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ABSTRACT

EasyLocal++ is a white-box C++ framework for designing local
search algorithms. Over the years, it has been successfully used
across various domains, such as timetabling, rostering, scheduling,
and logistics, and has produced state-of-the-art results in bench-
mark datasets and competitions. Beyond research, EasyLocal++
has found practical use in real-world and industrial settings, demon-
strating the �exibility and adaptability of the framework for di�er-
ent applications. In this paper, we position EasyLocal++ within
the existing literature by comparing its capabilities with those of
available alternative/similar tools. We then trace its history from
its initial design 25 years ago to the current version. Furthermore,
we describe its architecture, highlighting its design principles and
functionalities. We also discuss the features developed to simplify
the design of local search methods and enhance their performance.
Lastly, we explore potential future perspectives and developments.
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1 INTRODUCTION

Metaheuristics (MHs) have emerged as the method of choice for
tackling numerous NP-hard combinatorial optimization problems.
Given this great success, over the years, several MHs have been
devised, for instance Simulated Annealing (SA) [49], Tabu Search
(TS) [43], Genetic Algorithm (GA) [46], Evolutionary Algorithm
(EA) [27], Ant Colony Optimization [37], etc. However, the No Free
Lunch Theorem [72] stipulates that no single algorithm is the best
across all problems and instances. Consequently, MH researchers
face the imperative of evaluating various algorithms to identify
the most suitable technique for a given problem. To navigate this
panoply of algorithms, it would be helpful to turn to frameworks
and libraries, which enable, in one single project, to implement and
assess multiple MHs [70]. Since the nineties, a sprout of tools has
been proposed [55]. Among the earliest in this sense, our research
group has developed EasyLocal++, a C++ white-box framework
designed to support the development and evaluation of Local Search
(LS) algorithms.

We have been using and updating EasyLocal++ since its cre-
ation in 1999. We have employed it to successfully solve several
problems in di�erent domains, including timetabling [4, 6, 11] and
rostering [16, 18], scheduling [15, 19, 21], logistics [20], facility
location problems [22], bioinformatics [29], and �nance [28]. Ea-
syLocal++ has also been used in solution methods that obtained
state-of-the-art results in the benchmark datasets of many problems
[5, 13, 17, 69, 73], including the ITC-2021 competition1 in which it
ranked second [60]. Using EasyLocal++ as a software tool extends
beyond research, encompassing real-world and industrial appli-
cations. For instance, it has been employed in emergency facility
location within the Italian Health Ministry project EasyNet2 [26],
in industrial scheduling within the context of steel production in
collaboration with Danieli Automation [3], and in nurse roster-
ing [12] in collaboration with Windex.3 In addition, EasyLocal++
is used in various applications developed by the software house
EasySta�,4 which was initially a spin-o� of the University of Udine.

1See https://robinxval.ugent.be/ITC2021/
2See https://easy-net.info/.
3See https://www.windex.it.
4See https:/www.easysta�.it.
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In this paper, we aim to describe the development of the frame-
work over its 25 years, including a description of its most recent
features. Thus, the remainder of this paper is structured as follows.
Section 2 provides an overview on similar MH frameworks. Sec-
tion 3 presents the evolution of EasyLocal++ since 1999. Section 4
describes the overall architecture of the project. Section 5 details
the most relevant features, whereas Section 6 outlines the teaching
purposes of the tool. Finally, Section 7 draws some conclusions and
outlines future directions.

Software Availability. EasyLocal++ is available on GitHub at
the public repository https://github.com/iolab-uniud/easylocal. The
stable version is tagged with v.3.3, whereas the newest is in the
development branch v.4. The code is distributed under MIT license.

2 RELATED SOFTWARE

In many optimization paradigms like Integer Linear Programming
(ILP) and Constraint Programming (CP), numerous widely accepted
tools exist, including ILOG CPLEX and CP Optimizer, Gurobi, OR-
Tools, Gecode, and MiniZinc, among others. Such universally ac-
cepted tools have not been available for LS algorithms, or more in
general MHs, where researchers still rely on customized coding so-
lutions [63–65]. In fact, these implementations are often tailored to
the particular problem being addressed, hindering the re-usability
of the code and the replicability of the experiments. Despite this
common practice, as early as three decades ago, there were already
software packages available for MH implementations, such as those
proposed by Andreatta et al. [2], Vaessens et al. [68]. The �rst in-
troduced a conceptual framework for LS based on design patterns,
whereas the latter suggested a template to organize LS algorithms.

In Table 1, we consider and summarize the main characteristics
of a selection of MH software. The tools are primarily implemented
in languages such as C++ and Java, although some attempts also
exist in Scala, C#, and Python. Among the various packages, notable
distinctions are made between libraries (e.g., GAlib [71], GAUL [1])
and frameworks (e.g., HotFrame [40] and ParadisEO [38]), with
the former emphasizing code reuse (where user-de�ned code calls
methods in the library) and the latter focusing on code-architecture
reuse (where the framework code calls user-de�ned code). A few
attempts are also in the form of API [41] and Domain Speci�c
Language (DSL) [45]. Certain tools are tailored to address a speci�c
group of MHs; for instance, Emili [54] is exclusively dedicated to
LS methods, while PyMOO [8] focuses on GAs. In contrast, other
packages (e.g., ParadisEO) support several optimization paradigms.

Another relevant distinction of the tools concerns the support of
di�erent multi-criteria cost function evaluations. Some of them are
capable of supporting Multi-Objective Optimization (MOO) (in the
Pareto sense) instead of just dealing with single objective optimiza-
tion. Furthermore, some tools provide support in the automatic
design of algorithms [42] (e.g., Emili) rather than treating MHs
as monoliths. Eventually, while most of the packages have been
updated in the last few years, a few ones have not been maintained
for quite some time (e.g., HotFrame). Note that, in this case, we refer
to the most recent date among the last commit in the repository
and the last publication exclusively describing the tool. For further
disquisitions, we forward the interested reader to some literature
reviews on the topic [50, 55, 58].

3 HISTORY

In this section, we provide an overview of the development of
EasyLocal++, highlighting key events (see Figure 1).

In 1999, Schaerf et al. started developing a general framework
for LS which resulted in Local++ [61]. This initial concept, built
upon a hierarchy of abstract template classes, was further re�ned,
expanded, and developed by Di Gaspero and Schaerf [31, 32, 33],
leading to the creation of EasyLocal++. Although resembling the
present version to some extent, its neighborhood functionalities
were initially limited, primarily focusing on basic neighborhood
handling capabilities. In its second version, EasyLocal++ began
managing multi-modal neighborhoods, incorporating up to three
neighborhoods via chains of if control structures. The adoption of a
structured multi-neighborhood approach within EasyLocal++ was
facilitated by its application to speci�c problem domains, such as
the traveling tournament problem [35] and a plethora of timetabling
problems [34]. This structured approach was later revised by Di
Gaspero and Urli (see for further details Urli [67]) through template
metaprogramming using recursion, ultimately giving rise to Easy-

Local++ v.3. In this version, several improvements were made and
the code was generally refactored (e.g., management of several data
structures with shared pointers instead of stack-allocated objects).

Between 2018 and 2022, signi�cant revisions and simpli�cations
were made to EasyLocal++. These modi�cations included the cre-
ation of a header-only version of the code (leading to EasyLocal++
v.3.1), a major overhaul of the control structure for the SA algorithm
(resulting in EasyLocal++ v.3.2), and refactoring in the handling of
outputs together with the integration of learningmechanisms in the
selection of neighborhoods in SA [14] (culminating in EasyLocal++
v.3.3, that is the current stable version).

Recently, additional key features have been added to the frame-
work, including the integration of multi-objective algorithms [25]
and automated algorithm design (resulting in an initial implemen-
tation of EasyLocal++ v.4, i.e., the development version).

EasyLocal++ provides not only an easy way to encode LS so-
lution methods but also capabilities for easy testing of code and
analysis of neighborhoods. In this sense, several add-ons have been
developed to address ancillary activities over the years. For instance,
EasySyn [36], a software tool for the automatic synthesis of the
source code for a set of local search algorithms, and EasyAna-

lyzer [30]. Unfortunately, these initial e�orts were tightly coupled
with the framework code, and therefore, their development was left
behind in the framework’s evolution. Nevertheless, some of those
concepts (e.g., testers, see Section 5.4) were integrated directly into
the core of EasyLocal++.

Along the evolution of EasyLocal++, several spin-o� software
have been developed, including porting of the main LS modules in
Java (JEasyLocal [59]) and Julia (JuLeS [24]). Additionally, we have
pursued experiments with other MHs, like GAs with EasyGA [7],
and hybridization, like the intersection of CP and LS in Gelato [23].

Despite being completely decoupled from speci�c problem do-
mains (see Section 4.1), the development of EasyLocal++, the
creation of software spin-o�, and the addition of new features have
been driven by the requirements of implementing speci�c applica-
tions. In this regard, its development can be viewed as bottom-up
rather than top-down: as challenges arose during the application of
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Table 1: Comparison of MH software, distinguishing by programming language, software type, implemented algorithms,

multi-objective capabilities, automated design features, and last update.

Tool Language Type MH MOO Automated

design

Last update

EasyLocal++ C++ Framework LS ✓ ✓ 2024

ECJ [62] Java Framework LS, EA ✓ 2022

Emili [54] C++ Framework LS ✓ 2022

Fonseca & Jesus [41] Python API LS, EA 2023

GALib [53, 71] C++ Library GA 2024

GAUL [1] C Library LS, GA 2010

Hexaly [45] DSL (API in Python, C++,

C#, Java)

Modeling language LS 2024

HeuristicLab [44] C# Framework LS, EA, GA ✓ 2024

Hotframe [40] C++ Framework LS 2002

jMetal [39] Java Framework EA ✓ ✓ 2024

OscaR [56] Scala Framework CP-LS 2023

ParadisEO [38] C++ Framework LS, EA ✓ ✓ 2022

PyMOO [8] Python Framework EA ✓ 2024

2000

Local++
Schaert at al. (2000)

2001

2006
2023

v.3.3

GELATO
Cipriano et al. 

(2013)

2013

EasyGA
Benedettini et al. 

(2009)

2009

EasyAnalyzer
Di Gaspero et al. (2008)

2008

EasySyn
Di Gaspero and 
Schaerf (2007)

2007

v.2
Di Gaspero and Schaerf 

(2006,2007)

JEasyLocal
Rinaldin (2004)

2004

v.1
Di Gaspero and 
Schaerf (2001)

v.4

2024

JuLeS
Da Ros and 

Di Gaspero (2023)

Release Spin-off Add-on

v.3.0
Urli (2015)

2015

v.3.1

2018

v.3.2

2020

Development 

start

1999

Figure 1: The evolution of EasyLocal++ since its �rst development in 1999.

EasyLocal++ to various optimization problems, we have continu-
ously updated the framework by addressing missing functionalities
and incorporating new elements and components, among other
improvements. These e�orts have made EasyLocal++more robust,
versatile, and suitable for a wide range of applications.

At present, EasyLocal++ is undergoing signi�cant refactoring
aimed at simplifying its codebase using modern C++ features (see
Section 5.1). The ongoing development has brought EasyLocal++
to version 4, re�ecting its continual evolution and adaptation to
meet new requirements and needs. Nevertheless, the seminal design
principles are kept untouched w.r.t. its �rst version.

4 ARCHITECTURE

EasyLocal++ is a white-box framework, transparent to the users
and open-box by nature, speci�cally designed for handling LS algo-
rithms. The internal logic and structure of the framework are fully
exposed to and modi�able by the users. This transparency allows
the user to understand, modify, and extend the functionalities of
the framework with detailed insights into its workings.

In the following sections, we outline the design principles of
EasyLocal++ (see Section 4.1). We then describe the algorithms

that are available o�-the-shelf (see Section 4.2) and discuss the
concepts related to multi-neighborhoods (see Section 4.3).

4.1 Design Principles

EasyLocal++ primary design goals are, on the one hand, the easy
prototyping of solution methods for the problem at hand (i.e., ap-
plying an o�-the-shelf LS to the problem); on the other hand, the
possibility to extend the framework without modifying the existing
code (i.e., developing new MHs or new speci�c components).

The codebase is structured into distinct macro-modules, such as
solvers and runners, each of which is further divided into modules
(or classes). Each class is responsible for handling a speci�c aspect of
LS (see Figure 2). This allowsmodularity, maintainability, scalability,
and readability.

Modules within EasyLocal++ can be categorized based on their
relevance to the speci�c optimization problem or their general
applicability across di�erent problems. The interface between these
problem-speci�c and problem-independent modules relies on the
Inversion of Control principle (also known as Hollywood Principle,
recall Booch [9, p.143]): the control strategy of the MH is dealt with
by the framework itself (see problem-independent part of Figure 2),
while the user implements speci�c code related to the problem (see
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Figure 2: EasyLocal++ system architecture. A distinction

between problem-speci�c and problem-agnostic parts of the

framework is made.

problem-speci�c part of Figure 2). Eventually, the framework will
call the user’s code when necessary. This allows a loose coupling
and a clear chain of responsibilities among the di�erent classes and
opens the door to the de�nition of abstract MH.

EasyLocal++ classes can also be organized considering the dis-
tinction provided by Pree [57]; therefore, accounting for hot and
frozen spots. Hot spots represent areas where users are actively re-
quired to develop and customize functionalities based on problem-
speci�c details (i.e., data and helpers in Figure 2). The frozen spots,
conversely, are entirely implemented at the framework level and
deal with problem-independent strategies (i.e., solvers, runners, and
components in Figure 2). While the user cannot modify frozen spots,
they can be easily extended (i.e., they are closed to modi�cations
but open to extension [65]). For instance, the user can add a new
component (e.g., a new termination criterion, a new acceptance
criterion, etc.), develop a brand new LS method to be added to the
runners or a di�erent solving strategy (included in solvers).

In the following sections, we �rst present EasyLocal++ from
the perspective of a user who aims to develop a LS solution method
for a speci�c problem at hand (see Section 4.1.1) and then from
the perspective of a user who wants to extend the framework (see
Section 4.1.2).

4.1.1 Solving a Problem. We now present the system architecture
from the perspective of a EasyLocal++ user who aims to develop a

LS solution method for a speci�c problem at hand. For representa-
tive purposes, we consider a well-known benchmarking problem in
combinatorial optimization, the Permutation Flowshop Scheduling
Problem (PFSP).

The user has to start de�ning the Data of the problem at hand.
The Input class takes care of the problem instance. In the case of
the PFSP, reported in Listing 1, it will store the number of jobs, the
number of machines, etc.

Listing 1: Implementation of the Input class for the PFSP.

class PFSP_Input {

public:

// <...>

size_t jobs , machines;

};

The solutions and their manipulations are explicitly represented
through the concepts of Solution and Move. Conversely, other frame-
works rely on an indirect representation of solutions and use stan-
dardized moves, which involve an encoding/decoding phase later
(e.g., Biased Random-key Genetic Algorithm [66] relies on a [0, 1]-
valued chromosome that needs to be decoded into an actual solution
to the problem at hand).

For instance, a user tackling the PFSP with EasyLocal++ is
required to implement a Solution class that deals with a vector to
store the processing order of the jobs on themachines (see Listing 2),
and a Move that describe the swap of two jobs in such a schedule
(see Listing 3).

Listing 2: Implementation of the Solution class for the PFSP

class PFSP_Solution {

public:

vector <size_t > schedule;

};

Listing 3: Implementation of the Move class for the PFSP,

speci�cally the code regards the swap of two jobs in the sched-

ule.

class PFSP_SwapMove {

public:

int pos_i , pos_j;

};

Additionally, the user must de�ne some classes speci�c to LS that
must be embedded into the helpers macro-module. The generation
of an initial solution should be implemented into a SolutionManager
class, while the NeighborhoodExplorer class is in charge of the
neighborhood exploration of a speci�c Move.

For instance, Listing 4 reports the co-routine method in the
NeighborhoodExplorer related to the PFSP_SwapMove in charge of the
complete enumeration of the neighborhood.

Listing 4: Implementation of the neighborhood generator for

PFSP_SwapMove of the PFSP.

Generator <PFSP_SwapMove >

PSFP_SwapNeighborhoodExplorer :: Neighborhood(

shared_ptr <const PFSP_Solution > sol) const {

for (size_t pos1 = 0; pos1 < st->Jobs() - 1; ++

pos1)

for (size_t pos2 = pos1 + 1; pos2 < st->Jobs()

; ++pos2)
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co_yield {pos1 , pos2};

}

The composition of multiple moves (e.g., a swap move used
together with an insert move) is synthesized from the framework
itself (see Section 4.3).

We assume a minimization problem, thus, as a consequence,
the objective function consists of CostComponents that take care of
the computation of the penalties for the problem. How the costs
are evaluated depends on the objective function strategy (see Sec-
tion 5.6); currently, the costs can be aggregated into a scalar value
or compared with a lexicographic ordering or in the Pareto sense.

Since the methods provided by all these classes are crucial in
terms of performance, in EasyLocal++ v.4, they are implemented
through static polymorphism (see Section 5.1); that is, these ele-
ments are further supplied to problem-independent classes through
template instantiation based on C++17 concepts. Indeed, when the
user de�nes all the previously described elements, the implementa-
tion of an actual LS solution method simply consists of an instantia-
tion of the suitable runner which takes care of the LS technique (e.g.,
TS, SA, Hill Climbing (HC)) and, optionally, of the solver which com-
bines single runners in a more sophisticated solution strategy. Each
runners implements a slight variation, based on the characteristics
of the LS algorithm itself, of the abstract LS algorithm (depicted
in Algorithm 1). The behavior of a given runner can be further
speci�ed through a palette of components. For instance, a variety
of stopping criteria could instantiate the Terminate function, based
on the user’s needs. From the command line, the user can specify
which version of a particular component to use, as demonstrated
in the example shown in Listing 5. This capability facilitates the
process of automatic algorithm design, as discussed in Section 5.3.

Listing 5: An example of a con�guration command line for a

EasyLocal++ implemented TS to the PFSP

./pfsp --seed 45 --instance DD_Ta035.txt --

termination IdleIterationsTermination --

aspiration -criteria AspirationByObjective --

stop -exploration

StopExplorationBestImprovement --generator

FullNeighborhoodGenerator --timeout 1 --max -

idle -iteration 100 --tabu -list RangeTabuList

--min -iteration -tl 2 --max -iteration -tl 9

4.1.2 Extending the Framework. We now present the perspective
of a user who aims to extend the framework. Such a user can tackle
the frozen spots, thus they can add a new component that can be
used by an existing runner, a new runner (therefore, a new LS
algorithm), or a new solver (hence, provide a way of combining
di�erent LS algorithms).

The abstract code shown in Algorithm 1 depicts the typical proce-
dure for LS – note that the colors highlighting di�erent methods in
the pseudo-code refer to the system architecture (see Figure 2). The
abstract code relies on the speci�cation of three primary generic
data types (Input, Solution, and CostFunction). According to the LS
scheme, �rstly an InitialSolution is computed; afterward, the al-
gorithm enters a loop in which a move is �rst selected (SelectMove),
its contribution to the cost is computed (ComputeΔCost), and if it is
suitable (AcceptableMove) it is performed. The procedure iterates
until a termination criterion is satis�ed (Terminate). This overall

procedure is a skeleton that can be adapted to several di�erent
MH. Indeed, di�erent LS metaheuristics, such as HC, SA, or TS,
provide distinct implementations of those functions according to
their speci�c exploration strategy, also adding new potential ones
(e.g., in TS a function for dealing with the aspiration criteria is
needed, while this is not necessary for HC and SA).

For instance, let us consider the case of adding to a runner for the
HC algorithm. The C++ code is reported in Listing 6 and replicates
almost verbatim the pseudo-code in Algorithm 1. In such a case,
the new runner can be used coupled with the plethora of already
encoded components or may want to add a new component to be
called in an existing runner. As an example, Listing 7 shows the
implementation of a termination criterion based on the number
of idle iterations. Notice that this class will be subject to static
polymorphism; therefore, in the LS code, it will be checked for the
proper concept compliance.

Algorithm 1: Abstract LS procedure.

Hotspots: A speci�cation of the Input � , the Solution ( , the
de�nition of a Move " , and a CostFunction �

function LocalSearch⟨� , (, ", � ⟩(inst: I):

B0 := InitialSolution⟨� , (⟩(inst)

20 := � (inst, B0)

(B∗, 2∗) := (B0, 20)

8 := 0

while ¬Terminate⟨(⟩(B8 , 8) do

< := SelectMove⟨(,"⟩(inst, B8)

Δ� := ComputeΔCost⟨(,"⟩(inst, B8 ,<, �)

if AcceptableMove⟨(,"⟩(<, B8 , Δ�) then

(B8+1, 28+1) := (B8⊕<,28 + Δ� )

if 28+1 < 2∗ then

(B∗, 2∗) := (B8+1, 28+1)

8 := 8 + 1

return B∗, 2∗

Listing 6: Implementation of a generic HC scheme.

void HillClimbing ::Go(shared_ptr <const Input > in)

{

// current_solution_v is a lazy cost structure

bridging the solution and its cost components

current_solution_v = sm->SolutionValuePtr(sm->

InitialSolution(in));

while (! termination.terminate(this)) {

// analogously current_move_v stores the

solution , the move , and the Δcosts

current_move_v = nhe ->MoveValuePtr(

select_move.select(this));

if (accept_move.accept(this)) {

// apply the move and store the new solution

*current_solution_v = *current_move_v;

idle_it = 0;

} else

idle_it ++;

it++;

}

// copy to the final solution
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final_solution_v = make_shared <SolutionValue >(*

current_solution_v);

}

Listing 7: Implementation of a termination criterion based

on idle iterations.

template <RunnerIdleIterT Runner >

class IdleIterationsTermination : public

Parametrized {

public:

// <...>

bool terminate(Runner* r) {

return r->idle_it > max_idle_it;

}

protected:

size_t max_idle_it;

};

4.2 O�-the-shelf Local Search Algorithms

While extending the framework with the implementation of new
MHs is relatively straightforward (see Section 4.1.2), EasyLocal++
is already equipped with a portfolio of LS, related variants, and com-
ponents. They range from simple forms of HC strategies, like steep-
est descent, �rst descent, and random descent, to more complex
MHs. For example, it includes di�erent versions of Late Acceptance
Hill Climbing (LAHC) [10], Iterated Local Search [52], and TS [43].
As an example of components, one can equip a TS choosing among
di�erent tabu list implementations (e.g., variable length tabu list,
frequency-based tabu status).

The MH supported with the largest number of di�erent versions
is SA, given that it has been employed in most of our research work.
It has provided state-of-the-art results for many optimization prob-
lems. In detail, besides the classic version of SA [48], we introduced
the cut-o� mechanism that speeds up the early stages of the search
and a reheating mechanism that restarts the annealing procedure.
In addition, we propose several termination criteria in the form of
components, which are based on the number of iterations, the �nal
temperature, and the timeout.

All the available MHs are entirely implemented at the framework
level. To be used, they require only the de�nition of a single object
of the suitable type and suitable template instantiations.

4.3 Multi-neighborhood

One of the most remarkable features of EasyLocal++ is the possi-
bility of synthesizing composite neighborhoods starting from the
implementation of basic ones. This feature allows the development
of multi-neighborhood search methods, which have proven very
successful in various applications.

In detail, given two or more NeighborhoodExplorer classes, Ea-
syLocal++ generates automatically, at compile time, the neighbor-
hood obtained by their composition. The simplest, though the most
e�ective, form of composition is the union of the neighborhoods,
although in EasyLocal++ v.3.3 also, other forms, such as cartesian
product and move chains, are possible. For example, when a union
of di�erent neighborhoods is de�ned, the best move is selected by
enumerating all moves of all basic neighborhoods. In the case of a
LS approach based on random moves, the current move is obtained

by selecting, in turn, the basic neighborhood and the speci�c move
inside that neighborhood. In this case, the selection of the basic
neighborhood is not necessarily made with a uniform probabil-
ity. On the contrary, it is often more e�ective to assign di�erent
probabilities and bias the search toward speci�c directions, but
without giving away the possibility of making di�erent move types
occasionally. This mechanism is advantageous when some neigh-
borhoods are computationally more expensive than others or when
some neighborhoods are more suitable for diversifying the search.
In contrast, others improve the value of the cost function. As for
any other algorithm parameter, these probabilities can be exposed
as parameters and thus tuned.

Finally, EasyLocal++ includes the option of adjusting online
the rates of the selection of the di�erent neighborhoods so that
they do not need to be tuned in advance and may adapt to the
di�erent stages of the search process. Speci�cally, the probabilities
of each neighborhood are updated using the recency-weighted
average bandit algorithm, with a reward function that involves
both the relative improvement in the objective function and the
computational cost of neighborhoods. Recently, this feature has
been exploited by Ceschia et al. [14] to obtain state-of-the-art results
on two di�erent timetabling problems.

5 FEATURES

This section provides an overview of the features and characteristics
of EasyLocal++, highlighting their evolution over the years.

5.1 Evolution toward C++23 Compatibility

EasyLocal++ has been developed in C++, following the language
evolution over the years, and its last updates (e.g., usage of co-
routines in the neighborhood generation) use C++23 characteristics.

C++ o�ers several advantages forMHs. As an object-oriented lan-
guage, C++ naturally promotes modularity, reusability, and main-
tainability, all essential characteristics for MH implementations
[64]. Additionally, it features powerful template metaprogramming
capabilities, enabling compile-time code generation and optimiza-
tion, which helps implement generic algorithms and data structures
with high performance and �exibility (e.g., in multi-neighborhood
automatic synthesis).

Moreover, as a compiled language, C++ is known for its speed,
which allows performing intensive computations e�ciently. This
is advantageous for LS algorithms, which often require numerous
iterations and exploration of possibly large neighborhoods.

Lastly, C++ bene�ts from quite a large community of users;
consequently, developers can rely on a wealth of online resources,
potentially providing valuable support for their projects.

As mentioned, EasyLocal++ has evolved alongside the advance-
ments in the C++ language. As for its latest version (i.e., EasyLo-
cal++ v.4), the implementation now utilizes static polymorphism
instead of classical virtual function polymorphism for hot spots,
which is now fully supported in newer C++ versions. This shift was
motivated by the availability of C++17 concepts, which allows for
checking complex constraints in template instantiation.

The codebase has also been re-engineered to embrace functional-
style programming, improving code organization and readability.
Notably, neighborhood exploration now employs C++23 coroutines,
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enabling a streamlined approach to move generation (i.e., all the
code for move generation is now contained in a single function,
whereas before, a complex iterator structure was necessary). Fur-
thermore, EasyLocal++ v.4 implements lazy evaluation for cost
function computation, ensuring that cost components will be com-
puted only when needed and cost values are cached to prevent
unnecessary recomputation. For instance, in the context of MOO
within the Pareto front, if no other solution dominates a speci�c
cost component of a given solution, there is no immediate need to
compute the values of the other components for that solution.

5.2 Benchmarking

Using a framework like EasyLocal++ standardizes the underlying
code and data structures used to describe problems, enabling the
comparison of the performance of various MHs on a uniform basis.
This standardization mitigates potential confounding factors from
di�erent implementations, thus ensuring a more accurate and fair
performance comparison, as advocated by Swan et al. [64].

Speci�cally, EasyLocal++ promotes the comparability in two
ways. On the one hand, the user can experiment with di�erent al-
gorithms tailored to the problem at hand without re-implementing
problem-speci�c modules. This �exibility allows for e�cient ex-
ploration of algorithmic variations while maintaining consistency
in problem representation. On the other hand, it allows testing
the same algorithm across diverse problem sets, ensuring that the
underlying LS procedure remains consistent throughout. This ca-
pability enhances con�dence in the reliability and generalizability
of algorithmic results across di�erent problem domains.

5.3 Automated Algorithm Design

One source of inspiration for EasyLocal++ is the Programming by
Optimization (PbO) manifesto [47]. Such a paradigm advocates for
a shift of perspective in software development, where the design of
components is approached through optimization. This involves a
systematic exploration of design alternatives toward the selection
of an optimal con�guration of the di�erent components through
the use of automated tools (e.g., irace [51]). PbO is organized into
�ve levels (numbered from 0 to 4). The �rst two levels deal with
existing software and expose just parameters and constants (a.k.a.
magic numbers). The upper levels (from 2 to 4) advocate a tighter
integration of PbO into software design.

Until EasyLocal++ v.3.3, the only design choices exposed were
algorithmic parameters (e.g., in TS the length of the tabu list and the
idle iterations in the termination criteria) in compliance with levels
0 and 1 of PbO. Starting with EasyLocal++ v.4, following Franzin
and Stützle [42], we do not consider LS algorithms as monoliths
anymore. Instead, the users can choose among di�erent options for
their design choices (i.e., components layer in Figure 2), which are
exposed for the automated design tool. These design choices are
resolved at compile time, meaning no computational overhead is
added at running time. Therefore, a panoply of algorithms with a
meaningful combination of the design alternatives can be generated,
and the relevant one can be directly selected through the Command
Line Interface (CLI). For instance, when using HC, the user can
choose which type of termination criterion to use (e.g., number of

idle iterations, maximum number of iterations, timeout).

Figure 3: A screenshot of the text-based user interface pro-

vided by testers.

5.4 Testers

In addition to the CLI, the testers enable the automatic creation of
a text-based user interface designed to facilitate multi-level user
interaction with the software. This interface increases the software
usability by supporting the debugging of problem-speci�c code,
such as verifying the consistency of incremental evaluations within
cost components. Moreover, it allows for preliminary analyses of
helpers, including neighborhood statistics (Figure 3).

Also, the interface enables direct experimentation with various
solution methods in a sequential manner.

5.5 Optimization as a Service

An alternative mode of interacting with solution methods, which
arose while collaborating with industrial partners, involves using a
REST API. In particular, EasyLocal++ solvers and helpers are en-
capsulatedwithin an automatically generated RESTHTTP interface,
which enables their deployment as network-accessible services. In-
teractions with the API endpoints occur through the exchange of
JSON-formatted �les.

For instance, Listing 8 displays the main REST endpoint that
provides information about the current state of a running system.
Speci�cally, it shows the availability of a total of three solution
methods (i.e., HC, TS, and SA), two di�erent types of neighborhoods
(i.e., accumulate and insert), and the execution status of a recently
executed optimization task (i.e., the task, with the given identi�er,
regards the execution of a HC and is �nished).

Listing 8: An example of main REST endpoint.

{ "runners": ["/runner/HC", "/runner/TS",

"/runner/SA"],

"neighborhoods": ["/move/accumulate",

"/move/insert"],

"tasks": [{"finished": true , "run_id": 55286,

"runner": "HC"}] }
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Listing 9 shows the outcome of the optimization task, which can
be inspected through an additional REST request.

Listing 9: An example of task endpoint.

{ "cost": {

"components": {

"Appointments": 0,

"FurnaceOvertime": 0,

"JobPriority": 28,

"SetupCost": 7

},

"objective": 35

},

"finished": true ,

"run_id": 55286, "runner": "HC" }

This approach shifts the focus from distributing the code to
providing a quickly deployable optimization service and opens the
possibility of building web applications for the interaction with the
solution methods.

5.6 Multi-criteria Cost Function Evaluation

EasyLocal++ supports multi-criteria cost function evaluation in
various forms, including aggregation (i.e., single-objective), hierar-
chical (i.e., lexicographic), and Pareto optimization. The framework
accommodates single-cost components, which can be provided and
integrated according to the desired optimization strategy.

Additionally, the implementation of lazy cost evaluation ensures
that costs are computed only when necessary. The code in Listing 10
shows an example of this behavior: the access operator to a cost
component of a SolutionValue element computes its cost only when
it is accessed and, eventually, caches its value.

Listing 10: Lazy cost computation

T SolutionValue :: operator []( size_t i) const {

auto& val = const_cast <pair <bool , T>&>(this ->at(

i));

if (!val.first) {

val.second = cs->ComputeCost(sol , i);

val.first = true;

}

return val.second;

}

6 EASYLOCAL++ FOR TEACHING

Since 2010, EasyLocal++ has played a signi�cant role in teaching
optimization within the Advanced Scheduling Systems course for the
Master’s Degree Program of Management Engineering at the Uni-
versity of Udine.5 Over 13 years, around 200 students have received
instruction on LS algorithms thanks to EasyLocal++. Students
engage with the practical design and implementation of solution
methods to real-world scheduling, timetabling, and routing prob-
lems. They are also encouraged to create their exam projects using
EasyLocal++ to tackle speci�c optimization problems. The struc-
tured modularity and clear conceptual framework of EasyLocal++
have proven bene�cial, particularly for students without a strong
Computer Science background. These students have successfully

5Videos of lectures covering LS and EasyLocal++ are available upon request.

implemented various techniques with reasonable programming ef-
forts, allowing them to test and compare solutions across available
instances.

7 CONCLUSIONS AND FUTUREWORK

We have described EasyLocal++, the white-box C++ framework
for LS algorithms that our research group has developed since 1999.

Through its evolution to version 4, EasyLocal++ has consis-
tently kept its foundational principles, including transparency to
the user, modularity, maintainability, and readability, together with
the separation of problem-speci�c and problem-independent classes.
These principles have remained unchanged over its 25-year history.

The evolution, the addition, and the removal of features in Easy-

Local++ have been primarily driven by its application to speci�c
problems. Such an iterative development approach has ensured
that the framework remains relevant, adaptable, and e�ective in
addressing a wide range of optimization challenges across various
application domains andw.r.t. di�erent research trends. Indeed, over
the years, it has proved e�ective in developing solution methods
for real-world applications and academic benchmark problems be-
longing to a wide range of domains. In particular, it currently holds
state-of-the-art results for examination timetabling, frequency as-
signment, home healthcare routing and scheduling, and medical
student scheduling problems. In addition, thanks to its modular and
clear system architecture, it has been successfully used for teaching
purposes in the MSc of Management Engineering since 2010.

Looking to the future, several ways exist to enhance the capabil-
ities of EasyLocal++. Firstly, the research presented by Ceschia
et al. [14] can be expanded to incorporate other parameters of SA
toward the concept of parameter-less algorithms. Secondly, perfor-
mances could bene�t from parallel executions. Additionally, there is
potential to explore extensions towards other paradigms akin to LS,
such as Large Neighborhood Search, which currently lack a uni�ed
software framework. Moreover, introducing hybrid approaches in
the framework could o�er promising avenues.

On a concluding note, while our project started 25 years ago,
the interest in such software tools is far from outdated, as testi-
�ed by the recent EU COST Action on Randomised Optimization
Algorithms (with a speci�c reference to Working Group 1 – Prob-
lem modeling and user experience).6 Indeed, one of the network’s
goals is to propose a transparent white-box modeling framework
(and the related software implementations) for a broad range of
real-world applications, bridging the gap between modeling and
solving phases. These are the same goals that initially motivated
the development of EasyLocal++.
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