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Abstract

Mathematical modeling has been crucial to address fundamental issues related to
COVID-19 disease-control policy decisions. This thesis deals with the robust

quantification of the disease burden associated with COVID-19 across different
socio-demographic settings. The presented work includes the statistical analysis of

novel epidemiological records to provide solid estimates describing the clinical
course of SARS-CoV-2 infections and the simulation of data-driven models to

forecast the potential impact of COVID-19 in rural and urban areas of Ethiopia.
Obtained estimates show that being older than 60 years of age is associated with

about 40% likelihood of developing symptoms after SARS-CoV-2 infection and 1%
risk of requiring intensive care. The analysis of potential SARS-CoV-2 transmission
in Ethiopia suggests that the low prevalence and mortality observed during 2020

can be explained by combined effect of younger demography and a reduced
transmission generated by school closures implemented in response to the

pandemic. Provided estimates highlight that in this country, after the launch of
vaccination in 2021, the highest fraction of severe cases is expected to arise from the

interaction between children (who are the main responsible for the spread of the
disease) with the elderly (representing the most vulnerable population segment).

Remarkably, prioritizing the vaccination of the elderly emerged as the best strategy
to reduce the number of critical patients, irrespectively to the limited number of

doses made available to low-income settings.
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Chapter 1

Introduction

1.1 The impact of mathematical modeling on public health

decisions

Mathematical modeling plays a pivotal role in understanding epidemiology and
supporting public health responses to epidemics. A clear example is provided by
the current COVID-19 crisis, during which mathematical models have been crucial
to address fundamental issues related to disease-control policy decisions, unravel-
ing hidden processes and quantifying key epidemiological parameters driving the
disease spread, and providing data-driven perspectives on the potential impact of
non-pharmaceutical interventions and alternative vaccination strategies.

The first attempt to model and explain disease patterns dates back to the twentieth
century when the nonlinear dynamics of infectious disease transmission were firstly
recognized. In 1906, Hemer understood that the decrease in the number of suscep-
tible individuals alone could bring the epidemic to a halt (Hamer, 1906). However,
the basic foundations of mathematical epidemiology are to be attributed to the work
published in August 1927 by Kermack and McKendrick (Kermack and McKendrick,
1927), where the authors pioneered the idea of describing the dynamics of disease
transmission in terms of a system of differential equations. Epidemiological mod-
eling has made huge steps in understanding the mechanisms behind the spread of
epidemics, incorporating stochasticity and the heterogeneous structures of the host
population affecting the diffusion of different pathogens. Nowadays, approaches
adopted could take into account different hidden factors which drive the transmis-
sion process, including human mobility, social mixing patterns, demographic struc-
ture, eco-climatic factors and they are often used to mimic changes in the infection
spread caused by alternative intervention measures (e.g. school closures, vaccina-
tion, case isolation, etc.) (Keeling and Rohani, 2011; Dare et al., 2015; Marziano et al.,
2021a; Li et al., 2017; Di Domenico et al., 2020; Kiem et al., 2021). In the last decades,
epidemiological models have been integrated into computational frameworks com-
plemented with detailed public health records, like contacts tracing, surveillance
data and genomic sequencing data. Developed frameworks allowed helped to im-
prove the appropriate management of uncertainty surrounding the model estimates
and consequent epidemiological forecasts, and the development of plausible scenar-
ios to explore expected outcomes to aid surveillance systems to cope with epidemic
threats.

The extensive use of mathematical modeling evaluating intervention strategies markedly
emerged in the 90s, when models were extensively used to plan the public response
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strategies for mitigating the severity of potential influenza pandemics and evaluate
vaccination programs to control childhood diseases epidemics (Gupta, Ferguson,
and Anderson, 1998; Longini Jr and Halloran, 1996; Brisson et al., 2000). More re-
cently, transmission models have been used to analyze data in real-time to assess
the effectiveness of intervention measures and forecast possible future epidemic tra-
jectories of Ebola, Zika and to support public decisions during the COVID-19 crisis
(Wallinga and Teunis, 2004; Guanghong et al., 2004). During the ongoing pandemic,
the analysis of contact-tracing data and detailed surveillance records have repre-
sented a fundamental aspect to robustly quantify hidden valuables influencing the
infection transmission in the human population. However, the use of mathematical
models may become even more crucial to analyze erratic data coming for countries
with vulnerable economies and public health systems, where the surveillance sys-
tem is extremely weak, as it is the case of several African countries.

This thesis aims at investigating appropriate modeling tools to provide solid es-
timates describing the clinical course of SARS-CoV-2 infections and the potential
burden of COVID-19, taking into account the potential role played by the pathogen
characteristics and by the heterogeneous socio-demographic structure of the pop-
ulation in the spread of COVID-19 disease. A specific focus of the thesis has been
represented by epidemiological circumstances that might characterized the spread
of SARS-CoV-2 infection across different geographical contexts of Ethiopia.

1.2 State of art

Mathematical modeling has been one of the cornerstones in the response to the
COVID-19 pandemic. A lot of work have been done on the projection of the COVID-
19 spread and the evaluation of the impact of different control measures (Marziano et
al., 2021a; Guzzetta et al., 2021; Saad-Roy et al., 2020; Chinazzi et al., 2020; Ferguson
et al., 2020; Hellewell et al., 2020; Kucharski et al., 2020; Trentini et al., 2021; Marziano
et al., 2021b). This include studies focusing on estimating the effectiveness of the
vaccination programs in reducing the burden on healthcare system and investigat-
ing the transmission potential of newly emerged SARS-CoV-2 variants (Marziano
et al., 2021b; Harris et al., 2021; Subbarao et al., 2021; Sheikh et al., 2021; Thiruven-
gadam et al., 2021; Pouwels et al., 2021; Falsey et al., 2021). To address fundamental
questions, a lot of work has developed to explore the hidden mechanisms and es-
timate key parameters driving the infection spread (Kiem et al., 2021; Verity et al.,
2020; Vespignani et al., 2020; Poletti et al., 2020a; Poletti et al., 2021;Onder, Rezza,
and Brusaferro, 2020; Yang et al., 2020). Several studies had shown that the risk of
experiencing symptomatic, critical disease, or death after infection increases with
the age (Poletti et al., 2020a; Poletti et al., 2021; Onder, Rezza, and Brusaferro, 2020;
Yang et al., 2020; Kiem et al., 2021; Verity et al., 2020). However, the robustness of
estimated risks strongly depends on the quality of data and the appropriate manage-
ment of biases affecting the analyzed records, which often consist of data collected
during the passive surveillance of the infesction or the disease. As a matter of fact,
risk factors describing the natural clinical course of the infection remained poorly
quantified (Davies et al., 2020; Wu et al., 2020). Difficulties in quantifying metrics
required to estimate the disease burden of COVID-19 are related to challenges in
assessing an unbiased sample of the infections which represents the appropriate de-
nominator for estimating the robust risks of outcomes (e.g., deaths, severe disease,
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respiratory symptoms) after infection (Verity et al., 2020; Poletti et al., 2020a; Poletti
et al., 2021). Indeed, the quantitative estimates of the clinical course of the infection
based only on confirmed cases could result in risk outcomes biased upward because
of the higher probability of analyzing the symptomatic cases and infected individ-
uals experiencing more severe symptoms (Verity et al., 2020; Poletti et al., 2020a;
Poletti et al., 2021; Biggerstaff et al., 2020; Wu et al., 2020). An illustrative example of
the huge uncertainty caused by this phenomenon is provided by the high variability
around the available estimates of the proportion of symptomatic infections, ranging
from 3% to 87% (Buitrago-Garcia et al., 2020; Byambasuren et al., 2020; Emery et al.,
2020; Nikolai et al., 2020; Oran and Topol, 2020; Poletti et al., 2021).

The first goal of this thesis is to quantify age-specific probabilities of transitions be-
tween stages defining the natural history of SARS-CoV-2 infection from a sample of
SARS-CoV-2 positive individuals identified in Italy between March and April 2020
among contacts of confirmed cases. The carried out analysis also provide estimates
of time intervals between key events defining the temporal clinical progression of
cases, as obtained from a larger sample of infections ascertained between February
and July 2020.

Unraveling the real burden of disease associated with the transmission events oc-
curring in the community may be an even more critical task in low-income coun-
tries that are characterized by a lack of reliable epidemiological records and limited
availability of, and access to, healthcare resources and infrastructures (Gilbert et al.,
2020; Poletti et al., 2018). A troubling example is given by Ethiopia, with a health-
care workforce that is five times lower than the minimum threshold defined by the
WHO for Sustainable Development Goals health targets (World Health organization.
Health Workforce Requirements for Universal Health Coverage and the Sustainable Devel-
opment Goals. Human Resource for Health Observers Series No. 17.), and far below the
African average (Haileamlak, 2018). This already difficult situation is exacerbated by
the spread of COVID-19, which is sustained by transmission from a large share of
asymptomatic infections, and by the recurrent emergence of SARS-CoV-2 variants,
such as the hyper-transmissible Delta and Omicron variant, which has progressively
replaced the historical strain in many countries (Genomic epidemiology of novel coron-
avirus - Africa-focused subsampling).

On the other hand, African countries have so far experienced a lower burden in
terms of prevalence and mortality compared to Europe and the United States, as
well as to numerous upper-middle-income countries in South America and Asia.
While SARS-CoV-2 has spread rapidly worldwide causing unprecedented pressure
on the healthcare system in most countries, it remains unclear why Africa was par-
tially spared from a marked number of cases and deaths. Many factors could help
to explain the experience of COVID-19 in Africa such as demography, sociocultural
aspects, environmental exposures, genetics, and the immune system (Mbow et al.,
2020). However, vulnerabilities of the health system in these countries should be
considered as these can possibly lead to an underestimation of the number of peo-
ple who have been affected by the infection and the disease. The lack of solid data
is indeed a critical aspect for understanding the true impact of the disease, planning
effective mitigation strategies and implementing relevant intervention measures.



4 Chapter 1. Introduction

The work presented in this thesis aims to assess how demographic factors and age-
specific contact patterns can influence the impact of COVID-19 epidemics across dif-
ferent geographical contexts of the South West Shewa Zone (SWSZ) of the Oromia
Region of Ethiopia.

Despite the tremendous achievements in the deployment of vaccination among high-
income countries, the current vaccination coverage of Ethiopia is one of the lowest
in Africa, with only 1.35% of the citizens being fully immunized (Our world in data.
COVID-19 Data Explorer; CovidVax). Further vulnerabilities of this country are the
high prevalence of comorbidities (e.g., malnutrition (Endris, Asefa, and Dube, 2017),
tuberculosis, and malaria).

To explore appropriate vaccination strategies in settings with limited vaccine sup-
ply, a modeling work is here proposed to quantify the impact of different vacci-
nation priority targets and vaccination strategies could have in reducing the num-
ber of SARS-CoV-2 infections and COVID-19 critical cases (e.g., requiring intensive
care), taking into account the hidden factors that characterize different African socio-
demographic contexts (e.g. in rural and urban areas).

1.3 Innovative aspects

In this thesis, to reduce potential biases in the identification of infections, the dif-
ferent risk ratios after infection are estimated based on a sample of SARS-CoV-2
positive contacts identified and tested independently of their symptoms and clinical
signs The analyzed sample is not characterized by the underestimation of asymp-
tomatic individuals and the lack of longitudinal records about the clinical history of
study participants. The strengths of this study design rely on

1. the minimization of the risks of bias in the identification of infections led by
the complete testing of all contacts of confirmed cases,

2. the daily follow-up of the infections for symptoms and critical disease in the
weeks following the exposure to all analyzed confirmed infections, which al-
lows to assess the exact outcome of potential patients experiencing the disease.

Provided metrics can be instrumental to refine model estimates aimed at assisting
the design and evaluation of strategies to control or mitigate the COVID-19 pan-
demic.

A second innovative aspect of this thesis is given by the analysis of novel social
contact data collected, before the pandemic, in the South West Shewa Zone of the
Oromia region in Ethiopia. Data consist of individual records on the number and
type of contacts experienced by study participants across different geographical con-
texts characterized by heterogeneous population density, work and travel opportu-
nities, and access to primary care. The study consists of a cross-sectional survey
with two-stage stratified random sampling by location and age group. These data,
once combined with an appropriate modeling framework, are used to quantify how
socio-demographic factors and observed mixing patterns can influence the expected
COVID-19 disease burden. By comparing estimates obtained when including and
excluding school contacts for the entire duration of the epidemic, the disease burden
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averted by school closure is assessed across different geographical contexts.

Finally, leveraging on data on individuals’ social mixing, a modeling work where
potential sources of infection in terms of the age of the infector individuals are esti-
mated over different phases of the pandemic and across different geographical con-
texts of the South West Shewa Zone. Different strategies of vaccination are simulated
and compared under the assumption of limited vaccine supply, taking into account
immunity acquired by both previous infection and vaccination. The model devel-
oped and consequent results could be instrumental to inform vaccination strategies
in low-income settings.

1.4 Structure of the thesis

After this first introductory chapter, the thesis is structured as follows.

• In chapter 2 I analyze a sample consisting of the line list of SARS-CoV-2 laboratory-
confirmed individuals ascertained in Lombardy between February 20 and July
16, 2020, and regularly updated by the regional public health authorities. In-
formation retrieved from this dataset was complemented with contact-tracing
records collected between March 10 and April 27 and with the results of a sero-
logical survey targeting case contacts conducted between April 16 and June 15,
2020. These data were analyzed to estimate the likelihood of developing res-
piratory symptoms or fever, of being admitted to a hospital and an ICU, of
developing a critical disease, and of dying after SARS-CoV-2 infection. These
estimates are provide stratified by age and sex. In addition, 88,538 records on
cases ascertained by regular surveillance activities were used to investigate the
distribution of patients’ length of stay in hospital and in ICU, and the time in-
terval between the following key events: from symptom onset to diagnosis,
from symptom onset to hospital and/or ICU admission, from symptom onset
to death, and from hospital to ICU admission.

• In chapter 3 I analyze social contact records collected at the end of 2019 in the
South West Shewa Zone of the Oromia region in Ethiopia, and I used this novel
dataset to quantify the influence of socio-demographic factors, observed mix-
ing patterns, and the school closure mandate in the COVID-19 disease burden
experienced in the first pandemic phase.

• In chapter 4 I focus on quantifying the contribution of different ages in the
spread of the SARS-CoV-2 transmission and critical diseases in the South West
Shewa Zone after two years of pandemic. The impact of alternative vaccine
priority targets is evaluated.

• Chapter 5 is devoted to summarizing the obtained results, highlighting the
overall conclusions and limitations of all works covered in the thesis.





7

Chapter 2

A quantitative assessment of
epidemiological parameters
required to investigate COVID-19
burden

2.1 Background

Mathematical modeling has been one of the cornerstones in the response to the
COVID-19 pandemic (Chinazzi et al., 2020; Ferguson et al., 2020; Guzzetta et al.,
2021; Hellewell et al., 2020; Kucharski et al., 2020; Marziano et al., 2021a; McCombs
and Kadelka, 2020; Salje H, 2020; Trentini et al., 2021; Vespignani et al., 2020;Wu,
Leung, and Leung, 2020). To provide solid estimates, models need to be properly
calibrated based on empirical evidence (Biggerstaff et al., 2020; Lau et al., 2020; Ma
et al., 2020; Salje H, 2020; Wood et al., 2021). While a lot of work has been done in
this direction (Cereda et al., 2020; Lau et al., 2020; Hilton and Keeling, 2020; Ma et
al., 2020; Park et al., 2020; Peiris et al., 2003; Riccardo et al., 2020; Zhang et al., 2020),
metrics required to estimate the disease burden are still poorly quantified (Davies
et al., 2020; Wu et al., 2020). Difficulties in deriving these quantities are related to
challenges in defining unbiased denominators (i.e., the infections) for computing
different risk outcomes (e.g., deaths, severe disease, respiratory symptoms) upon in-
fection (Poletti et al., 2020a; Poletti et al., 2021; Verity et al., 2020). Indeed, as asymp-
tomatic cases and infected individuals experiencing mild symptoms are, in general,
more likely to remain undetected, quantitative estimates of the clinical course of the
infection based only on confirmed cases could result in risk outcomes biased upward
(Biggerstaff et al., 2020; Poletti et al., 2020a; Poletti et al., 2021; Verity et al., 2020; Wu
et al., 2020).

In this work, we provide estimates of the probabilities of transition across the stages
characterizing the clinical progression after SARS-CoV-2 infection, stratified by age
and sex, as well as of the time delays between key events. To do this, we analyzed
a sample of 1,965 SARS-CoV-2 positive individuals who were contacts of confirmed
cases. These individuals were identified irrespective of their symptoms as part of
contact tracing activities carried out in Lombardy (Italy) over the period from March
10 to April 27, 2020. These individuals were daily monitored for symptoms for at
least two weeks after exposure to a COVID-19 case and either tested for SARS-CoV-2
via PCR in real time or retrospectively via IgG serological assays; their clinical his-
tory was also recorded. In addition to this highly detailed sample, we relied on the
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epidemiological records of all the 95,371 SARS-CoV-2 PCR confirmed infections re-
ported to the surveillance system between February and July 2020. This allowed us
to provide a comprehensive quantitative assessment of all the main epidemiological
parameters essential to model COVID-19 burden (see Figure 2.1), thus laying the
foundation for future COVID-19 modeling efforts.

Estimates on age-specific risk outcomes after SARS-CoV-2 infection were validated
against epidemiological records that have not been used to derive these quantities,
leveraging on data from two serological surveys conducted in Italy (Italian National
Institute of Statistics2020. Primi risultati dell’indagine di sieroprevalenza sul SARS-CoV-2;
Stefanelli et al., 2021) and on the national cumulative incidence reported up to April
2021 (Istituto Superiore di Sanità, 2021).

2.2 Methods

2.2.1 Study population

Lombardy represents the earliest and most affected region by the first COVID-19
epidemic wave experienced in Italy. Short after the detection of a first COVID-19
case on February 20, 2020, a ban of mass gatherings and the suspension of teach-
ing in schools and universities was applied to the entire region. The interruption of
non-essential productive activities and strict individual movement restrictions were
imposed to the most affected municipalities. On March 8, 2020, after a rapid increase
of cases, closure of all non-necessary businesses and industries and limitations of
movements except in cases of necessity were extended to the entire region. A na-
tional lockdown was imposed on March 10, 2020. Suspended economic and social
activities were gradually resumed between April 14 and May 18, 2020.

2.2.2 Data collection

Data analyzed here consists of the line list of SARS-CoV-2 laboratory confirmed
infections ascertained in Lombardy between February 20 and July 16, 2020, and
regularly updated by the regional public health authorities. Information retrieved
from this dataset was complemented with contact-tracing records collected between
March 10 and April 27 and with results of a serological survey targeting case con-
tacts conducted between April 16 and June 15, 2020 (Poletti et al., 2020a ; Poletti et
al., 2021). Data collection, integration, storage, and anonymization was managed by
regional health authorities as part of surveillance activities and outbreak investiga-
tions aimed at controlling and mitigating the COVID-19 epidemic in Italy.

2.2.3 Definition of COVID-19 case

From February 21 to February 25, 2020, following the criteria initially defined by the
European Centre for Disease Prevention and Control (ECDC), suspected COVID-19
cases were identified as:

1. patients with acute respiratory tract infection OR sudden onset of at least one
of the following: cough, fever, shortness of breath AND with no other aetiol-
ogy that fully explains the clinical presentation AND at least one of these other
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conditions: a history of travel to or residence in China, OR patients among
health care workers who has been working in an environment where severe
acute respiratory infections of unknown etiology are being cared for;

2. OR patients with any acute respiratory illness AND at least one of these other
conditions: having been in close contact with a confirmed or probable COVID-
19 case in the last 14 days prior to onset of symptoms, OR having visited or
worked in a live animal market in Wuhan, Hubei Province, China in the last
14 days prior to onset of symptoms, OR having worked or attended a health
care facility in the last 14 days prior to onset of symptoms where patients with
hospital-associated COVID-19 have been reported.

Confirmed cases were defined as suspect cases testing positive with a specific real-
time reverse transcription polymerase chain reaction (RT-PCR) assay targeting mul-
tiple genes of SARS-CoV-2 (Cereda et al., 2020; Cohen and Kessel, 2020; Corman
et al., 2020). From March 20, 2020 positivity to the nasopharyngeal swab was also
granted for assays that tested a single gene. At any time, ascertained infections were
defined as laboratory confirmed SARS-CoV-2 infections, irrespective of clinical signs
and symptoms. Inconclusive swabs were repeated to reach the diagnosis.

2.2.4 Ascertainment of infections among close case contacts

All ascertained SARS-CoV-2 infections were considered as potential index cases for
further spread of SARS-CoV-2. Close contacts of these individuals were therefore
identified through standard interviews of cases, informed of their possible exposure
and quarantined within 24-48 hours from a positive test result on the index case.

A close case contact was defined as a person living in the same household as a
COVID-19 confirmed case; a person having had face-to-face interaction with a COVID-
19 confirmed case within 2 meters and for more than 15 minutes; a person who was
in a closed environment (e.g. classroom, meeting room, hospital waiting room) with
a COVID-19 confirmed case at a distance of less than 2 meters for more than 15 min-
utes; a healthcare worker or other person providing direct care for a COVID-19 con-
firmed case, or laboratory workers handling specimens from a COVID-19 confirmed
case without recommended personal protective equipment (PPE) or with a possible
breach of PPE; a contact in an aircraft sitting within two seats (in any direction) of a
COVID-19 confirmed case, travel companions or persons providing care, and crew
members serving in the section of the aircraft where the index case was seated (pas-
sengers seated in the entire section or all passengers on the aircraft were considered
close contacts of a confirmed case when severity of symptoms or movement of the
case indicate more extensive exposure). Close case contacts were initially considered
as contacts occurred between 14 days before and 14 days after the date of symptom
onset of the index case. After March 20, 2020 the exposure period was shortened,
ranging from 2 days before to 14 days after the symptom onset of the index case
(World Health Organization. Contact tracing in the context of COVID-19: interim guid-
ance, 10 May 2020.). For individuals unable to sustain the contact tracing interview,
close contacts were identified by their parents, relatives or their emergency contacts.
From February 20 to February 25, 2020 all contacts of confirmed infections were
tested with RT-PCR, irrespective of clinical symptoms. From February 26 onward,
the traced contacts were tested with RT-PCR only in case of symptom onset.
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However, on April 16, 2020, regional health authorities initiated an IgG serological
survey of quarantined case contacts without history of testing against SARS-CoV-
2 infection to retrospectively identify all asymptomatic positive contacts. The test
used to detect SARS-CoV-2 IgG antibodies was the LIAISONR SARS-CoV-2 test (Di-
aSorin), employing magnetic beads coated with S1 & S2 antigens. The antigens used
in the tests are expressed in human cells to achieve proper folding, oligomer for-
mation, and glycosylation, providing material similar to the native spikes. The S1
and S2 proteins are both targets to neutralizing antibodies. The test provides the de-
tection of neutralizing antibodies with 98.3% specificity and 94.4% sensitivity at 15
days from diagnosis. Performance analyses validating the accuracy of this serolog-
ical test can be found in Bonelli et al., 2020. Serological test results were binary and
communicated to tested participants, who were categorized as seropositive if they
had developed IgG antibodies.

All case contacts, irrespectively to the presence of a laboratory diagnosis, were fol-
lowed up for at least 14 days after exposure to an index case and required by national
regulations to report symptoms to local public health authorities. Symptomatic cases
were defined as infected subjects showing fever ≥ 37.5C or one of the following
symptoms: dry cough, dyspnea, tachypnea, difficulty breathing, shortness of breath,
sore throat, and chest pain or pressure. The definition of symptoms did not change
throughout the period considered in this study. Clinical manifestations, admission
to hospital or intensive care units and death among both ascertained infections and
their close contacts were regularly updated by the regional health surveillance. In
our study, individuals experiencing critical diseases were defined as positive pa-
tients who were either admitted to an intensive care unit or died with a diagno-
sis of SARS-CoV-2 infection. Positive subjects who developed a critical disease are
hereafter simply denoted as critical cases. Hospitalized patients with a laboratory
confirmation of SARS-CoV-2 infection are denoted as ascertained cases admitted to
hospital.

2.2.5 Sample selection for computing risk outcomes

A large fraction of case contacts remained untested against SARS-CoV-2 infection,
due to difficulties in maintaining a high level of testing during the contact tracing
operations and to the relatively low coverage of IgG serological screening conducted
on traced contacts. As asymptomatic infections ascertained by surveillance systems
are likely under-represented, we selected a subsample of SARS-CoV-2 positive in-
dividuals who were tested irrespectively from their symptoms. In particular, we
considered infections ascertained among case contacts identified between March 10
and April 27, 2020 and belonging to clusters whose individuals were all tested and
daily followed up for symptoms. A fraction of these individuals, mainly symp-
tomatic ones, was tested by RT-PCR during contact-tracing activities. The remaining
fraction was confirmed via IgG serological assays collected at least one month after
exposure, thus allowing the identification of asymptomatic infections. This study
design allowed us to minimize the risks of bias in the identification of infections
when computing the proportion of SARS-CoV-2 infections developing symptoms
and severe conditions. The resulting subsample consisted of 1, 965 positive subjects
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identified in 2, 458 clusters of 3, 947 close contacts. None of these records showed
inconsistent data entries.

2.2.6 Statistical analysis

The aforementioned subsample of 1,965 positive individuals who were identified as
contacts of confirmed cases was analyzed to estimate the likelihood of developing
respiratory symptoms or fever ≥ 37.5C (SR), of being admitted to a hospital (HR)
and an ICU (IR), of developing critical disease (CR) and of dying after SARS-CoV-2
infection (IFR). The same sample was considered to estimate the case fatality ratio
(CFR). Age and sex specific ratios were computed as crude percentages; 95% confi-
dence intervals were computed by exact binomial tests. Logistic regression models
were used to estimate the corresponding risk ratios (RRs) using the case age group,
sex and month of identification (March or April) as model covariates. For the regres-
sion analysis, the following age-groups were considered: 0-59 years, 60-74 years, 75+
years.

The entire sample of cases ascertained by regular surveillance activities (88,538 symp-
tomatic individuals) was used to investigate temporal changes in the COVID-19 dis-
ease burden. In particular, we computed the age-specific crude percentage of as-
certained cases admitted to hospital (asHR) and the percentage of ICU admissions
among hospitalized cases (hIR) for four epidemic periods: before April, April, May
and after May.

The same sample of cases was used to investigate the distribution of patients’ length
of stay in hospital and in ICU, and the time interval between the following key
events: from symptom onset to diagnosis, from symptom onset to hospital and/or
ICU admission, from symptom onset to death, and from hospital to ICU admission.
The time at diagnosis was defined as the time of testing observed for positive in-
dividuals. As 3,855 out of 47,393 inpatients had inconsistent data entries on their
temporal clinical progression after hospital admission, we excluded the correspond-
ing data records when estimating time to key changes in patients’ status, such as
hospital or ICU admission and discharge. Specifically, we excluded inpatients with a
date of hospital admission or of death preceding the date of symptom onset, patients
with a date of ICU admission or death preceding their hospitalization and patients
with a negative length of stay in ICU or in hospital. Estimates for the hospital and
ICU length of stay and the time between key events are provided for two epidemic
periods, defined by considering the date of peak in the COVID-19 incidence experi-
enced during the first epidemic wave in Lombardy, namely March 16, 2020. Cases
were aggregated on the basis of the initial date of the considered interval. Negative
binomial distributions were used to separately fit each time interval of interest. A
negative binomial distribution was considered to better reflect the data character-
istics: time lags expressed as integer values (delays measured in days), and a non-
negligible proportion of patients with null delays (events occurring within the same
day). Specifically, the negative binomial distribution was preferred over the Pois-
son, truncated normal, Gamma, Weibull, and Log-normal distributions, given that
these alternatives were associated with a lower goodness of fit in terms of Akaike
Information Criterion or they requested additional assumptions to fit the available
records (e.g., the Gamma distribution is defined for strictly positive values only).
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To assess the robustness of the estimated risk outcomes with respect to the change in
the definition of close contact occurred on March 20, 2020, we investigated how the
analyzed metrics would change when considering infections ascertained after that
date only. Since in our baseline analysis no assumptions were made on the time from
the diagnosis of SARS-CoV-2 to hospital or to ICU admission, we also explored the
effect of excluding patients reporting a delay from SARS-CoV-2 diagnosis to hospital
or ICU admission greater than 30 days. Specifically, we analyzed the impact of this
assumption on the estimated risk outcomes, the time intervals between key events,
and the temporal changes in the probability of being admitted to hospital and ICU.

The statistical analysis was performed with the software R (version 3.6), using the
“MASS” package. Figure 2.1 provides a schematic representation of all metrics con-
sidered to quantify COVID-19 burden.
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FIGURE 2.1: Schematic representation of transition probabilities char-
acterizing possible disease outcomes after SARS-CoV-2 infection.
These include the symptomatic ratio (SR), the ratio of critical cases
(CR), the case (CFR) and infection fatality ratios (IFR) and similar
quantities that could be estimated using ascertained symptomatic in-
fections (asCR, asCFR) as the set of exposed individuals. B Schematic
representation of transition probabilities characterizing the hospital
(HR) and ICU (IR) admission among infected individuals, and of sim-
ilar quantities that could be estimated using ascertained symptomatic
infections (asHR) or hospital patients (hCFR, hIR) as the set of ex-
posed individuals. C Schematic representation of time to key events
defining the temporal clinical progression of cases. D Schematic rep-
resentation of the differences in the ascertainment rates associated
with SARS-CoV-2 infections and symptomatic cases in the commu-
nity and among close contacts of identified cases, with the latter rep-
resenting individuals who were all tested for SARS-CoV-2 infection
and daily monitored for symptoms during their quarantine or isola-

tion period.

2.2.7 Validation of age-specific risk outcomes

The adopted approach was validated by applying our estimates for age-specific risk
outcomes given SARS-CoV-2 infection to seroprevalence data available for Italy and
comparing the obtained results with the age distribution of critical cases and deaths
observed in Lombardy during the first pandemic wave and throughout Italy up to
April 2021. Combining the estimated risk outcomes with a serological study con-
ducted in a specific period would be inappropriate to estimate the absolute num-
ber of patients associated with different outcomes at a different time. However, the
rationale of applying the estimated risk outcomes to independent seroprevalence
data (collected at a different time) was to test whether the provided estimates could
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be used to reproduce the age profiles characterizing critical patients and deaths
recorded over different periods.

Specifically, we computed the expected age distribution of critical cases C(a) and
deaths D(a) as

C(a) =
i(a)CR(a)

∑a i(a)CR(a)

and

D(a) =
i(a)IFR(a)

∑a i(a)IFR(a)

where i(a) is the number of SARS-CoV-2 IgG positive individuals identified in the
age class a through serological surveys, CR(a) and IFR(a) represent our estimates
for the probability of developing critical disease and the infection fatality ratio for
the age class a. i(a) was retrieved from: 1) a serological study conducted at the
national level between May 25 and July 15, 2020 (Italian National Institute of Statis-
tics2020. Primi risultati dell’indagine di sieroprevalenza sul SARS-CoV-2) and 2) results
of an extensive serological screening applied between May 5 and May 15, 2020 to
77% of individuals residing in a high-incidence area (approximately 8,000 residents)
located in north-eastern Italy (Stefanelli et al., 2021). Resulting values for C(a) were
compared to the age distribution of all critical cases recorded in Lombardy between
February 20 and July 16, 2020. Values obtained for D(a) were compared to the age
distribution of cumulative deaths recorded in Lombardy until July 16, 2020 and that
observed at the national level between February 2020 and April 2021. The latter
was obtained by using cumulative notification data stratified by age as provided by
the Integrated National Surveillance System (NSS) (Istituto Superiore di Sanità, 2021).
Validation of risk outcomes was carried by considering the following age-groups:
0-19, 20-39, 40-59, 60-69, 70+ years.

2.2.8 Ethical statement

Data collection and analysis were part of outbreak investigations during a public
health emergency. Processing of COVID-19 data is necessary for reasons of public
interest in the area of public health, such as protecting against serious cross-border
threats to health or ensuring high standards of quality and safety of health care,
and therefore exempted from institutional review board approval (Regulation EU
2016/679 GDPR).

2.3 Results

2.3.1 Sample description

We analyzed a total of 95,371 laboratory confirmed infections ascertained between
February and July 2020. Of these, 88,538 (92.8%, median age 65 years, IQR: 50-81) re-
ported respiratory symptoms or fever ≥ 37.5C, 47,393 (49.7%, median age 69 years,
IQR: 55-80) were hospitalized, 19,020 (19.9%, median age 79 years, IQR: 70-86) de-
veloped critical disease (i.e., requiring ICU treatment or resulting in a fatal outcome)
and 16,778 (17.6%, median age 81 years, IQR: 73-87) died with a diagnosis of SARS-
CoV-2 (Table 2.1 ).
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By combining the regional line list of all ascertained infections with contact-tracing
records collected between March 10 and April 27, 2020, we obtained a subsample of
1,965 (median age 53 years, IQR: 32-64) contacts who resulted positive to SARS-CoV-
2. Of these, 630 (32.1%, median age 57 years, IQR: 42.5 - 71) developed symptoms,
266 (13.5%, median age 64 years, IQR: 53.25 - 76) were hospitalized, 43 (2.2%, median
age 76 years, IQR: 69 - 81) experienced critical disease conditions, 12 (0.6%, median
age 68 years, IQR: 52.5 - 72) were admitted to ICUs, and 35 (1.8%, median age 78
years, IQR: 74.5 – 82.5) resulted in a fatal outcome; 31 (1.6%, median age 79 years,
IQR: 75-84) subjects died without being admitted to ICU; 4 (0.2%, median age 73.5
years, IQR: 71.25-75) died after an ICU admission (Table 2.2).

TABLE 2.1: Estimated risk ratios of hospital admission, experiencing
critical disease, and fatal outcome among symptomatic cases, disag-

gregated by age, sex, and period.
∗ RR and 95%CI were not computed for insufficiently large sample size
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TABLE 2.2: Estimated crude percentages of symptomatic, hospital-
ized, ICU admitted, and critical cases among SARS-CoV-2 positive
individuals who were identified as contacts of confirmed cases as
well as estimated risk of death among positive individuals (i.e., in-
fections) and symptomatic case (i.e., infected and symptomatic) indi-
viduals who were identified as contacts of confirmed cases. Results

are disaggregated by age and sex.

2.3.2 Metrics of COVID-19 burden

Age-specific transition probabilities characterizing the different outcomes after SARS-
CoV-2 infection were estimated by considering infections occurred among close case
contacts identified between March 10 and April 27, 2020. We found that the likeli-
hood of developing respiratory symptoms or fever ≥ 37.5 C after SARS-CoV-2 in-
fection (SR) was 27.9% (95%CI: 25.4-30.4%) under 60 years of age and 39.9% (95%CI:
36.2-43.6%) above (see Table 2.2). We estimated that, in the first age-group, 8.8%
(95%CI: 7.3-10.5%) of infected individuals required hospital care (HR) and 0.4%
(95%CI: 0.1-0.9%) were admitted to ICU (IR); the corresponding proportions in posi-
tive individuals older than 60 years were 22.3% (95%CI: 19.3-25.6%) and 1% (95%CI:
0.4-2.1%), respectively. A significantly higher risk of developing critical disease after
infection (CR) was found above 60 years of age when compared to younger indi-
viduals: 5.3% (95%CI: 3.7-7.2%) vs 0.5% (95%CI: 0.2-1.1%). The infection fatality
ratio (IFR) ranged between 0.2% (95%CI: 0.0-0.6%) in subjects younger than 60 years
to 12.3% (95%CI: 6.9-19.7%) for those aged 80 years or more. The case fatality ra-
tio (CFR) in these two age groups was 0.6% (95%CI: 0.1-2%) and 19.2% (95%CI:
10.9-30.1%). Although the case fatality ratio was higher for subjects older than 80
years compared to cases aged 60-79 years (namely, 9.5%, 95%CI: 5.8-14.4%), a signif-
icantly lower proportion of ICU admissions was found for the oldest age segment:
1.2% (95%CI: 0.5-2.5%) vs 0% (95%CI: 0-3.2%). A detailed age-stratification of all
these quantities is provided in Table 2.2. The strong age dependency in the risk of
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developing symptoms and most severe outcomes after SARS-CoV-2 infection was
confirmed by a statistical analysis based on generalized linear models applied to
infected case contacts and accounting for possible confounding factors (see Table
2.4). The regression analysis also highlighted a significantly higher risk ratio (RR)
of hospital admission (RR: 1.34, 95%CI: 1.07-1.67), critical disease (RR: 2.16, 95%CI:
1.17-3.98), and death (RR: 2.15, 95%CI: 1.08-4.27) for infected males as compared to
females (Table 2.4).

Figure 2.2 compares the age distributions of critical cases and deaths observed in
Lombardy and in Italy with those resulting when applying our estimates for risk out-
comes after SARS-CoV-2 infection to serological data available for the Italian context
(Istituto Superiore di Sanità,2021, Italian National Institute of Statistics, 2020; Ste-
fanelli et al., 2021). These findings highlight that, although estimates for CR and IFR
were obtained from a relatively small sample of case contacts identified during the
first pandemic phase (1,965 subjects), they can well capture the age profiles charac-
terizing the entire line list of critical patients and deaths recorded in Lombardy dur-
ing the first COVID-19 wave and the age distribution of all deaths officially recorded
across the entire Italian territory until 29 April 2021.
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FIGURE 2.2: A Comparison between the age distributions of critical
cases as obtained when applying estimated risk outcomes to avail-
able serological records with the one observed in Lombardy during
the first COVID-19 wave. B Comparison between the age distribu-
tions of deaths as obtained when applying estimated risk outcomes
to available serological records with the one observed in Lombardy
during the first COVID-19 wave and the one associated to deaths oc-
curred in Italy between February 2020 and April 2021, as reported by

the Integrated National Surveillance System (NSS).
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2.3.3 Temporal changes in the investigated risk metrics

Temporal changes in the risk of being admitted to hospital and ICUs were explored
by analyzing records of the complete list of 88,538 symptomatic cases ascertained
between February and July 2020 (see Table 2.1 and Table S2 for sample descrip-
tion). The analyzed data includes inpatients with inconsistencies in dates defining
the temporal clinical progression after hospitalization. Crude ratios computed from
ascertained symptomatic cases should be carefully interpreted because of possible
biases due to higher ascertainment rates among more severe cases. However, the
analysis of this large sample highlighted an increase of admission rates at different
levels of intensity of care among the elderly (Figure 2.3). In particular, hospital
admission ratios among ascertained symptomatic cases (asHR) aged more than 80
years increased from the 26.4% (95%CI: 25.5-27.2%) observed between April and
May to 34.7% (95%CI: 30.5-39.1%) afterwards. Similarly, the ICU admission ratio
among patients hospitalized (hIR) in this age group raised from the 0.9% (95%CI:
0.7-1.1%) observed between March and April to 2.3% (95%CI: 1.2-3.8%) afterwards.

FIGURE 2.3: A Age-specific case hospital admission ratios among
ascertained symptomatic cases (asHR). B Age-specific ICU admis-
sion ratios among hospitalized cases (hIR). Bars of different colors
represent crude percentages observed across different epidemic peri-
ods; vertical lines represent 95% confidence intervals computed by
exact binomial tests. Numbers shown in each panel represent the
age-specific number of events observed in the data among exposed

COVID-19 cases.

2.3.4 Time to key events

Time delays from symptom onset to diagnosis and death were investigated by ana-
lyzing all the 88,538 symptomatic infections ascertained in Lombardy between Febru-
ary and July 2020. The temporal clinical progression of inpatients was investigated
by analyzing 43,538 hospitalized cases (Table 2.3), after having excluded 3,855 out
of the 47,393 available inpatient records because of inconsistent dates of hospital or
ICU admission/discharge. We estimated that, overall, the median delay between
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symptom onset and diagnosis was 4 (IQR: 1-10) days. The median time from symp-
tom onset to death was 12 (IQR: 7-21) days. Hospitalization of cases occurred 5 (IQR:
2-9) days after patients’ symptom onset; admission to ICU occurred 10 (IQR: 6-15)
days after symptom onset. The median time between hospital and ICU admission
was 3 (IQR: 0-6) days. The median hospital length of stay was 10 (IQR: 3-21) days,
while the median length of stay in ICU was 11 (IQR: 6-19) days. A negative bino-
mial distribution was used to separately fit each time interval of interest (Figure 2.4).

When looking at these variables across different ages, we found a shorter delay be-
tween symptom onset and death in individuals older than 70 years (11-12 days vs
15-16 days at younger ages) and a shorter length of stay in ICU among patients aged
80 years or more (5 days vs 9-12 days at younger ages). We separately analyzed these
quantities for cases who developed symptoms before and after March 16, 2020, cor-
responding to the peak in the number of hospitalized patients in Lombardy (Figure
2.5). We found a marked decrease in the time required to both diagnose and hos-
pitalize COVID-19 patients after this date (from 7 to 2 days and from 7 to 3 days,
respectively, Table 2.3). It is worth noting that the lag between the time of the test
and the time when the test result became available remained approximately constant
during the entire period considered (ranging from 2 to 4 days). Detailed estimates
obtained on the temporal clinical progression of COVID-19 cases are reported in ta-
ble 2.3.

By considering only positive contacts ascertained after March 20, 2020, when the
definition of close contact changed, a lower likelihood of experiencing critical dis-
ease and death for positive individuals older than 70 years and females was found
(see Table 2.6). Such differences may be linked to the enhancement of the trac-
ing and treatment procedures during the first month of the COVID-19 epidemic,
which may include a faster detection and diagnosis of SARS-CoV-2 infections and
shorter time lags between diagnosis and hospitalization of severe patients. On the
other hand, our estimates did not change when excluding patients with a delay from
SARS-CoV-2 diagnosis to hospital or ICU admission greater than 30 days (Tables 2.7
and 2.8, and Figure 2.6).
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TABLE 2.3: Time intervals between key events as estimated from
laboratory confirmed infections ascertained in Lombardy between

February 20 and July 16, 2020

2.4 Discussion and conclusions

In this work, we provided a comprehensive assessment of the parameters regulating
COVID-19 burden and natural history. The proposed analysis leveraged data on the
infections ascertained in Italy between February and July 2020 to estimate the time
between key events and the age- and sex- specific stage-to-stage transition probabil-
ities characterizing the clinical progression of COVID-19.

Previous studies have highlighted that a significant share of SARS-CoV-2 infections
is represented by symptom-free subjects and by individuals developing mild dis-
ease (Emery et al., 2020; Lavezzo et al., 2020; Poletti et al., 2021;Salje H, 2020; Wu
et al., 2020). Therefore, using the number of notified or confirmed COVID-19 cases
as an approximation of the number of infections would likely lead to overestimate
the risk of disease and severe outcomes, undermining the comparability and gener-
alizability of the obtained results. An illustrative example of the huge uncertainty
caused by this phenomenon is provided by the high variability around the avail-
able estimates of the proportion of symptomatic infections, ranging from 3% to 87%
(Buitrago-Garcia et al., 2020; Byambasuren et al., 2020; Emery et al., 2020; Nikolai
et al., 2020; Oran and Topol, 2020; Poletti et al., 2021). To reduce potential biases in
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the identification of SARS-CoV-2 infections, we estimated different risk ratios based
on a sample of SARS-CoV-2 positive individuals who were identified as contacts of
confirmed cases and tested irrespectively of their symptoms. A larger sample, con-
sisting of all notified symptomatic cases, was used only to estimate the time to key
events describing the clinical progression of cases and to highlight temporal changes
in the risk of hospitalization and ICU admission. Our results confirmed findings
from other studies on the strong age gradient in the likelihood of developing symp-
toms, critical disease, and death after infection (Onder, Rezza, and Brusaferro, 2020;
Poletti et al., 2020a; Salje H, 2020; Verity et al., 2020; Yang et al., 2020). The estimated
proportion of symptomatic cases among SARS-CoV-2 infections is within the range
of estimates obtained in previous studies (Buitrago-Garcia et al., 2020, Nikolai et al.,
2020) and particularly close to findings obtained in Emery et al., 2020. Our estimated
CFR was lower compared to the one obtained in a previous study on other Italian
data (Onder, Rezza, and Brusaferro, 2020), but slightly higher than those observed
in other countries (Fu et al., 2020; Li et al., 2020; Verity et al., 2020; Yang et al., 2020).
The estimated age-profile of the IFR closely resembles Verity et al., 2020. However,
our aggregate (population-level) estimate of the IFR is generally higher than those
obtained in other studies (O’Driscoll et al., 2021; Perez-Saez et al., 2021; Salje H, 2020;
Verity et al., 2020). Such difference can be due to a variety of factors. First, Italy is
one of the oldest countries in the world (average age: 45.7 years (Italian National In-
stitute of Statistics. Demographic indicators.). Second, there may be between-country
differences in the age distribution of SARS-CoV-2 infected individuals. Third, there
are differences in the definition of COVID-19 death. In fact, in Italy, deaths occurring
among SARS-CoV-2 positive subjects are classified as COVID-19-related deaths re-
gardless of other conditions that might have caused the observed fatal outcome (On-
der, Rezza, and Brusaferro, 2020). This has possibly led to overestimate the number
of deaths caused by SARS-CoV-2, especially in the oldest segment of the population.
Nonetheless, in Italy, a laboratory confirmation for SARS-CoV-2 infection is required
to define a COVID-19 death. COVID-19 deaths are mainly represented by cases as-
certained before their decease, while only few cases are ascertained post-mortem. In
the subsample of positive case contacts used to estimate the IFR and CFR, all deaths
were confirmed before their decease.
The proportion of hospitalized patients among positive individuals older than 60
years was almost double than that observed in France (Salje H, 2020). On the other
hand, the proportion of ICU admissions and deaths among hospitalized cases was
markedly lower in our sample (4.5% and 12.4% vs 19% and 18.1%, respectively),
and we found a strong temporal decreasing pattern in the risk of hospital admis-
sion among ascertained symptomatic cases. This suggests that hospitalization crite-
ria might have been highly heterogeneous across different countries and may also
greatly vary over time.
The estimated time from symptom onset to laboratory diagnosis well compares with
estimates obtained from Belgian patients (Faes et al., 2020). Although in line with
previous findings from Belgium (Faes et al., 2020), the time from symptom onset to
hospital admission we found is markedly shorter than those observed in France, in
China and in the US (Bhatraju et al., 2020; Salje H, 2020; Zhou et al., 2020). This
may be the consequence of the higher proportion of severe cases observed in Italy
compared to other countries, which strictly relates to the older age-structure charac-
terizing this country. This hypothesis is partially supported by the shorter hospital
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length of stay and by the longer length of stay in ICU we found, compared to esti-
mates from China (Guan et al., 2020; Zhou et al., 2020).
The relatively low ICU admission ratio we observed among the elderly was already
highlighted in previous studies (Grasselli et al., 2020; Salje H, 2020). However,
our findings clearly show that hospitalized patients aged 80 years or older faced
the highest risk of fatal outcome, but also the lowest likelihood of being admitted
to ICU. The increased ratio of ICU admission among inpatients we found for this
age group after April 2020 suggests that elective ICU admission has been initially
adopted in Lombardy due to saturation of healthcare resources. The lower delay
between symptom onset and admission to hospital observed after March 16, 2020,
and the progressive temporal increase in the likelihood of hospital admission among
older patients strongly suggest that reducing the pressure on the regional healthcare
system markedly improved its capacity to rapidly identify and treat severe patients
(Trentini et al., 2020) (see Figure 2.5).
Our estimates of the risk ratios of hospital and ICU admissions after infection should
be interpreted cautiously. In fact, rather than being purely biological features, such
quantities strongly depend on the available healthcare resources, on the temporal
changes in the number of patients seeking care, and on the protocols adopted to
face a brisk upsurge of COVID-19 cases. Consequently, using these estimates to in-
vestigate the healthcare burden over different phases of the pandemic could produce
misleading results. Additionally, due to temporal changes in the ascertainment rates
of infections, we were not able to quantify the reduced risk of severe outcomes de-
termined by timely detection, diagnosis and treatment of cases, nor to evaluate the
role played by the progressive enhancement in the treatment procedures in reduc-
ing the risk of disease. A further limitation affecting our study is the lack of data to
disentangle the role played by patients’ comorbidities in shaping the risk of severe
diseases. Finally, it is important to stress that estimates reported here are associated
with the historical and dominant variant of the virus that circulated during 2020, in
the absence of vaccination. As such, estimated metrics may not apply to new emerg-
ing SARS-CoV-2 variants (Davies et al., 2021; Kiem et al., 2020; Volz et al., 2021) and
may not reflect the risk of developing COVID-19 disease among infections occur-
ring among vaccinated individuals. Although disease parameters may be specific
for the time and place of the data collection (northern Italy’s first COVID-19 wave),
we showed that estimated risk outcomes after SARS-CoV-2 infection well compare
with data associated with broader time periods and geographical locations.

Metrics defining the natural history of SARS-CoV-2 infection were estimated from
positive individuals who belonged to clusters of contacts, who were all tested and
daily followed up for symptoms and for severe outcomes. A fraction of these in-
dividuals, mainly consisting of symptomatic ones, was tested via RT-PCR during
contact-tracing activities. The remaining case contacts were retrospectively tested
via IgG serological assays collected at least one month after exposure, thus allow-
ing the identification of asymptomatic infections as well. Despite the heterogeneous
testing procedure, we believe that the strengths of this study design rely on: (1) the
minimization of the risks of bias in the identification of infections (contacts were
identified and tested independently of their clinical signs), and (2) the daily follow-
up of the infections for symptoms and critical disease in the weeks following the
exposure to a confirmed infection. Therefore, the analyzed sample does not suffer
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the usual limitations of surveillance data (i.e., underestimation of asymptomatic in-
dividuals) and of serological data (i.e., lack of longitudinal records about the clinical
history of study participants). Despite the aforementioned limitations, the provided
metrics can be instrumental to refine model estimates. In particular, our findings
could be used to assist the design and evaluation of forthcoming vaccination efforts
and the development of appropriate strategies to control the COVID-19 pandemic
until a sufficiently large proportion of the population has become immune.

2.5 Supplementary Figures and Tables
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FIGURE 2.4: Estimated and observed distributions of time intervals
between key events. (Top row) Blue dots represent the observed dis-
tribution of time from symptom onset to diagnosis, hospitalization,
ICU admission and death. Light blue lines show the mean frequen-
cies obtained by simulating 1,000 different datasets with size equal
to the number of observations in the data on the basis of a negative
binomial model. Shaded areas represent the corresponding 95% pre-
diction interval. (Bottom row) As for the top row, but for the time
between hospital and ICU admission, for the length of stay in hospi-

tal and ICU.
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FIGURE 2.5: Number of hospital (light blue) and ICU (dark blue) ad-
missions of COVID-19 cases in Lombardy, Italy between February 21

and June 20, 2020.

FIGURE 2.6: A Age-specific case hospital admission ratios among as-
certained symptomatic cases (asHR) as estimated by excluding pa-
tients with a delay from SARS-CoV-2 diagnosis to hospital or ICU
admission greater than 30 days. B As A but for the age-specific ICU
admission ratios among hospitalized cases (hIR). Bars of different col-
ors represent crude percentages observed across different epidemic
periods; vertical lines represent 95% confidence intervals computed
by exact binomial tests. Numbers shown in each panel represent the
age-specific number of events observed in the data among exposed

COVID-19 cases.
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TABLE 2.4: Estimated risk ratios of developing symptoms, hospital
and ICU admission, experiencing critical disease, and fatal outcome
among positive contacts of confirmed cases as identified during con-
tact tracing operations. Results are disaggregated by age, sex, and

period.
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TABLE 2.5: Estimated risk ratios of ICU admission and fatal outcome
among hospitalized patients, disaggregated by age, sex, and period.

∗ RR and 95%CI were not computed for insufficiently large sample size.
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TABLE 2.6: Risk metrics estimated from SARS-CoV-2 positive con-
tacts identified after 20 March 2020.

TABLE 2.7: Risk metrics estimated from SARS-CoV-2 positive con-
tacts as obtained by excluding patients with a delay from SARS-CoV-

2 diagnosis to hospital or ICU admission greater than 30 days.
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TABLE 2.8: Time intervals between key events as estimated when ex-
cluding patients with a delay from SARS-CoV-2 diagnosis to hospital

or ICU admission greater than 30 days.
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Chapter 3

Modeling the interplay between
demography, social contact patterns
and SARS-CoV-2 transmission in
the South West Shewa Zone of
Oromia Region, Ethiopia

3.1 Background

Despite limited access to healthcare (Gilbert et al., 2020; Poletti et al., 2018) and rela-
tively milder social distancing restrictions compared to those imposed in most high-
income countries (Loembé et al., 2020; International Monetary Fund. Policy responses to
Covid-19. 2020.), coronavirus disease 2019 (COVID-19) mortality rates have been rel-
atively low throughout Africa (World Health Organization. WHO Coronavirus Disease
(COVID-19) Dashboard. 2020.). As of January 24 2021, the World Health Organiza-
tion (WHO) reports 2,462,083 diagnosed cases and 57,902 deaths in the continent
(World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. 2020.).
However, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmis-
sion dynamics have been highly heterogeneous across different African countries in
terms of timing and implemented interventions (Makoni, 2020).

In sub-Saharan Africa, Ethiopia is second only to South Africa in terms of number
of recorded cases and deaths, with an overall case fatality ratio (CFR) of about 1.5%
compared to about 2.2% in the rest of the world (World Health Organization. WHO
Coronavirus Disease (COVID-19) Dashboard. 2020.). The first COVID-19 case was con-
firmed on March 13, 2020 and, less than a month later, the Ethiopian Prime Minister
declared a state of emergency in the country on April 8, 2020 (World Health Organi-
zation. Covid-19 Response Bullettin Ethiopia. 2020.). Since then, rigorous contact trac-
ing, isolation, and compulsory quarantine have been established (Mohammed et al.,
2020; Ethiopian Institute of Public Health. COVID-19 pandemic preparedness and response
in Ethiopia - 37 weekly bulletin.). Borders and school closure were implemented, pub-
lic institutions and firms operated at minimum capacity or under complete closure,
and people were advised to stay at home (Mohammed et al., 2020). However, in
November 2020, schools reopened in the entire country, and social gatherings were
allowed again. As of January 24, 2021, 133,298 SARS-CoV-2 infections and 2,063
deaths (World Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard.
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2020.) were ascertained in the entire country, with thousands of cases reported in
all the 12 regions of Ethiopia (Ethiopian Institute of Public Health. COVID-19 pandemic
preparedness and response in Ethiopia - 37 weekly bulletin.). In Ethiopia, a syndromic
surveillance is carried out to identify SARS-CoV-2 infected individuals. Samples
from suspected cases and case contacts are collected at different health facilities dis-
placed in the country (including health centers serving the most rural areas) and
cases are confirmed via real-time reverse transcription–polymerase chain reaction
(RT-PCR) test. Collected samples are analyzed by 38 national, regional, hospital, and
private laboratories (UNICEF. Ethiopia COVID-19 Situation Report No. 3. 2020.). Both
suspected and laboratory confirmed cases are admitted to isolation centers and dis-
charged after a negative laboratory test (Ethiopian Institute of Public Health. COVID-
19 pandemic preparedness and response in Ethiopia - 37 weekly bulletin.). Although swab
testing was initially applied to both symptomatic patients and all close contacts of
cases, it is possible that, due to limited resources and the increased number of cases
in the country, only symptomatic case contacts are currently tested. Active monitor-
ing of cases conducted by Ethiopian Public Health Institute suggested that 52% of
the identified positive cases were asymptomatic (Ethiopian Institute of Public Health.
COVID-19 pandemic preparedness and response in Ethiopia - 6 weekly bulletin.). As of
January 10, 2021, the overall rate for positive laboratory test results since the first de-
tection of the epidemic in the country was 6.9% (Ethiopian Institute of Public Health.
COVID-19 pandemic preparedness and response in Ethiopia - 37 weekly bulletin.).

The possible spread of SARS-CoV-2 in rural areas of the country is especially danger-
ous because of the sparse presence of well-resourced health facilities implying long
travel distances for remote populations, which is an important barrier to universal
access to primary care (Poletti et al., 2018). Moreover, the healthcare workforce in
Ethiopia is 5 times lower than the minimum threshold defined by the WHO for Sus-
tainable Development Goals health targets (World Health organization. Health Work-
force Requirements for Universal Health Coverage and the Sustainable Development Goals.
Human Resource for Health Observers Series No. 17.), and far below the African average
(Haileamlak, 2018). Recent modeling studies investigated the impact of control mea-
sures, such as self-isolation and temporary lockdowns, in a number of sub-Saharan
African countries, highlighting the difficulties in defining effective, feasible and sus-
tainable strategies for suppression or mitigation of COVID-19 epidemics (Van Zand-
voort et al., 2020; Quaife et al., 2020; Brand et al., 2020; Walker et al., 2020). In this
work, we aim to assess how demographic factors and age-specific mixing patterns
can influence the impact of COVID-19 epidemics across different geographical con-
texts of the South West Shewa Zone (SWSZ) of the Oromia Region of Ethiopia, char-
acterized by different levels of access to healthcare. So far, 21,133 cases were reported
in the Oromia Region. The interventions implemented to control the epidemic were
part of the national strategy designed by Ministry of Health targeting all districts
of the country, including the SWSZ. National measures undertaken between April
and mid-September 2020 included the suspension of teaching activities at schools
and universities. More stringent measures, including interruption of economic ac-
tivities, restrictions on the use of public transport and social gatherings (churches,
mosques, markets etc.) were partially adopted as well (Mohammed et al., 2020).



3.2. Method 31

3.2 Method

3.2.1 Study desing

We conducted a survey based on individual interviews to estimate age-specific mix-
ing patterns in four districts (woreda) of the SWSZ. About 40% of the SWSZ pop-
ulation is below 15 years of age and about 68% lives in remote rural settlements,
18% in rural villages, and 14% in the largest town of the area (Woliso Town, 53,065
inhabitants). The districts targeted by our study encompass a population of 449,460
inhabitants and represent the main catchment area of the St. Luke Hospital located
in Woliso Town, a well-resourced health facility acting as the referral hospital for
the entire Zone (Poletti et al., 2018). The study consists in a cross-sectional survey
with two-stage stratified random sampling by location and age group. The survey
was conducted in eight different sites, choosing two neighborhoods (kebele) for each
district under study, in such a way to capture contact patterns in areas characterized
by different population densities, work and travel opportunities, and access to the
healthcare infrastructure. Three types of geographical contexts were considered: re-
mote settlements (consisting of scattered subsistence farming settlements), rural vil-
lages (consisting of concentrated clusters of households served by a main road, and
better access to main public services), and urban neighborhoods inside Woliso Town
(significantly higher population density and full access to public services (United
States Department of Agriculture. Economic Research Service.)).

For each site, a target sample size of 105 study participants was set on the basis
of findings from previous contact surveys (Melegaro et al., 2017; Waroux et al., 2018)
to provide the desired precision in the mean number of contacts (see Appendix: Sec-
tions 1 and 2 (Waroux et al., 2018; Cohen, 2013; Horby et al., 2011)). Households
and study participants were randomly sampled using predefined quotas for each
site, sex, and age group. A household was defined as a group of individuals living
under the same roof and sharing the same kitchen on a daily basis. One individual
per household was interviewed. If the study participant was a student, additional
shorter interviews were performed to complement the data with information about
close contacts occurring at school.

3.2.2 Data collection

Participants were asked to recall information on the frequency, location, type of so-
cial encounters from the day preceding their interview, providing the age (or age
range when exact age was unknown) and their relationship for each listed contact.
A contact was defined as an interaction between two individuals, either physical
(when involving skin-to-skin contact), or non-physical (when involving a two-way
conversation with five or more words in the physical presence of another person,
but no skin-to-skin contact) (Melegaro et al., 2017; Waroux et al., 2018). The partici-
pants’ age, sex, education and occupational status were recorded along with details
on their household composition. In the SWSZ, schools may host up to 100 students
within a single class. To avoid inaccurate reporting of the number of school contacts,
participants were only asked to count the total number of physical contacts they had
at school in the previous day, without further details. Information on the age of
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students attending the targeted schools for different grades was also collected. In-
terviews were carried out between November and December 2019, i.e. prior to the
COVID-19 pandemic. Schools were regularly open during the survey period.

3.2.3 Contact patterns and data analysis

For each type of geographical context, we computed the mean number of contacts
reported by respondents after grouping by age (six 10-year age groups from 0 to 59
years and one age group for individuals aged 60 years or older) and by contact set-
ting (households, schools, and the general community). Since for many study par-
ticipants it was difficult to distinguish encounters occurred because of their job from
other random contacts, all social interactions occurring outside family and schools
were aggregated with contacts occurring in the general community. Age-specific
contact matrices were computed considering both physical and non-physical con-
tacts and were adjusted for reciprocity as in (Melegaro et al., 2017). Variability due
to sampling of study participants was explored by computing 1,000 bootstrapped
contact matrices (Zhang et al., 2020), where each bootstrap consisted in sampling
with replacement a number of interviews equal to the original sample size, choosing
the age of the participant with probability proportional to the Ethiopian age dis-
tribution (United Nations Department of Economic and Social Affairs. 2019 UN World
Population Prospects.). The proportions of the SWSZ population living in remote set-
tlements, rural villages and in urban neighborhoods were used as sampling weights
to compute an average contact matrix for the entire SWSZ. Full details about the
study design, data collection and the analysis of contact patterns are provided in the
Appendix: Sections 1-7.

3.2.4 Transmission model

We simulated SARS-CoV-2 spread in the SWSZ, using an age-structured Susceptible-
Infectious- Recovered (SIR) compartmental model with three consecutive stages of
infectiousness, in such a way to reproduce a gamma-distributed generation time of
mean 6.6 days (Cereda et al., 2020; Marziano et al., 2021a; Guzzetta et al., 2020).
The model was run separately for each geographical context (i.e. the remote, rural
and urban neighborhoods), using estimates of the population age structure and of
the age-specific contact matrix computed from survey data (see Appendix: Sections
4-6). These data were collected in the absence of any restrictions imposed to con-
trol the infection spread. Because school closure in all of Ethiopia was mandated
much before the exponential growth of reported COVID-19 cases, transmission of
SARS-CoV-2 in the SWSZ was simulated by removing contacts occurring at school
and considering only household and community contacts. In the model, 1,000 val-
ues of the per-contact transmission rate were considered by matching the reproduc-
tion number computed through the next-generation matrix approach (Diekmann,
Heesterbeek, and Metz, 1990) with random samples from the posterior distribution
of the reproduction number estimated from the curve of reported cases in Ethiopia
during the phase of exponential growth (World Health Organization. WHO Coron-
avirus Disease (COVID-19) Dashboard. 2020. Wallinga and Lipsitch, 2007). As the
same public measures and restrictions were applied across different geographical
contexts in Ethiopia, heterogeneous transmission of SARS-CoV-2 was assumed to be
driven by differences in the demographic and contact structures in urban, rural and
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remote neighborhoods. The same per-contact transmission rate was therefore as-
sumed across different settings of the SWSZ and estimated using the sum of contact
matrices obtained for the urban, rural and remote neighborhoods, weighted by the
percentage of SWSZ population living in each geographical context. We included
school contacts to estimate the theoretical SARS-CoV-2 transmission potential in the
absence of a school closure mandate. We considered susceptibility to SARS-CoV-
2 infection to vary with age. We adopted the posterior distributions estimated in
Zhang et al. (Zhang et al., 2020) for the relative probability of developing infec-
tion upon effective exposure to an infectious case, where the age-group 15-64 years
is taken as a reference; an average relative susceptibility of 0.33 (95%CI: 0.24-0.47)
was considered for children under 15 years of age, and of 1.47 (95%CI: 1.16-2.06) for
older adults (above 65 years) (Zhang et al., 2020). These estimates are aligned with
other independent studies (reviewed in Viner et al. (Viner et al., 2021)). We assumed
the same infectiousness across individuals of different ages (see Appendix: Section 4
(Lavezzo et al., 2020)). We computed projections of the number of SARS-CoV-2 infec-
tions, cases with respiratory symptoms or fever, and COVID-19 critical cases (either
requiring mechanical ventilation or resulting in a fatal outcome), based on available
estimates of the age-specific risks (Poletti et al., 2020b). By comparing estimates ob-
tained when including and excluding school contacts for the entire duration of the
epidemic, we computed the overall percentage of infections, symptomatic and crit-
ical cases that could be averted by school closure. To explore the robustness of our
findings with respect to model assumptions, five separate sensitivity analyses were
carried out assuming: 1) a Susceptible-Exposed-Infectious-Recovered (SEIR) model
structure; 2) a 20% increase or a 20% decrease of the net reproduction number; 3) dif-
ferent per-contact transmission rates across geographical settings; 4) homogeneous
susceptibility by age; 5) a lower infectiousness of children (see Appendix: Section
8). As the probability of developing symptoms after infection markedly increases
with age (Poletti et al., 2020b; Buitrago-Garcia et al., 2020), the latter sensitivity is
similar to exploring the effect of differential infectiousness among symptomatic and
asymptomatic cases.

3.3 Results

3.3.1 Social contact data

A total of 938 study participants were interviewed with 43% of them living in rural
remote settlements, 35% in rural villages, and 22% from urban neighborhoods (Table
3.1). 227 participants were students, 22.9% of whom were between 5 and 9 years of
age, 71.8% between 10 and 19 years, and 4.9% older. School attendance rates among
the study participants aged 5-18 years was 67%, 80% and 77% in remote, rural and
urban sites, respectively. The median class size ranged from 70 children per class
in rural villages to 90 in remote settlements. Only 27% of our study participants
reported travels outside their village in the last month; 87.3% reported they were
never admitted to the local hospital (see Appendix: Section 7).
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TABLE 3.1: Characteristics of study participants and relative percent-
ages in the Ethiopian population.

∗ No missing data for any of the three listed variables.
∗∗ The percentage of male adults (18-64yo) working in agriculture is 45.2%; in the re-

mote, the rural and the urban settings this percentage is 81%, 28% and 7%, respectively

Age and sex were also recorded for all the 4,635 household members of the 938 study
participants. The mean household size in remote settlements was 5.5 (95% CI: 5.3-
5.7), significantly larger (Tukey test p<0.001) than in rural villages (4.6, 95% CI: 4.4-
4.8) and in urban neighborhoods (4.4, 95%CI: 4.2-4.6), while no significant difference
in the household size was found between the latter two settings (Tukey test p=0.48).
Overall, 5,690 non-school contacts were reported by the 938 study participants (me-
dian 6 contacts per person, range 1-26, see Table 3.2). Of these, 79.9% were physical
and 43.0% involved a single social interaction during the day.
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TABLE 3.2: Mean number of recorded daily contacts, excluding con-
tacts at school, by age, across different geographical contexts.

For all sites, contacts outside school were predominantly reported between fam-
ily members (46.1%), neighbors (25.2%), and other relatives outside the household
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(13.1%), while the remaining 15.5% of contacts occurred with friends, schoolmates
outside school, or other unspecified categories. Individuals with a recent history of
travel outside their neighborhood did not report an increased number of contacts,
except for urban residents (t-test p=0.004). The mean number of contacts (excluding
school contacts) reported by participants was lower in rural villages (5.73, 95%CI
5.44-6.02) with respect to both urban neighborhoods (6.35, 95%CI 5.96-6.73) and re-
mote settlements (6.19, 95%CI 5.87-6.51). In particular, the mean number of daily
contacts reported by the elderly (60+ years old) was much higher in remote settle-
ments and urban neighborhoods than in rural villages (7.7 and 5.8 vs 3.6, see Table
3.2).

Students reported 1,372 additional contacts in schools, resulting in a mean number of
6.1 (95%CI 4.98-7.16) daily physical contacts per child (median 3, interquartile range
0-10). There were limited differences in the mean number of school contacts across
geographical contexts (6.31, 95%CI 4.13-8.50 in remote settlements; 5.70, 95%CI 4.19-
7.21 in rural towns; 6.54, 95%CI 4.25-8.84 in urban neighborhoods).

The analysis of contacts by age clearly shows that subjects below 30 years of age
tend to interact mostly with individuals of similar age (assortative mixing). The
highest contact rates were found between school aged children (10-19 years), young
adults (20-39 years) and between children below 10 years and their parents (Figure
3.1, and Appendix: Sections 6 and 7). However, a marked intergenerational mixing
both within households and in the community was found, especially in remote set-
tlements.

The average overall number of daily contacts reported by our study participants
(7.5 contacts), the share of contacts experienced with household members (46.1% in-
cluding all ages) and the proportion of school contacts for children between 5 and 21
years of age (40.3%) are in line with estimates obtained by similar studies conducted
in Zimbabwe, Uganda and Kenya (Melegaro et al., 2017; Waroux et al., 2018; Kiti et
al., 2014), where the number of contacts per day was found in the range 7-11, the pro-
portion of contacts at home was 50-66% and around 50% of contacts of school-aged
children were recorded between schoolmates. The high level of mixing between
the elderly and both young adults and children has been already highlighted for
Ethiopia by the synthetic contact matrices estimated in Prem et al. (Prem, Cook, and
Jit, 2017).
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3.3.2 Effect of demography and age-specific contacts on COVID-19 epi-
demics

From the epidemic curve of reported cases, we estimated a net reproduction number
R of 1.62 (95%CI 1.55-1.70) over approximately 6 weeks of exponential growth start-
ing from May 1, 2020 when schools were closed in the entire country (see Appendix:
Section 4). We relied on this estimate of R to simulate COVID-19 epidemics in the
SWSZ considering no school contacts. If school contacts are included, we estimate
R to increase to 3.15 (95%CI 2.22-4.20, see Appendix: Section 4), which is compara-
ble with estimates of the basic reproduction number from other parts of the world
(Riccardo et al., 2020; Munayco et al., 2020; Muniz-Rodriguez et al., 2020; Park et al.,
2020).
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FIGURE 3.1: Contact matrix representing the mean number of daily
contacts reported by a participant in the age group i with individuals
in the age group j in household (a), in the general community (b), and
both (c) in remote settlements. d-f, g-i The same quantities estimated

for rural villages and for the urban neighborhoods, respectively

Our simulation results show that, had schools remained closed for the entire dura-
tion of the epidemic and had no other interventions been enacted, 12.11% (95%CI
10.78-13.51), 12.13% (95%CI 10.57-13.55), and 13.12% (95%CI 11.62-14.96) of the pop-
ulation residing in rural, remote, and urban settings respectively would have devel-
oped respiratory symptoms or fever because of COVID-19. The fraction of critical
cases (requiring mechanical ventilation and/or resulting in a fatal outcome) is esti-
mated between 0.28% and 0.41% of the overall population (Figure 3.2). The highest
prevalence of critical cases (between 4.4% and 5.4% on average) is expected within
subjects aged 60 years or older. This age segment represents only about 5% of the
total population in SWSZ but is expected to represent 7 to 14% of symptomatic cases
and 43% to 63% of all critical cases.
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Remote settlements are expected to suffer a higher overall burden of critical cases
(0.40% of the total population, 95%CI: 0.37-0.41%) compared to rural villages (0.33%,
95%CI: 0.31-0.35%) and urban neighborhoods (0.31%, 95%CI 0.29-0.33%). This dif-
ference is explained by a higher proportion of the elderly in the population (see
Appendix: Sections 6 and 7), but also by their higher number of daily contacts and
the higher intergenerational mixing (Figure 3.1 c)) compared to the other settings,
which results in a higher attack rate of infections, symptomatic cases, and critical
disease in this age group (Figure 3.2). Urban neighborhoods, where highest contact
rates at younger ages were recorded, are expected to have the highest attack rate
of infections (57.3%, 95%CI: 49.6-66.7) and symptomatic cases (13.1%, 95%CI: 11.6-
15.0). However, since a large proportion of the overall number of infections (81.8%,
95%CI: 76.1-85.3) is concentrated on children and younger adults (up to 40 years of
age), this does not result in a high overall proportion of critical disease. Finally, rural
villages have lower attack rates among the elderly because of the significantly lower
number of contacts reported by that age group in this geographical context (Figure
3.1 f), Table 3.2).
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FIGURE 3.2: Estimated attack rates of infection (a), symptomatic cases
(b), and critical disease (c), overall and by age group in different geo-
graphical contexts of the SWSZ, as expected at the end of an epidemic
mitigated by school closure alone. Outputs were obtained by simulat-
ing 1000 different epidemics where the per-contact transmission rate
is set to reproduce, when neglecting contacts occurring at school, ran-
dom samples of the distribution of the net reproduction number esti-
mated from national surveillance data: 1.62 (95% CI 1.55–1.70) (World
Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard.

2020.). Black lines represent 95% credible intervals

Figure 3.3 shows the impact of maintaining the school closure mandate on the bur-
den of COVID-19 in the SWSZ in terms of percentages of infections, symptomatic
and critical cases averted with respect to a hypothetical scenario of an unmitigated
SARS-CoV-2 epidemic.

According to our estimates, the beneficial impact of school closure would be in 26.9%
(95% CI: 20.7-32.8), 29.9% (95%CI: 19.5-38.7) and 25.1% (95%CI: 18.2-30.8) averted
symptomatic cases, and 10.6% (95%CI: 8.1-13.7), 6.3% (95% CI: 3.8-10.3) and 8.1%
(95%CI: 4.7-12.1) averted critical cases respectively in rural, remote and urban con-
texts. As expected, the larger effect of the intervention in terms of averted infections
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is observable in younger ages, while the indirect effect of school closure on the el-
derly is highlighted by the expected high fractions of averted critical cases among
individuals aged 50 or over.

A comparison of model estimates obtained in our baseline analysis with those ob-
tained in the sensitivity analyses is provided in Figure 3.4. These results suggest
that our estimates on the overall fraction of critical cases expected by maintaining
the school closure mandate are robust against all alternative assumptions consid-
ered, ranging between 0.25%-0.37%, 0.23%-0.42% and 0.25%-0.34% for rural villages,
remote settlements and urban areas, respectively.
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FIGURE 3.3: Estimated percentage of a averted infections, b symp-
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3.4 Discussion

Our analysis explored the effect of demographics and social contact patterns on
COVID-19 burden in the South West Shewa Zone of the Oromia region, Ethiopia.
Data collected within an interview-based survey highlighted differences in demo-
graphic structure and in age-specific contacts between urban neighborhoods, rural
villages, and remote settlements, and were used to inform an epidemic model sim-
ulating the transmission dynamic of SARS-CoV-2. On the basis of the trajectory of
COVID-19 cases observed in the country up to June 12, 2020, we estimated that be-
tween 3.1 and 4.0 patients per 1,000 inhabitants may experience critical disease (i.e.,
requiring mechanical ventilation and/or resulting in a fatal outcome) at the end of
an epidemic mitigated by school closure alone. Considering the low availability and
accessibility of healthcare, especially in remote and rural settlements, and the lack of
intensive care units to treat critical patients (Poletti et al., 2018; Murthy, Leligdow-
icz, and Adhikari, 2015), it is possible that a large fraction of those cases would result
in a fatal outcome, adding up to the already high background mortality rate in the
region (estimated at about 6.4 per 1,000 per year (The World Bank. World Bank Open
Data.)).

Considering the extreme scenario where all critical cases would result in a fatal out-
come, we obtain an estimate of the infection-fatality ratio (IFR) ranging between
0.55% in urban neighborhoods and 0.78% in remote settlements. Such estimates are
generally lower than the IFR estimated from serological studies for higher income
countries (Pollán et al., 2020; Poletti et al., 2020a). This difference is partially due to
the younger age structure of the Ethiopian population, where only 5% of individuals
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are older than 60 years (compared to over 20% in most of Europe (Eurostat. Popula-
tion Structure and Ageing.)). However, by simply adjusting the age-specific IFR to the
local demographics, Ghisolfi et al. (Ghisolfi et al., 2020) estimated a four-fold reduc-
tion in the overall IFR in Eastern Africa with respect to European countries, which is
around 2 times lower than our estimates. In fact, our simulations not only account
for the demography of the population, but also for its mixing patterns. Indeed, we
found that in the SWSZ the effect of a younger population is partially compensated
by high infection attack rates in the elderly, which derive from the intense intergen-
erational mixing and the larger number of contacts observed among the elderly. In
particular, we show that these characteristics are especially marked in remote settle-
ments, where the highest incidence of critical disease is expected to occur. Although
our analysis is limited to the SWSZ, we expect that similar arguments may be gener-
alizable to settings with similar socio-demographic conditions. Our results suggest
that, in the SWSZ, school closures might have reduced by 48.9% the SARS-CoV-2
reproduction number and by 28.3-34.6% the infection attack rate that would have
been expected in the absence of any intervention. In line with observations from
other settings (Zhang et al., 2020), school closure was estimated to be insufficient
to prevent the spread of the infection. Recently published studies have shown that
the lockdown implemented in Kenya reduced individuals’ social interactions by 60-
70% compared to the pre-pandemic period (Quaife et al., 2020), but it is difficult to
extrapolate these data to Ethiopia, where social distancing measures were compar-
atively milder. Data on how contacts outside school may have changed in Ethiopia
during the COVID-19 epidemic are still lacking.

To properly interpret the results presented in our study, it is important to consider
the following limitations. First, the target study population may be not represen-
tative of all Ethiopia, and in particular of epidemic patterns observed in highly ur-
banized areas such as the capital Addis Abeba. Second, the net reproduction num-
ber was estimated from national surveillance data (World Health Organization. WHO
Coronavirus Disease (COVID-19) Dashboard. 2020.). This data reports cases aggre-
gated at the country level and may suffer from a number of biases: it does not ac-
count for reporting delays; the growth over time in the number of cases may partly
be ascribable to the increase in testing capacity; total cases represent the superim-
position of different, asynchronous epidemics in multiple parts of the country, a
majority of which coming from the highly urbanized Addis Abeba area (Ethiopian
Institute of Public Health. COVID-19 pandemic preparedness and response in Ethiopia - 37
weekly bulletin.). More in general, estimates of time varying reproduction numbers
from data where the symptoms’ onset time-series is approximated with the notifi-
cation date series may inaccurately describe the early infection dynamics and could
fail in assessing the impact of containment measures. However, we show that, when
assuming no restriction to school contacts, the reproduction number estimated by
the model is in the range 2.43-3.52, comparable with estimates of the SARS-CoV-2
basic reproduction number from other countries (Riccardo et al., 2020; Munayco et
al., 2020; Park et al., 2020; Murthy, Leligdowicz, and Adhikari, 2015). Moreover, our
conclusions remain robust when considering a 20% increase or a 20% decrease of
the reproduction number. In this case, we estimated an attack rate of critical cases
ranging from 0.25 to 0.37 for rural villages and from 0.34 to 0.42 for remote settle-
ments (see Figure 3.4). Third, the model lacks of spatial structure. The finding
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from the survey that about 97% of recorded contacts have occurred within the par-
ticipant’s neighborhood of residence (Table 3.2) suggests that local containment or
confinement of COVID-19 outbreaks in rural regions of Ethiopia may be favored by
low human mobility. On the other hand, the observation of a large number of cases
in all regions of Ethiopia (Ethiopian Institute of Public Health. COVID-19 pandemic
preparedness and response in Ethiopia - 37 weekly bulletin.) may imply that a signifi-
cant widespread diffusion of the epidemic, possibly sustained by a high fraction of
asymptomatic infections (Figure 3.2), is ongoing. Fourth, the role played by children
in the transmission of SARS-CoV-2 infections is still poorly understood and highly
debated (Zhang et al., 2020; Bi et al., 2020). In the main analysis we assumed that
the probability of transmission is homogeneous across all ages. As asymptomatic
infections are more prevalent at younger ages, this also reflects the assumption that
symptomatic and asymptomatic cases are characterized by the same infectiousness.
However, an alternative assumption in which children are assumed half as infec-
tious as adults would result in similar attack rates of critical cases (see Appendix:
Section 8). These results are also robust with respect to the assumption of a homoge-
neous susceptibility across age groups (see Appendix: Section 8). Finally, in absence
of direct data from sub-Saharan Africa, the age-specific susceptibility and propor-
tions of infections resulting in symptomatic cases or critical disease were estimated
from data from China or Europe (Zhang et al., 2020; Poletti et al., 2020b). However,
the high prevalence of comorbidities which are uncommon in higher income coun-
tries (e.g., malnutrition (Endris, Asefa, and Dube, 2017), tuberculosis, and malaria)
and inequalities in the access to primary care represent additional vulnerabilities for
African settings (Poletti et al., 2018) and may result in an underestimation of the
expected disease burden. Since the number of COVID-19-related deaths may be un-
der ascertained in low-income countries, further research is warranted regarding the
disease severity in sub-Saharan populations, potentially leveraging excess mortality
data once they will become available.

3.5 Conclusions

This study provides novel data on mixing patterns in rural Ethiopia and highlights
the potential impact of COVID-19 epidemics in less urbanized regions of the country.
We provide estimates on the potential burden of COVID-19 in the SWSZ under the
assumption of a mitigated, but not controlled epidemic. We conclude that, although
the overall mortality might be generally lower in sub-Saharan Africa compared to
high income settings, thanks to younger demographics (Ghisolfi et al., 2020; Dowd
et al., 2020; Hilton and Keeling, 2020), this effect may be partially offset in rural areas
by higher attack rates in elderly individuals, due to high rates of intergenerational
mixing. The observed contact patterns suggest that elderly individuals in remote
settlements may be even more exposed to the risk of infection (and thus of critical
disease), which is especially worrysome in light of the major obstacles in access to
healthcare for those populations (Poletti et al., 2018).
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3.6 Appendix

3.6.1 Study desing

The study population consisted of individuals residing in four districts (woreda)
of the South West Shewa Zone (SWSZ) in the Oromia region of Ethiopia. These
woredas count 449,460 inhabitants and represent the main catchment area of the St.
Luke Hospital located in Woliso Town. The St. Luke Hospital is a well-resourced
health facility and represents the referral hospital for the entire SWSZ, serving a
population of about 1.3M inhabitants with 200 beds and an annual average bed-
occupation rate of 84% (Poletti et al., 2018). Data on individuals’ mixing patterns
and local demography were collected through a cross-sectional survey, by adopting
a two-stage stratified random sampling of study participants by location and age
group. For each woreda, two neighbourhoods (kebeles) were identified as represen-
tative of the considered woreda, chosen as extremes illustrative socio-demographic
contexts within the woreda in terms of urbanization, population density, work and
travel opportunities, and distance to healthcare facilities. The target sample size was
uniformly distributed across the 8 selected kebeles. The sample stratification was
designed to capture different activity levels (e.g. movements, schooling/working,
etc.) and the different role played by individuals in the community (e.g. household
heads, women, etc.), taking into account the local schooling system (age at enrolment
in pre-primary, primary, and secondary school). Individuals of all ages living in the
selected sites were considered eligible for inclusion in the study. A target sample size
was defined for the following age groups: <1 year old, 1-3 years old, 4-10 years old,
11-14 years old, 15-29 years old, 30-49 years old, >50 years old. Random sampling of
households and study participants was applied, using a list of predefined quotas for
each site, sex and age group. Specifically, the target sample for each age group and
location was equally divided into males and females. One individual per household
was selected and interviewed. If the study participant was temporarily outside the
household, another attempt was made later in the day or within three days from the
first visit. After the second attempt, the study participant was replaced.

3.6.2 Sample size definition

For each age group i, we chose an equal sample size ni in such a way to detect,
given a specified power p and significance level set at 0.05, a significant difference
in the average number of contacts between at least two out the seven age groups
defined above in a one-way ANOVA (Cohen, 2013). The optimal sample size can be
computed as a function of the power of the test, the significant level and the effect
size f, which in turn can be calculated using the following formula,

f =

√

∑
k
i=1

1
k (µi − µ)2

σ2

where k is the number of groups, µi is the expected average number of contacts for
age group i, µ is the expected average number of contacts in the overall population,
and σ2 is the expected constant error variance within groups. As shown in the Fig-
ure 3.5, setting a power of 80%, k = 7 and a significance level at 0.05, a sample
size of 120 in each group would correspond to the optimal sample size for f = 0.13,
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which can be considered as a sufficiently small effect size. Indeed, by considering
values of µi, µ and σ2 obtained in previous studies on social contacts (Waroux et al.,
2018; Horby et al., 2011) , the effect size would be around 0.17. Based on previous
findings available at the time (Horby et al., 2011), the considered sample size enabled
the detection of 20% difference in the average number of daily contacts by age group.

FIGURE 3.5: Sample size definition Optimal sample size computed
for different values of effect size and power of the test (p), assuming
a significance level of 0.05. The horizontal line represents the target

sample size defined in our study

In the final sampling scheme, senior adults (30-49 years old) were slightly over-
sampled and the elderly (>50 years old) slightly under-sampled, due to the different
relative frequency in the population.

3.6.3 data collection

For each study participant we collected data on their age, sex, household size, house-
hold composition, place of residence and the full list of contacts they experienced in
the day preceding their interview. Specifically, the frequency and type (either phys-
ical or non-physical) of each social encounter was collected, along with the age and
relationship with each listed contact and the transmission setting and the kebele
(neighborhood) where the interaction occurred. The day of the week in which the
interview was administered to each study participant was also recorded. Data col-
lection was performed through interviews of the study participants by field investi-
gators, who directly inserted anonymized answers into an electronic dataset based
on Survey CTO software, installed on tablets. Questions were designed in English
and translated into the predominant local language (Oromyffa). Data entry conflicts
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and inconsistencies were identified automatically by the system and resolved as the
data entry progressed. Results of a preliminary pilot study on a sample of 20 people,
recruited in a different site from those used in the survey, were used to optimize the
interview, address logistic challenges and refine the operational guidelines for the
data collectors conducting the interviews. Following the results obtained for stu-
dents in the pilot, we decided to collect only data on physical contacts at school.
In particular, only the overall number of contacts experienced by students at school
was collected. Responses gathered during the pilot were excluded from the anal-
ysis. Quality of data collection was then verified by administering 78 individual
interviews in a remote settlement of the SWSZ which was outside the original target
sites. These data were included in the analysis of contact patterns.

3.6.4 Transmission model and reproduction numbers

We developed a transmission model for the spread of SARS-CoV-2 infection, based
on an age-structured susceptible-infectious-removed (SIR) scheme. Contact data col-
lected with 938 individual interviews was used to inform the model with the age-
specific mixing patterns in the South West Shewa Zone across different geographi-
cal contexts and transmission settings. To this aim, participants and contacts were
grouped in six 10-year age classes plus an additional class including all individ-
uals aged 60 years or older. When exact age of the contactee was unknown, the
midpoint of the age range provided during the interview was used to assign the
contactee to an age class. We then computed age-specific contact matrices Cx

a,ã rep-
resenting the average number of contacts reported by one individual in age group
a with contactees in age group ã in the setting x. Considered transmission settings
included the household, the school and the general community. Contacts at work
were aggregated with all other contacts occurring in the community, since for peo-
ple employed in agriculture (about 33% in Ethiopia) and many other occupations
(e.g. street vendors and people participating to community markets) it was difficult
to disentangle encounters occurred because of their job from other random contacts.
Only physical contacts were considered for school; both physical and non-physical
social interactions were considered for other transmission settings. Sample variabil-
ity was explored using bootstrap sampling, as detailed in section 6. Contact matrices
were separately computed for three different geographical contexts by aggregating
interviews conducted in remote settlements (n=400), rural villages (n=326) and the
two urbanized neighbors of Woliso Town (n = 212) and corrected for reciprocity as
detailed in the following section.

In the model, infectious contacts within and between age classes may occur in three
different transmission settings (household H, schools S, community C), and are com-
bined in an overall contact matrix, specific for each geographical context, according
to the following equation:

Ma,ã(t) = CH
a,ã + σsC

S
a,ã + CC

a,ã (3.1)

where:

• CH
a,ã, CS

a,ã, CC
a,ã are the contact matrices for the transmission settings described

above;
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• σs is a parameter which is set equal to 0 to consider the transmission dynamics
under the school closure mandate, and equal to 1 to assess the transmission
dynamics when schools are open;

• Ma,ã represents the age-specific contact matrix, whose entries describe the mean
number of persons in age group ã encountered by an individual of age group
a per day across different settings.

The proportions of the SWSZ population living in each geographical context were
used as sampling weights to compute average contact matrices for the entire SWSZ.

In the model, we assumed asymptomatic and symptomatic individuals to be equally
infectious, as suggested by an early analysis of virological data from Lombardy
(Cereda et al., 2020) and Veneto (Lavezzo et al., 2020). The transmission model con-
siders three consecutive infectious compartments to reproduce a gamma-distributed
generation time (Cereda et al., 2020; Guzzetta et al., 2020). The force of infection for
subjects of age a is defined as:

λa(t) = βra ∑
ã

r̂ã Ma,ã
αI Iã(t) + αJ Jã(t) + αKKã(t)

Nã
(3.2)

where:

• β is a scaling factor shaping the number of potentially infectious contacts re-
sulting in infection;

• ra is the relative susceptibility to SARS-CoV-2 infection at age a;

• r̂ã is the relative infectiousness at age ã;

• Iã(t) , Jã(t) and Kã(t) represent the number of individuals of age ã in the three
stages of infection I, J,K, at time t;

• αI , αJ and αK are adjusting factors for individuals’ infectiousness during the
three stages of infection I,J and K;

• Nã represents the total number of individuals in age group ã ;

In the baseline analysis, we assumed that, compared to adults aged 20-59 years
(ra=1), individuals aged <20 years are 67% less susceptible to infection (i.e. ra=0.33;
95%CI 0.24-0.47) and those aged ≥60 years are 47% more susceptible to infection
(ra=1.47; 95%CI 1.16-2.06) (Zhang et al., 2020); homogeneous susceptibility to SARS-
CoV-2 infection across ages was considered for sensitivity analysis (ra=1 for all a).
In the baseline analysis, individuals of different ages were considered equally infec-
tious (r̂ã=1 for all ã). For sensitivity analysis, we assume that individuals aged 0-19y
are 50% less infectious than other individuals (r̂ã=0.5 when ã<19; r̂ã=1 for ã ≥20).
Finally, we assumed that recovering from infection provides full immunity against
re-infection for at least the duration of our simulations (2 years).
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Transitions across different epidemiological classes can be summarized by the fol-
lowing differential system:































S′
a(t) = −λa(t)Sa

I′a(t) = λa(t)Sa − γIa(t)

J′a(t) = γIa(t)− γJa(t)

K′
a(t) = γJa(t)− γKa(t)

R′
a(t) = γKa(t)

(3.3)

where:

• S represents the number of individuals susceptible to SARS-CoV-2 infection;

• γ is the recovery rate associated with each stage of infection: I, J, K;

• R represents the number of individuals who recover from the infection.

We assumed that the average generation time of SARS-CoV-2 can be approximated
with the observed average serial interval, which was estimated in 6.6 days (World
Health Organization. WHO Coronavirus Disease (COVID-19) Dashboard. 2020.). The
adjusting factors αJ , αJ and αK were set equal to 0.014, 0.9 and 0.086 respectively, in
such a way to reproduce a distribution of the generation time consistent with that of
the observed serial interval, i.e. a Gamma distribution with shape 1.87 and rate 0.28
(Cereda et al., 2020; Marziano et al., 2021a).
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FIGURE 3.6: SARS-CoV-2 generation time Distribution of the SARS-
CoV-2 generation time (red) as simulated in our model when assum-
ing γ=0.303 days−1, αI=0.014, αJ=0.9 and αK=0.086 compared to the
distribution of the SARS-CoV-2 serial interval as observed in Italy

(blue)

Reproduction numbers (R) associated with different geographical contexts were com-
puted by using the Next Generation Matrix approach (Zhang et al., 2020). The pa-
rameter β was assumed to be equal across different geographical contexts and cal-
ibrated by considering the average contact matrix for the entire South West Shewa
Zone, by computing the model’s Next Generation Matrix under the assumption of
school closure, and by assuming that the resulting R is equal to the reproduction
number estimated from the initial (from May 1 to June 12) exponential growth char-
acterizing the reported COVID-19 cases in Ethiopia (mean 1.62; 95%CI: 1.55-1.70, see
Figure 3.7) (Wallinga and Lipsitch, 2007). Alternative values of R (i.e +/- 20%) were
considered for sensitivity.
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FIGURE 3.7: Transmissibility potential. a) Daily COVID-19 cases
reported in Ethiopia (World Health organization. Health Workforce Re-
quirements for Universal Health Coverage and the Sustainable Development
Goals. Human Resource for Health Observers Series No. 17.). The red bars
show the exponential phase considered to estimate the SARS-CoV-2
reproduction number in Ethiopia. b) Estimates of R obtained from
the exponential growth of cases observed between May 1 and June

12.

Dynamic transmission of SARS-CoV-2 was investigated separately for the three geo-
graphical contexts (remote settlements, rural villages and urban neighbors) by con-
sidering a population stratified into 7 age groups (six 10-year age groups from 0 to
59 years and one age group for individuals aged 60 years or older). The age distribu-
tion of household members of study participants was used to define the population
age-structure across different geographical contexts. Simulation results shown in the
main text and in the following sections were obtained by using a stochastic version
of the model described above and 1,000 stochastic runs accounting for variability
in available estimates of ra (Zhang et al., 2020), uncertainty in the derived contact
matrices and the uncertainty in the estimated value of R from surveillance data (Fig-
ure 3.7). Each simulation was initialized with 5 infections every 10,000 inhabitants,
assigned randomly across age classes. Figure 3.8 shows a comparison between the
weekly number of COVID-19 cases reported in Ethiopia during the period of ex-
ponential growth (World Health Organization. WHO Coronavirus Disease (COVID-19)
Dashboard. 2020.) when all teaching activities were suspended in the entire country
and the weekly number of infections occurring in the SWSZ as simulated by our
model by excluding school contacts.
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FIGURE 3.8: Epidemic growth. Number of infections per 1,000 inhab-
itants as estimated by the model (blue line: mean; shaded area: 95%
credible intervals CI) compared to the growth observed in the num-
ber of weekly COVID-19 cases reported in Ethiopia (red dots) used

for the estimation of the reproduction number.

Age specific attack rates for symptomatic infections and critical cases were obtained
by applying estimates for the absolute probability of developing symptoms (res-
piratory or fever), and critical disease (either requiring mechanical ventilation or
resulting in death) after infection, as provided in (Poletti et al., 2020b).

3.6.5 Adjustment of contact matrices for reciprocity

In order to robustly estimate the average number of observed contacts per person
per day, we need to consider that the sample age distribution is different from the
population age distribution and to take into account the probability of an individual
to be included in the sample. All the considered contact matrices were therefore
adjusted for reciprocity, by applying the same approach used in (Melegaro et al.,
2017) and detailed as follows. Let Pa denote the number of participants in the a-th
age class and let c(a,ã)(i) denote the number of contacts a specific study participant
i of age a has with individuals of age ã. The total number of contacts T(a,ã) that all
study participants of age a have with individuals of age ã can be computed as

T(a,ã) =
Pa

∑
i=1

c(a,ã)(i)

The average contacts an individual of age a has with individuals of age ã can be
approximated by the average contacts that a participant of age a with individuals of
age ã as follows:

C(a,ã) =
T(a,ã)

Pa
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In principle,T(a,ã) can be different from T(ã,a). In order to correct matrices for sym-
metry we should take into account the probability of an individual to be included
in the sample. To do this, we corrected the total number of contacts that all study
participants of age a have with individuals of age ã as a weighted average of the
total contacts reported by participants of different ages as follows:

T corrected
(a,ã) =

PaNaT(a,ã) + PãNãT(ã,a)

Pa + Pã

where Na is the size of the age group a in the population targeted by our contact
survey. The adjusted average contacts an individual of age a has with individuals of
age ã can be finally computed as

C corrected
(a,ã) =

T corrected
(a,ã)

Na

3.6.6 Uncertainty in contact matrices

In order to take into account sample variability, we computed 1,000 bootstrapped
contact matrices for each geographical context and transmission setting. At each
bootstrap iteration, we sampled with replacement 400, 326 and 212 interviews from
those obtained in remote settlements, rural villages and urban neighborhoods re-
spectively, choosing the age of the participant with probability proportional to the
age distribution of the Ethiopian population (United Nations Department of Economic
and Social Affairs. 2019 UN World Population Prospects.). Then, we counted for each
participant i of age group a the number of contacts reported with individuals of age
ã in the setting x, cx

(a,ã)(i), and estimated the average number of contacts occurring
in the setting x between ages a and ãfrom the following equation:

Cx
(a,ã) =

∑
Pa
i=1 cx

(a,ã)(i)

Pa
(3.4)

where Pa is the number of sampled participants of age group a. Contact matrices
resulting by averaging entries of 1,000 bootstrap cx

(a,ã) after the correction for reci-
procity described in the previous section are reported in Figure 3.9 and Figure 3.10.
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FIGURE 3.9: Contact matrices by settings. Age-specific contact ma-
trices as obtained by averaging 1,000 bootstrapped contact matrices
representing the average number of daily contacts reported by par-
ticipants in the age group i with individuals in the age group j in
household a), in the general community b) and both c) in the SWSZ.

FIGURE 3.10: Contact matrices by geographical context. Age-
specific contact matrices as obtained by averaging 1,000 bootstrapped
contact matrices, representing the estimated average number of daily
contacts that an individual in the age group i experience with indi-
viduals in the age group j across all settings (including schools) in the
entire SWSZ a) in remote settlements b), rural villages (c) and urban

sites c).

3.6.7 Additional results on contact patterns

The mean number of daily contacts per person was analyzed with respect to a set of
covariates, including age, sex, type of work and geographical context of the study
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participant, and day of the week in which the encounter occurred. A statistical com-
parison of mean values was carried out using either t-tests or ANOVA if the strata
are more than two. Differences among three or more group means were assessed by
a post-hoc analysis based on the Tukey test. A Kolmogorov–Smirnov (KS) test was
used to compare distributions across different strata.

In our sample, 51% of individuals were female, and no significant differences were
found in the sample age distribution across different geographical contexts (pairwise
KS test p-value>0.28). Differences in the age distribution of all household members
of study participants are reported in Figure 3.11.

FIGURE 3.11: Population age structure. Age distribution of house-
hold members (HM) of study participants residing in the three geo-
graphical contexts and in the overall SWSZ with respect to the age
distribution of the Ethiopian population reported in (United Nations
Department of Economic and Social Affairs. 2019 UN World Population

Prospects.).

Among study participants residing in remote settlements, 88.5% of male adults re-
ported to work in agriculture. Although agriculture remains the main occupation in
rural villages (30.6%), 38.8% of male adults living in these sites reported to be office,
shop or manual worker; 30% of adults living in urban neighbourhoods were unem-
ployed. In all sites, more than 60% of adult females were housewives and only 5% of
working adults reported travels to a different kebele to reach their workplace. Only
9.0% of study participants accessed a health facility in the month preceding their
interview. This latter percentage varies largely across age and geographical context,
with percentages ranging from 7.7% among children living in remote settlements to
22.3% among those living in urban neighbors, respectively. 87.3% of the participants
reported they were never admitted to the local hospital.
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Highest contact rates were recorded among individuals aged 35-44 (7.22 95%CI 6.51-
7.93), lowest in younger children (5.16 95%CI 4.87-5.45). However, the average num-
ber of daily contacts reported by individuals aged 65 years or more was similar to
those reported by individuals aged 25-34 years (6.41, p-value>0.99). The number
of daily contacts reported by people employed in agriculture was also remarkably
high (mean: 7.02) when compared to office workers (mean: 8.07) and retired indi-
viduals (mean: 4.67). A similar number of daily contacts was found in males and
females (6.15 vs 5.99, p-value=0.40). The number of contacts experienced during the
weekends were not significantly different from those experienced during the week
(6.12 vs 6.05, p-value=0.74). A significantly larger proportion of contacts outside the
household was found among study participants living in rural villages (56.8%) than
in those living in remote settlements (52.5% p-value =0.013) or in the more urban-
ized neighborhoods (52.4%, p-value =0.035). The percentage of contacts occurring
outside the kebele of residence was very low in all sites: 1.5% in rural towns, 2.1% in
remote settlements and 2.9% in urban neighborhoods. However, adult males resid-
ing in the urban neighborhoods and the rural towns (representing the 10.7% of the
sample) were twice more likely to travel outside of their neighborhood compared to
those living in remote settlements (p-value <0.001).

3.6.8 Sensitivity analyses

We conducted a set of sensitivity analyses to evaluate how estimates of the potential
COVID-19 burden change across different geographical contexts:

• Sensitivity 1: susceptibility to infection is homogeneous across all different age
classes (i.e., assuming ra=1 for any a in Eq.(3.2));

• Sensitivity 2: the infectiousness of individuals aged between 0 and 19 years
is 50% lower compared to older individuals (i.e., assuming r̂ã =0.5 when ã<20
and r̂ã = 1 for ã ≥20 in Eq.(3.2)) and that susceptibility to infection is hetero-
geneous by age, as defined for the baseline analysis;

• Sensitivity 3-4: the reproduction number in the SWSZ is decreased and in-
creased by 20% with respect to the value used in the baseline analysis, while
susceptibility to infection and infectiousness is the same as in the baseline anal-
ysis.

• Sensitivity 5: the same reproduction number is used for the three geographi-
cal contexts; this sensitivity was conducted by estimating different per-contact
transmission rates for each setting in such a way that the model reproduction
number in each setting encompasses the estimates the distribution of the re-
production number obtained from fitting the exponential growth observed in
the national surveillance data.

• Sensitivity 6: the SARS-CoV-2 transmission dynamics follows a SEIR scheme
(instead of the SIR scheme adopted for our baseline analysis); the SEIR scheme
was simulated by setting the adjusting factors αI , αJ and αK at 0,1 and 0, in such
a way that an individual, once infected, remains in the latent compartment for
3.3 days before becoming infectious (consistent with an average incubation
period of 5-6 days and an average period of pre-symptomatic transmission of
2 days).



3.6. Appendix 57

Figure 3.12 shows the estimated attack rates of infection, symptomatic cases, and
critical disease in a hypothetical epidemic with school closure, by assuming that the
reproduction number in the entire SWSZ is 1.62 (95%CI 1.55-1.70), as estimated from
surveillance data (World Health Organization. WHO Coronavirus Disease (COVID-19)
Dashboard. 2020.), and under the hypothesis of homogeneous susceptibility by age.
Figure 3.13 shows the same quantities under the hypothesis that the infectiousness
of individuals younger than 20 years of age is half of all other individuals.

FIGURE 3.12: Sensitivity 1. Estimated attack rates of infection (top),
symptomatic cases (middle), and critical disease (bottom), overall
and by age group in different geographical contexts, as expected at
the end of an epidemic mitigated by school closure alone and un-
der the hypothesis of homogeneous susceptibility. Outputs were ob-
tained by simulating 1,000 different epidemics where the per-contact
transmission rate is set to reproduce, when neglecting contacts oc-
curring at school, random samples of the distribution of the net re-
production number estimated from national surveillance data 1.62

(95%CI 1.55-1.70).
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FIGURE 3.13: Sensitivity 2. Estimated attack rates of infection (top),
symptomatic cases (middle), and critical disease (bottom), overall
and by age group in different geographical contexts, as expected at
the end of an epidemic mitigated by school closure alone and under
the hypothesis that the infectiousness of individuals younger than 20
years of age is half of all other individuals. Outputs were obtained
by simulating 1,000 different epidemics where the per-contact trans-
mission rate is set to reproduce, when neglecting contacts occurring
at school, random samples of the distribution of the net reproduction
number estimated from national surveillance data 1.62 (95%CI 1.55-

1.70).

Figures 3.14 and 3.15 show the estimated attack rates of infection, symptomatic
cases, and critical disease in a hypothetical epidemic with school closure when the
average reproduction number in the entire SWSZ is decreased or increased by 20%.
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FIGURE 3.14: Sensitivity 3. Estimated attack rates of infection (top),
symptomatic cases (middle), and critical disease (bottom), overall
and by age group in different geographical, as expected at the end
of an epidemic mitigated by school closure alone and under the as-
sumption of 20% decrease of the reproduction number with respect

to the baseline analysis.
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FIGURE 3.15: Sensitivity 4. Estimated attack rates of infection (top),
symptomatic cases (middle), and critical disease (bottom), overall
and by age group in different geographical, as expected at the end
of an epidemic mitigated by school closure alone and under the as-
sumption of 20% increase of the reproduction number with respect to

the baseline analysis.

Figure 3.16 shows the estimated attack rates of infection, symptomatic cases, and
critical disease when assuming the same reproduction number across remote, rural
and urban contexts.
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FIGURE 3.16: Sensitivity 5. Estimated attack rates of infection (top),
symptomatic cases (middle), and critical disease (bottom), overall
and by age group in different geographical, as expected at the end of
an epidemic mitigated by school closure alone and under the assump-
tion of an equal reproduction number across the three geographical

contexts.

Figure 3.17 shows the epidemic curves in each geographical context simulated by
using our baseline SIR model with three infectious compartment and by using an
alternative SEIR scheme for the SARS-CoV-2 transmission dynamics. Estimates pre-
sented were obtained by assuming that the reproduction number in the entire SWSZ
is 1.62 and by initializing the epidemic with the same number of infected individu-
als. No remarkable differences are observed in the patterns and magnitude of epi-
demic curves obtained with the two alternaticve scenarios.
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FIGURE 3.17: Sensitivity 6. Mean number of SARS-CoV-2 infections
per 1,000 inhabitants in the three geographical contexts under a hypo-
thetical scenario mitigated by school closure only, as simulated under
SIR and SEIR schemes when assuming a reproduction number of 1.62

(95%CI 1.55-1.70).

.
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Chapter 4

Priority ages targets for COVID-19
vaccination under limited vaccine
supply: the case of South West
Shewa Zone, Ethiopia

4.1 Introduction

After almost two years in the pandemic, the observed burden of the coronavirus dis-
ease 2019 (COVID-19) has been relatively low throughout Africa compared to high-
income countries (Trentini et al., 2021). The main reasons behind this phenomenon
may rely on the lack of reliable records on the real number of cases occurring in low-
income settings and on the lower likelihood among young individuals of experienc-
ing severe disease after SARS-CoV-2 infection (Trentini et al., 2021; Ofotokun and
Sheth, 2021; Burki, 2021; Zardini et al., 2021). In Africa, approximately 40% of peo-
ple aged less than 15 years, compared to a global mean of 26% (Population of Africa
in 2020, by age group). The impact of COVID-19 in the African countries may have
been vastly underestimated due to lacking testing capacity (Ofotokun and Sheth,
2021; Burki, 2021). For instance, a recent post-mortem surveillance study revealed
that, contrary to expectations, deaths with COVID-19 were common among patients
of a tertiary care referral hospital in Zambia (around 20% among deceased patients
compared to less than 9% tested before death) (Mwananyanda et al., 2021).

Given the increasing spread of COVID-19 in the younger and healthier populations
(Nachega et al., 2021), the repeated emergence of hyper transmissible lineages of
SARS-CoV-2 (Okereke, 2021; Viana et al., 2022; Wolter et al., 2022; Gozzi et al.,
2022;Abdullah et al., 2021), and the inequitable access to vaccination across coun-
tries (Loembé and Nkengasong, 2021), there is an urgent need to identify appropri-
ate strategies for minimizing the COVID-19 burden in sub-Saharan settings. To mit-
igate the ongoing pandemic, unprecedented social distancing measures have been
applied worldwide, including in low-income settings (Quaife et al., 2020; Van Zand-
voort et al., 2020; Trentini et al., 2021; Walker et al., 2020; Tshangela et al., 2020).
However, the implementation of drastic restrictions may have disproportionate ef-
fects on the already vulnerable economies of the African countries (Tshangela et al.,
2020; Quaife et al., 2020; Van Zandvoort et al., 2020).

Mass immunization programs still represent the main public health strategy to re-
duce the burden caused by the circulation of SARS-CoV-2. While most high-income
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countries have rapidly progressed in the deployment of multiple vaccine doses, as
of January 7, 2022, only 9.7% of the total African population has been fully vacci-
nated (Our world in data. COVID-19 Data Explorer; CovidVax). At this date, Ethiopia
shows the second highest cumulative number of infections and deaths of the whole
African continent (World Health Organization. WHO Coronavirus Disease (COVID-19)
Dashboard. 2020.). Although the national vaccination campaign was launched in
March 2021 (World Health Organization. Ethiopia introduces COVID-19 vaccine in a na-
tional launching ceremony.), the current vaccine uptake of Ethiopia is one of the lowest
of Africa, with only 1.35% of the citizens being fully immunized (Our world in data.
COVID-19 Data Explorer; CovidVax). Further vulnerabilities of this country are repre-
sented by the high prevalence of comorbidities (e.g., malnutrition and tuberculosis),
the limited healthcare resources, and the strong inequalities in access to primary care
across geographical contexts (Poletti et al., 2018; Endris, Asefa, and Dube, 2017).

In this work, we estimate the contribution of different ages in generating SARS-
CoV-2 infections and COVID-19 cases associated with most severe outcomes over
different phases of the pandemic and across different areas of the South West Shewa
Zone (SWSZ) of Ethiopia. The impact of alternative priority targets for vaccination
is evaluated by considering different conditions of vaccine supply. To do this, we
developed and simulated a transmission model for SARS-CoV-2 informed with data
on age-specific mixing patterns recently collected across different geographical con-
texts of the SWSZ, characterized by heterogeneous population density, age structure,
and access to healthcare (Trentini et al., 2021). The impact of different immunization
strategies is evaluated in terms of the number of infections and critical cases that
could be averted after the rollout of the national vaccination program. Obtained re-
sults could be used to identify the most effective strategies for the deployment of
vaccines in emergency contexts characterized by limited vaccine supply.

4.2 Methods

The SARS-CoV-2 transmission dynamics is simulated by using a deterministic age-
structured SIR model. Susceptibility to SARS-CoV-2 infection is assumed to vary
with age according to estimates made available by Hu et al. (Hu et al., 2021). Specif-
ically, taking the age group of 20-59 years as the reference, the relative susceptibility
for individuals aged 0-19 years is set at 0.59 (95%CI: 0.35-0.92) and at 1.75 (95%CI:
1.07-2.81) for the individuals above 60 years of age. Homogenous infectiousness
among individuals of different ages and an average generation time of 6.6 days are
assumed.

The developed model keeps track of the contribution of infectors of different ages
in causing secondary infections and cases developing severe outcomes in the popu-
lation across different socio-economic contexts. Age-specific risks of developing crit-
ical disease after SARS-CoV-2 infection are taken from (Zardini et al., 2021). Critical
disease cases are defined as positive individuals who would either require intensive
care or likely result in a fatal outcome.

The adopted approach leverages on age-specific contact matrices recently estimated
from records collected across different geographical areas of the SWSZ of the Oromia



4.2. Methods 65

Region, Ethiopia (Trentini et al., 2021). These sites consisted of rural villages, dis-
persed subsistence farming settlements, and urban neighborhoods of Woliso Town
(Trentini et al., 2021; United States Department of Agriculture. Economic Research Ser-
vice.). The model is run separately for each geographical context, assuming a con-
stant total population. A different population age structure is considered for the
three geographical settings under study (rural, remote, and urban).

The contribution of different ages in generating secondary infections and critical
cases is estimated by considering two different pandemic phases. As for the first
phase, lasting until March 2021, we considered the emergence of SARS-CoV-2 in a
fully naïve population of individuals and analyzed the epidemic dynamics under
the dominance of the historical strains of SARS-CoV-2, under a school closure man-
date, and in the absence of vaccination. School closure was assumed for the entire
period as this represented the prevalent restriction adopted by the national gov-
ernment until the vaccination program was launched. The spread of infection was
simulated by considering an initial reproduction number of 1.62 (95%CI: 1.55–1.70),
as estimated from the exponential growth of cases reported in Ethiopia from May
to mid-June 2020 (Trentini et al., 2021). The transmission dynamics during this pan-
demic phase was simulated until a given proportion of the overall population gets
infected. Such proportion was defined as setting specific according to serological
prevalence levels estimated for March 2021 in the Jimma Zone: 31% in rural and
remote sites and 45% in urban areas (Gudina et al., 2021b). Different seroprevalence
values were considered for sensitivity analysis. Reliability of results obtained by the
adopted approach was assessed by comparing the age distribution of the cumulative
number of infections obtained by model simulation with the age distribution of in-
fections ascertained with real-time reverse transcription polymerase chain reaction
(RT-PCR) as reported between 13 March and 13 September 2021 in the Oromia Re-
gion (Gudina et al., 2021a). The second pandemic phase that we considered aims at
reflecting the transmission of SARS-CoV-2 after the launch of the national vaccina-
tion program in March 2021. To explore the potential impact of COVID-19 vaccina-
tion, we simulated the SARS-CoV-2 circulation after school reopening and under the
assumption that the population was partially immunized by natural infection. An
initial age-specific immunity profile equal to the one obtained after running the first
pandemic phase was assumed to reflect the epidemiological situation at the launch
of the national immunization campaign. To account for the replacement of histori-
cal strains by hyper-transmissible variants occurred in 2021 (Genomic epidemiology of
novel coronavirus - Africa-focused subsampling), we assumed a transmission rate mir-
roring a basic reproduction number of 6 (Liu et al., 2021); alternative values were
considered for sensitivity analysis. The impact of different vaccination strategies on
the burden of COVID-19 is assessed in terms of the potential attack rate of infec-
tions and critical cases expected after the launch of vaccination in March 2021 in the
absence of restrictions on the individuals’ contacts. Four different situations are an-
alyzed. First, we consider a scenario where the number of administered vaccines is
negligible, and we evaluate the impact of pre-existing immunity levels on the disease
spread. Given the low vaccine uptake recorded in Ethiopia, this scenario may reflect
what might have occurred in the first months following the launch of vaccination.
Second, we assume that a limited number of doses is available, and we investigate
whether the most effective strategy to mitigate the disease spread is either to vac-
cinate only the individuals over 50 years old, mimicking the initial priority target
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defined by the Ethiopian vaccination program (The World Bank. World Bank Open
Data.), or to vaccinate all the individuals eligible for vaccination (>10 years of age).
Specifically, simulations obtained by assuming a specific coverage level in the nar-
row age target (>50 years of age) are compared with simulations obtained when the
same number of doses are uniformly administered to the larger share of the popula-
tion (e.g., >10 years). Third, we assume that all individuals older than 50 years have
already completed the vaccination and we project the potential impact of expanding
vaccination to other age groups. In this case, the impact of administering the vaccine
only to individuals aged 30-50 years is compared with a scenario where the corre-
sponding number of doses is uniformly distributed to all eligible ages (10-50 years).
Finally, to provide a comprehensive view of the overall benefits of vaccination, we
consider a variety of combinations of coverage values among subjects over 50 years
and individuals aged between 10 and 50 years, irrespectively of the number of doses
required to achieve the considered targets.

In the model, vaccinated individuals are defined as subjects who received two doses
of vaccine and who therefore experience a lower risk of infection and of developing
severe outcomes (Marziano et al., 2021b; Harris et al., 2021; Subbarao et al., 2021;
Sheikh et al., 2021; Thiruvengadam et al., 2021; Pouwels et al., 2021; Falsey et al.,
2021). The SARS-CoV-2 infectiousness of breakthrough infections (i.e., infections oc-
curring among vaccinee) is assumed to be reduced by 50% (Marziano et al., 2021b).
Since ChAdOx1 nCoV-19 was the dominant vaccine employed in Ethiopia during
2021, the vaccine efficacy against infection and critical diseases is set at 65% and
71.5%, respectively (Subbarao et al., 2021; Sheikh et al., 2021; Thiruvengadam et al.,
2021; Pouwels et al., 2021; Falsey et al., 2021; Andrews et al., 2021). In a sensitivity
analysis, different values for the vaccine efficacy against the infection and the critical
disease were considered to reflect either the use of more effective vaccines or possi-
ble immune escape phenomena from vaccination led by recently emerged variants
(Viana et al., 2022; Wolter et al., 2022; Abdullah et al., 2021; Gozzi et al., 2022) .

Epidemiological transitions are modeled by the following system of ordinary dif-
ferential equations:











































Ṡa = −raSa ∑ã λa,ã

Ṡv
a = −(1 − VEinf)raSv

a ∑ã λa,ã

İa,ã = raλa,ãSa − γIa,ã

İv
a,ã = (1 − VEinf)raλa,ãSv

a − γIv
a,ã

Ṙa,ã = γIa,ã

Ṙv
a,ã = γIv

a,ã

where a defines the chronological age of the individuals, ra is the relative suscepti-
bility in the age class a, Sa represents susceptible individuals who have never been
vaccinated, Sv

a represents vaccinated individuals who experienced a reduced force
of infection, VEinf is the vaccine efficacy against the infection, Ia,ã and Iv

a,ã are the
individuals of age a among unvaccinated and vaccinated individuals who get the
infection upon contacts with individuals of age ã, Ra,ã and Rv

a,ã represent the num-
ber of recovered individuals from these two classes of infections, 1/γ is the average
duration of the infectivity period, and λa,ã is the contribution of age ã to the force of
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infection experienced by susceptible individuals of age a. The latter is defined as

λa,ã = Ma,ã

(

β
∑ã Ia,ã

Nã
+

β

2
∑ã Iv

a,ã

Nã

)

where Ma,ã represents the average number of daily contacts that an individual of age
class a has with persons of age group ã, Nã is the total population in the age class ã ,
and β is the SARS-CoV-2 transmission rate.

4.3 Results

4.3.1 SARS-CoV-2 transmission in the pre-vaccination period

The age distribution of the infections estimated by the model under the assumption
of a fully susceptible population and the school closure mandate well compares with
the one of SARS-CoV-2 infections ascertained in the Oromia Region between March
and September 2021 (Gudina et al., 2021a) (Figure 4.1 A). The retrospective recon-
struction of infections that occurred from the beginning of the pandemic to March
2021 suggests that, in all considered sites, the proportion of individuals who gained
natural immunity during the first pandemic phase was markedly higher among sub-
jects aged over 60 years: ranging from 47.7% (95%CI: 32.6-68.0%) in rural area to
73.5% (95%CI: 49.9-94.1%) in the remote settlements (Figure 4.1 B). Our estimates
also suggest that the level of natural immunity acquired under 60 years of age was
relatively higher in urban neighborhoods compared to other settings. According
to our simulations, SARS-CoV-2 transmission during the first pandemic year might
have been mainly assortative, i.e., characterized by a similar age between the infec-
tors and their secondary cases (see Figure 4.2). Nonetheless, we estimated that dur-
ing this period the highest fraction of SARS-CoV-2 infections was caused by infectors
under 30 years: 46.1-58.7% across all the considered socio-economic contexts. Re-
markably, in remote settlements, 48.7% of overall infections occurred over 60 years
of age might have been caused by infected individuals of similar age. Accordingly,
assortative contacts between the elderlies in remote settlements might have caused
a higher percentage of critical cases compared to what estimated for the other ge-
ographical contexts (35.7% among individuals aged >60 years vs 9.5% and 9.1% in
the rural and the urban settings respectively, see Figure 4.2). This may be partially
explained by the older population structure characterizing less urbanized popula-
tions, and the higher number of community contacts between individuals aged 60
years and subjects with a similar age identified for this socio-economic context (see
Figure 4.7 and 4.8).
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FIGURE 4.2: Age distribution of the population residing in rural vil-
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representing the estimated average contribution of different ages in
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era B and at the launch of the national vaccination program C. The
two scenarios are simulated by considering an average basic repro-

duction of 3 and 6, respectively.

4.3.2 SARS-CoV-2 transmission at vaccination launch

To mimic the COVID-19 epidemiology during the first months following the launch
of the national vaccination program, we simulated the SARS-CoV-2 transmission
by assuming that the vaccine uptake achieved in the entire population was negligi-
ble. However, pre-existing immunity levels as estimated for March 2021 were fully
considered and an increased viral transmissibility was assumed to account for the
emergence of new hyper-transmissible lineages of SARS-CoV-2. Our results suggest
that the natural immunity acquired in the first pandemic phase and the reopening
of teaching activities have redrawn the contribution of different ages in the spread
of SARS-CoV-2 infection (see Figure 4.2 C). Specifically, we found that, after March
2021, the contribution of individuals under 30 years in causing new infections and
critical cases might have increased to 84.5-87.3% and 66.7-70.6% respectively (see
Figure 4.2 C). Accordingly, the contribution of the elderly in generating SARS-CoV-
2 secondary infections and critical cases was rebounded to 0.8-1.3% and to 3.1-6.6%,
respectively.

4.3.3 The expected epidemiological outcomes under different vaccine up-
take levels and vaccination priority targets

We compared the attack rates of infection and critical cases expected under two epi-
demiological scenarios. In the first one, we assumed that all the individuals aged 50
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years or more have been vaccinated according to the initial priority target defined
by the national vaccination program (The World Bank. World Bank Open Data.) but
that none of the younger individuals received the vaccine. In the second one, we
assumed that the corresponding number of vaccine doses have been randomly dis-
tributed throughout all ages eligible for vaccination. Both scenarios were simulated
by considering the immunity acquired from natural infection before the launch of the
vaccination program and the increased transmissibility associated with SARS-CoV-2
lineages emerged in 2021. Our findings suggest that, with a limited vaccine supply,
the better strategy to reduce the potential burden of critical disease is to prioritize
vaccination of older individuals (see Figure 4.3). On the one hand, we found that the
vaccination of 100% of individuals older than 50 years of age has the potential of re-
ducing the attack rate of critical disease to 0.13% (95%CI: 0.11-0.15%), 0.11% (95%CI:
0.09-0.13%), and 0.09% (95%CI: 0.07-0.12%) in rural, remote, and urban areas, re-
spectively. On the other hand, we estimated that if the same number of vaccines are
randomly administered to individuals older than 10 years of age, the fraction of the
population developing a critical disease is expected to be 0.20% (95%CI: 0.16-0.23%)
in rural, 0.15% (95%CI: 0.10-0.21%) in remote, and 0.12% (95%CI: 0.08-0.16%) in ur-
ban areas. As concerns the reduction of the number of infections, the effect of these
two alternative vaccination strategies is almost equivalent, with differences in the
attack rates ranging from 0.5% to 1.1% across the three geographical contexts (see
Figure 4.3).
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We projected the potential impact of an expansion of the national vaccination cam-
paign, under the assumption that all individuals over 50 years of age have been
fully vaccinated. The effect of an enhanced vaccine uptake on the COVID-19 burden
is investigated by comparing simulations where the vaccination of individuals aged
30-50 years is prioritized with model estimates obtained when an equal number of
subjects is randomly targeted by vaccination among individuals aged 10-50 years
(see Figure 4.4). We found that the most effective strategy to reduce the attack rate
of infections is to distribute the vaccines to all individuals aged 10-50 years. How-
ever, to decrease the cumulative number of critical cases, the best strategy remains
the prioritization of the older segments of the population (in this case, individuals
between 30 and 50 years of age). Assuming as a reference the number of doses corre-
sponding to 50% coverage among subjects aged 30-50 years, the beneficial impact of
using these doses to randomly vaccinate individuals between 10 and 50 years of age
is quantified in an additional 477, 481, and 996 averted infections per 100,000 resi-
dents in the rural, the remote, and the urban contexts, respectively. Reversely, the
average number of critical patients that could be further averted by targeting only
subjects aged 30-50 years of age would consist of 12, 11, and 7 per 100,000 residents
in rural, remote, and urban contexts respectively.

According to our simulations, the average attack rate of infections could decrease
from 47.2-63.0% obtained when only individuals aged more than 50 years are tar-
geted by vaccination to 41.7-57.7% when 100% of coverage is reached in all the in-
dividuals above 30 years. The corresponding average attack rate of critical cases
would almost halve (from 0.09-0.13% to 0.05-0.07%). If the same number of doses
would be used to vaccinate all the individuals above 50 years of age and uniformly
vaccinate the residual eligible subjects (i.e., 10-50 years), the expected average attack
rate of SARS-CoV-2 infection and of critical disease would decrease to 39.2-56.3%
and to 0.06-0.09%, respectively.
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FIGURE 4.4: Estimated attack rates of infections (first row) and critical
cases (second row), in each site (rural, remote, and urban), obtained
under the assumption that all individuals over 50 are fully immu-
nized and considering different scenarios in the number of available
vaccine doses, which was computed exploring different coverages
among subjects aged 30-50 years. We assessed the impact of two vac-
cination strategies, involving individuals aged 30-50 years (orange
line) or the entire remaining vaccinable population (10-50 years, blue
line). Lines show the mean model estimates while shaded areas rep-

resent the 95% credible interval.

To illustrate the full potential of COVID-19 vaccination, we estimated the attack rate
of infections and critical cases under different combinations of vaccination cover-
age in the elderly (≥50 years of age) and between 10-50 years of age, irrespectively
to possible limits in the vaccine supply (see Figure 4.5). Obtained results corrobo-
rate that to reduce the number of infections, the vaccination of younger subjects is
required. However, our estimates suggest that the vaccination with 2 doses of the
entire population over 10 years would not be enough to decrease the reproduction
number below the critical epidemic threshold of 1, therefore suggesting that the de-
ployment of booster doses is required to interrupt the SARS-CoV-2 circulation in
Ethiopia.

Our simulations highlight that to reduce the potential attack rate of infection un-
der 35%, all the individuals over 50 years and at least 20% of subjects under this age
should be vaccinated in remote settlements (see Figure 4.5 A). In rural villages, the
same achievement could be reached by either vaccinating 100% of the people under
50 years of age or by reaching a 90% coverage in the people under 50 years and at
least a 10% coverage among the over 50. In urban areas, 60% of coverage among
individuals under 50 years may be sufficient to obtained similar results. When as-
suming a vaccination coverage of 100% among the elderly, the lowest attack rate of
critical cases is expected to occur in urban neighborhoods where 9.3 (95%CI: 6.6-11.8)
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subjects per 10,000 individuals are estimated to be exposed to COVID-19 critical dis-
ease (see Figure 4.5 B). To reduce the number of critical cases around such a level of
incidence in remote and rural areas, the strategy minimizing the number of admin-
istered doses requires the vaccination of 90-100% of the individuals older than 50
years and at least 20-30% of younger individuals. To further reduce the attack rate
of critical disease under 4 cases per 10,000 individuals in remote settlements and
rural villages, a 90-100% vaccination coverage over 50 years of age should be com-
plemented with more than 80% coverage among younger eligible subjects. In urban
neighborhoods, the same target would require 100% coverage among the elderly
and 60% coverage in younger individuals. Remarkably, if the maximum uptake lev-
els achieved among the elderly would be 80%, the vaccination of at least 100%, 90%,
and 70% of the individuals under 50 years would be required to reduce the attack
rate of critical disease under 4 cases per 10,000 individuals in rural, remote, and ur-
ban areas, respectively. Despite a higher infection attack rate may characterize the
remote settlements, under all the considered combinations of coverage levels, the
highest prevalence of critical cases is expected in rural areas, where a lower propor-
tion of the elderly might have been naturally immunized during the first pandemic
year.
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FIGURE 4.5: Attack rates of infections A and critical cases B as esti-
mated for rural, remote, and urban areas for different combinations
of coverage levels for individuals older than 50 years of age and
younger individuals when assuming an R0 equal to 6 and a gener-
ation time of 6.6 days. Natural immunity in rural, remote, and urban

areas are set at 31%, 31%, and 45%, respectively.

4.3.4 Sensitivity analyses

We performed a set of sensitivities analyses to evaluate the impact on our findings
of the model assumptions we made regarding the SARS-CoV-2 basic reproduction
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number (R0), the overall level of natural immunity acquired during the first year
of the pandemic, and the vaccine efficacy against infection and critical disease (see
figure 4.6). The conduction of these sensitivities aimed at exploring the potential
impact on our estimates of the emergence of hyper transmissible lineages, possible
changes in restrictions implemented by the government, alternative infection rates
experienced during the first pandemic phase, different values of the vaccine efficacy
possibly led by the waning of natural immunity, by the deployment of alternative
vaccine products, or by immune escape phenomena associated with SARS-CoV-2
variants emerged in late 2021 (Viana et al., 2022; Wolter et al., 2022; Gozzi et al.,
2022; Abdullah et al., 2021).
We found that, in the case that 100% of individuals older than 50 years of age get
vaccinated, a 15% increase in the transmissibility of the virus could result in an in-
crease in the overall attack rate of critical cases by 3.6-6.5%. For the same scenario,
15% lower transmissibility would result in a reduction in the estimated attack of crit-
ical disease of 6.3-9.7%. When assuming a higher initial natural immunity (38% in
rural and in remote, 53% in urban), the expected attack rate of critical disease de-
creases by 24.8-26.1% across the different settings. The same quantity is expected
to increase by 26.3-29.7% when considering lower initial immunity levels (22% in
rural and in remote, 40% in urban). Finally, while a more effective vaccine could
reduce the fraction of individuals developing critical outcomes by 3.2-6.0%, possible
immune escape or the progressive waning of natural immunity could increase this
fraction by 10.8-17.3%.

Results from the sensitivity analysis under alternative vaccination scenarios are pre-
sented in the Figures 4.9.
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der our baseline assumptions and in the different sensitivity analyses
carried out. Bars represent average model estimates. Black lines rep-
resent the corresponding 95%CI. Different colors are used to highlight

the average fraction of cases expected across different age bands.

4.4 Discussion

In this study, we adopted an age-stratified modeling approach to estimate the poten-
tial transmission of SARS-CoV-2 between different ages over time in rural, remote
and urban areas of the South West Shewa Zone of Ethiopia. Obtained results suggest
that before the launch of the national vaccination program, the infection transmis-
sion might have been mainly assortative, i.e. involving social interactions between
individuals of similar age. In particular, we estimated that, in remote settlements,
around half of the infections among the individuals over 60 years was caused by
interactions with subjects of similar age. More in general, we found that, on aver-
age, the elderly might have been responsible of 35.7%, 9.5% , and 9.1% of all critical
cases occuring across all ages in remote, rural and urban settings, respectively.On the
other hand, we found that a pivotal role in the spread of SARS-CoV-2 was played
by subjects under 30 years, who might have been responsible for about half of the
infections in all the considered areas. Our simulations also suggest that during the
first months after the launch of the vaccination, the natural immunity acquired in the
first pandemic phase and the reopening of schools significantly decreased the con-
tribution of the elderly to the transmission of infection, increasing the proportion of
critical cases caused by younger infections.
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Beyond possible phenomena of vaccine hesitancy, a limited vaccine supply should
be considered when exploring the impact of vaccination strategies against COVID-
19 in sub-Saharan African countries. Our estimates highlighted that - after almost
two years in the pandemic - prioritizing the vaccination of the older segments of
the population remains the best strategy to minimize the burden of critical illness in
low-income settings. These results emerged irrespectively to the overall number of
available doses and despite the estimated contribution played by young individuals
in the spread of the disease. Our findings therefore confirmed the results of anal-
yses conducted in early 2021 across different countries under the assumption of an
unlimited vaccine supply (e.g., (Marziano et al., 2021b; “Grad, and Daniel B. Lar-
remore. 2021.“Model-Informed COVID-19 Vaccine Prioritization Strategies by Age
and Serostatus.””; Yang et al., 2021).
Presented results should be carefully interpreted because of the following limita-
tions. First, in our model school closure is the only intervention considered to es-
timate the age-specific immunity before the launch of the national vaccination pro-
gram. This means that changes in the transmission intensity caused by variations
of the social distancing measures and restrictions policies adopted until March 2021
were not considered (including an initial suspension of nonessential productive ac-
tivities in 2020 (Trentini et al., 2021) and the erratic re-opening of schools for short
time periods (Scott et al., 2021). Although our estimates well compare with the age
distribution of infections ascertained until March 2021, the circulation of SARS-CoV-
2 after this date and the waning of natural immunity have likely altered the current
immunity profiles in the South West Shewa Zone. To better highlight the overall po-
tential of different vaccination strategies, SARS-CoV-2 transmission was simulated
under the hypothetical scenario of an unmitigated COVID-19 epidemic. Thus, our
estimates of the expected number of infections and critical cases might be consid-
ered as illustrative worst-case scenarios. In fact, the absolute burden of COVID-19
in the considered settings would strongly depend on the level of restrictions that
will be adopted during the rollout of vaccination. Finally, because of the lack of di-
rect data from Africa, the relative susceptibility, the age-specific risks of developing
a critical disease, and the potential increased transmissibility and immune escape
associated with novel SARS-CoV-2 variants were assumed from evidence gathered
in other countries (Hu et al., 2021; Zardini et al., 2021; Liu et al., 2021).

Despite these limitations, the major strengths of the presented analysis rely on the
investigation of the relative impact of prioritizing different ages for vaccination un-
der a limited vaccine supply and on the provided estimates of the contribution of
different ages groups in causing severe COVID-19 cases over different pandemic
phases. In this regard, our results highlight that social distancing measures should
focus on reducing contacts between the elderly (representing the most vulnerable
individuals) and individuals younger than 30 years of age (representing the most
common infectors in the spread of the disease).
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FIGURE 4.7: Contact matrices representing the mean number of daily
contacts reported by a participant in the age group i with individuals
in the age group j in each site (rural, remote, and urban). The bar
plots show the percentage of contacts that occurred in each setting
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FIGURE 4.8: Contact matrices representing the mean number of daily
contacts reported by a participant in the age group i with individuals
in the age group j in each setting (household, school, and community)

and site (rural, remote, and urban).
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FIGURE 4.9: Comparison of the estimated overall percentage of in-
fections and critical cases in different geographical contexts of the
SWSZ in the baseline scenario (vaccines are administered to all sub-
jects older than 10 years) and sensitivity analyses. Black lines repre-

sent the 95% credible intervals.
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Chapter 5

Conclusion

The design of appropriate public health policies in response to epidemic phenom-
ena requires to be informed with reliable estimates of the potential impact of the
infection on the individual health and the robust evaluation about the possible ef-
fect of alternative preventive and control measures. The latter could be assisted by
the analysis of model simulations based on data-driven approaches which investi-
gate the potential epidemic trajectories expected under different scenarios reflecting
time varying epidemiological conditions (e.g., the emergence of new viral variants),
public restrictions (e.g. school closure and lockdowns) and vaccinations policies.

Epidemiological data collected from disease cases identified in the population from
passive surveillance mainly consist of records associated with individuals seeking
care. As such, the myopic observation of surveillance data may lead to an erroneous
assessment of the circulation of an infectious pathogen in the community, prevent-
ing the identification of the real risks associated with the infection and hampering
a correct estimation of the potential impact of the viral spread on public health sys-
tems. The problem is particularly relevant for infectious diseases characterized by a
larger share of asymptomatic infections, as it is the case for COVID-19. To overcome
this issue and to better understanding of the effect of the infection spread at the pop-
ulation level, a careful selection of unbiased sample data of the infected individuals
is needed.

For many viral diseases, including COVID-19, vaccination represents the key tool
to reduce the risk of severe outcomes caused by the infection transmission and the
consequent pressure on health care systems, avoiding the side effects led by strict re-
striction regimes on the social-economic system of modern societies. Unfortunately,
the ongoing pandemic has highlighted a marked geographical heterogeneity in the
access to resources required to face epidemic threats. In fact, while the implemen-
tation of prolonged lockdowns and the suspension of working activities is not sus-
tainable in countries with vulnerable economies, so far, vaccination in Africa has
reached coverage levels well below initial expectations. As a consequence, beyond
possible phenomena of vaccine hesitancy in the population, a limited vaccine supply
should be considered when exploring the potential effectiveness of public policies
to counter COVID-19 disease spread in sub-Saharan Africa. An illustrative exam-
ple is provided by what has occurred in Ethiopia. Although a national campaign
for COVID-19 vaccination was launched in March 2021 (World Health Organization.
Ethiopia introduces COVID-19 vaccine in a national launching ceremony.), the vaccine
uptake level in this country is one of the lowest of Africa, with only 1.35% of the
citizens being fully immunized as of January 7, 2022 (CovidVax; Our world in data.
COVID-19 Data Explorer).
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On the one hand, this thesis deals with the estimation of parameters necessary to
evaluate the clinical course of individuals after the infection with SARS-CoV-2 (the
viral pathogen responsible of COVID-19). Estimated parameters could be used to
inform model analysis on the potential burden of COVID-19 across different geo-
graphical settings. On the other hand, the presented work aims at highlighting how
social mixing and demographic factors can influence the transmission of SARS-CoV-
2 and the emergence of severe disease cases across different demographic and eco-
nomic contexts.

The research activity presented in Chapter 2 highlighted that the severity of the
SARS-CoV-2 virus is strongly correlated with age. Specifically, provided estimates
suggest that being older than 60 years of age is associated with about 40% likelihood
of developing respiratory symptoms or fever ≥37.5C after SARS-CoV-2 infection,
that about 1% of the infections occurring in this age group may either require in-
tensive care or may be at risk of death. The carried out analysis also highlighted
that during the first Italian wave of infection, the median length of stay in hospital
and in intensive care units were 10 and 11 days, respectively. The main innovation
represented by the presented work is related to the approach adopted to derive such
estimates, which allowed the minimization of the risks of bias in the identification
of infections and the provision of a comprehensive quantitative assessment of all the
main epidemiological parameters essential to model COVID-19 burden.

The analysis presented in Chapter 3 relied on the development and simulation of
transmission model informed with realistic data on social contact patterns character-
izing different settings of Ethiopia. Presented results suggest that the lower COVID-
19 burden observed in sub-Saharan Africa during the first year of the pandemic
compared to that estimated for high-income countries may be strongly related to a
combination of younger population age-structures and the prolonged adoption be-
tween spring and autumn 2020 of school closures to counter the infection spread.
Remarkably, the carried-out analysis also highlights that socio-demographic factors
can determine marked geographical heterogeneities in the expected disease burden
within the same region.

Estimates provided in Chapter 4 suggest that the highest fraction of SARS-CoV-2
infections arise from the interaction of schoolchildren and young adults with indi-
viduals of similar age. After estimating the age-specific immunity profile that could
have characterized different populations at the launch of the national vaccination
program, the study highlights that vaccination of the elderly is the best strategy to
reduce the number of critical patients led by SARS-CoV-2 transmission. Presented
results also show that prioritizing younger ages may represent the best approach
to reduce the infection spread but that vaccination based on 2 doses only may be
insufficient to interrupt the transmission in the population.
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