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A B S T R A C T

Advancements in Neural Networks have led to larger models, challenging implementation on embedded devices
with memory, battery, and computational constraints. Consequently, network compression has flourished,
offering solutions to reduce operations and parameters. However, many methods rely on heuristics, often
requiring re-training for accuracy. Model reduction techniques extend beyond Neural Networks, relevant in
Verification and Performance Evaluation fields. This paper bridges widely-used reduction strategies with formal
concepts like lumpability, designed for analyzing Markov Chains. We propose a pruning approach based on
lumpability, preserving exact behavioral outcomes without data dependence or fine-tuning. Relaxing strict
quotienting method definitions enables a formal understanding of common reduction techniques.
1. Introduction

Since 2012, following AlexNet’s victory (Krizhevsky, Sutskever, &
Hinton, 2012) in the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC), there has been an exponential surge in proposed Artifi-
cial Neural Network (ANN or NN) architectures. Neural networks, with
their intrinsic flexibility and exceptional performance, have emerged as
the preferred solution for a diverse range of tasks, often synonymous
with Artificial Intelligence (AI) in various contexts.

As these models have progressed to handle extensive datasets and
complex tasks, their complexity has grown in parallel (Deng, Li, Han,
Shi, & Xie, 2020). These intricate networks, characterized by numer-
ous layers, epitomize Deep Learning (DL) and excel in achieving high
accuracy in challenging tasks (Xiao, Bahri, Sohl-Dickstein, Schoenholz,
& Pennington, 2018).

While the academic focus has mainly revolved around training
extensive and intricate models (Dai, Liu, Le, & Tan, 2021; Kolesnikov
et al., 2020; Yu, Wang, Vasudevan, Yeung, Seyedhosseini, & Wu, 2022),
integrating such networks into embedded devices presents significant
challenges. Real-world limitations such as battery life, memory con-
straints, and computational capabilities impose restrictions on both the
architectural parameter count and the required Floating Point Operations
(FLOPs) during inference.

A commonly used strategy to address this problem is called Network
Compression. Compression literature has had a substantial growth dur-
ing the last years, and for this reason, there are many different ways to
group together methods reducing a model in similar ways.

∗ Corresponding author at: University of Udine, Italy.
E-mail address: dalila.ressi@uniud.it (D. Ressi).

Methods focusing on finding the best possible structure to solve
particular tasks can be grouped together as Architecture-related strate-
gies. These kinds of methods usually require to train the network
from scratch each time the structure is modified. In particular, Neural
Architecture Search (NAS) techniques aim to find the best possible ar-
chitecture for a certain task with minimal human intervention (Elsken,
Metzen, & Hutter, 2019; Liu, Sun, Xue, Zhang, Yen, & Tan, 2021; Ren
et al., 2021). This is usually made possible by modeling the search
as an optimization problem and applying Reinforcement Learning (LR)-
based methods to find the best architecture (B. Zoph, 2017; Baker,
Gupta, Naik, & Raskar, 2017). In this group, we can also find Ten-
sor Decomposition (Novikov, Podoprikhin, Osokin, & Vetrov, 2015),
where matrix decomposition/factorization principles are applied to
the 𝑑-dimensional tensors in neural networks. Tensor decomposition
generalizes the widely used Principal Component Analysis (PCA) and
Singular Value Decomposition (SVD) to an arbitrary number of dimen-
sions (Carroll & Chang, 1970; Harshman et al., 1970; Tucker, 1966).
The goal of these techniques is to reduce the rank of tensors in order
to efficiently decompose them into smaller ones and drastically reduce
the number of operations (Deng et al., 2020). As the rank of a tensor
is usually far from being small, the most common solutions consist in
either forcing the network to learn filters with small rank or using
an approximated decomposition (Denton, Zaremba, Bruna, LeCun, &
Fergus, 2014; Eo, Kang, & Rhee, 2023).

Using a similar approach Lightweight or Compact Networks focus on
modifying the design of the architecture such that it performs fewer
operations while maintaining the same capability. It is the case of
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the MobileNet series (Howard et al., 2019; Sandler, Howard, Zhu,
Zhmoginov, & Chen, 2018a, 2018b), ShuffleNet series (Ma, Zhang,
Zheng, & Sun, 2018; Zhang, Zhou, Lin, & Sun, 2018), and EfficientNet
series (Tan & Le, 2019, 2021). They exploit the idea of using 1 × 1
ilters introduced by Network in Network (Lin, Chen, & Yan, 2014) and
oogLeNet (Szegedy et al., 2015; Szegedy, Vanhoucke, Ioffe, Shlens, &
ojna, 2016) in their inception modules. A similar concept is explored

y the SqueezeNet (Iandola, Han, Moskewicz, Ashraf, Dally, & Keutzer,
016) architecture in their Fire module, where they substitute the clas-
ical convolutional layers such that they can achieve the same accuracy
f AlexNet on ImageNet dataset but with a model 510 times smaller.

An alternative technique exploits a larger model, or teacher, to force
more compact network called student to produce the same output.

his paradigm is called Knowledge Distillation (Hinton, Vinyals, & Dean,
015) and there are many variants of it: some of them use multiple
eachers (Shang, Li, Zhu, Jiao, & Li, 2023), while others focus on the
fficiency of the training process when labeled samples are scarce (He,
ing, Zhang, & Li, 2022; Zhou, Wang, Zhou, Yu, Bandara, & Bu, 2023).

A different methodology consists in training a big model from the
tart, and then Pruning superfluous parameters. In particular, Weight
runing consists in zeroing connections or parameters already close to
ero (LeCun, Denker, & Solla, 1990), but more elaborated methods can
lso take into consideration the impact of the single weights on the
inal results (Han, Pool, Tran, & Dally, 2015). Even if weight pruning
s a very powerful tool to reduce the network parameters (Frankle &
arbin, 2019), its major drawback is that it does not actually reduce
he number of FLOPs at inference time.

A more effective solution consists instead of skipping completely
ome of the operations. It is the case of Filter Pruning, where whole
odes or filters (in the case of convolutional layers) are removed from
he architecture. Pruning usually requires some degree of re-training
o recover the lost accuracy due to the reduced network capability,
ut an interesting phenomenon that happens in the early stages of
runing is that most of the time the test accuracy actually increases,
ue to the regularization effect that pruning unnecessary parameters
as on the network. While weight pruning allows more control on
hat parameters to remove, filter pruning is usually the best solution

ompression-wise as it allows a drastic reduction of the network pa-
ameters such that the models can be actually implemented in small
mbedded devices (Ressi, Pistellato, Albarelli, & Bergamasco, 2022).

Another technique often used in conjunction with pruning is called
uantization (Han, Mao, & Dally, 2016). While pruning aims to reduce

he number of parameters, quantization instead targets their preci-
ion (Pistellato et al., 2023). As the weights are usually represented
y floating point numbers, it is possible to reduce the bits used for
he number representation down to single bits (Rastegari, Ordonez,
edmon, & Farhadi, 2016), without affecting the network accuracy.

Finally, pruning techniques might be designed according to the
evice they will be implemented on. Recently, a new type of neural
etwork has gained interest from the research community: Memristive
eural Networks (memNNs). It is a special type of ANN that is based on

he ‘‘memristor bionic synapse’’, which replaces the traditional resistors
ith memristors in the circuit realization process. Pruning algorithms

an be designed to improve efficiency and compression rate on this kind
f network (Hong, Xiao, Fan, & Du, 2024; Mou et al., 2021; Wen et al.,
019). Targeted pruning algorithms have been developed for hardware
omponents beyond just memristors. For instance, the same idea has
een applied to Field-Programmable Gate Array (FPGA) based NNs (Li
t al., 2022; Ressi et al., 2022; Shimoda, Sada, & Nakahara, 2019).

In the context of performance evaluation of computer systems,
tochastic models whose underlying stochastic processes are Markov
hains, play a key role in providing a sound high-level framework
or the analysis of software and hardware architectures. Although the
se of high-level modeling formalism greatly simplifies the specifica-
ion of quantitative models (e.g., by exploiting the compositionality
2

roperties (Hillston, 1994)), the stochastic process underlying even a
very compact model may have several states that make its analysis
a difficult, sometimes computationally impossible, task. In order to
study models with a large state space without using approximations
or resorting to simulations, one can attempt to reduce the state space
of the underlying Markov chain by aggregating states with equiva-
lent behaviors. Lumpability (Kemeny & Snell, 1976) is an aggregation
technique used to cope with the state space explosion problem in-
herent to the computation of the stationary performance indices of
large stochastic models. The lumpability method turns out to be useful
on Markov chains exhibiting some structural regularity. Moreover, it
allows one to efficiently compute the exact values of the performance
indices when the model is actually lumpable. In the literature, several
notions of lumping have been introduced: ordinary and weak lump-
ing (Kemeny & Snell, 1976), exact lumping (Schweitzer, 1984), and
strict lumping (Buchholz, 1994).

In this paper, we propose a filter pruning technique where we
treat fully connected nodes of a neural network as states of a Markov
Chain. By borrowing the concept of lumpability and applying it to
the neural network, we aggregate some of its nodes and we update
the remaining connections such that the output of the network is not
affected. We offer background insights into lumpability and neural
networks to facilitate understanding for researchers in both domains.
Furthermore, we elaborate on the concept of proportional lumpability,
demonstrating how it can be extended to linearly dependent weights.
We show how to update the weights in such a specific case. While
our method requires rigid constraints on the nature of the weights,
we examine two different scenarios with relaxed constraints to mirror
real-world scenarios. We conduct various experiments on the MNIST
benchmark dataset to compress two different architecture types. We
also discuss our findings and how they can be combined with other
state-of-the-art techniques to improve the efficiency of our method.

With our work, we aim to link together the work of two different
communities, the first one focusing on machine learning and network
compression and the second one focusing on lumping-based aggrega-
tion techniques for performance evaluation. Even if a large number of
possible efficient compression techniques have already been published,
our main goal is to give a formal demonstration of how it is possible
to deterministically remove some of the network parameters to obtain
a smaller network with the same performance. Our method condenses
many different concepts together, such as some of the ideas exploited
by tensor decomposition methods, filter pruning, and the lumpability
used to evaluate the performance of complex systems.

In summary, our contributions include:

• a data-free novel filter pruning technique inspired by the concept
of lumpability studied for aggregating complex Markov chains.

• a formalization of the proposed method as well as mathematical
proof of the preservation of the network behavior.

• an approximate formalization of the proposed method to better
approach real-case scenarios.

• an extensive experimental setup.

This paper extends the findings presented in Ressi, Romanello,
Piazza, and Rossi (2022). We offer comprehensive proofs of our results
and demonstrate the adaptability of our pruning method, particularly
when weights represent linear combinations rather than mere pro-
portional relations within the same layer. Additionally, we extend
our experiments by examining two different scenarios with relaxed
constraints on two different model architectures, and we present our
results in a dedicated section.

The paper is structured as follows. In Section 2 we provide a
literature review. Section 3 gives the necessary background on neural
networks and lumpability. Section 4 formally describes our technique
exploiting the notion of exact lumpability for quotienting neural net-
works. Section 5 presents some experimental results. In Section 6 we
discuss the results we obtained and propose different ways to enhance

our algorithm. Finally, Section 7 concludes the paper.
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2. Related work

To the best of our knowledge, the only paper similar to our work
is Prabhakar (2022), where the authors introduce the classical notion
of equivalence between systems in Process Algebra to reduce a neural
network into another one semantically equivalent. They propose a filter
pruning technique, based on some properties of the network, that does
not need any data to perform the compression. They also define an
approximated version of their algorithm to relax some of the strong
constraints they pose on the weights of the network.

Pruning methods can be divided into two macro-categories, online
pruning and offline pruning. In the former group, we can find all
methods where the number of nodes, connections, or even layers
is adapted during the training phase. These techniques are heavily
data-dependent. The latter group, instead, consists of all post-training
methods, which may or may not require the original dataset.

While data-free pruning algorithms are convenient when a dataset is
incomplete, unbalanced, or missing, they usually achieve poorer results
compared to data-based compression solutions. Indeed, most pruning
techniques usually require at least one stage of fine-tuning of the model.
The recovery is often performed iteratively after removing a single
parameter, but some techniques re-train the model only after a certain
level of compression has been carried out (Blalock, Gonzalez Ortiz,
Frankle, & Guttag, 2020).

The authors in Lin et al. (2020) proved how filters with high-rank
feature maps retain important information, resulting in minimal perfor-
mance degradation even when partially unaltered. They also defined
how filter pruning techniques can be divided according to property
mportance or adaptive importance. In the first group, we find pruning
ethods that look at intrinsic properties of the networks and do not
odify the training loss, such as He, Liu, Wang, Hu, and Yang (2019),
u, Peng, Tai, and Tang (2016), Prabhakar (2022) and Ressi et al.

2022). In Hu et al. (2016), authors introduce network trimming, which
teratively optimizes the network by pruning unimportant neurons
ased on analysis of their outputs on a large dataset. Authors in He
t al. (2019) propose a Filter Pruning via Geometric Median (FPGM),
here they redesign the criterion to prune filters with smaller norm
alues in a convolutional neural network by considering not only filters
ith large norm deviation but also if the minimum norm of the filters

s small. Finally, in Ressi et al. (2022) the authors consider instead the
verage output of the neurons, removing first the units that are rarely
ctivated.

We can consider our original algorithm to belong to property im-
ortance methods, as it only looks at the network without using any
ata. Adaptive importance pruning algorithms like Lin et al. (2019),
iu, Li, Shen, Huang, Yan, and Zhang (2017) and Wang, Liu, Wang,
iu, Alibhai, and He (2022) usually drastically change the loss function,
equiring a heavy retrain step and looking for a new proper set of hyper-
arameters, even though they often achieve better performances with
espect to property importance methods. For example, Liu et al. (2017)
roposes a method enforcing channel-level sparsity, where insignificant
hannels are automatically identified during training and pruned after-
ard, obtaining thin and compact models with comparable accuracy.
he authors in Lin et al. (2019) propose an end-to-end structured
runing method that simultaneously prunes filters and other structures
y introducing a soft mask to scale their outputs. This approach utilizes
enerative adversarial learning (GAL) to efficiently learn sparse soft
asks, enabling the removal of corresponding structures using the fast

terative shrinkage-thresholding algorithm (FISTA). While Lin et al.
2019) and Liu et al. (2017) are designed for compressing CNNs, Wang
t al. (2022) introduces a novel locality-based transfer learning method
o enhance the training efficiency of compression autoencoder (CAE)
or scientific data compression. By leveraging incremental learning and
ullback Leibler (KL) Divergence – a measure of the closeness of two
3

istributions – as an indicator, this approach accelerates training speed
hile maintaining high prediction accuracy, addressing the limitations
f existing methods.

Avoiding to re-train the network at each pruning step as in Lin
t al. (2020) and Wang, Xie, and Shi (2021) is usually faster than
ther solutions, but there is a higher risk of not being able to recover
he performances. For instance, authors in Wang et al. (2021) present
FPruning, a two-stage Retraining-Free pruning method for deep con-
olutional neural networks (DCNNs) that aims to accelerate inference
ithout sacrificing performance. In the first stage, a sparse learning
pproach is utilized for rough channel selection during network train-
ng. In the second stage, a genetic algorithm is employed to fine-tune
he pruning process, achieving the balance between performance and
odel size. While most pruning techniques focus on reducing the
umber of operations, sometimes removing whole branches (Abrar &
amad, 2022; Zhou et al., 2023) of the architecture, these algorithms
equire the availability of the original dataset in order to recover the
ost accuracy. When such a scenario is not feasible, it is better to exploit
echniques that avoid further training steps.

Another option consists of deciding which parameters to remove ac-
ording to the impact they have on the rest of the network (Molchanov,
allya, Tyree, Frosio, & Kautz, 2019; Yu et al., 2018). Finally, while
ost of the already mentioned methods focus on removing whole

ilters or kernels from convolutional layers, some other methods target
nly fully connected layers, or are made to compress classical neural
etworks (Ashiquzzaman, Van Ma, Kim, Lee, Um, & Kim, 2019; Tan &
otani, 2020).

Contrary to other pruning methods, our approach completely pre-
erves the behavior of the network and it does not depend on the
nput data, thus not requiring any re-training or fine-tuning. Given
he strong assumptions on the weights of the network our technique
equires, we also test our pruning under more relaxed constraints,
llowing for the updating step to approximate the behavior of the
etwork instead. While our algorithm can be integrated with other
echniques to improve the compression rate or to better preserve the
riginal performance of the model, we do not claim our method to
erform better than other existing ones but rather explore how formal
ethods can be applied in this field.

Furthermore, even if there is a close relationship with compressing
echniques that force the rank of the tensor to be small, such that redun-
ant sub-structure of the network can be removed without affecting the
utcome (Grasedyck, Kressner, & Tobler, 2013), most of these methods
ntroduce some sort of approximation and completely alter the model’s
rchitecture. For all these reasons, our scope is not to compare our
runing approach with other existing methods but rather to test how
ar we can stretch the constraints from the original assumptions.

. Preliminaries

In this section we formally introduce the notion of neural network in
he style of Prabhakar (2022). Moreover, we recall the concept of exact
umpabibility as it has been defined in the context of continuous-time
arkov chains.

eural networks

A neural network is formed by a layered set of nodes or neurons,
onsisting of an input layer, an output layer, and one or more hidden
ayers. Each node that does not belong to the input layer is annotated
ith a bias and an activation function. Moreover, there are weighted
dges between nodes of adjacent layers. We use the following formal
efinition of neural networks.

For 𝑘 ∈ N, we denote by [𝑘] the set {0, 1,… , 𝑘}, by (𝑘] the set
{1,… , 𝑘}, by [𝑘) the set {0,… , 𝑘 − 1}, and by (𝑘) the set {1,… , 𝑘 − 1}.

Definition 1 (Neural Network). A Neural Network (NN) is a tuple  =
(𝑘,𝑐𝑡, {𝓁}𝓁∈[𝑘], {𝑊𝓁}𝓁∈(𝑘],

{𝑏𝓁}𝓁∈(𝑘], {𝐴𝓁}𝓁∈(𝑘]) where:
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Fig. 1. Node 𝑠 behavior on input 𝑥1 , 𝑥2 ,… , 𝑥𝑚.

• 𝑘 is the number of layers (except the input layer);
• 𝑐𝑡 is the set of activation functions;
• for 𝓁 ∈ [𝑘], 𝓁 is the set of nodes of layer 𝓁 with 𝓁 ∩𝓁′ = ∅ for
𝓁 ≠ 𝓁′;

• for 𝓁 ∈ (𝑘], 𝑊𝓁 ∶ 𝓁−1 × 𝓁 → R is the weight function that
associates a weight with edges between nodes at layer 𝓁 − 1 and
𝓁;

• for 𝓁 ∈ (𝑘], 𝑏𝓁 ∶ 𝓁 → R is the bias function that associates a bias
with nodes at layer 𝓁;

• for 𝓁 ∈ (𝑘], 𝐴𝓁 ∶ 𝓁 → 𝑐𝑡 is the activation association function
that associates an activation function with nodes of layer 𝓁.

0 and 𝑘 denote the nodes in the input and output layers, respec-
tively.

In the rest of the paper, we will refer to NNs in which all the
activation association functions are constant, i.e., all the neurons of
a layer share the same activation function. Moreover, such activation
functions 𝐴𝓁 are either ReLU (Rectified Linear Unit) or LeakyReLU,
i.e., they are combinations of linear functions. So, from now on we omit
the set 𝑐𝑡 from the definition of the NNs.

Example 1. Fig. 1 shows the behavior of node 𝑠 in Layer 𝓁. The input
values 𝑥1, 𝑥2,… 𝑥𝑚 are propagated by nodes 𝑟1, 𝑟2,… 𝑟𝑚 respectively.
Node 𝑠 computes the 𝑅𝑒𝐿𝑈 of the weighted sum of the inputs plus the
bias. The result of this application is the output of 𝑠 and it is propagated
to 𝑡.

The operational semantics of a neural network is as follows. Let
𝑣 ∶ 𝓁 → R be a valuation for the 𝓁-th layer of  and 𝑉 𝑎𝑙(𝓁) be the
set of all valuations for the 𝓁-th layer of  . The operational semantics
of  , denoted by [[ ]], is defined in terms of the semantics of its layers
[[ ]]𝓁 , where each [[ ]]𝓁 associates with any valuation 𝑣 for layer 𝓁−1
the corresponding valuation for layer 𝓁 according to the definition of
 . The valuation for the output layer of  is then obtained by the
composition of functions [[ ]]𝓁 .

Definition 2. The semantics of the 𝓁-th layer is the function [[ ]]𝓁 ∶
𝑉 𝑎𝑙(𝓁−1) → 𝑉 𝑎𝑙(𝓁) where for all 𝑣 ∈ 𝑉 𝑎𝑙(𝓁−1), [[ ]]𝓁(𝑣) = 𝑣′ and
for all 𝑠 ∈ 𝓁 , 𝑣′(𝑠) is defined by the following Eq. (1):

𝑣′(𝑠) = 𝐴𝓁(𝑠)

(

∑

𝑟∈𝓁−1

𝑊𝓁(𝑟, 𝑠)𝑣(𝑟) + 𝑏𝓁(𝑠)

)

. (1)

The input–output semantics of  is obtained by composing these
one-layer semantics. More precisely, we denote by [[ ]]𝓁 the composi-
tion of the first 𝓁 layers so that [[ ]]𝓁(𝑣) provides the valuation of the
4

𝓁-th layer given 𝑣 ∈ 𝑉 𝑎𝑙(0) as input. Formally, [[ ]]𝓁 is inductively
defined by Eqs. (2) and (3):

[[ ]]1 = [[ ]]1 (2)

[[ ]]𝓁 = [[ ]]𝓁◦[[ ]]𝓁−1 ∀𝓁 ∈ (𝑘] (3)

where ◦ denotes the function composition.
We are now in a position to define the semantics of  as the

input–output semantic function [[ ]] defined below.

Definition 3. The input–output semantic function [[ ]] ∶ 𝑉 𝑎𝑙(0) →
𝑉 𝑎𝑙(𝑘) is defined by the following Eq. (4):

[[ ]] = [[ ]]𝑘 . (4)

Lumpability

The notion of lumpability has been introduced in the context of
performance and reliability analysis. It provides a model aggregation
technique that can be used for generating a Markov chain that is smaller
than the original one while allowing one to determine exact results for
the original process.

The concept of lumpability can be formalized in terms of equiv-
alence relations over the state space of the Markov chain. Any such
equivalence induces a partition on the state space of the Markov chain
and aggregation is achieved by clustering equivalent states into macro-
states, reducing the overall state space.

Let  be a finite state space. A (time-homogeneous) Continuous-
Time Markov Chain (CTMC) over  is defined by a function

𝑄 ∶  ×  → R

such that for all 𝑥, 𝑦 ∈  with 𝑥 ≠ 𝑦 it holds that:

• 𝑄(𝑥, 𝑦) ≥ 0 and
• 𝑄(𝑥, 𝑥) = −

∑

𝑦∈ ,𝑥≠𝑦 𝑄(𝑥, 𝑦) .

A CTMC defined over  by 𝑄 models a stochastic process where a
transition from state 𝑥 to state 𝑦, with 𝑥 ≠ 𝑦, can occur according to an
exponential distribution with rate 𝑄(𝑥, 𝑦).

Given an initial probability distribution 𝑝 over the states of a CTMC,
one can consider the problem of computing the probability distribution
to which 𝑝 converges when the time tends to infinity. This is the sta-
tionary distribution and it exists only when the chain satisfies additional
constraints. The stationary distribution reveals the limit behavior of a
CTMC. Many other performance indexes and temporal logic properties
can be defined for studying both the transient and limit behavior of the
chain.

Different notions of lumpability have been introduced to reduce the
number of states of the chain while preserving its behavior (Alzetta,
Marin, Piazza, & Rossi, 2018; Bossi, Focardi, Macedonio, Piazza, &
Rossi, 2004; Buchholz, 1994; Hillston, Marin, Piazza, & Rossi, 2013,
2021; Kemeny & Snell, 1976; Marin, Piazza, & Rossi, 2019, 2022;
Schweitzer, 1984). In particular, we consider here the notion of exact
lumpability (Buchholz, 1994; Schweitzer, 1984).

Definition 4 (Exact Lumpability). Let ( , 𝑄) be a CTMC and  be an
equivalence relation over .  is an exact lumpability if for all 𝑆, 𝑆′ ∈
∕, for all 𝑥, 𝑦 ∈ 𝑆 it holds that:
∑

𝑧∈𝑆′
𝑄(𝑧, 𝑥) =

∑

𝑧∈𝑆′
𝑄(𝑧, 𝑦). (5)

There exists always a unique maximum exact lumpability relation
which allows us to quotient the chain by taking one state for each
equivalence class and replacing the rates of the incoming edges with

the sum of the rates from equivalent states.
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Fig. 2. Proportionally exact lumpable CTMC.

The notion of exact lumpability is in many applicative domains too
emanding, thus providing poor reductions. This issue is well-known
or all lumpability notions that do not allow any form of approximation.
o obtain smaller quotients, still avoiding rough approximations, the
otion of proportional lumpability has been presented in Marin et al.
2019, 2022) and Piazza and Rossi (2021) as a relaxation of ordi-
ary lumpability. In this paper instead, we introduce the notion of
roportional exact lumpability, defined as follows.

Definition 5 (Proportional Exact Lumpability). Let ( , 𝑄) be a CTMC
and  be an equivalence relation over .  is a proportional exact
umpability if there exists a function 𝜌 ∶  → R>0 such that for all
, 𝑆′ ∈ ∕, for all 𝑥, 𝑦 ∈ 𝑆 it holds that:

(𝑥)
∑

𝑧∈𝑆′
𝑄(𝑧, 𝑥) = 𝜌(𝑦)

∑

𝑧∈𝑆′
𝑄(𝑧, 𝑦). (6)

Notice that Eq. (6) is equal to Eq. (5) except for the coefficients 𝜌(𝑥)
and 𝜌(𝑦).

It can be proved that there exists a unique maximum proportional
exact lumpability that can be computed in polynomial time. This is true
also if ( , 𝑄) is a Labeled Graph instead of a CTMC, i.e., no constraints
are imposed on 𝑄.

Example 2. Fig. 2 shows a proportionally exact lumpable Markov
chain with respect to the function 𝜌 defined as: 𝜌(1) = 1, 𝜌(2) = 1, 𝜌(3) =
2, 𝜌(4) = 2, 𝜌(5) = 1, 𝜌(6) = 2, 𝜌(7) = 2, 𝜌(8) = 1 and the equivalence
classes 𝑆1 = {1}, 𝑆2 = {2, 3, 4}, 𝑆3 = {5, 6, 7}, 𝑆4 = {8}.

4. Lumping neural networks

The idea of exploiting exact lumpability for quotienting NN has been
proposed in Prabhakar (2022) where a notion of pre-sum preserving
backward bisimulation has been considered. It can be easily observed
that such a notion coincides with that of exact lumpability. The term
(probabilistic) bisimulation is standard in the area of Model Checking,
where (probabilistic) temporal logical properties are used for both
specifying and synthesizing systems having a desired behavior (An-
ticoli, Piazza, Taglialegne, & Zuliani, 2016; Bugliesi, Gallina, Marin,
Rossi, & Hamadou, 2012; Gallina, Hamadou, Marin, & Rossi, 2011).
Since such logics usually formalize the behaviors in terms of forward
temporal operators, the bisimulation notions tend to preserve the rates
of the outgoing edges (Sproston & Donatelli, 2004). However, as proved
5

p

in Prabhakar (2022), in order to preserve the behavior of a NN it is
necessary to refer to the rates/weights of the incoming edges. This is
referred to as backward probabilistic bisimulation and coincides with the
well-known notion of exact lumpability used in the area of performance
evaluation.

What was already described in Prabhakar (2022) is extended in this
proposal. The key difference between our work and Prabhakar (2022) is
that while the latter stops after proving that exact lumpability preserves
the behavior of a Neural Network, we extend it by adding two main
ingredients. Firstly, we introduce a notion of proportionality between
the nodes’ incoming rates/biases. Subsequently, we relax this notion by
exploring the definition of quasi proportionality between rates.

Formally, we prove that in the case of ReLU and LeakyReLU acti-
vations, proportional exact lumpability preserves the behavior of the
network allowing it to obtain smaller quotients. It does not require any
retraining step and it ensures the same behavior on all possible inputs.
Moreover, since the neural networks we refer to are acyclic it can be
computed in linear time.

Definition 6 (Proportional Exact Lumpability over a NN). Let  be a NN.
Let  = ∪𝓁∈[𝑘)𝓁 be such that 𝓁 is an equivalence relation over 𝓁 ,
for all 𝓁 ∈ (𝑘) and 0 is the identity relation over 0. We say that  is
a proportional exact lumpability over  if for each 𝓁 ∈ (𝑘) there exists
𝜌𝓁 ∶ 𝓁 → R>0 such that for all 𝑆 ∈ 𝓁∕𝓁 , for all 𝑆′ ∈ 𝓁−1∕𝓁−1,
for all 𝑠1, 𝑠2 ∈ 𝑆 the following Eqs. (7) and (8) hold:

𝜌𝓁(𝑠1)𝑏𝓁(𝑠1) = 𝜌𝓁(𝑠2)𝑏𝓁(𝑠2) , (7)

𝜌𝓁(𝑠1)
∑

𝑟∈𝑆′
𝑊𝓁(𝑟, 𝑠1) = 𝜌𝓁(𝑠2)

∑

𝑟∈𝑆′
𝑊𝓁(𝑟, 𝑠2) . (8)

There are some differences with respect to the definition of pro-
ortional exact lumpability over CTMCs. First, we impose that two
quivalent neurons have to belong to the same layer. However, we
ould have omitted such restriction from the definition and proved that
eurons from different layers are never equivalent. This is an immedi-
te consequence of the fact that we refer to acyclic NNs. Moreover, we
emand that on input and output nodes the only admissible relation is
he identity. This is a substantial difference. Since the nodes in the input
ayer have no incoming edges the definition of proportional lumpability
iven over CTMCs allows to collapse them. However, the input nodes
n NNs hold the input values that have to be propagated, so they cannot
e collapsed. This is true also for the output nodes since they represent
he result of the computation.

It can be proved that there always exists a unique maximum pro-
ortional exact lumpability over a NN. If we use proportional exact
umpability for reducing the dimension of a NN by collapsing the
quivalent neurons, we have to modify the topology and the weights
f the NN as formalized below.

efinition 7 (Proportional Reduced NN). Let  = (𝑘, {𝓁}𝓁∈[𝑘],
𝑊𝓁}𝓁∈(𝑘], {𝑏𝓁}𝓁∈(𝑘], {𝐴𝓁}𝓁∈(𝑘]) be a NN. Let  be a proportional exact
umpability over  . The NN ∕ = (𝑘, { ′

𝓁}𝓁∈[𝑘], {𝑊
′
𝓁}𝓁∈(𝑘], {𝑏

′
𝓁}𝓁∈(𝑘],

𝐴′
𝓁}𝓁∈(𝑘]) is defined by:

•  ′
𝓁 = {[𝑠] | [𝑠] ∈ 𝓁∕}, where 𝑠 is an arbitrarily chosen

representative for the class;
• 𝑊 ′

𝓁 ([𝑠1], [𝑠2]) = 𝜌𝓁−1(𝑠1)
∑

𝑟∈[𝑠1]
𝑊𝓁 (𝑟,𝑠2)
𝜌𝓁−1(𝑟)

;

• 𝑏′𝓁([𝑠]) = 𝑏𝓁(𝑠);
• 𝐴′

𝓁([𝑠]) = 𝐴𝓁(𝑠).

Despite the arbitrary choice of the representative, we can prove that
he reduced NN’s behavior coincides with that of the initial one over
ll the inputs.

We first introduce a Lemma to characterize the semantics of a

runed layer.
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Lemma 1. Let 𝑣 ∈ 𝑉 𝑎𝑙(𝓁−1) be a valuation for layer 𝓁 − 1. Let
𝑣′′ =

(

[[ ]]𝓁+1◦[[ ]]𝓁
)

(𝑣) and 𝑢′′ =
(

[[∕𝓁]]𝓁+1◦[[∕𝓁]]𝓁
)

(𝑣) be the
valuation for layer 𝓁 + 1 in  and ∕𝓁 , respectively. The following
Eq. (9) hold:

𝑣′′ = 𝑢′′ . (9)

Proof. Let 𝑡 ∈ 𝓁+1. For the sake of readability, we make some assump-
tions on layer 𝓁. In any case, the theorem is easily extendable to the
generic case. Let 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5 ∈ 𝓁 be five neurons from layer 𝓁 such
that 𝑠2, 𝑠3 ∈ [𝑠1]𝓁

and 𝑠5 ∈ [𝑠4]𝓁
. Let 𝑣′ = [[ ]]𝓁(𝑣) be the valuation

at layer 𝓁. The following relations between 𝑣′(𝑠1), 𝑣′(𝑠2), 𝑣′(𝑠3), 𝑣′(𝑠4),
and 𝑣′(𝑠5), represented in Eqs. (10), (11), and (12), hold:

𝜌𝓁(𝑠1)𝑣′(𝑠1) = 𝜌𝓁(𝑠2)𝑣′(𝑠2) (10)

𝜌𝓁(𝑠1)𝑣′(𝑠1) = 𝜌𝓁(𝑠3)𝑣′(𝑠3) (11)

𝜌𝓁(𝑠4)𝑣′(𝑠4) = 𝜌𝓁(𝑠5)𝑣′(𝑠5) (12)

The reason for such a result is twofold: first, we are not lumping layer
𝓁−1. Hence, there is no change in the valuation for layer 𝓁−1. Second,
𝑠1, 𝑠2, and 𝑠3 are equivalent according to 𝓁 (the same holds for 𝑠4 and
𝑠5). By definition, the value of 𝑣′′(𝑡) is as in (13)

𝑣′′(𝑡) = 𝐴𝓁+1(𝑡)
(

𝑊𝓁+1(𝑠1, 𝑡)𝑣′(𝑠1) +

+𝑊𝓁+1(𝑠2, 𝑡)𝑣′(𝑠2) +𝑊𝓁+1(𝑠3, 𝑡)𝑣′(𝑠3) +𝑊𝓁+1(𝑠4, 𝑡)𝑣′(𝑠4)

+𝑊𝓁+1(𝑠5, 𝑡)𝑣′(𝑠5) + 𝑏(𝑡)
)

(13)

Using the relation between the values of 𝑣′ represented in Eqs. (10),
(11), and (12), we can rewrite Eq. (13) as in the following Eq. (14):

= 𝐴𝓁+1(𝑡)

( 3
∑

𝑖=1

[

𝑊𝓁+1(𝑠𝑖, 𝑡)
𝜌𝓁(𝑠1)
𝜌𝓁(𝑠𝑖)

𝑣′(𝑠1)
]

+
5
∑

𝑖=4

[

𝑊𝓁+1(𝑠𝑖, 𝑡)
𝜌𝓁(𝑠4)
𝜌𝓁(𝑠𝑖)

𝑣′(𝑠4)
]

)

= 𝐴𝓁+1(𝑡)

(

𝑣′(𝑠1)
[

𝑊𝓁+1(𝑠1, 𝑡) +𝑊𝓁+1(𝑠2, 𝑡)
𝜌𝓁(𝑠1)
𝜌𝓁(𝑠2)

+𝑊𝓁+1(𝑠3, 𝑡)
𝜌𝓁(𝑠1)
𝜌𝓁(𝑠3)

]

+

+𝑣′(𝑠4)
[

𝑊𝓁+1(𝑠4, 𝑡) +𝑊𝓁+1(𝑠5, 𝑡)
𝜌𝓁(𝑠4)
𝜌𝓁(𝑠5)

]

)

(14)

which is equal to 𝑢′′(𝑡). □

In order to prove the overall equivalence between the initial and
he reduced networks we introduce the following Lemma:

emma 2. Let 𝑖, 𝑗 be two layers index. If 𝑗 < 𝑖 − 1 or 𝑗 > 𝑖, then
[[ ]]𝑖 = [[∕𝑗 ]]𝑖

Proof. Let 𝑖, 𝑗 be two layers. In the first case, 𝑗 > 𝑖. Since the reduced
layer is after the 𝑖th, the semantic at layer 𝑖 is unchanged. In the second
case, 𝑗 < 𝑖−1. We are reducing a layer that is before the 𝑖th. By Lemma 1,
we know that the semantic of layer 𝑗 remains the same. Hence, layer 𝑖
will not be affected by the reduction □

We can now conclude that the input–output behavior of the network
is preserved after the reduction.

Theorem 1. Let  be a NN and  be a proportional exact lumpability
over  . It holds that

[[∕]] = [[ ]] . (15)

roof. By definition of [[ ]], we have:

[ ]] = [[ ]]𝑘◦[[ ]]𝑘−1◦⋯◦[[ ]]1◦[[ ]]0 (16)

The application of Lemma 1 to the two rightmost terms of Eq. (16)
ields to:

[ ]] ◦[[ ]] ◦⋯◦[[∕ ]] ◦[[∕ ]] (17)
6

𝑘 𝑘−1 0 1 0 0
Using Lemma 2 on all the other terms of (17) we get:

[∕0]]𝑘◦[[∕0]]𝑘−1◦⋯◦[[∕0]]2◦[[∕0]]1◦[[∕0]]0 (18)

We can interpret [[∕0]] as our new network. Hence, we proceed
by applying Lemma 1 to [[∕0]]2◦[[∕0]]1 obtaining [[∕(0 ∪
1)]]2◦[[∕(0 ∪ 1)]]1. Consequently, the application of Lemma 2 to
the remaining terms of (18) yields to:

[[∕(0 ∪1)]]𝑘◦[[∕(0 ∪1)]]𝑘−1◦

⋯◦[[∕(0 ∪1)]]2◦[[∕(0 ∪1)]]1◦[[∕(0 ∪1)]]0
(19)

Repeating such process starting from (19) and recalling that  =
⋃

𝑖∈[𝑘] 𝑖, we end up with (20):

[[∕]]𝑘◦[[∕]]𝑘−1◦⋯◦[[∕]]2◦[[∕]]1◦[[∕]]0 (20)

which is exactly [[∕]], hence proving (15). □

Example 3. Fig. 3 shows how the pruning technique works on two
nodes 𝑠1, 𝑠2. In particular, 𝑠2 input weights are proportional to 𝑠1’s. The
algorithm proceeds in two steps. Firstly, 𝑠2 is deleted together with all
its input and output edges. Secondly, the weight from 𝑠1 to 𝑡 is modified
by adding 𝜌𝑊𝓁+1(𝑠2, 𝑡).

The maximum proportional exact lumpability over  together with
the reduced network can be efficiently computed by proceeding top-
down from layer 1 to 𝑘 − 1. Since the network is acyclic, each layer is
influenced only by the previous one. Hence, the computation is linear
with respect to the number of edges of the network.

Before proving the overall result about the complexity of the algo-
rithm, we prove that a greedy technique is enough to get a maximum
proportional exact lumpability.

Lemma 3. Let 𝓁,𝓁 + 1 ∈ (𝑘) be two layers. Let  be a proportional exact
lumpability such that 𝑡1, 𝑡2 ∈ 𝓁+1 and (𝑡1, 𝑡2) ∈ . Let 𝑠1, 𝑠2 ∈ 𝓁 such
that (𝑠1, 𝑠2) ∉ . Let ′ be defined by the following Eq. (21)

′ =
(

 ∪ {(𝑠1, 𝑠2)}
)tr (21)

where we denote the transitive closure of a relation with (⋅)tr. It holds that:

• 𝜌𝓁+1(𝑡1)𝑏𝓁+1(𝑡1) = 𝜌𝓁+1(𝑡2)𝑏𝓁+1(𝑡2)
• ∀𝑆 ∈ 𝓁∕′

𝓁 ∶ 𝜌𝓁+1(𝑡1)
∑

𝑠∈𝑆 𝑊𝓁+1(𝑠, 𝑡1) = 𝜌𝓁+1(𝑡2)
∑

𝑠∈𝑆 𝑊𝓁+1(𝑠, 𝑡2)

Proof. Let 𝑠1, 𝑠2, 𝑡1, 𝑡2 be defined as in the statement of the Lemma.
Since (𝑡1, 𝑡2) ∈  and (𝑠1, 𝑠2) ∉ , we have:

• 𝜌𝓁+1(𝑡1)𝑏𝓁+1(𝑡1) = 𝜌𝓁+1(𝑡2)𝑏𝓁+1(𝑡2)
• 𝜌𝓁+1(𝑡1)

∑

𝑠∈[𝑠1] 𝑊𝓁+1(𝑠, 𝑡1) = 𝜌𝓁+1(𝑡2)
∑

𝑠∈[𝑠1] 𝑊𝓁+1(𝑠, 𝑡2)
• 𝜌𝓁+1(𝑡1)

∑

𝑠∈[𝑠2] 𝑊𝓁+1(𝑠, 𝑡1) = 𝜌𝓁+1(𝑡2)
∑

𝑠∈[𝑠2] 𝑊𝓁+1(𝑠, 𝑡2)

Let us now consider ′ instead of , where 𝑠1 and 𝑠2 have been put
in the same equivalence class. Since the equivalence classes of ′ are
union of classes of , we get that:

• 𝜌𝓁+1(𝑡1)𝑏𝓁+1(𝑡1) = 𝜌𝓁+1(𝑡2)𝑏𝓁+1(𝑡2)
• ∀𝑆 ∈ 𝓁∕′

𝓁 ∶ 𝜌𝓁+1(𝑡1)
∑

𝑠∈𝑆 𝑊𝓁+1(𝑠, 𝑡1) = 𝜌𝓁+1(𝑡2)
∑

𝑠∈𝑆 𝑊𝓁+1(𝑠, 𝑡2) □

The overall meaning of this last Lemma is that during the compu-
tation of , when two nodes are declared equivalent, we do not have
to re-check their equivalence when some other layer is reduced.

Thanks to this last result, we obtain the following theorem.

Theorem 2. Let  be a NN. There exists a unique maximum pro-
portional exact lumpability  over  . Moreover,  and ∕ can
be computed in linear time with respect to the size of  , i.e., in time
𝛩
(

∑

| ×  |

)

.
𝓁∈(𝑘] 𝓁−1 𝓁
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Fig. 3. Pruning one node and updating the network.
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Algorithm 1 Computes the maximal proportional exact lumpability on

1: function LumpNeuralNetwork( = (𝑘, {𝓁}𝓁∈[𝑘], {𝑊𝓁}𝓁∈(𝑘],
{𝑏𝓁}𝓁∈(𝑘], {𝐴𝓁}𝓁∈(𝑘]))

2:  ′
0 ←

{

𝑆𝑖 = [𝑠𝑖] ∶ 𝑠𝑖 ∈ 0
}

3: for all 𝑆𝑖 = [𝑠𝑖] ∈  ′
0 do

4: for all 𝑠𝑗 ∈ 1 do
5: 𝑂(𝑆𝑖, 𝑠𝑗 ) ← 𝑊1(𝑠𝑖, 𝑠𝑗 )
6: 𝑊̃1

(

𝑆𝑖, {𝑠𝑗}
)

← 𝑊1
(

𝑠𝑖, 𝑠𝑗
)

7: end for
8: end for
9: for all 𝑙 ∈ (𝑘] do

10:  ′
𝑙 ← ∅

11: while 𝑙 ≠ ∅ do
12: 𝑠 ← Pick(𝑙)
13: 𝐶 ← {𝑠}
14: 𝑏′𝑙(𝐶) ← 𝑏𝑙(𝑠), 𝐴′

𝑙(𝐶) ← 𝐴𝑙(𝑠)
15: for all 𝑆′ ∈  ′

𝑙−1 do
16: 𝑊 ′

𝑙
(

𝑆′, 𝐶
)

← 𝑊̃𝑙
(

𝑆′, {𝑠}
)

17: end for
18: for all 𝑠′ ∈ 𝑙 ⧵ {𝑠} do
19: 𝜌𝑠′ ← 𝑏𝑙(𝑠)∕𝑏𝑙(𝑠′)
20: for all 𝑆′ ∈  ′

𝑙−1 do
21: if 𝜌𝑠′ ∗ 𝑂(𝑆′, 𝑠′) ≠ 𝑂(𝑆′, 𝑠) then
22: GO TO Line 18
23: end if
24: end for
25: 𝐶 ← 𝐶 ∪ {𝑠′}
26: 𝑆 ← 𝑆 ⧵ {𝑠′}
27: 𝑅(𝑠′) ← 𝜌𝑠′
28: end for
29:  ′

𝑙 =  ′
𝑙 ∪ {𝐶}

30: end while
31: for all 𝐶 ∈  ′

𝑙 , 𝑠
′ ∈ 𝑙+1 do

32: 𝑂(𝐶, 𝑠′) ←
∑

𝑟∈𝐶 𝑊𝑙+1(𝑟, 𝑠′)
33: 𝑊̃𝑙

(

𝐶, {𝑠′}
)

←
∑

𝑟∈𝐶 𝑅(𝑟)𝑊𝑙+1(𝑟, 𝑠′)
34: end for
35: end for
36: return  ⧵ =

(

𝑘, { ′
𝓁}𝓁∈[𝑘], {𝑊

′
𝓁}𝓁∈(𝑘], {𝑏

′
𝓁}𝓁∈(𝑘], {𝐴

′
𝓁}𝓁∈(𝑘]

)

37: end function

Let  = (𝑘, {𝓁}𝓁∈[𝑘], {𝑊𝓁}𝓁∈(𝑘], {𝑏𝓁}𝓁∈(𝑘], {𝐴𝓁}𝓁∈(𝑘]) be a Neural
Network. LumpNeuralNetwork( ) defined in Algorithm 1 com-
putes the maximum proportional exact lumpability  over  .
7

Before unraveling the technical details, we introduce a small exam-
ple to describe the idea behind the algorithm internals.

Suppose we want to find the equivalence classes in layer 𝑙, with
1 ≤ 𝑙 ≤ 𝑘. For sake of readability, assume  ′

𝑙−1 = {𝐶1, 𝐶2}—layer
𝑙 − 1 has been previously split in two equivalence classes. Pick one
element 𝑠 from 𝑙. Roughly speaking, 𝑠 is the representative of the
next equivalence class we will create. We want to find all the elements
𝑠′ ∈ 𝑙 ⧵ {𝑠} such that 𝑠𝑠′. Using Definition 7, 𝑠 and 𝑠′ are equivalent
according to  if and only if:

• 𝑏𝑙(𝑠) is proportional to 𝑏𝑙(𝑠′)
• for both 𝐶1 and 𝐶2—the two equivalence classes identified in
 ′
𝑙−1—the sum of the weights from 𝐶1(𝐶2) to 𝑠 is proportional to

the sum of the weights from 𝐶1(𝐶2) to 𝑠′.

To identify all these 𝑠′, we start by noticing that 𝜌𝑙(𝑠) can be set
o 1. Exploiting this fact, we can compute 𝜌𝑙(𝑠′)—from Definition 7—
s 𝑏𝑙(𝑠)∕𝑏𝑙(𝑠′). Using such value, what is left to check is whether the
eights from 𝐶𝑖 to 𝑠 are proportional to the weights from 𝐶𝑖 to 𝑠′.

If this condition holds, then 𝑠 and 𝑠′ are equivalent. Otherwise, they
are not. Once 𝑠 is checked against all the elements inside 𝑙 ⧵ {𝑠},
the equivalence class [𝑠] is complete. We iterate the procedure starting
with the choice of 𝑠 until all elements of 𝑙 have been put in some
equivalence class.

This very idea has been exploited to devise Algorithm 1. The for
loop at lines 3–8 handles the first layer of the Neural Network. Each
element is treated as a singleton equivalence class.

For loop 9–35 takes care of splitting all the other layers, one per
time. Let 𝑙 be the current layer. It is split completely inside for loop
11–30. We denote with 𝐶 the current equivalence class, which at the
beginning contains just 𝑠—notice that any strategy to pick 𝑠 from 𝑙 at
line 12 can be adopted.

The for loop 18–28 is devoted to find all the elements left in 𝑙 that
re equivalent to 𝑠. This goal is accomplished by first iterating through
ll elements 𝑠′ ∈ 𝑙. For each one of them, we scan all the equivalence

classes 𝑆′ from the layer 𝑙 − 1—For loop 20–24. At line 21 we check if
he sum of the weights from 𝑆′ to 𝑠—stored in 𝑂(𝑆′, 𝑠)—is proportional

to the sum of the weights from 𝑆′ to 𝑠′—stored in 𝑂(𝑆′, 𝑠′). If there
exists one class 𝑆′ such that this condition does not hold, then 𝑠 and 𝑠′

are not equivalent and we move to the next 𝑠′. If no such 𝑆′ is found,
then 𝑠′ is added to 𝐶 and we remove it from 𝑙.

Variable 𝑂 is updated in lines 31–34. On the other hand, the
variable 𝑊̃ is used to store the weighted sum of the rates, so that we
an correctly populate 𝑊 ′

𝑙 at each iteration. The function returns the
umped neural network  ⧵.

We now investigate the complexity of the proposed algorithm.

We focus on one specific iteration of loop 9–35.
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The complexity of while loop 11–30 is composed of: the number of
iterations performed and the complexity of each one of them. The while
loop is performed (|𝑙|) times, with we worst case reached when all
the equivalence classes are singleton. For what concerns the complexity
of each iteration, there are two inner for loops. The former, lines 15–17,
has a (| ′

𝑙−1|) running time. The latter, lines 18–28, has complexity
(|𝑙|) ∗ (| ′

𝑙−1|) = (|𝑙| ∗ | ′
𝑙−1|). Hence, the overall complexity

f one iteration of while loop 11–30 is (| ′
𝑙−1|) + (|𝑙| ∗ | ′

𝑙−1|) =
(|𝑙| ∗ | ′

𝑙−1|).
Recalling that the while loop has to be performed (|𝑙|) times, we

btain (|𝑙|
2 ∗ | ′

𝑙−1|).
The semantical equivalence between  and  ⧵ has been proven

n Theorem 1. We want the reader to focus on the fact that the
nly assumption made in such a theorem is that  is a proportional
umpability. This is because the main equivalence result is proven in
emma 1. In such Lemma, proved that the (Leaky)ReLU is amenable to
e used to compute a Proportional reduced NN (as for Definition 7) by
xploiting the following property:

𝑦 ∈ R ∀𝑟 ∈ R>0 𝑅𝑒𝐿𝑈 (𝑟 ∗ 𝑦) = 𝑟 ∗ 𝑅𝑒𝐿𝑈 (𝑦) . (22)

Hence, in some sense, Theorem 1 is unaware of which activation
unction 𝑓 is used as long as a result like Lemma 1 can be proved for
.

In order to guarantee the correctness of the removal on all possible
nputs, as stated in Theorem 1, it is not possible to exploit less restric-
ive relationships than proportionality. This fact can also be formally
roved, under the hypothesis that the input set is sufficiently rich.
owever, one could ask what happens if we move from a simple
roportionality relation to a linear dependence. For instance, let us
onsider what happens if in Definition 6 we relax the two equations
y considering that 𝑠1 is a linear combination of 𝑠2 and 𝑠3, i.e.:

• 𝜌𝓁(𝑠1)𝑏𝓁(𝑠1) = 𝜌𝓁(𝑠2)𝑏𝓁(𝑠2) + 𝜌𝓁(𝑠3)𝑏𝓁(𝑠3),
• 𝜌𝓁(𝑠1)

∑

𝑟∈𝑆′ 𝑊𝓁(𝑟, 𝑠1) = 𝜌𝓁(𝑠2)
∑

𝑟∈𝑆′ 𝑊𝓁(𝑟, 𝑠2) + 𝜌𝓁(𝑠3)
∑

𝑟∈𝑆′ 𝑊𝓁(𝑟, 𝑠3).

In this case, we could eliminate 𝑠1 by including its contribution on
the outgoing edges of both 𝑠2 and 𝑠3. Unfortunately, the behavior of
the network is preserved only for those input values 𝑥1, 𝑥2,… , 𝑥𝑚 which
ensures that ∑𝑚

𝑗=1 𝑊𝓁(𝑟𝑗 , 𝑠2)𝑥𝑗+𝑏𝓁(𝑠2) and ∑𝑚
𝑗=1 𝑊𝓁(𝑟𝑗 , 𝑠3)𝑥𝑗+𝑏𝓁(𝑠3) have

the same sign, since

• ∀𝑦1, 𝑦2 ∈ R, ∀𝑛1, 𝑛2 ∈ R>0,
• 𝑅𝑒𝐿𝑈 (𝑛1 ∗ 𝑦1 + 𝑛2 ∗ 𝑦2) = 𝑛1 ∗ 𝑅𝑒𝐿𝑈 (𝑦1) + 𝑛2 ∗ 𝑅𝑒𝐿𝑈 (𝑦2) iff 𝑦1 ∗
𝑦2 ≥ 0 .

In other terms, our analysis points out that reduction techniques
based on linear combinations of neurons can be exploited without
retraining the network only when strong hypotheses on the sign of the
neurons hold.

For better understanding, a graphic representation of the problem
can be seen in Fig. 4. In this example, we consider all ratios 𝜌 as unitary
and we ignore the bias. Let us consider 𝑊 (𝑟, 𝑠3) (in red), the incoming
weights of a fully connected node 𝑠3, as a linear combination of the
weights 𝑊 (𝑟, 𝑠1) and 𝑊 (𝑟, 𝑠2) of two different nodes in the same layer.
If the vectors 𝑊 (𝑟, 𝑠1) and 𝑊 (𝑟, 𝑠2) have at least one component with a
different sign (as in the example) there is a chance that also their linear
combination will have negative components. In this case, the sign of the
scalar product between the vector 𝑊 (𝑟, 𝑠3) and an input 𝑥 depends on
the angle 𝜃 between them. If 𝑐𝑜𝑠(𝜃) is negative, then the result will also
be negative. In this case, the update of the output of 𝑠1 will cause the
network to exhibit an approximate behavior. On the other hand, when
𝑊 (𝑟, 𝑠3) ∗ 𝑥 is positive, it will be the output of unit 𝑠2 to introduce
an error. This can be seen in Figs. 4(a) and 4(b), which show how the
output of 𝑠1, 𝑠2 and 𝑠3 change according to the angle they form with
the inputs 𝑥1 (in green) and 𝑥2 (in blue).

We now move to the study of quasi equivalent nodes. In particular,
8

we relax Definition 6 so that it takes into account a small error, in the
same spirit of Casagrande, Dreossi, and Piazza (2012). What we get is
that the relation between the incoming weights becomes:

𝜌𝓁(𝑠1)
∑

𝑟∈𝑆′
𝑊𝓁(𝑟, 𝑠1) = 𝜌𝓁(𝑠2)

∑

𝑟∈𝑆′
𝑊𝓁(𝑟, 𝑠2) + 𝜖𝑆′ (23)

hile, on the other hand, the relation between the biases:

𝓁(𝑠1)𝑏𝓁(𝑠1) = 𝜌𝓁(𝑠2)𝑏𝓁(𝑠2) + 𝜖𝑆′ (24)

With a small re-arrangement of Eqs. (23) and (24), we obtain:
∑

𝑟∈𝑆′
𝑊𝓁(𝑟, 𝑠1) =

𝜌𝓁(𝑠2)
𝜌𝓁(𝑠1)

∑

𝑟∈𝑆′
𝑊𝓁(𝑟, 𝑠2) +

𝜖𝑆′

𝜌𝓁(𝑠1)
(25)

𝑏𝓁(𝑠1) =
𝜌𝓁(𝑠2)
𝜌𝓁(𝑠1)

𝑏𝓁(𝑠2) +
𝜖𝑆′

𝜌𝓁(𝑠1)
(26)

that can be analyzed easily. In particular, from Eqs. (25) and (26)
we can see that the error that can be introduced is strictly related to
𝜌𝓁(𝑠1). In the case that 𝜌𝓁(𝑠1) is smaller than 1, then the error will
rastically increase. On the other hand, if 𝜌𝓁(𝑠1) is much greater than

1, the introduced error will be small.
Moreover, due to the layered nature of neural networks, the intro-

duction of an error in a single layer propagates throughout the whole
network.

Again, we provide a visualization of the weights to prune in Fig. 5.
Similarly to Fig. 4, we consider the red vector 𝑊 (𝑟, 𝑠3) as the weights
coming into unit 𝑠3. The vector is the target of our pruning method as it
an be obtained as a linear combination of the weights of units 𝑠1 (blue)

and 𝑠2 (green). In our setup, we also allow to remove a quasilinear
ector, which implies any vector falling within a cylinder with a ray
qual to 𝜖.

. Experimental results

We now present the experiments we carried on to test the feasibil-
ty of our approach, and in particular how the performance degrade
hen we relax some of the constraints imposed by our compression

echnique.

.1. Simulation design

In this section, we explore different scenarios where our method can
e effectively implemented. We have already demonstrated that, within
pecific constraints, it is possible to remove nodes from a fully con-
ected layer without altering the output of the network. Specifically,
e have shown that it is possible to prune a unit if its incoming weights
re a linear combination of the weights entering at least one other unit.

The sole limitation of our approach concerns the signs of the
eights. When the linear combination includes discordant signs, some

nformation is lost after the ReLU activation. In other words, the output
f the node to prune must exhibit the same sign as the sign of the output
f other nodes whose weights are a linear combination of the weights
f the target node.

To gain a deeper understanding of both the potential and constraints
f our technique, we focus on pruning a single dense layer and ob-
erve how performances drop under different conditions. Our pruning
ethod requires prior knowledge of which nodes present weights that

an be linearly combined to obtain the weights of the target node, as
ell as their coefficients. To evade the NP-complete problem of finding

uch elements, we synthetically construct the layer to be pruned,
nabling us to determine these parameters in advance.

After the training phase, we freeze some of the weights of the layer
nd manually overwrite the remaining ones as linear combinations of
ome of the frozen ones. After re-training the network, the accuracy is
asily recovered, allowing us to proceed with the pruning of this layer.
We test our method under three different scenarios:
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Fig. 4. Visual representation of how different inputs (here 𝑥1 and 𝑥2) can change the sign of the output of a unit. In this example, 𝑊 (𝑟, 𝑠3) are the weights incoming to the unit
𝑠3, and they can be represented as a linear combination of the weights incoming to nodes 𝑠1 and 𝑠2.
1. All the weights in the layer are positive, and the weights are
synthetically configured as linear combinations.

2. All the weights in the layer are positive, and the weights of
a node within the layer are quasi-linear combinations of the
weights of other nodes in the same layer, with a small error 𝜖.

3. We do not impose any constraints on the weights’ sign, and
the weights of the nodes to be pruned are overwritten as linear
combinations of a fixed subset of weights.

For the first two setups, we enforce strict positivity of all weights to
prevent conflicting signs. This constraint is stronger than what is strictly
required for our pruning method to function correctly, but it ensures
uniform sign outputs. Regarding the first point, as demonstrated, we
have verified that pruning all redundant nodes and adjusting the out-
puts of the remaining nodes according to our method do not affect the
network’s output at all.

More interestingly, we examine how our technique performs when
we allow a degree of flexibility in weight properties. To this end,
we explore two different scenarios. In the former, we analyze the
performance degradation of our technique when we introduce an ap-
proximation parameter, denoted as 𝜖. In the latter, we investigate a
real-world scenario by dealing with weights of discordant signs.

To evaluate the robustness of our method, we set up a series of
experiments where we implemented the neural network pruning by
lumping. In particular, we want to show how accuracy is affected when
the weights of the node to prune are not merely proportional to those
9

of another node in the same layer. Instead, these weights are a linear
combination of the weights of two or more other nodes.

Our experiments aim to analyze the performance of our pruning
method under relaxed constraints, rather than comparing it with ex-
isting heuristic methods. We apply the pruning technique to one of the
fully connected layers in three different model architectures, trained on
two benchmark datasets.

5.2. Datasets

For our analysis, we use two benchmark datasets. The first is
the MNIST dataset comprising 7,000 grayscale images of handwritten
digits, each measuring 28 × 28 pixels and categorized into 10 classes.
The second dataset is a benchmark dataset from Kaggle called Zillow’s
Home Value Prediction (Zestimate)1, from which we extracted a smaller
dataset comprising: Lot Area (in sq ft), Overall Quality (scale from 1 to
10), Overall Condition (scale from 1 to 10), Total Basement Area (in sq
ft), Number of Full Bathrooms, Number of Half Bathrooms, Number
of Bedrooms above ground, Total Number of Rooms above ground,
Number of Fireplaces, Garage Area (in sq ft). The last column is a
boolean value set to 1 only if the house price is above the median. In
our experiment, we refer to this dataset as the Housing dataset.

1 https://www.kaggle.com/c/zillow-prize-1/overview

https://www.kaggle.com/c/zillow-prize-1/overview
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Fig. 5. Graphical representation of quasilinearity. The red vector represents the weights of the node to prune, as a linear combination of the weights of two different nodes in
the same layer (green and blue). Allowing the weights to differ by a vector of small values 𝜖 means that all the vectors falling in the sphere can still be considered as linear
combinations of the green and blue vectors of weights.
5.3. Architectures

We conduct our experiments on the MNIST dataset with two differ-
ent neural networks. The first model is a Convolutional Neural Network
(CNN) comprising two convolutional blocks, each with 32 3 × 3 filters,
ollowed by a max-pooling layer. After a flatten layer, it consists of
hree fully connected layers (fc), ending with the softmax layer made
f 10 units. While the layer to prune has a fixed length of 128 units,
e change the number of units in the previous layer to study how the
ethod behaves under different pruning ratios.

The reason for this choice depends on the rank of the weights
atrix: as the weights are made of floating point numbers it is un-

easonable to think that the rank of the matrix can be lower than the
maller dimension. At the same time, whenever the number of weights
s larger than the number of their components, we can always describe
weight in the matrix as a linear combination of the other weights.

The second architecture is a dense autoencoder (AE), where we focus
n compressing the fully connected layer before the output layer. After
he input layer, the network comprises two fully connected layers for
he encoder, of 128 and 16 units respectively, followed by two layers
or the decoder, where the first 128 units fully connected layer precedes
he final output layer. While the inputs given to the CNN are the
8 × 28 images, the autoencoder takes a flattened version of the digits
nd returns a reconstructed output of the same dimensionality. Once
gain, we prune up to 96 weights in the second last layer.

Finally, we also test our pruning method on the housing dataset,
here we implement a simple Dense network made of only two hidden

ully connected layers (made of 16 and 128 units, respectively), where
he second one is the target of our pruning. The output layer consists
f a single node, whose role is to compute if the house price is above
he median.

As required by our method, all networks use ReLU activations on
he layer to prune, and we also exploit ReLU in all the other layers,
xcept for the output one.
10
5.4. Formulations of the performance metrics

We evaluate the performance of our method by measuring the
accuracy for the CNN and the Dense network, while we report the re-
construction loss for the autoencoder. The accuracy (Eq. (27)) is a ratio
between the correctly predicted test samples over all the predictions:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑡𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑡𝑟𝑢𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠

(27)

In our experiments, we can consider the accuracy as the perfor-
mance metric, instead of the F1-score, since the MNIST dataset is
balanced. We also report the accuracy of our Housing dataset, as we
are simply predicting a binary value.

To assess the performance of the autoencoder, we use the recon-
struction error, or the mean average error (Eq. (28)) which is the error
between the actual input value 𝑦 and the predicted value 𝑦̂ averaged
over the total number of predictions 𝑛.

𝑀𝐴𝐸 = 1
𝑛
∑

|𝑦 − 𝑦̂| (28)

5.5. Reproducibility and parameters assignment

We use a NVIDIA GeForce RTX 3090 and Tensorflow 2.13 for our
experiments. We designed three simple architectures to test our tech-
nique. As the target layer of our pruning has to be (i) fully connected
and (ii) with ReLU activation, we included at least one of such layers
before the output layer. Moreover, we assigned a large number of
nodes to the pruned layer to report the performance drop when we
removed a large number of nodes. The other previous layers are either
fully connected with a limited number of nodes (in the case of the
autoencoder and Dense network), or standard convolutional blocks
composed of convolutional and pooling layers. Given the nature of
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the dataset we exploited we did not delve into searching the best
parameters for such architectures, but we just set them to achieve
performance at least close to the state of the art. We also used a
fixed number of epochs to train the models because our goal is to
investigate the performance drop under different conditions, rather
than looking for the best model. Finally, we used ReLU activations and
Adam optimizer since they currently are the best combination in the
state of the art for simple architectures such as ours. All tests have been
repeated 20 times to display average and variance.

5.6. Experimental setup

The setup is the same for all networks: the models are trained for
a fixed number of epochs on the MNIST and Housing datasets to get
high accuracy for the CNN and the Dense network while looking for
the small reconstruction loss for the autoencoder. After the training
phase, we modify the weights of the fully connected layer to compress
(the second last one for all models) to test the behavior of the network
under the three scenarios we already defined. Specifically, we aim to
avoid calculating the coefficients of the linear combinations, so we
select a subset of weights and manually overwrite the remaining ones
as linear combinations of the fixed weights with a random component.
While this synthetically crafted layer allows us to test our hypothesis
in a faster way, it is possible to find these linear combinations without
imposing constraints on the weights.

The initial training of the network ensures that the subset of fixed
weights approximates feasible values. The number of nodes we preserve
equals the number of units in the previous layer. Since the weights
in the pruned layer are synthetically forced to be linearly dependent
or quasi-linear dependent, we set the number of weights used as
generators equal to the rank of the matrix of vectors. To clarify, while
pruning the nodes in the 128 units layer, given the previous layer has
32 units, we examine the 32 × 128 matrix of weights and we fix the
initial 32 weights. The remaining 96 weights are overwritten as pseudo-
random linear combinations of the 32 fixed weights. After this step,
the layer is frozen and a rapid fine-tuning of the network adjusts the
other weights to the new configuration. The resulting network allows
us to apply our method to remove up to 96 of the units in this specific
layer, with the number changing according to the number of units in
the previous layer, and depending on the different architectures we test.

To analyze the first two scenarios, we force the weights of this layer
to be positive during the training phase. Specifically, for the second
scenario, we draw a vector of random values between −𝜖 and 𝜖 to add
after the linear combination. Finally, the same process is repeated for
the third scenario without forcing the weights to be positive.

As mentioned earlier, during the first round of experiments, we
confirmed that when the weights in the layer to prune have all the
same sign, our method successfully removes the redundant units with-
out introducing any performance loss. More interestingly, we aim to
explore two scenarios: how the accuracy changes when the weights
of the node to prune are quasi-linear combinations, and second, what
happens when the signs of the weights can be discordant. In both cases,
the updating step of our algorithm introduces an error that causes the
network to deviate from its initial behavior.

Even if we only consider one layer as the target of our pruning
approach, we proved in Theorem 1 that it can be applied to any
fully connected hidden layer, and in particular that it can be applied
iteratively on multiple dense adjacent layers while maintaining the
semantic of the network (see Lemma 2).

5.7. Lumping a CNN

When a layer is configured with strictly positive weights and ex-
ploits ReLU activation, it cannot exhibit the non-linearity essential for
the network to learn. Nevertheless, this setup can still be valuable for
11

studying how the method behaves in the presence of nearly linear
dependence. Specifically, we introduce an error 𝜖, which depends on
the magnitude of the weights in the layer after the initial training.
Next, the weights in the layer are then overwritten as illustrated in
Fig. 5. We test our method under different parameter configurations,
in particular by using 16, 32, and 64 units in the layer before the
one target for our pruning, and different values of 𝜖. We also analyze
the relationship between the number of weights contributing to the
quasi-linear combination.

Fig. 6 shows how the accuracy decreases while pruning a layer of
128 nodes when the previous one contains either 16 units (top row) or
32 units (bottom row). We can prune up to 112 and 96 weights in the
target layer. To assign a reasonable number to 𝜖, we first compute the
average magnitude of the weights in the layer, and then select 𝜖 as the
5%, 10% and 15% of the average magnitude. This epsilon represents
the ray of the cylinder where we allow the weights to span. From our
tests, it is clear that if the weights of the node to remove are dependent
on a larger number of units, then removing such unit affects less the
performance of the network, even when 𝜖 is up to 15% of the average
magnitude of the weights.

Unfortunately, we witness the opposite behavior in the second sce-
nario. Results are shown in Fig. 7. When the weights can be of opposite
sign, the updating step introduces an error that diverges. Even if the
effect seems to be mitigated when the previous layer presents a larger
number of units, the cause is most probably related to the redundancy
of the network with respect to the difficulty of the task, rather than
an actual improvement. This can be seen by comparing the random
pruning (in black), with the increasing number of vectors used for the
linear combinations. Even though the results in this particular scenario
do not seem promising, it is important to notice that our algorithm can
be largely improved by designing a more intelligent strategy to remove
the weights, taking into account how many components are discordant
and which units are more or less relevant to the output.

5.8. Lumping an autoencoder

We conducted identical experiments using the autoencoder, with
summarized results shown in Fig. 8. While the CNN architecture ap-
peared less affected by our synthetic setup, the training and recovery
phases for the autoencoder demanded 100 and 350 epochs, respec-
tively.

Even if forcing the weights to be positive in the designed layer does
not seem to affect significantly the initial performance of the model, the
autoencoder cannot completely recover from manually setting up the
weights as linear combinations, and this can be seen in the plot from the
slight difference in the initial loss of the model. However, the marginal
difference observed is negligible. Our primary focus lies in observing
how the reconstruction loss deteriorates as we systematically remove
nodes from our designed layer.

Similarly to the previous setup, the black line represents the pruning
of positive random independent nodes, while the magenta line displays
the pruning of an AE where the layer is not forced to have positive
weights. The other results show the performance of our pruning by
lumping. As expected, the loss of the model is not affected when we
apply our pruning by lumping on positive weights. We still can observe
an acceptable behavior when we introduce 𝜖 as 5% of the average
magnitude of the weights in the layer. Finally, when we apply lumping
on discordant signs, we obtain results consistent with those achieved
in the CNN.

Fig. 10 displays a series of images depicting the reconstructed
images and their degradation as we remove 0, 25, 50, 75, or 100%
of the prunable nodes from our designed layer. This corresponds to
removing 0, 28, 56, 84, and 112 units out of the 128 units initially
present. Notably, the images degrade rapidly with the pruning of in-
dependent weights compared to leveraging our lumping method, even
when allowing for an error margin of up to 15% of the average weight

magnitude within the layer.
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Fig. 6. Average accuracy of pruning CNN (trained on MNIST) when changing the number of input units and the value of 𝜖.
Fig. 7. Pruning CNN trained on MNIST. The plots show how the accuracy changes when pruning nodes whose vectors are linear combinations of one or more other nodes’ weights
when their outputs might have discord signs.
By applying our lumping on the target layer, we can compress the
model from 205856 parameters to 116144 parameters overall, removing
almost half of the parameters. Notice that, since our pruning by lump-
ing is a node pruning method, this also results in greatly decreasing the
number of FLOPs performed at inference time.

5.9. Lumping a dense network

The final series of experiments aims to validate the robustness of
our analysis. For this reason, we test a different dataset (house price
prediction) on a simple dense architecture. The results are summarized
in Fig. 9. The results align consistently with those obtained from
experiments conducted on the MNIST dataset. As we have already seen,
lumping positive weights demonstrates minimal impact on the overall
accuracy, even for 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 up to 20% of the average weight magnitude
in the layer. However, in contrast to expectations, the purple line
representing the consolidation of positive weights exhibits unexpected
perturbations, as compared to Fig. 8. Our investigation attributes this
phenomenon to the version of the Tensorflow library. Specifically, we
observed that altering the version of the library can slightly influence
our results.
12
Finally, we can notice how the accuracy drops very fast when
applying lumping to weights with discordant signs, however, since we
set the number of dependant weights to 16, the results are consistent
with those presented in Fig. 7.

6. Discussion

In the previous section, we explored the efficiency of our pruning
method when the conditions are more similar to a real-world case.
Indeed, even if our technique allows us to produce a compressed
version of a network that produces the same exact output, we impose
very hard constraints on the nature of the weights. In a more realistic
setup, we assume the weights to be discordant, and we allow the linear
combinations to include an error. From our experiments, we discovered
a relationship between the number of units in the previous layer and the
drop in accuracy. Specifically, our method has proved to be more robust
when the weights have a higher number of dimensions. The reason
behind this behavior can most likely be associated with the number of
redundant nodes, as more complex networks probably included units
almost irrelevant to the final output.
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Fig. 8. Error plot of pruning via lumping applied to the autoencoder trained on MNIST.
Fig. 9. Error plot of pruning via lumping applied to the Dense network for house price prediction.
Our pruning technique shares some similarities with low-rank ap-
proximations, but while the latter forces the matrix of weights to have
a low rank during training time, we propose a post-training algorithm.

Another constraint we impose is the increasing number of nodes
of the final layers, the target of our pruning. While the funnel-like
architecture required for our pruning method to work the best is an
unusual case for CNNs, autoencoders are the perfect target. In this case,
our pruning method can potentially collapse all fully connected layers
in the decoder except for the output layer (see Fig. 11).

In the future, we would like to approach an even more realistic sce-
nario, by statistically analyzing the typical distribution of the weights in
benchmark networks. This would allow us to modify our algorithm to
target real weights, possibly considering removing the first less relevant
nodes. Another technique that can be efficiently combined with our
pruning is quantization. Finding linear dependence in a quantized
network would be a much easier task, and especially for autoencoder
architectures would achieve a significant degree of compression.

The actual implementation of these improvements would also allow
us to compare our technique with baseline methods. A good candidate
to prove the superiority of the proposed approach is the non-parametric
13
Friedman test (Zamri, Azhar, Mansor, Alway, & Kasihmuddin, 2022;
Zamri et al., 2024).

7. Conclusion

We propose a node pruning method that allows us to compress
units in fully connected layers of a neural network without needing
the original dataset or to re-train the model. By associating the nodes
of a network with the states of a Markov chain, we can take advantage
of state aggregation techniques distinctive to this area. In particular,
we apply proportional lumpability on the layer, and we can provide
a smaller version of the network that exhibits the same behavior,
exactly as it works in lumping Markov Chains. Our strong requirements
on the properties of the nodes led us to test our method also under
relaxed constraints, to test its applicability in real-case scenarios. Even
if the performance of the compressed version significantly drops when
the requirement on the sign of the outputs is not met, our method
shows high tolerance to quasi-linearity of the weights, which hints at
its compatibility with other compression methods, such as low-rank
tensor approximation. Regardless of the limitations of our method,
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Fig. 10. Reconstructed images after pruning the autoencoder architecture selecting random nodes (top and middle) compared to our approximated pruning method (bottom).
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his work opens the door to a new research field where the aggre-
ation techniques typical of performance evaluation are adopted in
etwork compression, usually explored only by the machine learning
ommunity.
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