lε. Therefore, we have Σ+ ⊆ Lε. From the
assumption Σ ∪ {ε} ⊆ L it follows that ε ∈ L, hence Σ∗ ⊆ L and the claim follows.

This concludes the reduction from the universality problem to our problem over
general NFAs. Since the construction described preserves the reduced-ness of the
starting automaton, it also works as a reduction from the universality problem over
reduced NFAs to our problem over reduced NFAs. In Lemma 33 we proved that the
former problem is PSPACE-complete, thus proving that the latter is also PSPACE-
complete.

An immediate corollary of this theorem is the following.

Corollary 34.1. Deciding whether an NFA is reduced is PSPACE-complete.

Proof. To prove that the problem is in PSPACE, note that A = (Q, q0, δ, F, Σ) is re-
duced iff, for all q, p ∈ Q, q ̸= p implies Iq ̸= Ip. Therefore, it is sufficient to check
O(n2) times whether Iq = Ip, where n = |Q|. As we have already mentioned, the
problem of deciding whether Iq = Ip belongs to PSPACE, thus the thesis follows.
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To prove hardness, we combine the reductions shown in Lemma 33 and Theorem
34: given a NFA A, we build a NFA A′′ such that L(A) = Σ∗ iff A′′ is not reduced
and Σ+d ∪ {ε} ⊆ L′, where Σ+d = Σ ∪ {d}.
We first apply the reduction shown in Lemma 33 to build a reduced automaton A′
such that L(A) = Σ∗ iff L(A′) = Σ∗+d. We set L′ := L(A′). Then, we apply
the reduction showed in Theorem 34 to the automaton A′, but we remove the edge
(q0, z, q f ); we call this new automaton A′′. The languages recognized by qe and q f
change as follows:

Iqe = a1 · L′ε ∪ {y}
Iq f = a1 · Pref(L′) · Σ ∪ {y}.

Since A′ is a reduced automaton and the states qe and q f are the only ones with an
incoming edge labeled y, it immediately follows that A′′ is not reduced iff Iqe = Iq f .
Applying the same argument we used in Theorem 34, we can conclude that L′ =
Σ∗+d iff Iqe = Iq f ∧ Σ+d ∪ {ε} ⊆ L′. Summarizing, we have that L(A) = Σ∗ iff A′′ is
not reduced and Σ+d ∪{ε} ⊆ L′. Since we can check the last condition in polynomial
time, the reduction is complete and the thesis follows since PSPACE is closed under
complementation.

2.4.2 Recognizing language-Wheelerness starting form a reduced NFA

Finally, we will prove our last result of this section: deciding whether a NFA rec-
ognizes a Wheeler language is PSPACE-complete, in contrast with the deterministic
case, even if the NFA is reduced.

In order to prove this result we will need a technical lemma which will make use
of a generalization of Theorem 16, whose proof can be adapted to work on generic
DFAs —not just the minimum. Since we need this more general result but its proof
would be both long and technical, we will instead prove the following lemma, which
is easier to prove although the bound given in condition 4 is not optimal. This is not
a big loss, since we will only use the fact that this bound is polynomial in n.

Lemma 35. Let D = (Q, q0, δ, F, Σ) be a DFA recognizing the language L, with n = |D|.
The following equivalence holds:
L is not Wheeler if and only if there exist µ, ν and γ in Σ∗, with γ �⊣ µ, ν, such that:

1. µ ̸≡L ν and they label paths from q0 to states u and v, respectively;

2. γ labels two cycles, one starting from u and one starting from v;

3. µ, ν ≺ γ or γ ≺ µ, ν.

The length of the strings µ, ν and γ satisfying the above conditions can be bounded:

4. |µ|, |ν| ≤ |γ| ≤ (n3 + 2n2 + n + 2) · n2.

Proof. Let DL = (Q̂, q̂0, δ̂, F̂, Σ) be the minimum DFA recognizing L. Clearly DL has
at most n states.
(⇐=) We assume there exist strings µ, ν, γ such that conditions 1-3 hold. From con-
dition 2 it follows that δ(q0, µ) = δ(q0, µγ), thus µ ≡L µγ. Therefore, in DL we
also have δ̂(q̂0, µ) = δ̂(q̂0, µγ). Similarly, it holds δ̂(q̂0, ν) = δ̂(q̂0, νγ). It follows that
µ, ν, γ satisfy condition 1-3 of Theorem 16, hence L is not Wheeler.
(=⇒) We assume L is not Wheeler. Since L is not Wheeler, let µ̂, ν̂, γ̂ be three strings
satisfying conditions 1-4 of Theorem 16. The DFA DL has at most n states, hence the
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length of µ̂, ν̂ and γ̂ is bounded by n3 + 2n2 + n + 2. We have µ̂γ̂∗ ⊆ Pref(L), so let
t0 = q0, t1, . . . , tℓ be a run of µ̂γ̂n over D. We set m := |µ̂| and g := |γ̂|, and consider
the list of n + 1 states

tm, tm+g, tm+2g, . . . , tm+ng = tℓ

Since D has n states, there must exist two integers 0 ≤ h < k ≤ n such that tm+hg =

tm+kg. That is, there exists a state p := tm+hg such that p ∈ δ
(
q0, µ̂γ̂h) and γ̂k−h

labels a cycle starting from p. We can repeat the same argument for a run of ν̂γ̂n

over D to find a state r and two integers h′, k′ such that r ∈ δ(q0, ν̂γ̂h′) and γ̂k′−h′

labels a cycle starting from r. If we define the constant h′′ as the minimum multiple
of (k− h) · (k′− h′) greater than n, we can prove that h′′ ≤ n2: from k− h, k′− h′ < n
it follows that (k − h) · (k′ − h′) < n2. Therefore, if (k − h) · (k′ − h′) ≥ n we have
h′′ = (k− h) · (k′ − h′) < n2. If instead (k− h) · (k′ − h′) < n we have h′′ ≤ n · (k−
h) · (k′ − h′) < n2. By construction γ̂h′′ labels both a cycle starting from p and one
starting from r. We then define the strings

µ := µ̂γ̂h

ν := ν̂γ̂h′

γ := γ̂h′′ ,

which satisfy conditions 2 and 3. Note that we have chosen a h′′ such that |γ| ≥ n >
|µ|, |ν|, so that γ �⊣ µ, ν. Condition 4 is satisfied since |γ̂| ≤ n3 + 2n2 + n + 2 and
h′′ ≤ n2. Lastly, condition 1 is satisfied since the strings µ̂ and µ̂γ̂h lead to the same
state of DL, thus µ̂ ≡L µ̂γ̂h. Similarly, we have ν̂ ≡L ν̂γ̂h′ . The thesis then follows
from µ̂ ̸≡L ν̂.

The polynomial bound given by condition 4 of Lemma 35 allows us to design an
algorithm that decides whether a given DFA recognizes a Wheeler language: using
dynamic programming it is possible to keep track of all the relevant paths and cycles
inside the DFA and check, in polynomial time, whether there exists three strings
satisfying the conditions of the lemma (see [30]).

Things change if, instead of a DFA, we are given an NFA: given a NFA, building
an equivalent DFA and checking (language) Wheelerness on it would not be feasible
due to the possible blow-up in the number of states. We show that the problem of
deciding whether an NFA recognizes a Wheeler language is indeed hard, but does
not necessarily require exponential space to be solved. Instead, the problem turns
out to be PSPACE-complete.

Theorem 36. Given a NFA A = (Q, q0, δ, F, Σ), deciding whether the language L :=
L(A) is Wheeler is PSPACE-complete. The statement is true even if restricted to reduced
NFAs.

Proof. First of all we need to prove that the problem is in PSPACE. As we have al-
ready stated in the proof of Theorem 34, it is sufficient to show that its complement
is in NPSPACE.

LetD be the automaton obtained by the powerset construction applied toAwith
dimension d = |D| ≤ 2n. We prove that we can check the conditions in Lemma 35
for the automaton D, without building it, using polynomial space. We use non-
determinism to guess the sequences of bits representing the lengths of µ, ν, and γ,
and store this guessed information in three counters u, v, g respectively. Condition 4
of Lemma 35 bounds the length of µ, ν, γ by the value d5 + 2d4 + d3 + 2d2 hence we
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only need O
(

log(d5)
)
= O(n) space to store these counters. The initial values of u, v

and g determine which string among µ, ν and γ is longer and we start guessing the
characters of such string from left to right, reducing its counter by one whenever we
guess a character. When the counter reaches the same value of the second biggest
counter, we start guessing the characters of both the first and the second string at the
same time and we carry on until they reach the value of the last counter. Then, we
guess simultaneously the characters of all three strings until all counters reach the
value 0. While guessing the characters of µ (respectively, ν) we update at each step
the set of states of A reachable from q0 by reading the currently guessed prefix of µ
(ν), so that in the end we obtain the sets δ(q0, µ) and δ(q0, ν). We proceed similarly
for γ, but this time we compute the set δ(q, γ) for each state q ∈ Q. Since D is
obtained by the powerset construction from A, we can verify condition 2 of Lemma
35 by checking whether the set δ(q0, µ) and the set

δ(q0, µ · γ) =
⋃

p∈δ(q0,µ)

δ(p, γ)

are equal, and we do the same for δ(q0, ν) and δ(q0, ν · γ). Condition 3 of Lemma
35 can be checked in constant space. To compare µ and γ, we use a variable ρ that
indicates whether µ is less, equal or greater than γ. We initialize ρ based on the
counters u, g as follows:

ρ :=

{
= if u = g
⊢ if u < g.

We leave ρ unchanged until we start guessing simultaneously µ and γ. Then, when
we guess simultaneously the character c1 for µ and the character c2 for γ, we set

ρ :=


≺ if c1 ≺ c2

≻ if c1 ≻ c2

ρ if c1 = c2.

Note that if at the end ρ has value ⊢, it means that µ ⊢ γ. Otherwise, we have µ ρ γ.
Therefore, we are always able to determine the co-lexicographic order of µ and γ
and, similarly, of ν and γ. To check condition 1 of Lemma 35, consider the automata
Aµ and Aν obtained from the NFA A by considering as initial states the sets δ(q0, µ)
and δ(q0, ν), respectively. We have that µ ̸≡L ν if and only if L(Aµ) ̸= L(Aν), and
checking whether L(Aµ) = L(Aν) can be done in polynomial space, since deciding
whether two NFAs recognize the same language is a well-known PSPACE-complete
problem.

To prove the hardness of the problem, we will show a polynomial reduction from
the universality problem for NFA, i.e. the problem of deciding whether the language
accepted by an NFA A, over the alphabet Σ, is Σ∗.

Let A = (Q, q0, δ, F, Σ) be an NFA and let L = L(A). We can assume without
loss of generality that q0 ∈ F, otherwise A would not accept the empty string and
we could immediately derive that L ̸= Σ∗. Let a, b, c be three characters not in Σ
and let a ≺ b ≺ c (the order of the characters of Σ is irrelevant in this proof). First,
we build the automaton A′ starting from A by adding an edge (q f , c, q0) for each
final state q f ∈ F, see the top part of Figure 2.16. Notice that, since ϵ ∈ L, A′
recognizes the language L′ = L(A′) = (Lc)∗ · L. We claim that L = Σ∗ if and only
if L′ = (Σ ∪ {c})∗: if L = Σ∗ and α is a string in (Σ ∪ {c})∗, we prove that α ∈ L′.
Let n be the number of occurrences of c in α. Then α = α0 c α2 c . . . αn−1 c αn for some
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q′0

q0

q1

q q fA

A′

a

b

c c

Σ, c

FIGURE 2.16: The automaton A′′. Every accepting state of A, labeled
q f in the figure, has a back edge labeled c connecting it to q0. Con-
versely, non-accepting states ofA, labeled q in the figure, do not have

such back edges.

α1, . . . , αn ∈ Σ∗. Hence α ∈ (Σ∗c)∗ · Σ∗ = L′. If instead L ̸= Σ∗, let α be a string in
Σ∗ \ L. Then α · c /∈ L′ by construction.

We build a second automaton A′′ by adding a non-final state q′0, which will
be the unique initial state of A′′, and a final state q1. We also add the edges
(q′0, a, q0), (q′0, b, q1), (q1, c, q1) and, for all character d ∈ Σ, the self-loop (q1, d, q1),
as depicted in Figure 2.16. Let L′′ = L(A′′) be the language recognized by A′′. We
claim that L = Σ∗ if and only if L′′ is Wheeler.
(=⇒) If L = Σ∗, we have already proved that L′ = (Σ ∪ {c})∗. Hence we have
L′′ = {a, b} · (Σ ∪ {c})∗. The minimum DFA recognizing L′′ has only one loop,
therefore by Theorem 16 L′′ is Wheeler.
(⇐=) If L ̸= Σ∗, let α be a string in Σ∗ \ L. Note that α ̸= ε since we assumed that
ε ∈ L. Every possible run of α over A must lead to a non-accepting state, hence
α · c /∈ L′. This implies that for all i ≥ 0 we have a · ci · α · c /∈ L′′ (notice that
the only edge labeled c leaving q0 ends in q0). On the other hand, for all j ≥ 0 we
have bcj · α · c ∈ L′′, hence for all i, j ≥ 0 we have aci ̸≡L′′ bcj. Thus the following
monotone sequence in Pref(L′′)

ac ≺ bc ≺ acc ≺ bcc ≺ · · · ≺ acn ≺ bcn ≺ . . .

is not eventually constant modulo ≡L′′ . From Lemma 15 it follows that L′′ is not
Wheeler.

Notice that in the reduction described in Figure 2.16, if the starting NFA A was
reduced, then alsoA′′ would be reduced. This means that the statement of Theorem
36 holds even if restricted to reduced NFAs.

Remark 37. Note that the previous theorem is in contrast with what happens when
we consider the problem of deciding whether an NFA is Wheeler, instead of whether
it accepts a Wheeler language: in the former case, restricting the problem to reduced
NFAs makes it solvable in polynomial time.
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2.5 Conclusions

In this chapter we considered a number of computational complexity problems re-
lated with the general idea of ordering states of a finite automaton. In general, or-
dering objects might lead to significant simplification of otherwise difficult storage
and/or manipulation problems. In fact, ordered finite automata can ease such tasks
as index construction, membership testing, and even determinization of NFAs ac-
cepting a given regular language. Clearly, a key point is the complexity of finding a
right order from scratch. Even though finding such an order turned out to be simple
on DFAs and turning a Wheeler NFA into a Wheeler DFA is polynomial, in contrast
to the un-ordered case, things become much more tricky when the input automa-
ton is a non-deterministic one. This issue, together with some of its natural variants,
were the main theme of this chapter. We proved that a number of ordered-related re-
sults, ultimately guaranteeing the existence of polynomial time algorithms on DFAs,
are much more complex if the starting automaton is an NFA —even in the case of
reduced NFAs.

A problem that this chapter leaves open concerns the optimal complexity of an
algorithm that computes the minimum WDFA starting from a fingerprint of a lan-
guage. The algorithm we proposed in Proposition 23 is almost optimal: except for a
factor of n (equal to the upper bound UB and coinciding with the size of the input)
which can be considered negligible when the size of the output m is exponential in
n —that is, when the problem is truly difficult— the complexity is equal to m log m.
The log m factor, which is the last obstacle to achieving optimal complexity, is due
to the fact that the fingerprint provided as input in the Proposition is completely
generic; therefore, it is necessary to use binary search to determine the edges of the
minimum WDFA. However, as we have already noted, Algorithm 1 does not pro-
vide just any fingerprint but one with particular characteristics; perhaps it is possible
to exploit these characteristics to determine the edges of the minimum WDFA more
quickly, thus eliminating the log m factor.
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Chapter 3

Decomposing Wheeler automata

In this section we will describe the general idea of the Krohn-Rhodes Decomposition
Theorem, a useful tool that allows us to split a DFA into simpler pieces, connected by
a cascade product (see Definition 10). More in general, the cascade decomposition
applies to semiautomata, that is, DFAs where initial and final states are not specified.

We start with an example illustrating a decomposition of the input-consistent
semiautomaton D = (Q, δ, Σ) in Figure 3.1. The input-consistency of D highlights
an underlying structure of the semiautomaton: we can collapse all the states with
the same input-character into superstates—one for each character of the alphabet—
to obtain a smaller (and coarser) semiautomaton that mimics the transitions of the
original semiautomaton, see Figure 3.2. The semiautomaton D1 = (Q1, δ1, Σ) is
a compact version of D: we can retrieve all the possible runs of D but with less
details. For instance the run of the string aba over D, that is 1, 2, 3, 4, becomes
{1, 3}, {2, 4}, {1, 3}, {2, 4} inD1. We can consider the semiautomatonD1 as a first ap-
proximation of D from which, however, we may retrieve the original semiautomaton
starting from this approximation by using the cascade product. That is, it is possi-
ble to build a second semiautomaton D2 such that D = D1 ◦ D2. How many states
should D2 have? Since the set of states of the cascade product D1 ◦ D2 is the direct
product of the set of states ofD1 andD2 and the superstates ofD1 were both obtained
by collapsing two states of D, the semiautomaton D2 only needs two states to differ-
entiate the possible behaviours of the states ofD included into the superstates ofD1:
the transitions of D2, labeled by characters in Q1× Σ, will take care of the rest. More
precisely, we let {A, B} be the set of states of D2 and we proceed as follows: for the
superstate of D1 labeled {1, 3} we arbitrarily associate the state 1 to A and the state
3 to B. Analogously, for the second superstate labeled {2, 4} we arbitrarily associate
the state 4 to A and the state 2 to B. Now, in order to retrieve the original semiau-
tomaton as the cascade product of D1 and D2, we need to add the correct edges to
D2. The possible labels of the edges are ({1, 3}, a), ({1, 3}, b), ({2, 4}, a), ({2, 4}, b)
and we assign them according to the labels A and B that we associated to states of
D1. For instance, consider the state A of D2: if we read the transition ({1, 3}, a),
which state should we reach? In the superstate {1, 3}, the state A is associated to
state 1, hence from 1 we follow transition a in the original semiautomaton ending

1 2 3 4
a

a

b

b

a a

FIGURE 3.1: An input-consistent semiautomaton D.
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{1, 3} {2, 4}

a

b

b a

FIGURE 3.2: The semiautomaton D1, a first approximation of the
semiautomaton D depicted in Figure 3.1.

A B

(
{1, 3}, a

)
,
(
{2, 4}, b

)

(
{1, 3}, a

)
(
{2, 4}, a

) (
{2, 4}, a

)
,
(
{2, 4}, b

)

FIGURE 3.3: The automaton D2, complementing the automaton D1.

up in state 2. In parallel, we also follow the transition a in D1 applied to the super-
state {1, 3}, ending up in the supestate {2, 4}. Since, for the superstate {2, 4}, we
associated the state 2 to B, we finally elect B as the state reached from A reading
({1, 3}, a). All other possible transitions are determined in a similar manner, see Fig-
ure 3.3. The reader can check that, letting x ∈ {{1, 3}, {2, 4}} and y ∈ {A, B}, by
identifying a state (x, y) of the cascade product of D1 and D2 with the D state in x
associate to y, we obtain a DFA which is isomprphic to D.

Summarizing, we started from a semiautomaton with 4 states and we managed
to “disassemble” it into two smaller semiautomata: a first approximation D1 and
a second semiautomaton correcting the not-completly-faithful behaviour of the first
one. This is a nice starting point for a decomposition of semiautomata: we start from
a complex semiautomaton D and we end up with two smaller (simpler?) semiau-
tomata from which is possible to retrieve D using the cascade product.

Now a natural question is: are D1 and D2 really simpler than D? There should
be no doubt about D1: it is an approximation of D which, in fact, loses some infor-
mation. What about D2? Is the condition of having less states enough to guarantee
simplification? The answer to this question is, unfortunately, no. This is due to the
fact that, in addition to the number ofD2’s states, we must look at the “nature” of its
transitions. That is, the entire collection of transitions labeled by c must be analysed,
for each c ∈ Σ. Formally, given a semiautomaton D = (Q, δ, Σ), the action of c ∈ Σ
over Q is the function δc : Q→ Q

δc(q) = q′ ⇐⇒ δ(q, c) = q′.

The spectrum of possible non-trivial (i.e. different from the identity) actions over
a set, has two “extremes”: actions that send all the elements to the same one—to
be called resets—and actions that send distinct elements in distinct elements—to
be called permutations. The opposite nature of this two kind of actions resides in
the amount of information that they carry over. Given a permutation δ for which
δ(x) = q′ is known, we can uniquely determine x. If instead we are given a reset δ
and we know that δ(x) = q′, we have no information about what x could be: all the
elements of Q are eligible for such a choice. These two extremes will be used to mea-
sure the complexity of our transitions that will go from the simplest one (resets) to
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the most complex ones (permutations). We will also classify “basic” semiautomata
accordingly: the very simple reset semiautomata will be the ones where every tran-
sition is either a reset or the identity, while the complex permutation semiautomata
will be the ones where every transition is a permutation—possibly the identity.

If we look back at the decomposition proposed at the beginning of this section,
we notice that the first semiautomaton is a reset whereas the second still contains
a permutation —labeled ({1, 3}, a). However, the original DFA D did not contain
any permutation: hence we can conclude that the resulting composition introduced
a grade of complexity not needed! This is, in fact, the case and it is indeed possible,
by swapping the initial labelling choice of A and B in the superstate {2, 4}, to obtain
a reset semiautomaton as D2, see Figure 3.4.

A B

(
{2, 4}, b

)(
{1, 3}, a

)
,
(
{2, 4}, a

) (
{1, 3}, a

)
,
(
{2, 4}, a

)
,
(
{2, 4}, b

)

FIGURE 3.4: The semiautomaton D′2, obtained when swapping the
assignment of A, B to the states in {2, 4}. Note that here all transitions

are either resets or the identity.

In the Krohn-Rhodes Decomposition Theorem (KRDT) it is shown how to de-
compose any semiautomaton in such a way that the number of permutation com-
ponents is as small as possible. In particular, if the semiautomaton is counter-free1

then the decomposition is permutation-free. To obtain such a result, a careful choice
of the initial partition2 and a careful assignment of the labels of the second automa-
ton are needed, resulting in a computationally heavy algorithm [38] (see [39] for
an implementation). However, it is worth the effort: the applications related to
the Krohn-Rhodes decomposition are numerous, ranging from biology to physics
to psychology and beyond [40].

In this thesis we will focus on the decomposition of Wheeler automata, answer-
ing the following question: is there a way to exploit the Wheeler state order to easily
obtain a feasible —computationally light— decomposition that does not produce
unwelcome permutation components?3

3.1 Cascade product and the Krohn-Rhodes Decomposition
Theorem

The KRDT is a theorem on deterministic finite automata (DFAs), but initial and final
states play no role in its statement. Hence we start defining semiautomata, which are
DFAs where initial and final states are not specified. Moreover, the general KRDT
theorem is stated for complete deterministic semiautomata, where transitions from
any states are always defined for every character. The path coherent and Wheeler

1Being counter-free does not depend on initial or final states of the automaton, hence it makes sense
to consider counter-free semiautomaton.

2Actually, in our example we started from an input-consistent DFA and a partition of its set of states
in order to have a simple example, but in general KRT over (possibly non input-consistent) DFA will
use a cover of the set of states, where elements may overlap, see Section ??.

3Notice that a permutation-free decomposition of a Wheeler automaton is already granted by
KRDT, but computing it is an hard task.
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automata are inherently partial, since their classes are not closed under complemen-
tation. Hence, we introduce the class of partial semiautomata and we state KRDT
for this class.

A partial semiautomaton is a tuple A = (QA, ΣA, δA) where: (i) QA is a finite
set of states; (ii) ΣA is the alphabet; (iii) δA : QA × ΣA → QA is a partial function.
From here onwards, by a semiautomaton we always mean a partial semiautomaton.
For any a ∈ ΣA, we denote by δA(−, a) the (possibly partial) function from QA to
QA that maps q in δA(q, a), for each q ∈ QA. Moreover, for any subset of states
Q ⊆ QA and any symbol a ∈ ΣA, we denote by δA(Q, a) the set {δA(q, a) | q ∈ Q}.
Since we will also introduce semiautomata A = (QA, ΣA, δA) and B = (QB , ΣB , δB)
where ΣA = ΣB and states in QB are subsets of QA – that is, QB ⊆ Pow(QA) –, we
avoid ambiguity by always explicitly indicating the automaton, as in δA(Q, a) and
δB(Q, a), so that it is clear whether Q is a state of B or a subset of A-states.

Finally, if (q, a) does not belong to the domain of δA we write δA(q, a) = ⊥, where
⊥ ̸∈ QA. More in general, for a partial function f : X → Y and an element x ∈ X we
write f (x) = ⊥ to denote that x /∈ dom( f ). Clearly, a function can be defined only
if all of its arguments are defined, thus we consider every function that has ⊥ as one
of its arguments as undefined – e.g. f (⊥) = ⊥ and (⊥, x) = (x,⊥) = ⊥ for all x.

Notice that to each semiautomaton A = (QA, ΣA, δA) we can associate a semi-
group generated by the actions δA(−, a) over the set QA. This semigroup is called
the transition semigroup of A and it plays an important role in the algebraic theory of
automata (see, among others, [41]).

Definition 19. A transition a ∈ Σ in a semiautomaton A = (QA, ΣA, δA) is:

1) an identity if δA(q, a) ∈ {⊥, q} for all q ∈ QA;

2) a reset if there exists a state r ∈ QA such that δA(q, a) ̸= ⊥ implies δA(q, a) = r,
for all q ∈ QA;

3) a permutation if the function δA(−, a) is a permutation over its domain i.e. it is
injective and maps its domain onto itself.

A semiautomaton A is a permutation-reset semiautomaton if all its transitions are
permutations or resets. We say that A is a reset semiautomaton if all its transitions
are either resets or identities. We say that A is a permutation automaton if all its
transitions are permutations.

q1 q2 q3

a

a

(a) The transition a is a reset.

q1 q2 q3

b

b

(b) The transition b is a permutation.

FIGURE 3.5: An example of reset and permutation transitions.

In the example of a decomposition given at the beginning of this section the ini-
tial automaton ends up being isomorphic to the cascade product of its components.
In general, this is not always the case: the cascade product will be usually "larger"
but we can retrieve the initial DFA as an homomorphic image of the cascade, defined
below.
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Definition 20 (Homomorphic image). Let A,B be two semiautomata over the same
alphabet Σ. We say that A is an homomorphic image of B if there is a surjective (total)
function ϕ : QB → QA such that, for all q ∈ QB and a ∈ Σ,

ϕ(δB(q, a)) = δA(ϕ(q), a).

If ϕ is a bijection, A and B are said to be isomorphic.

In particular notice that, since ϕ is total on QA and we agreed that ϕ(⊥) = ⊥, if
q′ ∈ QA and q ∈ ϕ−1(q′) then δB(q, a) = ⊥ iff δA(q′, a) = ⊥.

A semiautomaton A can be transformed into a language acceptor by fixing
an initial state s and a set of final states F and setting, as usual, L(A) = {α ∈
(ΣA)∗ | δA(s, α) ∈ F}. We say that a semiautomaton B is at least as expressive
as the semiautomaton A if any language accepted by A is also accepted by B. The
next lemma proves that if A is a homomorphic image of B then B is at least as ex-
pressive as A.

Lemma 38. If the semiautomaton A is a homomorphic image of the semiautomaton B and
the language L is accepted by A, then L is also accepted by B.

Proof. Let ϕ : QB → QA be an homomorphism between the semiautomaton A and
B. Let s ∈ QA and F ⊆ QA be the initial state and the final states, respectively, of the
automaton (QA, s, δA, F) and let L be the language recognized by A:

L = {α ∈ Σ∗ | δA(s, α) ∈ F}.

Let s′ ∈ QB be such that ϕ(s′) = s and let F′ = ϕ−1(F). Then one can prove by
induction on the length of the string α that

δB(s′, α) ∈ F′ ⇔ δA(s, α) ∈ F,

which proves that the language recognized by the two DFAs is the same.

Next, we state some basic results about cascades and homomorphic images nec-
essary to state KRDT.

Proposition 39.

1) Let A,B, C be semiautomata such that the cascade product (A ◦ B) ◦ C is defined. In
particular, ΣC = QA ×QB × ΣA. Then, the semiautomaton C ′ = (QC

′
, ΣC

′
, δC

′
) ob-

tained from C by renaming, for each edge, the label (qA, qB , a) as (qB , qA, a), formally
defined as:

QC
′

:= QC ;

ΣC
′

:= QB ×QA × ΣA;

δC
′(

qC , (qB , qA, a)
)

:= δC
(
qC , (qA, qB , a)

)
,

is such that (A ◦ B) ◦ C = A ◦ (B ◦ C ′).

Equivalently, if A ◦ (B ◦ C) is defined, then there exist a semiautomaton C ′ such that
A ◦ (B ◦ C) = (A ◦ B) ◦ C ′. The semiautomaton C ′ is again obtained from C by
renaming the labels of the edges of C.

2) If A,B, C,D are semiautomata such that A is an homomorphic image of B ◦ C and C
is an homomorphic image of D, then A is an homomorphic image of B ◦ D.
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Proof.
1) Let A = (QA, ΣA, δA),B = (QB , QA × ΣA, δB), C = (QC , QA × QB × ΣA, δC) be
three semiautomata, and let C ′ be the semiautomaton defined as in the statement
of the proposition. In the following, the letter u, v, t will denote a generic state of
A,B, C respectively, and a will denote a generic character in ΣA.
Let A ◦ B be the cascade product of A and B. By definition, we have

δA◦B
(
(u, v), a

)
=
(

δA(u, a), δB
(
v, (u, a)

))
. (3.1)

Let (A ◦ B) ◦ C be the cascade product of A ◦ B and C. By definition, we have

δ(A◦B)◦C
(
(u, v, t), a

)
=
(

δA◦B
(
(u, v), a

)
, δC
(

t, (u, v, a)
))

. (3.2)

Let B ◦ C ′ be the cascade product of B and C ′. By definition, we have

δB◦C
′
(
(v, t), (u, a)

)
=
(

δB
(

v, (u, a)
)

, δC
′
(

t, (v, u, a)
))

. (3.3)

Let A ◦ (B ◦ C ′) be the cascade product of A and B ◦ C ′. By definition, we have

δA◦(B◦C
′)
(
(u, v, t), a

)
=
(

δA(u, a), δB◦C
′
(
(v, t), (u, a)

))
. (3.4)

By substituting (3.1) in (3.2), we obtain that

δ(A◦B)◦C
(
(u, v, t), a

)
=

(
δA(u, a), δB

(
v, (u, a)

)
, δC
(

t, (u, v, a)
))

.

Similarly, by substituting (3.3) in (3.4) we obtain that

δA◦(B◦C
′)
(
(u, v, t), a

)
=

(
δA(u, a), δB

(
v, (u, a)

)
, δC

′
(

t, (v, u, a)
))

.

Since, by hypothesis,
δC
′(

t, (v, u, a)
)
= δC

(
t, (u, v, a)

)
,

we have (A ◦ B) ◦ C = A ◦ (B ◦ C ′).

2) In the following, the letter u, v, t, x will denote a generic state of A,B, C,D respec-
tively, and a will denote a generic character in Σ = ΣA = ΣB . Notice that, since the
products B ◦ C and B ◦D are defined, it holds ΣC = ΣD = QB × ΣB . By definition of
B ◦ C we have

δB◦C
(
(v, t), a

)
=
(

δB(v, a), δC
(
t, (v, a)

))
. (3.5)

By definition of B ◦ D we have

δB◦D
(
(v, x), a

)
=
(

δB(v, a), δD
(
x, (v, a)

))
. (3.6)

Since A is an homomorphic image of B ◦ C, there is an homomorphism ϕ1 : QB ×
QC → QA such that

ϕ1

(
δB◦C

(
(v, t), a

))
= δA

(
ϕ1(v, t), a

)
. (3.7)
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Similarly, since C is an homomorphic image of D, there is an homomorphism ϕ2 :
QD → QC such that

ϕ2

(
δD
(
x, (v, a)

))
= δC

(
ϕ2(x), (v, a)

)
. (3.8)

Define the homomorphism ϕ : QB◦D → QA as

ϕ(v, x) := ϕ1

(
v, ϕ2(x)

)
, (3.9)

we claim that A is an homomorphic image of B ◦ D through ϕ. In fact, we have

ϕ
(

δB◦D
((

v, x
)
, a
))

(3.6)
= ϕ

((
δB(v, a), δD

(
x, (v, a)

)))
(3.9)
= ϕ1

(
δB(v, a), ϕ2

(
δD
(
x, (v, a)

)))
(3.8)
= ϕ1

(
δB(v, a), δC

(
ϕ2(x), (v, a)

))
(3.5)
= ϕ1

(
δB◦C

((
v, ϕ2(x)

)
, a
))

(3.7)
= δA

(
ϕ1
(
v, ϕ2(x)

)
, a
)

(3.9)
= δA

(
ϕ(v, x), a

)
.

Remark 40. Note that statement 1) of Proposition 39 is very close to saying that the
cascade product is associative. The automata C and C ′, although not isomorphic
as they are defined over different alphabets, are in fact the same automaton: it is
sufficient to rename the labels of the edges to transform the first automaton into
the second and vice versa. To achieve true associativity, [25] uses a more general
definition of the cascade product, which essentially allows for the renaming of labels
at will when performing the product. To avoid overloading the notation, throughout
this chapter we will continue to use Definition 10 of the cascade product. Therefore,
whenever we write an expression like B1 ◦ B2 ◦ · · · ◦ Bk, we will assume that the
parentheses are left-associated. Nonetheless, it is important to keep in mind that,
in all the subsequent results, it is always possible to assume the parentheses are
associated at will, provided the more general definition of the cascade product as
defined in [25] is used.

The general KRDT states that each semiautomaton A is a homomorphic image
of a sub-semiautomaton of a cascade product of two-state resets and permutation
automata. Moreover, the cascade can be chosen in such a way that, for each permu-
tation semiautomaton in the cascade, the semigroup generated by the transitions of
the semiautomaton is a simple group which is an homomorphic image of subgroups
of the semigroup generated by the A-transitions.

Theorem 41 (KRDT). Let A be a deterministic partial semiautomon. Then, there are
B1, . . . ,Bk which are either permutation or (two-states) reset semiautomata such that:

1. A is an homomorphic image of a sub-semiautomaton4 of the cascade product B1 ◦ B2 ◦
· · · ◦ Bk;

2. if Bi is a permutation automaton, then its transition semigroup is a subgroup of the
transition semigroup of A.

4That is, a subset of states closed under transitions.
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1 2 3 4

a

a, bb b
1 2 3

a, b a, b

FIGURE 3.6: Ex-
ample of a path
coherent semiau-

tomaton.

FIGURE 3.7: A path co-
herent semiautomaton

not satisfying (W1).

1 2 3 4
a

b b

b

FIGURE 3.8: A path coherent semiautomaton satisfying (W1) but not
(W2).

Since the transition semigroup of a counter-free automaton is group-free (see
[19]), the second condition of KRDT implies that counter-free DFAs can be decom-
posed into a cascade of reset automata only5. Since Wheeler automata are counter-
free, the same result applies to them. However, in the following section we will
improve this result, exploiting the order of states of Wheeler automata, in two ways.
First, we will prove that the number of components needed for the decomposition is
at most n, whereas inspecting the KRDT proof we obtain a bound of n log n even in
the counter-free case. Second, the proof will be much simpler than the one given in
the literature for the counter-free case.

3.2 Krohn-Rhodes Decomposition Theorem for Wheeler au-
tomata

In this section we give a simpler proof of KRDT for the path coherent (see Definition
21) and Wheeler class. In the Wheeler case we also prove that the numbers of blocks
–two-state resets– is linear in the number of states of the original automaton.

Definition 21 (Path Coherence). Let < be a total order over the set of states SA of a
semiautomaton A = (SA, ΣA, δA). Then (A,<) is path coherent if, for all a ∈ ΣA, the
function δ(−, a) maps intervals in intervals. Equivalently, (A,<) is path coherent if,
for all q < q′ ∈ SA, a ∈ ΣA, and x, y, z ∈ SA it holds that:

x < z < y ∧ x, y ∈ δA([q, q′], a) → z ∈ δA([q, q′], a).

Figure 3.6 shows an example of a path coherent automaton on the alphabet Σ =
{a, b}. Notice that (W2) is not satisfied.

In general, a path coherent semiautomaton may not satisfy condition (W1) of
Definition 6, for any order of the alphabet. Consider for example the semiautomaton
in Figure 3.7. Moreover, path coherence and (W1) do not necessarily imply (W2).
Consider for example the semiautomaton in Figure 3.8.

However, we do have the following dependencies.

5The general KRDT does not prove that the original automaton is a homomorphic image of the
cascade: one has to go through a sub-semiautomaton of the cascade. For path consistent and Wheeler
class we can avoid the use of sub-semiautomata.
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Proposition 42. 1) If a semiautomaton A satisfies both path coherence and input-consis-
tency then there is an order ≺ over the alphabet Σ for which A satisfies (W1). In particular,
a path coherent, input-consistent semiautomaton satisfying (W2) is a Wheeler semiautoma-
ton. 2) Any semiautomatonA satisfying both (W1) and (W2) and such that any state has at
least an incoming transition is path coherent.

Proof. 1. For any letter a ∈ Σ, path coherence implies that the set of states with
an ingoing a-transition, i.e. δ(QA, a), is an interval, whereas input consistency
implies that if a ̸= b then δ(QA, a)∩ δ(QA, b) = ∅. Hence we may define a ≺ b
iff the interval δ(QA, a) precedes the interval δ(QA, b) in the order <, satisfying
in this way (W1).

2. Suppose q < q′ ∈ QA, a ∈ Σ, x, y, z ∈ QA, and x < z < y for x, y ∈
δA([q, q′], a). Let r, t ∈ [q, q′] be such that x = δA(r, a), y = δA(t, a) and let
b ∈ Σ, w ∈ QA be such that z = δA(w, b). Then (W1) implies b = a and (W2)
implies w ∈ [q, q′].

We are ready to show how to obtain, in a simple way, the Krohn-Rhodes decom-
position of a path coherent automaton. We start by defining the first element of the
cascade using the notion of admissible decomposition (see [25, 26]).

Definition 22. A family D of subsets of the set of states of a semiautomaton A =
(QA, ΣA, δA) is said to be an admissible decomposition if:

1. ∪D = QA;

2. for any a ∈ ΣA the image of an element of D under δA(−, a) is contained in at
least one element of D:

∀a ∈ ΣA ∀D ∈ D ∃D′ ∈ D δA(D, a) ⊆ D′.

Given an admissible decompositionD of a semiautomataAwe can build a factor
semiautomaton A/D over the same alphabet with QA/D = D and δA/D(D, a) = D′

where D′ ∈ D is such that δA(D, a) ⊆ D′ (if there is more than one, then choose one
arbitrarily).6

Given a semiautomaton A, the first element of a cascade decomposition for A
can be choosen to be a factor of A (see [25, 26]). However, for the full KRDT, which
proves that there are cascades where the permutation-blocks are homomorphic im-
ages of subgroups of the transition monoid of the original automaton, one has to
choose a particularly well behaved decomposition of A.

In the following lemma and theorem we prove that, in case of path coherent
semiautomata, a particular choice for the decomposition of A allows to use a sim-
ple induction for obtaining the full decomposition. Moreover, when applied to the
Wheeler case, we shall see that this decomposition avoid altogether the use of per-
mutations in the cascade.

Lemma 43. Let A = (QA, Σ, δA,<) be a path coherent semiautomaton with n = |QA| >
2. Then, there are a permutation-reset semiautomaton B with |QB | = 2 and a path coherent
semiautomaton C with |QC | = n− 1, such that A is a homomorphic image of B ◦ C.

6For a complete semiautomaton A, where the transition functions are total, a factor of A is always
a homomorphic image of A. This is not always the case for partial automata.
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Proof. Consider the decomposition D = {D0, D1} of QA where

D0 = {1, . . . , n− 1}, D1 = {2, . . . , n}.

We have either δA(Di, a) ⊆ D0 or δA(Di, a) ⊆ D1 (possibly both) for i = 0, 1: it
cannot be the case that both 1 and n are in δA(Di, a) or, by path coherence, we would
have δA(Di, a) = {1, . . . , n} which is not possible, being A deterministic. In other
words, the decomposition D is admissible. Let B = A/D = (QB , Σ, δB) be the D-
factor of A, defined as follows. The set of states is QB = {D0, D1} and we define
δB(Dj, a) = ⊥ if and only if δA(Dj, a) = ∅. If instead δA(Dj, a) ̸= ∅, then we define
δB(Dj, a) = D0 if δA(Dj, a) ⊆ D0 (or, equivalently, if n ̸∈ δA(Dj, a)), whereas we
define δB(Dj, a) = D1 if δA(Dj, a) ̸⊆ D0 (or, equivalently, n ∈ δA(Dj, a)) and hence
δA(Dj, a) ⊆ D1. More succinctly, when δB(Dj, a) ̸= ⊥ we have δB(Dj, a) = Dγ(j,a),
where γ(j, a) is defined as

γ(j, a) =

{
0 if n /∈ δA(Dj, a)
1 if n ∈ δA(Dj, a)

for all j ∈ {0, 1} and a ∈ Σ. Note that B has only two states. Hence, a transition in B
can only be a (eventually partial) reset, the identity, or the permutation δB(D0, a) =
D1, δB(D1, a) = D0. Therefore, B is a permutation-reset automaton.

Let C = (QC , QB × Σ, δC) be the semiautomaton with set of states

QC = {C1, . . . , Cn−1} with Ci = {(i, D0), (i + 1, D1)} for 1 ≤ i ≤ n− 1

and transition function defined as follows, for i = 1, . . . , n− 1 and j = 0, 1:

δC
(

Ci, (Dj, a)
)
= CδA(i+j,a)−γ(j,a). (3.10)

Note that δC
(

Ci, (Dj, a)
)

is well defined because it always hold

0 < δA(i + j, a)− γ(j, a) < n;

assume, by way of contradiction, that δA(i + j, a)− γ(j, a) = n, we must have both
δA(i + j, a) = n and γ(j, a) = 0. Note that i + j ∈ Dj, for all i = 1, . . . , n − 1 and
j = 0, 1, thus, from δA(i + j, a) = n it follows that n ∈ δA(Dj, a). By definition of γ,
this means that γ(j, a) = 1: a contradiction. Therefore δA(i + j, a)− γ(j, a) ̸= n. The
fact that δA(i + j, a)− γ(j, a) ̸= 0 can be proved in a similar manner.

We prove that A is a homomorphic image of the cascade B ◦ C. Consider the
function

ϕ : QB◦C → QA defined by ϕ(Dj, Ci) = i + j.

The codomain of ϕ is QA because if i = 1, . . . , n − 1 and j = 0, 1 then i + j ∈
{1, . . . , n} = QA. Hence, ϕ is surjective. Notice that, as opposed to the Krohn-
Rhodes general case, ϕ is a total function.

We prove that ϕ is a homomorphism from B ◦ C to A, that is, for all j = 0, 1 and
i = 1, . . . , n− 1:

ϕ
(
δB◦C((Dj, Ci), a)

)
= δA

(
(ϕ(Dj, Ci), a)

)
.

In fact, we have

ϕ
(
δB◦C((Dj, Ci), a)

)
= ϕ

(
δB(Dj, a), δC(Ci, (Dj, a))

)
=
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ϕ(Dγ(j,a), CδA(i+j,a)−γ(j,a)) = δA(i + j, a)− γ(j, a) + γ(j, a) = δA(ϕ(Dj, Ci), a).

To conclude the proof of the lemma we prove that the order C1 < · · · < Cn−1
makes C path coherent. Let [Ck, Cl ] be any interval, with 1 ≤ k ≤ l ≤ n− 1. From
equation (3.10) it follows that, for all j ∈ {0, 1} and for all a ∈ Σ,

δC
(
[Ck, Cl ], (Dj, a)

)
= {Ch : h + γ(j, a) ∈ δA([k + j, l + j], a)}.

By the hypothesis that A is path coherent it follows that δA([k + j, l + j], a) is an

interval, hence also the set δC
(
[Ck, Cl ], (Dj, a)

)
is an interval.

In the theorem that follows, we will use Lemma 43 to prove one of the main
results of this section.

Theorem 44. KRDTpc Each path coherent semiautomaton A with n ≥ 2 states is an
homomorphic image of a cascade product

B1 ◦ B2 ◦ B3 ◦ · · · ◦ Bn−1

of n− 1 permutation-reset semiautomata, each one having exactly 2 states.

Proof. As we have already noted in Lemma 43, every semiautomaton with exactly 2
states is a permutation-reset semiautomaton, therefore, if n = 2 there is nothing to
prove. If n > 2, we prove, by induction on k, that for all 1 ≤ k ≤ n − 2 there are
semiautomata B1, . . . ,Bk, Ck such that each Bi is a permutation-reset semiautomaton
with 2 states, Ck is a path coherent semiautomaton with n − k states, and A is an
homomorphic image of B1 ◦ · · · ◦ Bk ◦ Ck.
Base step. If k = 1, the thesis follows immediately from Lemma 43.
Inductive step. Assume that the thesis holds for some 1 ≤ k < n− 2. Since Ck is path
coherent, we can apply Lemma 43 to find a permutation-reset semiautomaton Bk+1
with 2 states and a path coherent semiautomaton Ck+1 with (n− k)− 1 = n− (k+ 1)
states such that Ck is an homomorphic image of Bk+1 ◦ Ck+1. As a consequence of
statement 2) of Proposition 39, we have that A is an homomorphic image of

(B1 ◦ · · · ◦ Bk) ◦ (Bk+1 ◦ Ck+1),

hence we can apply statement 1) of Proposition 39 to conclude that

(B1 ◦ · · · ◦ Bk) ◦ (Bk+1 ◦ Ck+1) = (B1 ◦ · · · ◦ Bk ◦ Bk+1) ◦ C ′k+1,

where C ′k+1 is obtained from Ck+1 by renaming the labels of its edges. Since Ck+1
is a path coherent semiautomaton with n − (k + 1) states, so it is C ′k+1, conclud-
ing the inductive proof. For k = n − 2 we obtain that there are semiautomata
B1, . . . ,Bn−2, Cn−2, each one with 2 states, such that A is an homomorphic image
of B1 ◦ · · · ◦ Bn−2 ◦ Cn−2. Since every semiautomaton with exactly 2 states is a
permutation-reset semiautomaton, the cascade

B1 ◦ · · · ◦ Bn−2 ◦ Cn−2

is a cascade product of n− 1 permutation-reset semiautomata, completing the proof.

Figure 3.9 shows the cascade decomposition of the path coherent automaton de-
picted in Figure 3.6.
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q0 q1
a, b

a, b
B1Σ

q′0 q′1

c, e, f

c

d d, f
B2

q′′0 q′′1

g, k, m

g

h, i, j, l h, j, l
C3

FIGURE 3.9: Cascade decomposition of the automaton in fig. 3.6. The
letters c, d, e, f , g, h, i, j, k, l, m are shortcuts for (q0, a), (q0, b), (q1, a),
(q1, b), (q′0, c), (q′0, d), (q′0, e), (q′0, f ), (q′1, c), (q′1, d), (q′1, e), (q′1, f ) re-

spectively.

Note that, although the automaton in Figure 3.6 is counter-free and, as so, KRDT
decomposes it using resets only, the decomposition obtained from Theorem 44 (see
Figure 3.9) contains blocks with permutations. In this sense, this decomposition is
not optimal as the one obtained in the original KRDT. However, as we shall see
shortly, in case of path coherence plus (W2) (hence in the Wheeler case as well), in
which automata are always counter-free (a consequence of (W2), see proof of Propo-
sition 18), the decomposition that we propose in Theorem 46 allows us to produce a
permutation-free cascade.

Lemma 45. Let A = (QA, Σ, δA,<) be a path coherent semiautomaton satisfying Wheeler
axiom 2 (W2). Then the construction of Lemma 43 provides a reset semiautomaton B with
|QB | = 2 and a path coherent semiautomaton C with |QC | = n − 1 still satisfying (W2)
such that A is an homomorphic image of B ◦ C.

Proof. Looking at the construction of Lemma 43 we first prove that B = A/D is
a reset automaton. Note that B has only two states. Hence, a transition in B can
only be a (eventually partial) reset, the identity, or the permutation δB(D0, a) = D1,
δB(D1, a) = D0. Let us prove that the last possibility can not occur if A is a path
coherent semiautomaton satisfying (W2). We reason by way of a contradiction. From
the definition of δB given in Lemma 43 we see that if δB(D0, a) = D1, δB(D1, a) = D0
then there is an i ∈ D0 such that δA(i, a) = n, while for all j ∈ D1 it holds δA(j, a) < n
— whenever δA(j, a) ̸= ⊥. Hence, i ̸∈ D1 which implies i = 1. Since δB(D1, a) = D0,
there is a j ∈ D1 such that δA(j, a) ̸= ⊥. Since j ∈ D1 we have 1 < j, but it also hold
δ(1, a) = n > δ(j, a), contradicting (W2).

Next we have to prove that states of semiautomaton C, ordered as C1 < · · · <
Cn−1, satisfy (W2) (we already proved that it is path coherent in Lemma 43). Con-
sider a C-transition (Dj, a) with a ∈ Σ and j = 0, 1

Suppose Ci < Ci′ , that is, i < i′. Then we have i + j < i′ + j and, from (W2)
applied to A, it follows δA(i + j, a) ≤ δA(i′ + j, a) thus

δA(i + j, a)− γ(j, a) ≤ δA(i′ + j, a)− γ(j, a),

implying

δC
(

Ci, (Dj, a)
)
= CδA(i+j,a)−γ(j,a) ≤ CδA(i′+j,a)−γ(j,a) = δC

(
Ci′ , (Dj, a)

)
.
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Theorem 46. Each path coherent semiautomaton A satisfying (W2) with n ≥ 2 states is
the homomorphic image of a cascade product of n− 1 reset semiautomata, each one having
exactly 2 states.

Proof. The proof is the same as the one of Theorem 44, but we apply Lemma 45
instead of Lemma 43 everywhere.

Since Wheeler automata are path coherent and satisfy (W2), we get

Corollary 46.1. Any Wheeler semiautomaton A with n ≥ 2 states is the homomorphic
image of a cascade product of n− 1 reset semiautomata, each one having exactly 2 states.

3.3 Conclusions

In this chapter we proved that path-coherent semiautomata admit a linear-sized cas-
cade decomposition into permutation-reset semiautomata. Moreover we showed
that, for the case of Wheeler semiautomata, the cascade is permutation-free. A merit
of the provided proofs is their simplicity. What makes them easier to follow com-
pared to the various proofs given in the literature on KRDT is the fact that the order
on the set of states imposed respectively by path coherence and Wheelerness al-
lows us to immediately find a admissible decomposition of the states of the initial
automaton. This guarantees that the components obtained in the decomposition sat-
isfy condition 2) of Theorem 41, which is the portion of —classic— KRDT difficult to
prove.

An interesting open question is the following: is it possible to combine the main
result of this chapter, namely Corollary 46.1, with Lemma 20 of Chapter 2, which
states that the cascade product of two Wheeler automata is still a Wheeler automa-
ton? If one could prove that each component of the composition obtained by apply-
ing Corollary 46.1 is a Wheeler automaton, it would provide a characterization of
Wheeler automata as that class of automata decomposable into a cascade of Wheeler
reset automata.
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Chapter 4

Extending Wheelerness to regular
languages

Up until this chapter, we focused our attention on the class of Wheeler automata.
Despite their good properties, like compression and indexing, Wheeler automata
form a restricted class: a proper subclass of counter-free automata (see Definition 5).
In order to extend our analysis to the entire class of finite automata a generalization
of Definition 11 is called for. In [23], such a generalization of the Wheeler notion is
proposed and analyzed, mostly for deterministic automata. The non deterministic
case appears to be less tractable and in the following sections we shall contribute on
this part.

4.1 Definitions and previous results

The simplest way to generalize the notion of Wheelerness consist in dropping the
totality request. At first glance this may seem to be an oversimplification: axioms
(W1’) and (W2’) of Definition 11 are automatically satisfied if we consider the trivial
partial order that never compares distinct states. While this is indeed the case, we
should consider the fact that many different partial orders may satisfy axioms (W1’)
and (W2’), and among them we can try to find the ones "as close as possible" to a
total order. The following definition of width of a partial order, a measure of how
far a given partial order is from being total, will come in handy in the rest of this
chapter.

Definition 23. Let (Z,≤) be a partial order. The width of (Z,≤), denoted by width(≤
), is the maximum cardinality of a subset of Z′ ⊆ Z such that each pair of distinct
elements x, y ∈ Z′ are incomparable, that is, neither x ≤ y nor y ≤ x.

In particular, a partial order of width 1 is a total order —every pair of elements
is comparable. An alternative characterization of the width of a partial order can be
given as follows. A chain-partition of a partially ordered set is a partition where each
subset is totally ordered and Dilworth’s Theorem ([42]) states that the width of the
partial order coincides with the smallest cardinality of a chain-partition. Hence, in a
way, the higher the width of a given partial order, the greater is its "distance" from
being total.

We are going to apply this notion of width to a special class of partial orders,
called the colex orders of a given automaton.

Definition 24. Let A = (Q, s, δ, F) be an NFA. A colex order on A is a partial order
≤ on Q that satisfies the following two axioms:

1. (Axiom 1) For every u, v ∈ Q, if u < v, then, if u ∈ δ(u′, a) and v ∈ δ(v′, b), it
holds a ⪯ b;
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2. (Axiom 2) For every a ∈ Σ and u, v, u′, v′ ∈ Q, if u ∈ δ(u′, a), v ∈ δ(v′, a) and
u < v, then u′ ≤ v′.

It immediately follows that an automaton has a colex order of width 1 —that is, a
total colex order— if and only if it is Wheeler. It is then natural to define the width of
a given automaton A as the smallest width of a colex order over the states of A. In
Figure 4.1, an example of a NFA of width 2 is depicted.

q0

q1 q3

q2 q4

a

a, b

c

c

c

c

(a) A NFA A.

q0

q1

q2

q4q3

(b) The Hasse diagram of a colex order of
A of width 2.

FIGURE 4.1: A NFA of width 2. The reader can verify that the order
depicted on the right is a colex one, whose width is clearly 2. A does
not admit a colex order of width 1 (that is, a total one): in such hy-
pothetical order, we would have q1 < q2 due to (Axiom 1). Then, we
would not be able to order states q3, q4: if q3 < q4, from δ(q2, c) = q3,
δ(q1, c) = q4 and (Axiom 2) it would follow q2 < q1, a contradiction.
If instead q4 < q3, a similar contradiction would occur when consid-

ering edges δ(q1, c) = q3, δ(q2, c) = q4.

Definition 25. LetA = (Q, s, δ, F) be an NFA. The width ofA, denoted by width(A),
is defined as follows:

width(A) := min{width(≤) : (Q,≤) is a colex order}.

In [23] it is shown that the width of an automaton is a significant parameter
to measure the complexity of the automaton: many hard problems become fixed-
parameter tractable (FPT) on constant width. The following theorem represents an
instance of such results.

Theorem 47. Let A = (Q, s, δ, F) be an NFA and let A∗ be the powerset automaton ob-
tained from A, with set of states Q∗. Let n = |Q| and p = width(A). Then:

1. width(A∗) ≤ 2p − 1;

2. |Q∗| ≤ 2p(n− p + 1)− 1.

Next, we consider the notion of width for regular languages.

Definition 26. Let L be a regular language.

1. The non-deterministic colex width of L, denoted by widthnd(L), is the small-
est integer p for which there exists an NFA A such that L(A) = L and
width(A) = p.

2. The deterministic colex width of L, denoted by widthd(L), is the smallest integer
p for which there exists a DFA D such that L(D) = L and width(D) = p.
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A notable property that it is missed in the generalization from width 1 —the
Wheeler case— to width p ≥ 2, is the following: the class of languages recognized
by Wheeler DFAs coincides with the class of languages recognized by a Wheeler
NFAs. In [23] it is noted that this does not generally applies to widths greater than
1, that is, there exist languages where the non-deterministic width is strictly smaller
than the deterministic one. Nonetheless, Theorem 47 allows us to give an upper
bound to the deterministic width of a language in terms of its non-deterministic
width.

Corollary 47.1. Let L be a regular language. Then

widthd(L) ≤ 2widthnd(L) − 1.

In this chapter we will analyse this aspect in more depth, exploring, in Section
??, the possible distances between the deterministic and non-deterministic width of
regular languages. To do so, we will need to adapt the notion of entanglement given
in [23]. This measure can be computed on the minimum DFA recognizing a given
language L and uniquely characterizes the deterministic width of L.

Definition 27. Let D be a DFA with set of states Q. A subset Q′ ⊆ Q is entangled if
there exists a monotone sequence (αi)i∈N in Pref(L(D)) such that for all u′ ∈ Q′ it
holds δ(s, αi) = u′ for infinitely many i’s. In this case the sequence (αi)i∈N is said to
be a witness for (the entanglement of) Q′. Moreover, define :

ent(D) = max{|Q′| | Q′ ⊆ Q and Q′ is entangled }
ent(L) = min{ent(D) | D is a DFA ∧ L(D) = L}.

q0

q1

q2 q3

a

b

c

c

f

(a) The minimum DFA DLb recognizing Lb =
ac∗ ∪ bc∗ f .

q0

q1 q2

q3

(b) The Hasse diagram
of a colex order of DLb

whose width is 2.

FIGURE 4.2: A non Wheeler language Lb whose deterministic width
is 2.

Example 2. Consider the minimum DFA DLb of the language Lb depicted in Figure
4.2. As we have shown in Chapter 2, Lb is not Wheeler (see Figure 1.5(b)). Since
Iq0 = {ε} and Iq3 contains only strings ending with f , the only two states of DLb

that can be entangled are q1 and q2. A monotone sequence of strings in Pref(Lb) that
switches infinitely many times between q1 and q2 is the following:

a ≺ b ≺ ac ≺ bc ≺ · · · ≺ acn ≺ bcn ≺ . . .
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Hence, states q1, q2 are entangled and the entanglement of Lb is 2. In this particular
case, the minimum deterministic width is already achieved by the minimum DFA
DLb , as shown in Figure 4.2(b). Later in this section we will see that this is not
always the case (see Example 3).

Notice that we can see the entanglement in another way: if we focus on the
prefixes of the language, imagining them arranged on a line from left to right, we
observe that there is a point around which infinite prefixes accumulate, as evidenced
by the previous inequality. We can observe that actually the sequences accumulat-
ing around this point are two: the first composed of prefixes belonging to Iq1 , the
second composed of prefixes belonging to Iq2 . The infinite alternation of these two
sequences accumulating around a specific point is the cause of the entanglement be-
tween the two states, and in [35] it has been shown that whenever two states are
entangled, it is possible to identify a point of accumulation that generates such en-
tanglement.

Notice that if there are k entangled states in the minimum DFA recognizing a
language L, splitting them a finite number of times —hence creating a bigger DFA
that recognizes L— will never result in a new set of states whose input languages
are totally ordered by the relation ≺: the same monotone sequence that testifies the
entanglement of the original k states also testifies the entanglement of at least k states
among the new ones —possibly more. It immediately follows that ent(L) is a lower
bound to the deterministic width of L. The next result proves that the entanglement
of the states of the minimum DFA is actually the only obstacle that prevents us from
reducing the deterministic width of L.

Theorem 48 ([23]). If DL is the minimum DFA of the regular language L, then:

widthd(L) = ent(L) = ent(DL).

In [23] the previous theorem is used to compute the width of a language in poly-
nomial time.

Concerning the non-deterministic width of a language, our knowledge is far
from being complete. In particular, no algorithm is known for computing such
width. The absence of a minimum NFA for regular languages makes impossible
to follow the same strategy employed in the deterministic case. Moreover, as we
will see in the following example1, in general it is not true that the NFA that ful-
fills the minimum non-deterministic width of a language L has less states than DL:
sometimes we need to duplicate some states in order to reduce the width.

Example 3. Let p, q be two prime numbers and let Lp,q be the language

Lp,q := {an | p divides n or q divides n}.

The deterministic width of Lp,q, equal to the entanglement of DLp,q , is pq: the DFA
DLp,q consists of a simple cycle labeled apq whose states are all entangled. The non-
deterministic width of Lp,q is at most p + q: one of the NFAs fulfilling this width has
p+ q+ 1 states, all but the initial one being entangled, arranged in two simple cycles
of length p and q respectively. The case p = 2 and q = 3 is depicted in Figure 4.3.

Notice that the deterministic width of a regular language L is an upper bound to
the non-deterministic width of L and a natural question regarding the two widths
is:

1Provided by Nicola Cotumaccio.
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q1 q2
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q4q5
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(a) The minimum DFADL2,3 . Both its entangle-
ment and its width are equal to the number of
states, that is, 2*3=6.

q0

q1 q2

q3

q4

q5

a

a

a

a a

aa

(b) A NFA fulfilling the non-
deterministic width of L2,3, that is,
2+3=5.

FIGURE 4.3: A DFA and a NFA fulfilling the deterministic and non-
deterministic width of L2,3.

is the distance between the two widths fixed, or the gap between them can be made arbitrarily
large, up to a certain upperbound?

In Sections 4.2, 4.3 we will generalize the notion of entanglement in order to
obtain some lower bounds to the non-deterministic width and answer the previous
question.

4.2 On the difference between deterministic and non-
deterministic width

As we have seen in the previous section, the entanglement of a language L —
computed on its minimum DFA— is an exact measure of the deterministic width of
L. Can we obtain a similar result for the non-deterministic width, possibly by defin-
ing an entanglement-like new property over the set of states of the minimun DFA?
In this section and the next, we begin a journey towards this result introducing some
measures which are approximations of the one we are after, and we will use them to
compare the deterministic and non-deterministic width of a regular language.

Recall that, for every regular language L, it holds

ent(L) = widthd(L) ≥ widthnd(L).

We start with a simple example where we show that the above inequality may
be strict (as already pointed out in [23]).

Example 4. An example of a regular language L such that widthnd(L) = 2 and
widthd(L) = 3 is the following. Consider the language L recognized by the au-
tomata in Figure 4.4.

Let us prove that the deterministic width of L is 3. It will suffice to prove that the
entanglement of the minimum automaton, on the right in Figure 4.4, is 3. First notice
that, from the definition, it follows that entangled states must have an incoming edge
labeled by the same letter. Therefore, the entanglement ofDL is at most 3. Moreover,
the entanglement is at least 3, because the monotone sequence

. . . adn ≺ bdn ≺ cdn ≺ adn+1 ≺ . . .

in Pre f (L) goes infinitely many times through q1, q4, q5.
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FIGURE 4.4: A non deterministic automaton A (left) and the mini-
mum DFA DL recognizing L (right).

q0

q1 q4

q2

FIGURE 4.5: The Hasse diagram of a colex order ≤ for the automaton
on the left in Fig. 4.4

Let us prove that the non-deterministic width of L is 2: it is at least 2, because
if it were 1, then the deterministic width would also be equal to 1 (see Corollary
47.1). On the other hand, the colex order ≤ of the NFA on the left in Figure 4.4,
whose Hasse diagram is depicted in Fig. 4.5, has width equal to 2. Therefore, the
non-deterministic width of L is 2.

We may re-read the above observation as follows: in DL we have 3 entangled
states q1, q4, q5, that we can identify with their output languages a−1L, b−1L, c−1L.
However, since

c−1L ⊆ a−1L ∪ b−1L,

by giving up determinism we can lower the width by erasing state q5 and redirecting
strings entering q5 in both q1 and q4 (see the NFA A in Figure 4.4).

This re-reading suggests the following definition:

Definition 28. A set {[α1]L, [α2]L, . . . , [αk]L} of pairwise distinct MN-classes is said
to be relatively indecomposable if for all i it holds α−1

i L ̸⊆
⋃

j ̸=i α−1
j L.

In the following, to identify an MN-class [α] of a regular language L, we will use
freely both the state q of the minimum automaton reached by α and the language
α−1L.

Remember that the entanglement of a language ent(L) is the minimum number
k for which all monotone sequences in the prefixes end up (i.e. go through infinitely
many times) in at most k different MN-class. We know that ent(L) = widthd(L). To
get closer to widthnd(L) we strengthen this condition as follows:
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Definition 29. The entanglement+ of a language, ent+(L), is the minimum number k
for which all monotone sequences in the prefixes end up (i.e. go through infinitely
many times) in at most k different relatively indecomposable classes.

In other words, ent+(L) = k means that there are k relatively indecomposable
MN-classes and a monotone sequence going through them infinitely often—that is,
they are entangled—, and there are no k + 1 such classes.

In order to prove that ent+(L) is a lower bound on the non-deterministic width
of the language we shall use some results regarding the prefix-suffix relation ⪯ps
(see Definition 7). First, it can be easily verified that the following lemma holds.

Lemma 49. If C is a family of convex sets over a linearly ordered set, then (C,⪯ps) is a
(possibly, non total) order .

Given an NFA A = (Q, s, δ, F) and a colex order ≤ on A, we shall use some
properties, proved in [23], regarding the sets Iα = {u ∈ Q | u ∈ δ(q0, α)}, their duals
Iu = {α ∈ Pref(L(A)) | u ∈ δ(q0, α)}, and their ps-orders induced respectively by
(Q,≤) and (Pref(L(A),⪯).

Lemma 50 ([23]). Let A = (Q, s, δ, F) be an NFA and let ≤ be a colex order on A. If
α ∈ Pref(L(A)) then Iα is convex in (Q,≤).

Lemma 51 ([23]). Let A = (Q, s, δ, F) be an NFA and let ≤ be a colex order on A. If
u < v, then Iu ⪯ps Iv.

Actually, we shall use a dual version of the previous lemma, that we prove below.

Corollary 51.1. Let A = (Q, s, δ, F) be an NFA, let ≤ be a colex order on A and let (Qi)i
be a chain partition of ≤. If α ≺ β then Iα ∩Qi ≤ps Iβ ∩Qi, for all i. In particular, for all i,
the family

C := {Iα ∩Qi : α ∈ Pref(L), Iα ∩Qi ̸= ∅}

is totally ordered by ≤ps.

Proof. Suppose that α ≺ β and assume, reasoning by contradiction, that Iα ∩ Qi ̸≤ps
Iβ ∩Qi, that is, there exists u ∈ Iα ∩Qi and v ∈ Iβ ∩Qi with {u, v} ̸⊆ Iα ∩ Iβ such that
v < u. Then, we have that β ∈ Iv, α ∈ Iu and {α, β} /∈ Iv ∩ Iu and we can then apply
Lemma 51 to v, u to deduce that β ≺ α, a contradiction. Moreover, from Lemma 50
we know that the set Iα is convex, for all α ∈ Pref(L), and so it is Iα ∩ Qi, for all α
and i. We then apply Lemma 49 to conclude that the family C is totally ordered.

When we have a chain partition of a colex order over an NFA, then the set of
states reached by any monotone sequence of strings in the prefixes of the accepted
language becomes eventually constant in any component of the partition. This for-
mally proved below.

Lemma 52. Let A = (Q, s, δ, F) be an NFA, ≤ be a colex order of width p, and let
Q1, . . . , Qp ⊆ Q be a chain partition of (Q,≤). If (αi)i∈N is a monotone sequence in
Pref(L) then there exists an n such that, for all i and for all m, m′ > n, if Iαm ∩ Qi ̸= ∅,
Iαm′ ∩Qi ̸= ∅, then Iαm ∩Qi = Iαm′ ∩Qi.

Proof. For all i = 1, . . . , k the family

C = {Iα ∩Qi : α ∈ Pref(L), Iα ∩Qi ̸= ∅}

is a finite family of intervals in Qi totally ordered by ≤ps. Moreover, from Corollary
51.1 it follows that if α ≺ β and Iα ∩ Qi ̸= ∅, Iβ ∩ Qi ̸= ∅ then Iα ∩ Qi ≤ps Iβ ∩ Qi.
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Therefore, the sequence of convex sets (Iαm ∩ Qi)m (restricted to the sets for which
Iαm ∩ Qi ̸= ∅) is monotone in the finite order (C,≤ps). Hence the sequence must be
eventually constant.

We can use the previous lemma to prove that ent+ is a lower bound to
widthnd(L).

Lemma 53. If A is an NFA recognizing L then ent+(L) ≤ width(A).

Proof. Let ent+(L) = k, width(A) = p, and let Q1, . . . , Qp be a chain partition of a
colex order of width p over A. Suppose, by way of contradiction, that p < k, and
consider a monotone increasing sequence (αi)i∈N (the case of a decreasing sequence
is handled similarly) going through k indecomposable MN-classes. Possibly con-
sidering a subsequence, we can assume that the previous lemma holds with n = 0
and the k-indecomposable classes are [α1]L, . . . , [αk]L. This implies that Iα1 , . . . , Iαk

are pairwise distinct, because Iαi = Iαj implies α−1
i L = α−1

j L and so [αi]L = [αj]L,
contradicting the indecomposability of the classes [αi]L.

By Lemma 52, there exist subsets X1 ⊆ Q1, . . . , Xp ⊆ Qp such that for every i
there exists Ki ⊆ {1, . . . , p} with:

Iαi ∩Qj =

{
Xj if j ∈ Ki

∅ otherwise.

So that we have
Iαi =

⋃
j∈Ki

Xj.

Consider the sets Wi = Iα1 ∪ Iα2 ∪ · · · ∪ Iαi , for i = 1, . . . , k. Clearly W1 ⊆ W2 ⊆
· · · ⊆ Wk and every time the inclusion is strict, the number of considered Xj’s in-
creases by at least one. Since k > p, one of the inclusions must be an equality. So
there exists i ∈ {1, . . . , k} with

Iαi ⊆
⋃
j ̸=i

Iαj .

However, the previous inclusion implies that

α−1
i L ⊆

⋃
j ̸=i

α−1
j L,

contradicting the indecomposability hypothesis: if β ∈ α−1
i L, then αiβ ∈ L. Hence

there must exists u ∈ Iαi such that δ(u, β) ∈ L. From Iαi ⊆
⋃

j ̸=i Iαj we obtain that
there exists j ̸= i such that u ∈ Iαj , hence αjβ ∈ L and β ∈ α−1

j L.

Corollary 53.1. If L is a regular language, then ent+(L) ≤ widthnd(L).

Moreover, we also have the following.

Corollary 53.2. If L is a regular language with ent+(L) = ent(L) then widthnd(L) =

widthd(L) = ent+(L) = ent(L).

Proof. By the previous corollary, if L is a regular language then

ent+(L) ≤ widthnd(L) ≤ widthd(L) = ent(L)

and the conclusion follows.
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Unfortunately, in general it is not true that ent+(L) = widthnd(L) as we shall
see in the following example.
Example 5. We modify the DFA in Fig. 4.4 by adding the transition (q5, q2, g), see
Figure 4.6. Notice that the resulting DFA is still minimum and the only entangled

q0

q1

q2q5

q4

a

c

e

d

b f

e, f , g

d

d

FIGURE 4.6: The minimun automaton of a language such that
ent+(L) ̸= widthnd(L).

states are q1, q4, q5, which immediately implies ent+(L) ≤ 3. The MN-classes of the
three entangled states are not relatively indecomposable: for instance,

d∗e = a−1L ⊆ b−1L ∪ c−1L = d∗ · {e, f , g}.

Therefore ent+(L) ̸= 3 and it is easy to verify that the classes a−1L and b−1L are
relatively indecomposable, hence ent+(L) = 2.We now prove that widthnd(L) ≥ 3.
Suppose there exists an NFA A with set of states Q such that width(A) = 2 and let
Q1, Q2 be a chain partition of the set of A states. Consider the monotone sequence

. . . adn ≺ bdn ≺ cdn ≺ adn+1 ≺ bdn+1 ≺ cdn+1 ≺ . . . .

Fix n. The sets Iadn , Ibdn , Icdn ⊆ Q must be pairwise distinct, since the strings
adn, bdn, cdn belongs to different MN-classes. By Lemma 52, for a sufficiently large
n, one among Iadn , Ibdn , Icdn is the union of the other two sets, and this in turn implies
that one among the MN-classes (adn)−1L, (bdn)−1L, (cdn)−1L is the union of the
other two, which is not (as can be easily checked on the minimum DFA).

Despite the fact that ent+(L) and widthnd(L), in general, do not coincide, this
measure is still useful, as we shall see, to construct meaningful examples. We start
analyzing, for a given language, the possible distances between its deterministic
and non-deterministic widths, showing that for a simple class of automata the two
coincide.
Example 6. For any n ≥ 1 we describe a language Cn over the alphabet {a} such that
widthnd(Cn) = widthd(Cn) = n. We present the language Cn via its minimum DFA
Dn, which is an a-cycle:
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- the set of states is {q0, . . . , qn−1};
- q0 is initial and final;
- δ(qi, a) = qi+1, for 0 ≤ i < n− 1, δ(qn−1, a) = q0.
In other words, we have Cn = {ank | k ≥ 0}. Notice that ent+(Ln) = ent(Ln) = n
(because there are n Myhill-Nerode classes, they are indecomposable, and the se-
quence a, aa, aaa . . . goes trough all of them), so that widthnd(Ln) = widthd(Ln) =
n.

The following lemma considers the other direction, finding, for any n, a language
Ln such that the distance between the deterministic width and the non-deterministic
width of the language reaches its maximum —see Corollary 47.1.

Lemma 54. There exists a family of languages (Sn)n≥1 such that widthnd(Sn) = n and
widthd(Sn) = 2n − 1.

Proof. Fix n ≥ 1 and let Σn be the alphabet

Σn = {aS : ∅ ⊊ S ⊆ {1, . . . , n}} ∪ {x}.

Let ≺ be any order over Σn that satisfies the following properties, where we use the
notation ai1,...,ik to denote a{i1,...,ik}:

1. a1 ≺ a2 ≺ · · · ≺ an,

2. x ≺ aS ≺ a1 for all S ⊆ {1, . . . , n} such that |S| ≥ 2.

The order among characters aS, aS′ such that |S|, |S′| ≥ 2 is irrelevant for our
argument in this example. We will construct a language Sn over Σn such that
widthnd(Sn) = n and widthd(Sn) = 2n − 1. We present the language Sn via its
minimum DFA Bn (see Fig. 4.7):

- the set of states is {q0} ∪ {q f } ∪ {qS : ∅ ⫋ S ⊆ {1, . . . , n}};
- q0 is the initial state and q f the final state;
- δ(q0, aS) = qS, for each ∅ ⫋ S ⊆ {1, . . . , n};
- δ(qS, x) = qS, for each ∅ ⫋ S ⊆ {1, . . . , n};
- δ(qS, ai) = q f , for each ∅ ⫋ S ⊆ {1, . . . , n} and i ∈ S.

It is immediate to check that this is actually a minimum DFA. Moreover, notice
that ent(Bn) = 2n − 1. For simplicity we prove this in the case n = 3 (see Figure
4.7), but the proof can easily be adapted to any n. Assuming that x ≺ a1,2,3 ≺ a2,3 ≺
a1,3,≺ a1,2 ≺ a1 ≺ a2 ≺ a3, we have that the following monotone sequence goes
through 2n − 1 states of Bn, showing that ent(Bn) ≥ 2n − 1: a3 ≻ a2 ≻ a1 ≻ a1,2 ≻
a1,3 ≻ a2,3 ≻ a1,2,3 ≻ a3x ≻ a2x ≻ a1x ≻ a1,2x ≻ a1,3x ≻ a2,3x ≻ a1,2,3x ≻ a3x2 ≻ . . .
Moreover, since entangled states must have an input letter in common, we have
ent(Bn) ≤ 2n − 1. From ent(Bn) = 2n − 1 and Theorem 48 we obtain widthd(Sn) =
2n − 1.

At the same time, we have ent+(Sn) ≥ n, since the sequence an ≻ an−1 ≻ · · · ≻
a1 ≻ anx ≻ an−1x ≻ . . . a1x ≻ a3x2 ≻ . . . is a monotone sequence going through
n indecomposable Myhill-Nerode classes (see Fig.4.7). Using Lemma 53 we obtain
widthnd(Sn) ≥ n.

Hence, to prove that widthnd(Sn) = n we only have to describe an NFANn such
that width(Nn) = n. Nn can be defined as follows (see Figure 4.8):
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q0

q1
q2

q3 q1,3 q1,2 q2,3 q1,2,3

q f

a1

a2 a3
a1,3 a1,2 a2,3

a1,2,3

x x x xx x x

a1 a2 a3 a1, a2a1, a3 a2, a3
a1, a2, a3

FIGURE 4.7: The minimum DFA B3 for S3

- the set of states is {q0} ∪ {q f } ∪ {qi : i ∈ {1, . . . , n}};
- q0 is the initial state and q f the final state;
- δ(q0, aS) = {qi : i ∈ S}, for each ∅ ⫋ S ⊆ {1, . . . , n};
- δ(qi, x) = {qi}, for each i ∈ {1, . . . , n};
- δ(qi, ai) = {q f }, for each i ∈ {1, . . . , n}.

It is immediate to check that Nn recognizes Sn. Consider the partial order such
that q0 < q1 < q f , with all remaining states pairwise incomparable. This is clearly a
colex order of width n.

q0

q1 q2 q3

q f

a1, a1,2, a1,3, a1,2,3
a2, a1,2, a2,3, a1,2,3 a3, a1,3, a2,3, a1,2,3

x x x

a1 a2 a3

FIGURE 4.8: The NFA N3 recognizing L3

Notice that in Lemma 54 the alphabet Σn of the language Sn depends on n. In
the next lemma we will discharge such dependency by providing a new family of
languages (Ln)n≥1 over the fixed alphabet {a, b}.
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Lemma 55. There exists a family of languages (Ln)n≥1 over the alphabet {a, b} such that
widthnd(Ln) = n and widthd(Ln) = 2n − 1.

Proof. Let An be the set An = {0 . . . , n− 1} and let f : 2An → {0, . . . , 2n − 1} be the
bijection defined, for each S ⊆ An, as

f (S) = ∑
i∈S

2i.

We present the language Ln via the following NFA An, as (partially) depicted in
Figure 4.9. See also the explanation provided in the caption.

• the set of states is {q1, . . . , q2n−1} ∪ {p0, . . . , pn−1} ∪ {r0, . . . , rn−1};

• q1 is the initial state and r0 is the final state;

• δ(qi, a) = {qi+1}, for 1 ≤ i ≤ 2n − 2;

• δ(qi, b) = {pj : j ∈ f−1(i)}, for 1 ≤ i ≤ 2n − 1;

• δ(pi, b) = pi and δ(pi, a) = ri, for 0 ≤ i ≤ n− 1;

• δ(ri, a) = ri−1, for n− 1 ≥ i ≥ 1.

From Lemma 51 it follows that states p0, . . . , pn−1 are incomparable w.r.t. any colex
order on An, since so are the sets Ip0 , . . . , Ipn−1 with respect to the relation ⪯ps: for all
0 ≤ i < j ≤ n− 1 we have that

a2i−1b ⪯ a2j−1b ⪯ a2i−1bb,

where
a2i−1b, a2i−1bb ∈ Ipi \ Ipj and a2j−1b ∈ Ipj \ Ipi .

Consider the partial order < on the states such that ri < pi for all 0 ≤ i ≤ n− 2
and q1 < · · · < q2n−1 < rn−1 < pn−1 holds. Since it is easily verified that this is a
colex order of width equal to n, we obtain width(An) = n, implying widthnd(Ln) ≤
n and

widthd(Ln) ≤ 2widthnd(Ln) − 1 ≤ 2n − 1.

Consider now the following DFADn recognizing Ln and depicted in Figure 4.10:

• the set of states is {q1, . . . , q2n−1} ∪ {p1, . . . , p2n−1} ∪ R, where the set R will be
specified later;

• q1 is the initial state and all final states belong to R;

• δ(qi, a) = {qi+1}, for 1 ≤ i ≤ 2n − 2;

• δ(qi, b) = δ(pi, b) = pi, for 1 ≤ i ≤ 2n − 1;

• to each state pi, for 1 ≤ i ≤ 2n − 1, we append a simple path with all edges
labeled a of length mi = max

[
f−1(i)

]
. That is, we add mi states ri,0, . . . , ri,mi ,

the edges (pi, a, ri,0) and the edges (ri,j, a, ri,j+1), for 1 ≤ i ≤ 2n−1 − 1 and
0 ≤ j < mi;

• we mark as final the states ri,j such that j ∈ f−1(i).



4.2. On the difference between deterministic and non-deterministic width 81

q1

q2n−1+2

q2n−1

p0 p1 pn−1

rn−1

r1

r0

a2n−1+1

a2n−1−3

b

b
b

b
b b

b b b

a

a

a

an−2

a

FIGURE 4.9: Partial representation of the NFA An. Wavy edges la-
beled am, with m ∈ N, represent a simple path of length m with all
edges labeled a. State q2n−1+2 reaches p1 and pn−1 since f−1(2n−1 +

2) = {1, n− 1}.
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q1 q2 q3 . . . q2n−1

p1 p2 p3 . . . p2n−1

r1,0 r2,0 r3,0 . . .

r2,1 r3,1 . . .

r2n−1,n

b b b b

a a a

a a an

a a a a

b b b b

FIGURE 4.10: The DFA Dn. Edges labeled dx, with d ∈ Σ and x ∈ N,
represent a simple path of length x with all edges labeled d. States

r3,0, r3,1 are final since f−1(3) = {0, 1}.

Clearly, states p1, ..., p2n−1 are entangled. Consider the minimum DFA DLn that
recognizes Ln: it can be obtained from Dn by applying Hoprcroft’s algorithm [36],
i.e. collapsing states with the same output language. Distinct states pi, pj can not be
collapsed: let x be an integer in the symmetric difference between f−1(i) and f−1(j),
then ax belongs to either Opi or Opj , but not both (see Definition 2). In the minimum
DFA DLn there must exist 2n − 1 states p′1, ..., p′2n−1 such that Op′i

= Opi , obtained by
collapsing states of Dn with the same output languages. The input language Ip′i

is
the union of the input languages of the states of Dn with the same output language
of pi, hence we have Ip′i

⊇ Ipi for all 0 ≤ i ≤ n − 1. This implies that also the

states p′1, ..., p′2n−1 are entangled, thus widthd(Ln) ≥ 2n − 1. Since we had already
established that widthd(Ln) ≤ 2n − 1, the equality must hold; since we already
proved that widthnd(Ln) ≤ n, the equality widthd(Ln) = 2n − 1 in turn implies that
widthnd(Ln) = n.

We can easily modify Lemma 55 to obtain, for any n and any 1 ≤ k ≤ 2n − 1−
n, a language Ln,k such that widthnd(Ln,k) = ent+(Ln,k) = n and widthd(Ln,k) =
ent(Ln,k) = n + k. This result, proved in the following corollary, shows that every
possible distance between the deterministic and the non-deterministic width of a
language is achievable.

Corollary 55.1. For any n ≥ 1 and any 1 ≤ k ≤ 2n − 1− n, there exists a language Ln,k

such that widthnd(Ln,k) = ent+(Ln,k) = n and widthd(Ln,k) = ent(Ln,k) = n + k.

Proof. Fix an n ≥ 1 and an integer 1 ≤ k ≤ 2n − 1− n, and consider the automaton
Dn in Figure 4.10. Let I be any subset of {1, . . . , 2n − 1} of cardinality n + k such that
2i ∈ I for all 0 ≤ i ≤ n− 1 and 2n − 1 ∈ I, and let Dn,k be the DFA obtained from
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Dn by removing all the states pi such that i /∈ I. We assume that Dn,k is trimmed,
that is, we also remove every states ri,j such that i /∈ I, and we denote by Ln,k the
language recognized by Dn,k. Note that from 2n − 1 ∈ I it follows that p2n−1 has
not been deleted, thus none of the states qi can be trimmed, for 1 ≤ i ≤ 2n − 1.
Recall that states p1, ..., p2n−1 were entangled in Dn; similarly, states {pi : i ∈ I}
are entangled in Dn,k, since they retain the same input languages. As it was for the
language Ln (see Corollary 55), in DLn,k —the minimum DFA recognizing Ln,k —
there must exist n + k states {p′i : i ∈ I} such that Op′i

= Opi and Ip′i
⊇ Ipi , for

all i ∈ I. Thus {p′i : i ∈ I} are entangled, which implies widthd(Ln,k) ≥ n + k.
We prove now that width(Dn,k) = n + k, thus proving that widthd(Ln,k) = n + k, by
providing n+ k chains of states ofDn,k in its maximum colex order≤. The first chain
is q1 < · · · < q2n−1 < r1,0 < p1, since Iq1 ≺ps · · · ≺ps Ip1 . The remaining n + k− 1
chains are ri,mi < · · · < ri,0 < pi for all i ∈ I \ {1}.

To prove that widthnd(Ln,k) = n, first we apply Lemma 53 to obtain n as a lower
bound for the non-deterministic width of Ln,k, and then we show a NFA An,k that
realizes such width. Consider the set of states Ppow = {p2i : 0 ≤ i ≤ n − 1};
this is indeed a subset of states of Dn,k, since by hypothesis it holds 2i ∈ I for all
0 ≤ i ≤ n− 1. Since f−1(2i) = {i}, by construction we have Op2i = b∗ai, therefore
states in Ppow are relatively indecomposable. As usual, there must exist n states
{p′i : 0 ≤ i ≤ n− 1} in DLn,k such that Op′i

= Op2i and Ip′i
⊇ Ip2i , for all 0 ≤ i ≤ n− 1.

These states are relatively indecomposable, thus ent+(Ln,k) ≥ n (see Definition 29)
and from Lemma 53 it follows that n ≤ ent+(Ln,k) ≤ widthnd(Ln,k). To conclude the
proof, we show an NFAAn,k of width n that recognizesLn,k. Consider the NFAAn in
Figure 4.9: delete all the edges labeled b that leave any state qi such that i /∈ I. Note
that this automaton is already trimmed: the edges connecting state q2n−1 to the each
of the states p0, . . . , pn−1 were not deleted, therefore each state of An,k is reachable
and can reach the final state r0. Clearly, states p0, . . . , pn−1 are still incomparable and
the n chains of An are still chains of An,k. Thus width(An,k) = n, concluding the
proof.

4.3 A better lower bound to the non-deterministic width

As we proved in the previous section, ent+ is a lower bound to the non-deterministic
width of a language but, as shown in Figure 4.6, this bound is not tight. We can
improve this lower bound by modifying the conditions given in Definition 28.

Definition 30. A set {[α1]L, [α2]L, . . . , [αk]L} of pairwise distinct MN-classes is said
to be uniquely decomposable if for all K, K′ ⊆ {1, . . . , k} with K ∩ K′ = ∅ it holds⋃

i∈K

α−1
i L ̸=

⋃
j∈K′

α−1
j L.

Definition 31. The entanglement* of a language, ent∗(L), is the maximum number
k such that there exist k entangled, uniquely decomposable MN-calsses.

In other words, if ent∗(L) = k then there are k uniquely decomposable MN-
classes and a monotone sequence going through them infinitely often, but there are
no k + 1 such classes.

It should be clear from their definitions that, given a regular language L, it holds
that:

ent+(L) ≤ ent∗(L).
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We will prove that ent∗ is still a lower bound to widthnd(L) using the following
combinatorial result2.

Lemma 56. Let A = {x1, . . . , xn} be a set with |A| = n and let F = {A1, . . . , Am}
be a subset of Pow(A) \ {∅}. Then, m > n implies the existence of two nonempty sets
K, K′ ⊆ {1, . . . , m} such that K ∩ K′ = ∅ and⋃

i∈K

Ai =
⋃

j∈K′
Aj

Proof. Let a⃗i ∈ {0, 1}n be the characteristic vector of Ai, for every i = 1, . . . , m, and
let M = (⃗a1, . . . , a⃗m) ∈ {0, 1}n×m. Since m > n, the Rn-vectors a⃗1, . . . , a⃗m are linearly
dependent. Thus, there exists λ⃗ = (λi)i=1,...,m ̸= 0⃗ with λi ∈ R such that M · λ⃗ = 0⃗.
Define K = {i | λi > 0} and K′ = {i | λi < 0}. Since every a⃗i is a 0/1-vector, both
K and K′ are non-empty and disjoint by construction. Finally:

x ∈
⋃
i∈K

Ai ⇐⇒ (∃i ∈ K)(x ∈ Ai)

⇐⇒ (∃i = 1, . . . , m)(λi > 0∧ a⃗i,x = 1)
⇐⇒ (∃j = 1, . . . , m)(λj < 0∧ a⃗j,x = 1)

⇐⇒ (∃j ∈ K′)(x ∈ Aj)

⇐⇒ x ∈
⋃

j∈K′
Aj.

Corollary 56.1. If A is an NFA recognizing L then ent∗(L) ≤ width(A).

Proof. Let ent∗(L) = k, width(A) = p, and let Q1, . . . , Qp be a chain partition of a
colex order of width p over A. Suppose, by way of contradiction, that p < k. Using
the same argument given in the proof of Lemma 53, we can prove both the existence
of a monotone increasing sequence (αi)i∈N going through k indecomposable MN-
classes [α1]L, . . . , [αk]L and the existence of subsets X1 ⊆ Q1, . . . , Xp ⊆ Qp such that,
for every i = 1, . . . , k, there exists Ki ⊆ {1, . . . , p} with:

Iαi =
⋃

j∈Ki

Xj.

We can apply Lemma 56 to the sets A := {X1, . . . , Xp} and

F := { Īα1 , . . . , Īαk} with Īαi := {Xj : j ∈ Ki}

to derive the existence of K, K′ ⊆ {1, . . . , k} such that K ∩ K′ = ∅ and⋃
i∈K

Īαi =
⋃

j∈K′
Īαj

Since, given a string α, the set α−1L only depends on the set of states Iα, this equality
implies that ⋃

i∈K

α−1
i L =

⋃
j∈K′

α−1
j L,

contradicting the unique decomposability hypothesis (see Definition 30).

2The elegant proof below was provided by Brian Riccardi.
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In general it is not true that ent∗(L) = widthnd(L): let L be the language recog-
nized by the DFA shown in Figure 4.11.

q0

q1 q2 q3 q4 q5

q f

a1
a2 a3 a4 a5

x x x x x

b1, b4 b2, b3 b1, b3 b2, b4
b1, b2, b3, b4

FIGURE 4.11: The minimum DFA recognizing L. We have ent∗(L) =
3.

Clearly, ent∗(L) is at least 3, since q1, q2, q3 are entangled and their correspond-
ing Myhill-Nerode classes are uniquely decomposable. One can easily check that it
is not possible to choose 4 Myhill-Nerode classes (among the ones corresponding to
q1, . . . , q5) which are uniquely decomposable. For instance, the classes correspond-
ing to q1, q2, q3, q4 are not uniquely decomposable since

a−1
1 L ∪ a−1

2 L = a−1
3 L ∪ a−1

4 L = x∗ · {b1, b2, b3, b4}.

Therefore the entanglement* of Lmust be 3.
In Figure 4.12 it is shown an NFA recognizing L of width 4. This is indeed the

non-deterministic width of L, because we can prove that if A is an NFA that recog-
nizes L, then width(A) ≥ 4. First, notice that in the minimum DFA (see Figure 4.11)
we have bi ∈ Oqi , for i = 1, . . . , 4, and {bi, bj} ̸⊆ Oqi ∩Oqj , if i ̸= j. Hence, if A is an
NFA that recognizes L, for all i = 1, . . . , 4 there must exists a state pi of A such that
a) the language aix∗ ∩ Ipi contains infinitely many strings and b) pi can reach a final
state reading bi. Since, in the minimum DFA, {bi, bj} ̸⊆ Oqi ∩Oqj if i ̸= j, then the
output languages of the states p1, . . . , p4 must be pairwise distinct, hence the states
themselves must be pairwise distinct. Moreover, if i ̸= j, either aix∗ ∩ Ipj = ∅ or
ajx∗ ∩ Ipi = ∅, otherwise we would have {bi, bj} ⊆ Oqi ∩Oqj in the minimum DFA.
Hence, the sets Ip1 , . . . , Ip4 are incomparable with respect to ⪯ps. By Lemma 51, the
states p1, . . . , p4 must be incomparable w.r.t. any colex order on A and this imply
that width(A) ≥ 4.

4.4 Conclusions

In this chapter, we began to explore some of the properties of the width p of NFAs, a
measure that allows transferring the nice properties of Wheelerness to any automata,
provided p is treated as a constant. Although this measure has been extensively
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q0

q1 q2 q3 q4

q f

a1, a5
a2, a5 a3 a4

x x x x

b1, b4 b2, b3 b1, b3 b2, b4

FIGURE 4.12: An NFA recognizing L of width 4.

studied in [23], many questions about it remain. For example, it has not yet been
proved whether determining the non-deterministic width of a given language L is
a decidable problem: while it is very simple to find an upper bound for this value
(just take an automaton that recognizes L and count the number of its states), it is
still unclear whether it is possible to define an upper bound for the number of states
of an automaton that realizes the minimum width.

Our contribution has been to provide two measures, entanglement+ and
entanglement∗, which we have proven to be lower bounds to the non-deterministic
width of a language L. A positive aspect of these measures is that they are com-
puted on the minimum DFA DL. Unfortunately, these lower bounds are not tight.
The challenge remains to find a new definition of non-deterministic entanglement,
even more accurate than the two we proposed, that can exactly capture the notion
of non-deterministic width. Note that if this new measure were computable on the
minimum DFA, the calculation of the non-deterministic width would be decidable.

Another possible approach to explore is the following. Theorem 48, which links
the entanglement of a language to its deterministic width, was proved in [23] us-
ing the definition of the Hasse automaton. This automaton ’untangles’ the entangled
states of the minimum automaton (by appropriately duplicating them), thus achiev-
ing the minimum width. This proof sheds light on the complications that arise when
trying to untangle entangled states, but unfortunately, it is not constructive. A pos-
sible approach to make it constructive could be to use Algorithm 1 described in
Chapter 2 to create a partial fingerprint that guides us in constructing the Hasse au-
tomaton. However, this approach must be handled carefully, since Algorithm 1 does
not terminate when it receives the minimum automaton of a non-Wheeler language
as input. Nonetheless, it is plausible that the algorithm can be executed a finite num-
ber of times and then stopped once it has provided sufficient information.
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Chapter 5

Final remarks and open problems

In this thesis, we explored computational complexity issues related to ordering the
states of finite automata. Ordering objects can simplify storage and manipulation
tasks significantly. For finite automata, ordering can ease index construction, mem-
bership testing, and determinization of NFAs. However, finding the correct order is
key and more challenging for NFAs compared to DFAs.

We highlighted the complexity of algorithms when starting with NFAs, prov-
ing that several order-related results that guarantee polynomial time algorithms on
DFAs become more complex for NFAs, even reduced ones. A key open problem
is determining the optimal complexity for an algorithm computing the minimum
WDFA from a language fingerprint. Our proposed algorithm is almost optimal ex-
cept for a factor of n, which is negligible when the output size m is exponential in
n. The remaining log m factor arises from needing binary search to determine the
edges of the minimum WDFA, but exploiting specific characteristics of the finger-
print might remove this factor.

We also proved that path-coherent semiautomata admit a linear-sized cascade
decomposition into permutation-reset semiautomata, with Wheeler semiautomata
having permutation-free cascades. The simplicity of our proofs stems from the order
imposed by path coherence and Wheelerness, allowing immediate admissible state
decomposition of the initial automaton, satisfying a critical condition of Theorem 41.

Lastly, we examined the width p of NFAs, a measure for extending Wheelerness
properties to any automata with p as a constant. Although studied extensively, it re-
mains unclear if determining the non-deterministic width of a language L is decid-
able. While finding an upper bound for widthnd(L) is easy, defining an upper bound
for the states of an automaton realizing it is not. Our contributions include two mea-
sures, entanglement+ and entanglement∗, as lower bounds for non-deterministic
width, computed on the minimum DFA. Despite not being tight, these measures
suggest the challenge of defining a more accurate non-deterministic entanglement
measure to make the non-deterministic width computation decidable.

Besides those already mentioned, there are other open questions worth dis-
cussing. Firstly, it would be valuable to extend the analysis of state complexity on
WDFAs to operations beyond the direct product and cascade product. Although
WDFAs are not closed under the remaining ’classic’ operations, there are some for
which they are, namely union, concatenation, and difference with finite languages.

Secondly, there remains an unresolved issue regarding the non-deterministic
width of regular languages. In [23] it was shown that for any NFA, every colex
order is contained within the ps order, which is the order on states induced by the
≺ps relation defined on their input languages. Generally, therefore, the width of the
ps order is smaller than the width of any possible colex order, and there are examples
where the ps width of an automaton is strictly less than its colex width. However,
if we shift our focus to languages and define the ps width of a language L as the
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smallest among the ps widths of the NFAs that recognize it, we cannot find an ex-
ample where the ps width is strictly less than the non-deterministic width (i.e., the
smallest colex width of the NFAs that recognize L). Our educated guess is that, for
languages, ps width and non-deterministic width coincide, but this issue remains
open at present.

This leaves us with the following open problems:

• Can we extend the analysis of state complexity on WDFAs to operations be-
yond the direct product and cascade product?

• Can we exploit the characteristics of the fingerprint provided by Algorithm 1
to design an optimal algorithm for constructing the minimum WDFA? Alter-
natively, can we modify Algorithm 1 so that the fingerprint provided as output
can be utilized for this purpose?

• Can we utilize Algorithm 1 to guide us in the construction of the Hasse au-
tomaton, or more generally, of any automaton —possibly the smallest one—
that achieves the minimum deterministic width for a given language?

• Can we exploit Wheeler KRDT in order to provide a characterization of
Wheeler automata as that class of automata decomposable into a cascade of
Wheeler reset automata?

• Is there an upper bound for the number of states of an automaton that realizes
the minimum non-deterministic width of a language, hence proving that the
problem of determining such width is decidable?

• We have provided two lower bounds for the non-deterministic width of a lan-
guage. Can we refine these lower bounds so that we can exactly capture the
notion of non-deterministic width?

• Is it true that the non-deterministic width and the ps width of any regular
language coincide?
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