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1 Introduction

Free equations of motion admit highest weight solutions with respect to the Lorentz SL(2,C)
that diagonalize boosts towards a point (z, z̄) on the celestial sphere [1]. These so called
conformal primary solutions were shown in [2] to form a basis for normalizable massless
single particle states in four-dimensional (4D) asymptotically flat spacetimes provided the
boost weight is in the principal series ∆=1+iλ with λ∈R. Any such state can therefore be
expressed as a linear combination of operator insertions in 2D celestial conformal field theories
(CCFT) living at points (z, z̄) on the celestial sphere and carrying boost weights ∆=1+iλ.

While the collection of operators with such dimensions is complete, not all of them
need to be in the physical spectrum. In conformal field theory operators typically organize
in representations of symmetry algebras [3]. In CCFT however, basic symmetries such as
Poincaré translations [4] or conformally soft symmetries [5–7] shift ∆ by positive or negative
integers: the basis of operators with ∆=1+iλ is not invariant under such transformations.
Another example are d-dimensional unitary CFTs, where conformal partial waves of dimension
∆= d

2+iλ form a basis of solutions to the two-particle conformal Casimir equation, while
physical operators are extracted from expansions in this basis by contour deformation and
have real scaling dimensions [8, 9].

Some of the most interesting operators in CCFT are the conformally soft operators [7, 10].
In gravity these correspond to conformal primary gravitons of ∆=1−n, n∈N. At tree
level, these operators generate a w1+∞ algebra [11–13]. A natural question is whether there
exists a basis of conformal primary wavefunctions (or equivalently celestial operators) that
includes this tower of conformally soft operators. A positive answer would have remarkable
consequences. Perhaps most strikingly, it would imply that at least tree-level higher-point
graviton scattering amplitudes are determined recursively from low-point ones by the Ward
identities associated with the tower of conformally soft gravitons!

The goal of this paper is to show that conformal primary wavefunctions with ∆∈Z form
a basis for a special class of “sufficiently localized” gravitational signals. In particular we show
that news functions that fall off faster than any polynomial at early and late retarded (or
advanced) times, and whose Fourier transforms behave similarly,1 admit expansions in terms
of either conformal primary gravitons at negative integer dimensions or their canonically
conjugate Goldstone partners at positive integer dimensions. We argue that such a restriction
on admissible operators can be interpreted as having a both infrared (IR) and ultraviolet
(UV) regularized space of states. We show that the reconstruction of the news from these
modes then follows from the Ramanujan master theorem [15]. As a check of our results, we
show that conformal primary wavefunctions at null infinity (I) are orthogonal and complete
with respect to the symplectic form that relates conformally soft (or memory) wavefunctions

1Formally, we will restrict our attention to signals in the Schwartz space [14].
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to their canonically conjugate Goldstone partners. A similar result was subsequently derived
for the two-point function by Cotler, Miller and Strominger in [16]. We derive the symplectic
form on the space of discrete conformal primary operators directly from the canonical form
on the gravitational phase space [17].

While the semi-infinite tower of conformal primary gravitons at negative integer dimen-
sions has been extensively studied, the properties of their positive dimension counterparts
are less understood. The leading Goldstone operators have been first introduced in [5], their
relation to infrared dressings was worked out in [18], while aspects of their representation
theory were studied in [19–22]. In particular, in [19], the positive integer dimension wave-
functions have been argued via an inner product computation to be canonically paired with
the negative integer ones. The inner products derived therein depend on a subtle, regular-
ized delta function in dimensions. Instead, here we find simply Kroenecker-delta functions
upon taking residues at the negative integer dimensions. Our proof of the completeness of
conformal primary wavefunctions at integer dimensions is to the best of our knowledge new.
We emphasize that this proof relies crucially on the assumption that the functional space
of interest is the Schwartz space. It is well known that the Schwartz class is dense in the
space of L2 normalizable functions and hence its closure coincides with the usual Hilbert
space2 [14]. It would be very interesting to understand in detail the physical meaning of
this assumption and/or whether it can be lifted.

We discuss two applications of our results, namely the generalization of the Weinberg
soft S-matrix [23] to include the whole tower of Goldstone operators and the decomposition
of the tower of non-linear gravitational charges derived in [24] in terms of the memory and
Goldstone operators.

It is well known that the soft infrared (IR) divergences in gravity are captured by a
correlation function of vertex operators of free bosons (or the leading Goldstone operators) in
celestial CFT [18, 25]. Here we propose that part of the IR finite S-matrix can similarly be
computed as correlation functions of vertex operators associated with the whole semi-infinite
tower of conformal primary gravitons at positive integer dimensions. This calculation relies on
the replacement of the soft gravitons involved in ladder exchanges between pairs of external
lines by gravitons approximated by the tower of tree-level soft theorems.

The paper is organized as follows. In section 2 we introduce the discrete memory and
Goldstone observables and show how they reconstruct the shear and news signals in the
Schwartz space, through properties of the Mellin transform and the Ramanujan master
theorem. In section 3 we characterize the radiative gravitational phase space and the one-
particle Hilbert space in terms of these new variables. In section 4 we define the associated
conformal primary wavefunctions and prove that they form and orthogonal and complete
basis. In section 5 we introduce dressed states involving the whole tower of Goldstone
operators, which extend previous constructions involving only the leading terms; we also give
a generalized expression for all higher Goldstone 2-point functions. In section 6 we express
the tower of higher spin charges in terms of the new discrete basis; this allows us to write both
the soft and hard terms of the charges (including mass and angular momentum), as a corner
S integral, removing the integral over time at I. Final remarks are presented in section 7 and
extensive technical material is included in the list of appendices A, B, C, D, E, F, G.

2We thank Jan de Boer for a discussion on this point.
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2 Mellin transform and Ramanujan master equation

In this section we review some of the mathematical properties of the Mellin transform and
its relation to the Fourier transform.

Let C(u) be a complex valued function on the real line, with C∗(u) its complex conjugate.
In gravity, u is to be identified with the retarded time, while C(u,z) promoted to a function
of the transverse coordinates (z, z̄) on the celestial sphere is identified with the gravitational
radiation field, or the shear projected along unit holomorphic vector fields. We define the
news field N(u,z) to be the time derivative of its complex conjugate N(u,z) := ∂uC∗(u,z).
Similar statements apply to the electromagnetic radiation field A(u,z) and, more generally,
to any spin s asymptotic radiative field. In the first sections we focus on the evolution of
gravitational radiation near I+ as a function of retarded time. We take this to be characterized
by the signal C(u) and the news N(u) whose dependence on celestial coordinates is irrelevant
for this part of the discussion.

We denote the Fourier transform of C(u) by

C̃(ω)=
∫ ∞

−∞
dueiωuC(u), ω ∈R. (2.1)

Further defining C̃+(ω) and C̃−(ω)

C̃+(ω) :=
∫ +∞

−∞
dueiωuC(u), C̃−(ω) :=

∫ +∞

−∞
dueiωuC∗(u), ω > 0, (2.2)

where C̃±(ω) are positive energy modes at I+, we have the decomposition3

C(u)= 1
2π

∫ ∞

0
dω
[
e−iωuC̃+(ω)+eiωuC̃∗

−(ω)
]
. (2.3)

We can now introduce the Mellin transforms Ĉ±(∆) of C̃±(ω)

Ĉ±(∆) :=
∫ +∞

0
dωω∆−1C̃±(ω). (2.4)

Note that (2.2) implies that C̃−(−ω)= C̃∗
+(ω), while Ĉ±(∆) are mutually independent since

the Mellin integrals (2.4) are supported on positive energy. It will also be convenient to
introduce the positive energy fields

C+(u) :=
1
2π

∫ ∞

0
dωe−iωuC̃+(ω)=− 1

2iπ

∫ +∞

−∞
du′ C(u′)

(u′−u+iϵ) , (2.5a)

C−(u) :=
1
2π

∫ ∞

0
dωe−iωuC̃−(ω)=− 1

2iπ

∫ +∞

−∞
du′ C∗(u′)

(u′−u+iϵ) , (2.5b)

which allow for the decomposition of C(u) as

C(u)=C+(u)+C∗
−(u). (2.6)

3Upon quantization and for ω > 0, C̃+(ω) and C̃−(ω) respectively create positive and negative helicity
gravitons at I+.
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The different representations C(u), C̃(ω) and Ĉ(∆) capture the same data but diagonalize
different operators: ∂ω = iu for the time signal C(u), ω = i∂u for its Fourier transform C̃(ω)
and the conformal dimension ∆=−ω∂ω = ∂uu for its Mellin transform Ĉ(∆).

We further introduce N±(u) := ∂uC±(u), which decomposes, in gravity, the news field
N(u)=N−(u)+N∗

+(u). From these definitions, it immediately follows that

Ñ±(ω)=−iωC̃±(ω), N̂±(∆)=−iĈ±(∆+1). (2.7)

The Mellin transforms can be directly related to C(u) by4

Ĉ+(∆)=
∫ ∞

−∞
du

(∫ ∞

0
dωω∆−1eiω(u+iϵ)

)
C(u)= i∆Γ(∆)

∫ +∞

−∞
du

C(u)
(u+iϵ)∆ . (2.8)

Ĉ−(∆) is obtained from the same integral but after replacing C(u) by C∗(u) in the integrand.
Note that the first equality requires to exchange the u and ω integrals. This is valid only in the
regime where the integrand is such that the integral is absolutely convergent which restricts
the regime of validity of (2.8) to the case where ℜ(∆)> 0. Other values for ∆ are obtained
by analytic continuation. For ∆=n+1 with n a positive integer we can explicitly perform
the integral by decomposing C =C++C∗

− into positive and negative energy contributions as
in (2.6). C+(u) decays in the limit where ℑ(u)→−∞ which implies that we can evaluate
the integral by closing the contour in the lower half plane and picking up the contribution
from the pole at u=−iϵ upon integration by parts. For C∗

− a similar reasoning requires the
contour to be closed in the upper half plane. Since all the poles are in the lower half plane,
the contribution from this case vanishes. Overall we find

Ĉ+(n+1)= in+1n!
∫

L
du

C+(u)
(u+iϵ)n+1 , (2.9)

where L denotes the clockwise contour in the lower half plane.
The Mellin inversion formula takes the form

C̃±(ω)=
1
2iπ

∫ σ+i∞

σ−i∞
d∆Ĉ±(∆)ω−∆ , (2.10)

for ω > 0 and is valid for σ in the fundamental strip provided that C̃±(ω) is continuous [26].
Given a,b∈R, a strip in the complex ∆ plane is defined by ⟨a,b⟩ := {∆∈C,a <Re(∆)<

b}. The fundamental strip of Ĉ±(∆) is the largest strip on which the Mellin transform
converges. The fundamental strip of Ĉ± is ⟨a,b⟩ with b > a if C̃±(ω)=O(ω−a) when ω → 0
and C̃±(ω)=O(ω−b) when ω →∞. In other words, the lower bound of the strip is determined
by infrared properties of the radiation field, while the upper bound is determined by its
ultraviolet behavior. Finally, combining (2.10) together with (2.5) we can give the time
Mellin inversion formula

C±(u)=
1

i(2π)2

∫ σ+i∞

σ−i∞
d∆Ĉ±(∆)Γ(1−∆)(iu+ϵ)∆−1. (2.11)

4Here and in the following by i∆ and (−)∆ we respectively mean ei π
2 ∆ and eiπ∆.
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To summarise, we have that the three different representations [22] can be related to each
other as follows:5

C̃(ω) Ĉ(∆)

C(u)

Energy-Mellin(2.4)

(2.10)

Fourier (2.2)

(2.5) (2.11)

(2.8) “Time-Mellin”

.

In this paper we assume that the fundamental strip of Ĉ is ⟨1,∞⟩ or, equivalently,6 that the
fundamental strip of N̂ is ⟨0,∞⟩. This amounts to restricting our attention to Fourier signals
C̃±(ω) that are exponentially suppressed as ω →+∞. The heuristic physical argument for
the relevance of such signals relies on the expectation that high energy scattering in gravity is
dominated by black-hole production generically leading to a suppression of7 M(s, t)∼ e−κ2s/16

for the 2→ 2 scattering amplitude. As a consequence, it was argued in [18] that ultraviolet
(UV) complete theories of gravity are characterized by the existence of a semi-infinite strip
in the RH complex net boost-weight plane of 2-2 celestial amplitudes. Our assumption is
stronger since it translates into the existence of semi-infinite strips in celestial amplitudes
regarded as functions of the individual external dimensions.

We also assume that the theory is infrared (IR) complete, characterized by the exponential
suppression of N(u) at early and late retarded times |u|→∞. As shown in [24], this condition
ensures that all higher-spin charges are well defined and leads to the infinite tower of soft
theorems encoded in the OPE coefficients of the celestial amplitudes [12, 13]. A heuristic
argument for the necessity of late time decay can be linked to the fact that black holes have to
radiate away in the quantum theory according to Hawking [27]. Another heuristic argument
for the necessity of an infrared regulator built-in the definition of the Hilbert space goes
back to Chung, Kibble, Faddeev and Kulish [28] who argued that the dressing of asymptotic
states is necessary to relieve the IR divergences.8 The necessity of that assumption relies,
as we will see, on the existence of the higher spin soft charges.

In mathematical terms, these assumptions amount to considering signals which belong
to the Schwartz space S [14]. Physically these imply that the asymptotic states under
consideration are wave packets which include both a UV and an IR regulator.9 We will see
that these assumptions of UV and IR completeness lead to one of the main results of this
paper, namely that the phase space of the theory can be characterized by conformally soft
modes M±(n) of negative integral dimensions ∆=1−n with n∈N and their canonically
conjugate Goldstone partners S±(n) of positive conformal dimension ∆=1+n. Another

5Note that the relation between N(u) and N̂(∆) is really the difference of two Mellin transforms on u,
see (2.38).

6The notation ⟨0+,∞⟩ for N strip means that the strip is ⟨ϵ,∞⟩ for an infinitesimal 0< ϵ < 1. Under this
assumption we can choose σ =1+ := limϵ→0+ 1+ϵ in (2.10). We will show that this choice is necessary in order
to have a Hilbert space interpretation.

7We use the convention κ2 =32πG.
8The construction of such an infrared safe Hilbert space was however never achieved. See the recent

review [29], and references therein.
9That is wave packets such that N(u)=O(|u|−a) and Ñ(ω)=O(ω−a) for all a∈N. The Schwartz space

can be characterised purely in terms of the time signal as ∂b
uN(u)=O(|u|−a−b) for all a,b∈N.
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related result is that we provide a Hilbert space pairing on S and an isometric embedding of
the Schwartz space S →H into the usual one particle Hilbert space. In a language familiar to
quantum information [30] (see also [31] for applications to holography) this means that the
UV-IR complete space S is a code subspace of the usual Hilbert space H. The key properties
of the Schwartz space are that Fourier transforms preserve the Schwartz conditions on the
signal and are also preserved by interactions. That is, the multiplication of two Schwartz
signals (potentially involving derivatives) is also in S.

One might be worried that the hypothesis of infrared completeness is too restrictive.
Indeed, Damour [32] was the first to point out in the gravitational context, following an
idea similar to Faddeev-Kulish [28, 33], that massive objects never really decouple in a
gravitational theory, no matter how far they are. This means that they never stop radiating
at late times through their time-dependent quadrupole. This radiation implies an algebraic
decay N(u)∼ 1/u2, for the shear, which would render it impossible to have any subleading
soft theorem! This perturbative analysis has been, since then, confirmed in many ways and
shown to lead to a failure of the peeling theorem [34, 35]. If it survives quantization, this
analysis would then undermine the celestial holography project and the construction of higher
spin symmetry that we develop here. One way out of this puzzle is to realize that perturbation
theory of gravitational systems10 exhibits tails and memory phenomena [36–38]. A deeper
analysis of these phenomena reveals that the mere hypothesis that higher order perturbations
are smaller than lower order ones fails at late time. Therefore, the late time conclusion reached
within perturbation theory is not reliable. This phenomenon is well known in thermal physics
under the name of secular growth. It usually happens in thermal systems and more generally
in any system where the background interaction does not vanish. Recently it was argued
in [39] that the issue of secular growth is generic in gravitational systems in the presence of
black holes. Overall, this means that the exact status of the decay rate of the news at a late
time in a consistent quantum gravity theory is left open and should be seriously studied.

In this work, we assume that quantum gravity requires the presence of strong asymptotic
decay. As a side remark, let’s keep in mind that non-Abelian Yang-Mills theory does show
the same asymptotic violation of the peeling theorem due to late time interaction at the
classical level. But we also expect such a theory to confine at the quantum level, which means
that the Yang-Mills radiation field decays exponentially at late time, in agreement with our
hypothesis of infrared completeness. Finally, it is well-known that the one-particle Hilbert
space can be obtained as a closure of the space of Schwartzian states. Therefore if we make
the assumption that the S-matrix is a continuous operator then the value of the S-matrix
element between arbitrary Hilbert space states should be obtained by taking the appropriate
limit of Cauchy sequences of S-matrix elements between Schwartzian states. In this case it is
not a restriction to look only at the value of the S-matrix on Schwartzian states.

10The same analysis would apply in gauge theory.
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2.1 Soft gravitons

It is clear from the expression (2.8) that the Mellin transform N̂±(∆) admits poles on the
negative real axis at integer values. We denote the residues of these poles by M±(n)

M±(n) :=Res∆=−nN̂±(∆), n∈Z+ (2.12)

and we call these observables the higher spin, positive and negative energy memory ob-
servables.

We can obtain the memory observables from (2.8) and by using the identity Res∆=−nΓ(∆)=
(−1)n

n! . In order to do so we need to appreciate that the integral involved is obtained as a
limit or by closure into the upper half plane [40, 41] (see appendix A)

M+(n) := lim
ω→0+

in

n!

(∫ +∞

−∞
dueiωuun∂uC(u)

)
= in

n!

(∮
U
duun∂uC+(u)

)
. (2.13)

Here 0+ means we take the limit ω → 0 from above and U is the upper half plane contour.
This limit or contour prescription are needed to ensure the convergence of the integrals and
realises the projection onto the positive energy sector. M−(n) is defined by a similar integral
but C∗(u) instead of C(u). Note that the first memories M±(0), M±(1) are also called leading
and subleading soft gravitons.11 As we will see, the entire tower of memories determines the
hard component of the signal so we find it more suggestive to refer to M±(n) as higher spin
memory observables. This derivation means that we can understand M±(n) as the Taylor
expansion coefficients of Ñ±(ω) around ω =0, namely

Ñ±(ω)=
∞∑

n=0
M±(n)ωn, M±(n)=

1
n! ∂n

ωÑ±(ω)
∣∣∣
ω=0+

. (2.14)

In the following it will be convenient to consider the following combination of memory
observables

M(n) := 1
2
[
i−nM+(n)+inM∗

−(n)
]
. (2.15)

This combination can be simply written as a line integral (no contour involved) [24]12

M(n)= 1
n!

(∫ +∞

−∞
duun∂uC(u)

)
:= lim

ω→0+
1
2n!

∫ +∞

−∞
du(eiωu+e−iωu)un∂uC(u). (2.16)

In other words n!M(n) is the n-th moment of the map u→N(u). These moments exist
provided that N(u) decays exponentially at u→±∞. This is our condition of IR completeness.

Infrared completeness implies that the radiative signal is analytical around ω =0 in
Fourier space. As shown in [24] the memories determine the higher spin soft charges through

11In gravity we have M±(n)=− κ
4πn! limω→0+ ∂n

ω (ωa±(ω)), where a± are graviton modes. In QED we have
M

QED
± (n)=− e

4πn! limω→0+ ∂n
ω (ωa±(ω)). Note that M are obtained by contractions with the frame fields like

in [24] so any factors √
q, where q is the determinant of the sphere metric, disappear.

12This object was denoted Ns =− (−1)s

2 M∗(s) in [24].
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derivatives on the sphere13

qSoft
+ (n)=Dn+2

z̄ M+(n), qSoft
− (n)=Dn+2

z M−(n). (2.18)

The map N(u)→M(n) is a map from radiation data to the soft charge data. As we will see
in more detail later, this map is invertible under the additional condition of UV-completeness.

It is important to note that the memory observables depend on a choice of cut at I.
Here we have chosen the cut to be at u=0. The cut can be shifted to u=u0 by replacing
un → (u−u0)n in the memory definition (2.13). This leads to the cut-dependent formula

M±(n)[u0] =
n∑

p=0

(−iu0)p

p! M±(n−p). (2.19)

Finally, as shown by Grant and Nichols [42] the higher spin memory observables defined here
encode the displacement memory effect for geodesics with non-vanishing relative accelerations.
More precisely, given two nearby geodesics we denote the curve deviation observable by
∆ξ(u)= ξ(u)−ξflat(u), where ξ = ξama is the geodesic separation at time u projected along the
frame14 m; ξflat is the geodesic separation in flat space due to the relative initial acceleration.
We also denote by ξ(n)(u) the generalized acceleration at time u

ξ(n)(u) := ∂n
u ξ(u). (2.20)

One assumes that the gravitational news N(u) is non-vanishing during an interval u∈ [0,∆u]
and we denote ξ

(n)
in the initial generalized acceleration. Following [42] one finds that the

geodesic deviation at late time is given in terms of the memory observables by

∆ξout =
∑

n

1
2r

[(n+1)M(n)−∆uM(n−1)]ξ(n)
in . (2.21)

2.2 Goldstone modes

The spin ∓n Goldstone operators G±(n) are defined to be the variables conjugated to the
soft charges (2.18). For our analysis it will be convenient to focus on the corresponding
Goldstone gravitons S±(n) which are defined to be on the other hand the variable conjugated
to the memories M∗

±(n). Whenever clear from context we will interchangeably refer to S±
and G± as Goldstone operators. The relation between these Goldstone fields is similar to
the relation between memories and soft charges, namely

S+(n)=Dn+2
z G+(n), S−(n)=Dn+2

z̄ G−(n). (2.22)

These operators have conformal dimension ∆=1+n and can be obtained by evaluating
N̂±(∆) at positive integer ∆,

S±(n) := lim
∆→n

N̂±(∆), n∈Z+ n ̸=0. (2.23)

13These are related to the charges defined in [24] by

q1
n = 1

2(−1)n+1Dn+2
z M

∗(n)=−1
4
[
inqSoft

− (n)+i−nq∗Soft
+ (n)

]
. (2.17)

14The frame is parallel transported along the geodesics.
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G±(0) are constituents of the vertex operators which were shown to reproduce the soft S-matrix
in gravity in [25], as well as the Faddeev-Kulish dressing responsible for the cancellation of IR
divergences [18]. We will return to the tower of Goldstone dressings in section 5. Note that the
definition (2.23) is only valid for n > 0, unless the leading gravitational memory is vanishing.
Otherwise, as one can see from (2.12), direct evaluation at ∆=1 will produce a divergent
result. An appropriate definition of the leading Goldstone operator was first given in [5] by
subtracting off this divergence. The degeneracy at ∆=1 was consequently lifted through the
construction of a logarithmic wavefunction canonically conjugate to the ∆=1 (pure gauge)
conformal primary wavefunction. In this paper we will assume that logarithmic modes are
absent, although it would be very interesting to include them in the future. G±(n) for n∈Z+
sit at corners of the dressing diamonds and are canonically paired with the corresponding
entries in the subleading memory diamonds. They were extensively studied, in particular in
relation to the leading, subleading and sub-subleading soft graviton theorems, in [20, 21]. We
see from the definition (2.8), that the Goldstone operator can be written as the integral15

S+(n)= inn!
∫ +∞

−∞
du

C(u)
(u+iϵ)n+1 . (2.25)

S− is given by (2.25) with C(u)→C∗(u). The existence of the Goldstone operators relies on
our assumption of UV-completeness that the fundamental strip for N̂ is ⟨0,∞⟩. On the other
hand, from the definition (2.5) of the positive energy field and the relation (2.7), we have that

∂n
u C+(u)|u=0 =− n!

2iπ

∫ +∞

−∞
du′ C(u′)

(u′+iϵ)n+1 =− i−n

2πi
S+(n), (2.26)

and similarly for C− with C(u) replaced by C∗(u). This implies that the Goldstone operators
appear as Taylor coefficients in the analytic expansion of C±(u) around u=0

C±(u)=
i

2π

∞∑
n=0

(−iu)n

n! S±(n) . (2.27)

To summarize, the UV-completeness condition is equivalent to analyticity of the time
signal in u around u=0. It is interesting to note that the Goldstone modes can also be defined
at cuts other than u=0. The change of cut from 0→u0 is implemented by the transformation

S±(n)→ S±(n)[u0] =
∞∑

m=0

(−iu0)m

m! S±(m+n). (2.28)

This transformation mirrors the one for the memories. While the time translations of the
memories involves lower spin memories, the time translation of the Goldstones involves
higher spin16 Goldstones.

15We can also express it in terms of Fourier modes as

S±(n)=−i

∫ +∞

0
dωωnC̃±(ω). (2.24)

16G±(n) are higher spin while S±(n) are their descendants and have s=±2 and higher dimensions.
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2.3 From soft to hard

In this section we characterize the class of signals that are completely determined in terms
of either the M±(n) or the S±(n) modes defined in sections 2.1 and 2.2. As we will see, a
sufficient condition for this to be the case is that the signal N(u) belongs to a Schwartz space.17

An important property of Schwartz spaces is that they are preserved by the multiplication
operation and the Fourier transform: if a function f ∈S, so is its Fourier transform f̃ ∈S.
Similarly if f,g ∈S so is fg.

Any function with compact support in u belongs to S. Physically, as shown in [24],
the condition that N(u)∈S implies the existence of higher spin charges governed by the
set of recursive differential equations

∂uQs =DzQs−1+
s+1
2 CQs−2, Q−2 =

1
2∂uN . (2.30)

The canonical symmetry charges are obtained after renormalization and are given by

qs =
s∑

p=0

(−u)p

p! Dp
zQs−p. (2.31)

These charges are conserved in the absence of radiation, and they generate an infinite tower
of higher spin symmetries. Moreover their conservation implies the tower of tree-level soft
theorems [11, 12]. The existence of these charges requires the infrared finiteness condition
on the news. In particular, N(u)∈S ensures the existence of the conformally soft operators
M±(n) which determine the soft charges as shown in [24] (see (2.18) and section 6.2 for
more details).

That signals N(u)∈S can be reconstructed from either the memories or the Goldstone
modes follows from analyticity. Indeed analyticity in u means that N(u) is given by the
analytic continuation of the resummation of its Taylor expansion. This gives the map
M±(n)→N(u). Similarly analyticity in ω gives the reconstruction of Ñ(ω) from its Taylor
coefficients M±(n). A convenient way to understand the reconstruction of the signal from its
Taylor expansion involves the Mellin transform of the signal together with the celebrated
Ramanujan master theorem [43]. This theorem states that, given a function f̃(ω), which
admits an expansion

f̃(ω)=
∞∑

n=0
F (n)(−ω)n

n! , (2.32)

17The Schwartz space S is defined [14] as the set of continuous functions f(u) that decay faster than any
positive inverse power of u as |u|→∞. Formally,

S = {f ∈C∞|∀α,β ∈N, ||f ||α,β <∞} , (2.29)

where ||f ||α,β =sup
u∈R

∣∣uα∂β
u f(u)

∣∣.

– 10 –



J
H
E
P
0
2
(
2
0
2
4
)
1
7
6

its Mellin transform is given by18 [43]

f̂(∆)=
∫ ∞

0
dωω∆−1f̃(ω)=Γ(∆)F (−∆). (2.35)

In other words, the Mellin transform is the analytic continuation of F (n). This analytic
continuation is unique provided that F is analytical in the strip [0,∞], and that19 [43]

|F (∆)|< ceαℜ(∆)eβℑ(∆), β < π, (2.36)

where c > 0, α∈R. Upon closing the contour on the left-hand complex plane, (2.36) implies
that the contribution from the contour at infinity vanishes and (2.32) follows. The condition
that f̃(ω)∈S ensures convergence of the series.

We can now apply the Ramanujan reconstruction theorem (2.35) to express N̂(∆) as
either the analytic continuation of the memories or the Goldstones. Starting with the
expansion (2.14) of Ñ(ω)∈S in terms of memory modes, one finds that

N̂±(∆)=
∫ ∞

0
dωω∆−1Ñ±(ω)=

π

sinπ∆(−1)∆M±(−∆), (2.37)

where we used that Γ(∆)Γ(1−∆)= π
sinπ∆ .

We could alternatively apply (2.35) to the expansion of N(u) in terms of Goldstone
modes implied by (2.27). Indeed from (2.7), (2.8) we get that N̂(∆) can be written as a
difference of Mellin transforms with respect to u

N̂+(∆)=Γ(1+∆)
(∫ +∞

0
duu−∆−1

[
i∆C+(u)−i−∆C+(−u)

])
, (2.38)

where we used the iϵ prescription to resolve i∆ = ei π
2 ∆. Using the expansion (2.27) and

applying the Ramanujan theorem separately for the two terms, we get (see appendix B
for details)

N̂±(−∆)= i

2π
Γ(1+∆)Γ(−∆)[i2∆−i−2∆]S±(−∆)= S±(−∆). (2.39)

This gives us, as expected, that the analytic continuation of the Goldstone current given by
the Ramanujan theorem is simply the Mellin transform N̂(∆).

18This theorem provides an efficient way to evaluate Mellin transforms, for instance

1
(1+ω)α

=
∞∑

n=0

(−1)n

n!
Γ(α+n)
Γ(α) ωn →

∫ ∞

0
dω

ω∆−1

(1+ω)α
= Γ(∆)Γ(α−∆)

Γ(α) , (2.33)

which reproduces the classical beta integral. A simple but formal derivation of this theorem uses that the l.h.s.
of (2.35) can be written in terms of E := e∂∆ as∫ +∞

0
dωω∆−1

(
∞∑

n=0

F (n) (−ω)n

n!

)
=
∫ +∞

0
dωω∆−1e−ωEF (0)=Γ(∆)E−∆F (0)=Γ(∆)F (−∆). (2.34)

19This is a sufficient condition [44]. It is the same condition under which Carlson’s theorem applies, namely
that for F (x)< Ceα|x| in the RH complex x plane and if F (0)=F (1)= · · ·=0 then F (x) vanishes identically.
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3 Symplectic form

In this section we show that the symplectic form in gravity admits a simple expression in
terms of the conformally soft and Goldstone operators M±(n) and S±(n).

We start with the radiative symplectic potential20 [17, 45, 46] Θ=
∫

S θ(z, z̄) with θ given by

θ= 2
κ2

∫ +∞

−∞
duN(u)δC(u) , (3.1)

where κ=
√
32πG. We show in appendix C that, after a canonical transformation, the

symplectic potential can be written as θ= θ++θ−, where

θ±= 1
iπκ2

∫ +∞

0
dωω

[
C̃±(ω)δC̃∗

±(ω)
]
= 2

κ2

∫ +∞

−∞
duN±(u)δC∗

±(u) . (3.2)

This means that C̃±(ω) represent the holomorphically polarized degrees of freedom. After
quantization they become the creation operators for the positive-negative helicity gravitons
(or photons) C̃±(ω)=− iκ

4π a±(ω).
The same symplectic structure can be expressed in a conformal primary basis. Using

the Mellin reconstruction formula (2.10), we find

θ±= 1
2(iπκ)2

∫ σ+i∞

σ−i∞
d∆Ĉ±(∆)δĈ∗

±(2−∆∗) . (3.3)

Therefore, we see that if one chooses σ =1, the integration is over ∆=1+iλ with λ∈R. This
weight is such that 2−∆∗=∆. In other words, we have that

θ±= 1
2(iπκ)2

∫ 1+i∞

1−i∞
d∆Ĉ±(∆)δĈ∗

±(∆). (3.4)

If we restrict the fields to be in the Schwartzian S we can also express the symplectic
structure in terms of the soft residues and the Goldstones. Using (2.13) and (2.27) we get
that (see appendix C)

θ±= 2
κ2

∫ +∞

−∞
duN±(u)δC∗

±(u)=
1

iπκ2

∞∑
n=0

M±(n)δS∗±(n) . (3.5)

This result clearly shows that the conformally soft operators M±(n) are canonically conjugate
to the (complex conjugate) Goldstone operators S∗±(n). It also shows that the soft operators
and Goldstone modes allows, under our assumption of UV and IR completeness, for a
complete description of the gravitational phase space.

3.1 Quantization and commutators

In this section we establish that the memory and Goldstone operators define a discrete basis of
the one-particle Hilbert space. We continue focusing on outgoing relations and will explain the
inclusion of incoming modes in sections 4 and 5. From the symplectic structure, we can read
off the commutators of M(n,z) and S(n,z). The only non-trivial commutation relations are

[M±(n,z),S†±(m,z′)] =πκ2δn,mδ(2)(z,z′), (3.6)
20For notational simplicity we define

∫
S
:=
∫

S
d2z

√
q, with q the determinant of the 2-sphere metric.
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while all other commutators involving M± and S± vanish21

[M±(n,z),S†∓(m,z′)] = [M±(n,z),S±(m,z′)] = [M±(n,z),S∓(m,z′)] = 0. (3.7)

The vacuum at I+ is chosen to be such that

S±(n,z)|0⟩=0=M±(n,z)|0⟩ (3.8)

and, from the commutation relation (3.6), it is immediate to see the orthonormality condition

⟨0|M±(n,z)S†±(m,z′)|0⟩=πκ2δn,mδ(2)(z,z′) . (3.9)

This means that we can define the discrete states

|n,z,±⟩ := 1√
πκ2

M
†
±(n,z)|0⟩, |n̂,z,±⟩ := 1√

πκ2
S
†
±(n,z)|0⟩, (3.10)

while ⟨n,z,±|= 1√
πκ2 ⟨0|M±(n,z) denotes the conjugate state. These states are orthogonal

⟨n,z,ϵ|m̂,z′, ϵ′⟩= δϵ,ϵ′δn,mδ(2)(z,z′)= ⟨n̂,z, ϵ|m,z′, ϵ′⟩, (3.11)

where ϵ=±. We can then introduce the projector

P =
∑

n∈N,ϵ=±

∫
S
|n,z,ϵ⟩⟨n̂,z, ϵ|=

∑
n∈N,ϵ=±

∫
S
|n̂,z, ϵ⟩⟨n,z,ϵ| , (3.12)

which is such that

P |n,z,±⟩= |n,z,±⟩, P |n̂,z,±⟩= |n̂,z,±⟩. (3.13)

Note that the identity in (3.12) between the two ways of representing P can be proven as follows
∞∑

n=0

(
S
†
±(n)|0⟩⟨0|M±(n)

)
=−2iπ

∫ +∞

−∞
du
(
N †

±(u)|0⟩⟨0|C±(u)
)

=
∞∑

n=0

(
M

†
±(n)|0⟩⟨0|S±(n)

)
, (3.14)

where the first equality is established upon integration by parts and using the boundary
condition

[
C†
±(u)|0⟩⟨0|N±(u)

]u=+∞

u=−∞
=0.

This equality ensures that P †=P . It also implies that we can use either the memory
states |n,z⟩ or the Goldstone states |n̂,z⟩ as a basis to decompose a Schwartzian state.
More precisely, if one defines the space HS of one-particle Schwartzian states to be given
by states of the form

|Ψ±⟩=
1√
πκ2

∫
du

∫
S
Ψ±(u,z)N †

±(u,z)|0⟩, (3.15)

21On the other hand, the operators M and S are not linearly independent. This implies that the commutators
[S±(m,z),S†

±(n,z′)] and [M±(m,z),M†
±(n,z′)] may be non-vanishing. We discuss these and evaluate the

associated commutators which result in non-vanishing, singular two-point functions of Goldstone and memory
modes in sections 3.2, 3.3.
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where Ψ± ∈S, then P is simply the identity operator on HS . This expression connects
with our previous analysis in terms of a classical signal which can be recovered from the
action of the shear operator, namely

Ĉ±(u,z)|Ψ±⟩=
iκ

2
√

π
Ψ±(u,z)|0⟩. (3.16)

We could also consider the exponentiated coherent state

|eΨ±⟩ := exp
( 2

iκ2

∫
du

∫
S
Ψ±(u,z)N †

±(u,z)
)
|0⟩, (3.17)

from which the classical signal can be recovered through the expectation value

Ψ±(u)=
⟨eΨ± |Ĉ(u)|eΨ±⟩

⟨eΨ± |eΨ±⟩
. (3.18)

From now on, we work with the one-particle Schwartzian state. We see that the Schwartzian
factor Ψ± plays the role of the UV/IR regulated classical signal. This means that any
Schwartzian state |Ψ±⟩ ∈HS can be decomposed in terms of either the memory or the
Goldstone basis

|Ψ±⟩=
∑
n≥0

∫
S
Ψ±n(z)|n,z,±⟩=

∑
n>0

∫
S
Ψ±n̂(z)|n̂,z,±⟩, (3.19)

where we have

Ψ±n̂(z)=
1
2π

∫ +∞

−∞

(iu)n−1

(n−1)! Ψ±(u,z)du, (3.20)

Ψ±n(z)=
in+1n!
2π

∫ +∞

−∞

Ψ±(u,z)
(u+iϵ)n+1du= 1

2π

∫ ∞

0
ωnΨ̃±(ω,z)dω. (3.21)

It is important to note that the Goldstone state |0̂,z,±⟩ does not enter the second sum
in (3.19). This mode is correlated with infrared divergences and is hence expected to be absent
in the expansion of Schwartzian states which are infrared finite. We leave a generalization
of the construction herein to non-Schwartzian states to future work, although we anticipate
this to be challenging in the light of [29] where it was shown that no Hilbert space exists
in the presence of a leading gravitational memory.

HS provides a mathematical representation of the space of UV and IR complete states
on which we can define the entire tower of soft charges. As mentioned earlier, it is important
to realize that, while the discrete decomposition is valid only for Schwartzian states, we also
have that the closure S̄ of the Schwartz space with respect to the Hilbert space metric is the
full Hilbert space itself [14, 47]. This means in practice that we can approximate any state in
the Hilbert space by Schwartzian states. Therefore, the restriction to this space may not be
drastic in the sense that knowing the S-matrix for all possible in and out Schwartzian states
allows for a natural extension of the S-matrix to the entire Hilbert space by continuity.
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3.2 Linear dependence of M and S

The previous result suggests that the two discrete bases S
†
±(n,z)|0⟩ and M

†
±(n,z)|0⟩ are

not linearly independent. It is important to appreciate that the lack of linear dependency
can only be rigorously established for Schwartzian states. Since the discrete states are not
Schwartzian themselves, the linear relationship among them can only be formally defined
and is singular in the abscence of a regulator. The best we can do is to approximate the
discrete basis states as a limit of Schwartzian states.

For instance we can consider the Schwartzian state

Ψ̂n,α(u) :=
√

2π

α
(i∂u)n−1e−

u2
2α , (3.22)

which is well defined for n > 0. The state |Ψ̂n,α⟩ approximates |n̂⟩ when α→ 0 and we suppress
the ± helicity labels for clarity. To prove this one shows that

⟨m|Ψ̂n,α⟩= δ̂mn(α) :=
1
2π

∫ +∞

−∞

(iu)m−1

(m−1)! Ψ̂n,α(u)du (3.23)

approaches δnm when α→ 0. Therefore |Ψ̂n,α⟩=
∑

m>0 δmn(α)|m̂⟩→ |n̂⟩. To see this, first
note that, after integration by parts, δ̂nm(α)= 0 if n > m. For general values of n,m we
have (see appendix D)

δ̂nm(α)=πm−n

(
−α

2

) (m−n)
2 1

Γ
(

m−n
2 +1

) , (3.24)

where πn =0 if n∈Z is negative and if n is odd positive and πn =1 if n is even positive or
zero. In particular, this means that (3.24) vanishes as α→ 0 unless m=n in which case it is 1.

Similarly, we can construct a state |Ψn,α⟩ which approximates |n⟩ when α→ 0. We
propose the Schwartzian state

Ψn,α(ω) := 2
√

2π

α

1
n! (−∂ω)n

[
cn

(
1−e−

ω2
2α

)n

e−
ω2
2α

]
, (3.25)

where cn is a constant that depends on n, such that the state |Ψn,α⟩ approximates |n⟩ when
α→ 0. One can prove this by showing that

δnm(α) := 1
2π

∫ ∞

0
ωmΨ̃n,α(ω)dω (3.26)

approaches δnm when α→ 0. When m−n < 0 one can show that δnm(α)= 0; in the case
m−n≥ 0, we can again use integration by part, as the boundary contribution at ω =0
vanishes, to compute (see appendix D)

δnm(α)= 1√
π

m!cn

n!(m−n)! (2α)
m−n

2 Γ
(

m−n+1
2

) n∑
k=0

(−)k

(
n

k

)
(k+1)

n−m−1
2 ∀ m−n≥ 0,

(3.27)

which again approaches δnm when α→ 0, as we fix

c−1
n =

n∑
k=0

(−)k

√
k+1

(
n

k

)
. (3.28)
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3.3 Goldstone and memory 2-point functions

The Schwartzian regularization for the discrete basis states (3.10) found in the previous
section can be used as a proper regularization for the Goldstone and memory 2-point functions.
As we have just seen, two-point functions correspond to the overlap of states such as

⟨0|S±(n,z)S†±(m,w)|0⟩=πκ2⟨n̂,z,±|m̂,w,±⟩ :=πκ2Rnmδ2(z,w). (3.29)

The overlap matrix Rnm is singular. To see this, one evaluates the correlator

⟨0|C±(u,z)N †
±(u′,w)|0⟩= κ2

4π

1
(u−u′−iϵ) , (3.30)

where in deriving this result one uses the definitions (2.5) together with the canonical
commutation relations of C̃±(ω), Ñ †

±(ω). Further, using the definition (2.26) for the Goldstone,
one obtains the unregulated two-point function

Rnm = Γ(n+m)
ϵn+m

, (3.31)

where the limit ϵ→ 0 is implicitely assumed (see appendix D for a derivation of this result).
We would like to interpret this coefficient as evaluating the linear dependence of the Goldstone
state onto the memory one. That is, we expect that

S†(s,z)|0⟩=
∑
s′

Rss′M
†(s′,z)|0⟩. (3.32)

As we explained earlier such a relation is formal and should be understood as a limiting
relation between Schwartzian states which we now investigate.

The regularization of the evaluation (3.29) is done using the Schwartzian states defined
before. It is convenient to introduce the regularized operators

S
†
±(α;n,z) :=

∫ +∞

−∞
duΨ̂n,α(u,z)N †

±(u,z),

M
†
±(α;n,z) :=

∫ +∞

0
dωΨn,α(ω,z)Ñ †

±(ω,z). (3.33)

The regularised 2-point functions are then

⟨0|S±(α;n,z)S†±(α;m,w)|0⟩=πκ2⟨Ψ̂n,α|Ψ̂m,α⟩=πκ2δ(2)(z,w)Rnm(α), (3.34)

⟨0|M±(α;n,z)M†
±(α;m,w)|0⟩=πκ2δ(2)(z,w)R̃nm(α) . (3.35)

In appendix D, using that the overlap of two Schwartzian states is simply given by

⟨Ψ±|Φ±⟩=
i

2π

∫
du

∫
S
Ψ∗

±(u,z)∂uΦ±(u,z), (3.36)

we give the evaluation of the regularized two-point functions

Rnm(α)=
Γ(m+n

2 )
α

m+n
2

, R̃nm(α)= Cnm

α
m+n

2
, (3.37)

where Cnm is given in (D.14).
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The exact representation of the matrices R and R̃ depends on the chosen regularization.
However, while the limit α→ 0 of these matrix elements is singular, we expect the product∑

m Rnm(α)R̃mp(α) to converge to δnp in the limit. In this sense, R and R̃ are approximate
inverses of each other.

Also note that the generic behavior of Rnm and R̃nm can be derived for a more simple
minded approach where we directly regulate the divergent evaluation

Rnmδ(2)(z,w)= 1
πκ2 ⟨0|S±(n,z)

∫ ∞

0
dωωm−1

∞∑
k=0

ωkM
†
±(k,w)|0⟩

=
∫ +∞

0
dω ωn+m−1e−ϵωδ(2)(z,w),

(3.38)

where ϵ→ 0 is an ultraviolet regulator22 in this case.
Similarly, we would like to show that the second relation in (3.37) is consistent with a

direct computation of the memory two point function

⟨0|M±(m)M†
±(n)|0⟩. (3.39)

This follows from the relation between memory modes and the creation and annihilation
operators

M±(n)=− κ

4πn! lim
ω→0+

∂n
ω (ωa±(ω)) . (3.40)

Specifically, we find

⟨0|M±(m)M†
±(n)|0⟩=

κ2

16π2n!m! lim
ω→0+

lim
ω′→0+

∂n
ω′∂m

ω

(
ωω′⟨0|[a±(ω),a†

±(ω′)]|0⟩
)

= iκ2

2n!m! lim
ω→0+

lim
ω′→0+

lim
ϵ→0

∂n
ω′∂m

ω

[
ω′

ω−ω′+iϵ
− ω′

ω−ω′−iϵ

]
δ(2)(z,z′)

= iκ2

2n!m! limϵ→0
nΓ(m+n)

[ (−1)m

(iϵ)m+n
− (−1)m

(−iϵ)m+n

]
δ(2)(z,z′)

= lim
ϵ→0

κ2im−n+1

2m!(n−1)!
Γ(m+n)

ϵm+n

[
1−(−1)m+n

]
δ(2)(z,z′),

(3.41)

where we have used the canonical commutation relations

[a±(ω,z),a†
±(ω′,z′)] = 2(2π)2iω−1 lim

ϵ→0

[ 1
ω−ω′+iϵ

− 1
ω−ω′−iϵ

]
δ(2)(z,z′) (3.42)

and adopted the prescription that the ϵ→ 0 limit is taken at the end. The result has to be
symmetric under n↔m so we see that upon symmetrization (3.41) is consistent with (3.37).

4 A discrete conformal primary basis

The analysis done in section 3.1 can be equivalently carried out at the level of conformal
primary wavefunctions. Massless scalar conformal primary wavefunctions are given by Mellin

22The Schwartzian regularisation is of the same nature. As shown in (D.8), it corresponds to the insertion
of a factor e−

αω2
2 .
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transforms of plane waves [2]

φ±
∆(X;q)=

∫ ∞

0
dωω∆−1e±iω(q·X±iϵ) (4.1)

where ± distinguish between incoming and outgoing wavefunctions and q is a null vector
which we parameterize by points (z, z̄) on the complex plane. Spinning massless wavefunctions
are obtained by dressing (4.1) with frame fields [48]

m±µ
a (X;q)= εµ

a+qµ (εa ·X)
(−q ·X∓iϵ) . (4.2)

Here εµ
a are polarization tensors defined by

εµ
+ = ∂zqµ(z, z̄) , εµ

−= ∂z̄qµ(z, z̄) (4.3)

and obey εa ·ε∗b = δab and q ·ϵa =0 provided that

q(z, z̄)= 1√
2
(1+zz̄,z+z̄,−i(z−z̄),1−zz̄) . (4.4)

It will be convenient to introduce planar retarded coordinates for the Minkowski coordinates

Xµ(u,r,w, w̄)=u∂w∂w̄qµ(w,w̄)+rqµ(w,w̄), (4.5)

in which case the metric takes the form

ds2 = dXµdXµ =−2dudr+2r2dwdw̄. (4.6)

With this parameterization mµ
a take the particularly simple form

m±
a=z;w := ∂Xµ

∂w
m±

a=z;µ =∓i(w̄−z̄)2r2φ±
∆=1 =(m±

a=z̄;w̄)∗,

m±
a=z;w̄ := ∂Xµ

∂w̄
m±

a=z;µ =±iruφ±
∆=1 =(m±

a=z̄;w)∗.
(4.7)

In the large-r limit, m±
z;w dominate and are given by

lim
r→∞

m±
z;w =−r

w̄−z̄

w−z
. (4.8)

On the other hand at I+, adopting the prescription where one first expands the plane wave
at large r then evaluates the Mellin transform for generic ∆, (4.1) reduce to [22]23

φ±
∆(X(u,w);q(z))≈ r−1Γ(∆−1)(∓i)∆−1(u∓iϵ)1−∆(q0)−∆2πδ(2)(z,w). (4.9)

Relevant here will be the graviton conformal primary wavefunctions24

h±
∆,ab;µν(X(u,w);q(z))=m±

(a;µm±
b;ν)φ

±
∆(X;q), (4.10)

23Shadow contributions do not appear in the order of limits considered here.
24This differs from the definition in [22, 48] by a factor (±i)∆

Γ(∆) .
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where the brackets denote taking the symmetric traceless combination. We see from (4.8), (4.9)
that at I+ these evaluate to

h±
∆,zz;ww = rΓ(∆−1)(∓i)∆−1(u∓iϵ)1−∆(q0)−∆2πδ(2)(z,w)=

(
h±

∆∗,z̄z̄;w̄w̄

)∗
, (4.11)

with all other components subleading in r. The operators defined in section 2 can be obtained
by computing Klein-Gordon inner products of the quantized metric hµν(X) with (4.10),

Ĉ+(∆,z)=− lim
r→∞

(q0)∆κ2

4π
⟨h−

∆;zz(X;q)|h(X)⟩,

Ĉ−(∆,z)=− lim
r→∞

(q0)∆κ2

4π
⟨h−

∆,z̄z̄(X;q)|h(X)⟩.
(4.12)

The Klein-Gordon inner product is independent of the slices used to compute it. At I+ the
spin-2 generalization of the Klein-Gordon inner product reduces to

⟨h|h′⟩=− i

κ2

∫
dud2wr−2

[
hAB∂uh

′∗
AB−h

′AB∂uh∗
AB

]
, (4.13)

where A,B are transverse indices raised/lowered with ds2
⊥=2dzdz̄ and where we recall that

hAB = rCAB. Direct evaluation then gives

Ĉ+(∆,z)= i∆Γ(∆)
∫ ∞

−∞
du(u+iϵ)−∆Czz(u,z),

Ĉ−(∆,z)= (−i)∆Γ(∆)
∫ ∞

−∞
du(u−iϵ)−∆Cz̄z̄(u,z).

(4.14)

Their counterparts at I− are obtained by instead taking Klein-Gordon inner products with
h+

∆;ab. The rescalings by powers of q0 arise upon conformally mapping the sphere to the
plane. To see this recall that the metric on the unit sphere is conformally related to the
flat space metric ds2

S = 2dzdz̄
q20

.
It is clear from (4.11) that at I+, the net effect of multiplication by the frame fields m,m̄

is multiplication by r. Therefore, completeness of the scalar conformal primary wavefunctions
will imply completeness of the spin-2 conformal primary wavefunctions (4.10).

Our analysis in section 3, and in particular the symplectic potential (3.5), suggests that
the memory and Goldstone modes

φM
n (X;z) := Res

∆→1−n
φ+

∆(X; q̂), φG
n (X;z) := lim

∆→n+1
φ+

∆(X;z), n≥ 0, (4.15)

as well as their incoming (-) counterparts, form a basis of scalar conformal primary wave-
functions. We note that the normalization of the memory and Goldstone wavefunctions
in (4.15) differs from that in eg. [5] by a factor of Γ(∆−1). With our normalization, the
inner products (4.13) produce celestial operators that agree with those obtained by direct
Mellin transform of momentum eigenstates. Consequently φG diverges in the special case
∆=1. On the other hand, the finite contribution to the same wavefunction,

φG
0 (X;z) := lim

∆→1
[φ+

∆(X;z)− 1
r
Γ(∆−1)q−1

0 2πδ(2)(z,w)] (4.16)
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is logarithmic and we expect it to agree with the large-r expansion of the logarithmic modes
constructed in [5].25 We leave a complete analysis of the discrete basis including the ∆=1
logarithmic wavefunctions to future work.

In the next section we show that the memory and Goldstone wavefunctions obey orthog-
onality and completeness relations. This is expressed as the property that the Klein-Gordon
inner product for the wavefunctions (4.15) is given by

⟨φM
n (X;z)|φG

m(X;z′)⟩=2(2π)3δmn(q0)−2δ(2)(z,z′). (4.17)

It also means that we have the following completeness relation

∑
n∈Z+

∫
S

[
φM

n (X;z)φG∗
n+1(X ′;z)+(X ↔X ′)

]
=− (2π)3

(q0(w,w̄))3 δ(3)(X−X ′). (4.18)

The shift in labels necessary to establish completeness is the discrete analog of the time
derivative entering the Klein-Gordon product.

4.1 Orthogonality and Completness

The orthogonality follows from the representation of the conformal primaries (4.1) as Mellin
transforms of plane waves together with

⟨e±iωq̂·X |e±iω′q̂′·X⟩=±2(2π)3ω−1(q0)−2δ(ω−ω′)δ(2)(z,z′). (4.19)

Using the defining relations (4.15), we then have

⟨φM
n (X;z)|φG

m(X;z′)⟩= lim
ϵ→0

lim
∆→1−n

(∆+n−1)
∫ ∞

0
dωω−n−1+m2(2π)3(q0)−2δ(2)(z,z′)e−ωϵ

=2(2π)3 lim
ϵ→0

ϵn−m lim
∆→1−n

(∆+n−1)Γ(m−n)(q0)−2δ(2)(z,z′)

= 2(2π)3δmn(q0)−2δ(2)(z,z′).

(4.20)

Since the memory and Goldstone modes are proportional the plane wave modes, with
proportionality factor C̃+(ω)= κ

4iπ a+(ω), we see that (4.20) is consistent with (3.6).
In the last line of (4.20) we used that the discrete delta function admits the following

representation in terms of the Mellin transform

lim
ϵ→0

lim
∆→1−n

(∆+n−1)
∫ ∞

0
dωω∆+m−2e−ωϵ = lim

ϵ→0
lim

∆→1−n
(∆+n−1)ϵ−∆−m+1Γ(∆+m−1)

= lim
ϵ→0

ϵn−m Res
∆=1−n

Γ(∆+m−1)=

0, m ̸=n

1, m=n.

(4.21)

For the last equality on uses that the residue vanishes if m > n while the limit vanishes if n > m.
25Note that in contrast to [5], our notation is such that inner products with M and G wavefunctions insert

conformally soft and Goldstone operators respectively.
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To prove the completeness relation (4.18), we start with the massless conformal primary
wavefunctions evaluated on I+

φ+
∆(X(u,w); q̂(z))= Γ(∆−1)

(iu+ϵ)∆−1
2π

r
(q0)−∆δ(2)(z,w). (4.22)

Then we show that when acting on functions belonging to the Schwartz space, we find
that the series

1
2iπ

∑
n∈N

(
u−iϵ

u′+iϵ

)n

(u′+iϵ)−1+(u↔u′)= δ(u−u′), (4.23)

is equal to a delta distribution.26 This is proven in appendix E.
We then evaluate∑

n∈Z+

∫
S

[
φM

n (X;z)φG∗
n+1(X ′;z)+(X ↔X ′)

]

=(2π)2r−2(q0)−3δ(2)(w,w′)

i
∑
n∈Z

(
u−iϵ

u′+iϵ

)n 1
u′+iϵ

+(u↔u′)


=−(2π)3r−2(q0)−3δ(2)(w,w′)δ(u−u′),

(4.24)

where we have used the symmetry under u↔u′ to extend the summation range as well
as (4.23). We can finally check the completeness relation by taking the KG inner product
of both sides of (4.18) with φM∗

m+1. We find

2(2π)3(q0)−2φM
m (X;z)=−2(2π)3i

∫
du′d2w′δ(u′−u)(q0)−3δ(2)(w,w′)∂u′φM

m+1(u′,w′;z)

= 2(2π)3(q0)−2φM
m (X;z),

(4.25)

as expected. We used that ∂uφM
m+1 = iq0φM

m .

5 All order dressing

In this section, we construct dressed states that diagonalize the tower of soft charges (2.13).
We continue working with the planar parameterization (4.4) and (4.6). This means in
particular, that we can replace all covariant derivatives Dz by partial derivatives ∂z in our
expressions for the charges and their action.

5.1 All spin dressing operator

To construct these states we introduce the Goldstone operators

S(s,z)= ∂s+2
z G(s,z), G(s,z)=

∫
d2wS(s,w)G+

s+2(w,z). (5.1)

26The identity
∑

n∈Z

(
z
w

)n = δ
(

z
w

)
is also encountered as a formal power series identity in the study of

vertex operator algebra [49]. Here we prove it as a distributional identity on the real line.
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Where is the soft operator (2.23) and G+
s+2 is the spin s propagator defined by

G+
s+2(w;z) := 1

2π(s+1)!
(z−w)s+1

z̄−w̄
, ∂s+2

z G+
s+2(w;z)= δ(2)(z,w). (5.2)

In the following we denote G−
s+2(w;z)= [G+

s+2(w;z)]∗ the inverse of ∂s+2
z̄ .

The Goldstone operators can be decomposed into positive and negative helicity states
according to

G(s) := i−sG+(s)−isG
†
−(s). (5.3)

This decomposition is similar to the one given in (2.15) for M(n,z), and it implies, given (3.6),
the commutation relations

[M(s,z),G†(s′,z′)] =πκ2δss′G
−
s+2(z,z′), [M(s,z),G(s′,z′)] = 0. (5.4)

The Goldstone operators (5.1) are necessary to define dressed states as coherent states

⟨p|D(p) := ⟨p|exp
{ ∞∑

s=0

(−1)s

πκ2

∫
d2z

[
(−1)sm

(s)
− (z;p)G(s,z)−m

(s)
+ (z;p)G†(s,z)

]}
, (5.5)

where ⟨p| is an outgoing asymptotic momentum eigenstate and D(p) is the corresponding
dressing operator. Here m

(s)
± (z;p) is a differential operator acting on the momentum labels

that represents the eigenvalue of the hard charge27 operator q2
s(z) on asymptotic momentum

eigenstates states of positive and negative helicity, namely28

[a±(p), q2
s(z)] =

is

2 m
(s)
± (z;p)[a±(p)], (5.6)

where m
(s)
± (z;p) is the distributional differential operator given, when p=ωq(w), by [24, 51]

m
(s)
± (z;ωq(w)) := κ2

4 ω1−s
s∑

ℓ=0
(−1)ℓ−s (ℓ+1)(∆±2)s−ℓ

(s−ℓ)! ∂s−ℓ
z δ(2)(z,w)∂ℓ

w, (5.7)

where ∆=−ω∂ω is the conformal dimension operator and (x)n is the descending factorial.
For instance, for the leading, subleading and sub-subleading dressing we have

m
(0)
± (z;ωq(w))= κ2

4 ωδ(2)(z,w),

m
(1)
± (z;ωq(w))= κ2

4
(
2δ(2)(z,w)∂w−(∆±2)∂zδ(2)(z,w)

)
,

m
(2)
± (z;ωq(w))= κ2

4
1
ω

v

(
3δ(2)(z,w)∂2

w−2(∆±2)∂zδ(2)(z,w)∂w+
(∆±2)(∆±2−1)

2 ∂2
z δ(2)(z,w)

)
.

We see that only the first two dressing operators are infrared dressings, while for spins higher
than 2 they contain negative powers of ω. We also see that the spins correspond to the
order of the differential operator.

27q2
s was defined in [24, 50] and is involved in the derivation of the tower of soft theorems from conservation

laws associated with the truncated, renormalized charges qs = q1
s+q2

s . See also footnote 13 for the normalization
of the soft charge.

28See equation (84) in [24].
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We demonstrate in appendix F.1 that the dressing (5.5) is a unitary operator owing to
the non-trivial hermiticity properties of the differential operators ms

± defined in (5.7). In
particular its action in a position basis is given by

i1−sm
(s)
± (z;w)[f ] := κ2

4

s∑
ℓ=0

(−1)ℓ−s (ℓ+1)(∆̂±2)s−ℓ

(s−ℓ)! ∂s−ℓ
z δ(2)(z,w)∂ℓ

w∂1−s
u f(u,w,w̄) (5.8)

with ∆̂ :=u∂u+1 which becomes diagonal in a conformal primary basis. We demonstrate
in the appendix that

⟨f |m(s)
+ (z;w)[g]⟩=(−1)s⟨m(s)

− (z;w)[f ]|g⟩. (5.9)

where ⟨f |g⟩ denotes the Klein-Gordon inner product (4.13).

5.2 Soft theorem and dressing

In this section we show that the dressing defined previously is the appropriate one which
trivializes the soft theorems. As is well known [52], the soft theorems are expressed as an
operatorial identity on the S-matrix S

⟨out|[qs(z),S]|in⟩=0. (5.10)

Expanding the charges in terms of their degree in the shear we obtain qs = q1
s+q2

s+· · · . If we
truncate the soft theorems to the quadratic expansion of charges we obtain the tree level,
higher spin, soft theorems. They can be naturally written in terms of the operators29

κ

4π
S

(s)
− (z′,p) :=

∫
d2zG+

s+2(z,z′)m(s)
− (z;p),

κ

4π
S

(s)
+ (z′,p) :=

∫
d2zG−

s+2(z,z′)m(s)
+ (z;p). (5.12)

It was shown in [24] that (5.10) implies30 the tower of tree level soft theorems [11]31

⟨out|[M−(s,z),S]|in⟩≈ κ

4π

n∑
i=1

S
(s)
−,i(z)⟨out|S|in⟩ (5.14)

= κ2

8π

n∑
i=1

(ηiωi)−s+1
s∑

ℓ=0

(−1)ℓ−s

ℓ!
(2hi)s−ℓ

(s−ℓ)!
(z−zi)ℓ+1

z̄−z̄i
∂ℓ

zi
[⟨out|S|in⟩] ,

29The normalization is such that S
(s)
− (z,p) corresponds to the soft insertion − 1

s!∂
s
ω[ωa(ωq(z))]0+. For s=0

this corresponds to Weinberg’s soft limit, when q =ωq(z):

⟨out|aout(q)S|in⟩∼
κ

2
∑

i

(pi ·ϵ)2

pi ·q
⟨out|S|in⟩=−κ

2
∑

i

ηiωi

ω

(zi−w)2

|zi−w|2 ⟨out|S|in⟩. (5.11)

30Following [24] to fix the normalization, we have that

⟨out|q1
s(z)S|in⟩=− is

4 ∂s+2
z ⟨out|M−(s,z)S|in⟩

⟨out|[q2
s(z),S]|in⟩=

is

2
∑

i

m(s)(z,pi)⟨out|S|in⟩. (5.13)

Composing the identity (5.10) with the propagator Gs+2(z,w) therefore gives us (5.14).
31This follows from equation (87) in [24].
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where ≈ means that the equality is valid at tree level up to non-universal corrections, and
we use the shorthand notation S

(s)
±i (z)=S

(s)
± (z,pi). We also denote ηi =+1 for out states

and ηi =−1 for in states. Here M− creates a negative helicity graviton in the out state and
n is the number of asymptotic hard particles. For the other helicity we exchange h→ h̄,
z → z̄ which leads to S

(s)
+ →S

(s)
− where

2hi =−ωi∂ωi+si, 2h̄i =−ωi∂ωi−si. (5.15)

The dressings (5.5) induce shifts in the eigenvalues of the soft gravitons M(s,z), M†(s,z),
namely

[D(p),M†(s′,z′)] = (−1)s κ

4π
D(p)S

(s′)
− (z′,p), (5.16)

[D(p),M(s′,z′)] = κ

4π
D(p)S

(s′)
+ (z′,p), (5.17)

which imply that, when used as asymptotic scattering states, the dressed states (5.5) are
eigenstates of qSoft, q̄Soft (2.13). This property means that the operators D(p) are general-
izations of the unitary Faddeev-Kulish operators [28, 53–56]. They are determined by the
requirement that they diagonalize the tower of soft operators M(s,z) together with unitarity.

The dressed amplitude is defined by

dr⟨out|S|in⟩dr := ⟨out|
∏

i∈out
D(pi)S

∏
j∈in

D†(pj)|in⟩. (5.18)

It is important to note that the tower of soft theorem identities

dr⟨out|[M−(s,z),S]|in⟩dr ≈
κ

4π

n∑
i=1

S
(s)
−,i(z)dr⟨out|S|in⟩dr (5.19)

are expected to hold at tree-level [57, 58] irrespective of whether the incoming/outgoing
states are dressed. Similar relations hold for M+ insertions.

Combining this with the dressing equalities (5.17) implies that we have the identities

⟨out|M−(s,z)
∏

i∈out
D(pi)S

∏
j∈in

D†(pj)|in⟩≈ 0. (5.20)

This generalizes to s ̸=0 that the S-matrix elements of soft gravitons between dressed states
of the kind in (5.20) vanish [57, 58].

5.3 Goldstone 2-point function

As we have seen in section 3.3 the Goldstone two-point function takes the form

⟨0|S±(s,z)S†±(s′,w)|0⟩=πκ2Rss′δ
(2)(z,w). (5.21)

This implies the following two-point function of dressing operators

⟨pi|D±(pi)D†
±(pj)|pj⟩= exp


∞∑

s,s′=0
(−1)s Rss′

πκ2
κ2

(4π)2

∫
d2wS

(s)
−,i(w)S(s′)

+,j (w)

⟨pi|pj⟩

= exp
{ ∞∑

ℓ=0

∞∑
ℓ′=0

Cℓℓ′
ij [zℓ

ij z̄ℓ′
ji|zij |2 log

(
Hℓℓ′ |zij |2

)
]∂ℓ

zi
∂ℓ′

z̄j

}
⟨pi|pj⟩

:=Sij
soft⟨pi|pj⟩,

(5.22)
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= ∫
d4q
(2π)4

i
q2 + iϵ ×

i

j

i

j

i

j

∑
i≠j

∑
i≠j

Figure 1. Decomposition of a ladder diagram into off-shell graviton emissions. The emissions become
on-shell upon taking the real part. At tree-level, each resulting emission vertex can be approximated
by a sum over soft factors.

where zij := zi−zj , Hℓℓ′ is a constant defined in (F.7), the i= j terms vanish due to the
vanishing of the exponent in the second line of (5.22), and

Cℓℓ′
ij = κ2

2(4π)2
1

ℓ!ℓ′!

 ∑
s,s′≥ℓ,ℓ′

(−1)sRss′
(2hi)s−ℓ

(s−ℓ)!
(2h̄j)s′−ℓ′

(s′−ℓ′)! (−ηiωi)1−s(−ηjωj)1−s′

 . (5.23)

We have used (5.12) together with

Iℓℓ′
ij (zi, z̄i) :=

∫
d2w

(zi−w)ℓ(z̄j−w̄)ℓ′

(z̄i−w̄)(zj−w) =−2π(zi−zj)ℓ(z̄j−z̄i)ℓ′ log
(
Hℓℓ′ |zi−zj |2

)
, (5.24)

which we prove in appendix F. Note that Iℓℓ′
ij is a positive definite operator, namely∑i,j

ℓ,ℓ′ ϕ
i∗
ℓ Iℓℓ′

ij ϕj
ℓ′ ≥ 0 and that

∂ℓ+1
zi

∂ℓ′+1
z̄j

Iℓℓ′
ij =(2π)2ℓ!ℓ′!δ(2)(zij). (5.25)

The expression for Cℓℓ′
ij is a priori divergent given that Rss′ is singular. However it can be re-

summed, quite remarkably. One first uses (3.34), according to which Rss′ =
∫∞

0 dωωs+s′−1e−ϵω.
We can then exchange the sum over s,s′ with the integral, and use the binomial identity

∑
s≥ℓ

(2h)s−ℓ

(s−ℓ)! xs =xℓ(1+x)2h, (5.26)

which allows to sum (5.23) into

Cℓℓ′
ij =− κ2

2(4π)2
(ηiωi)1−ℓ(−ηjωj)1−ℓ′

ℓ!ℓ′!

∫ ∞

0
dωe−ϵωωℓ+ℓ′−1

(
1+ ω

ηiωi

)2hi
(
1− ω

ηjωj

)2h̄j

.

(5.27)

It is instructive to compare this with the result of exponentiating virtual graviton
exchanges. The calculation by Weinberg [23] can be generalized to include the contribution
from the whole tower of soft theorems to the eikonal vertices, as illustrated in figure 1. As
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a result, the “soft” S-matrix becomes32

Ssoft =
∏
i ̸=j

Sij
soft = lim

ϵ→0
exp

− 2π

2(2π)4

∑
i,j

∞∑
s=0

∞∑
s′=0

∫
ω2dωd2z

ω
e−ϵωωs+s′−2S

(s)
−,i(z)(−1)s′S

(s′)
+,j (z)

 .

(5.28)

The integral is a positive definite operator. Here, the (−1)s′ sign in the exponent comes
from the fact that the soft photon is incoming for one leg and outgoing for the other. For
s=0, this result agrees with that computed by Weinberg in [23]. Importantly, for s=0,
the integral in the exponent is positive definite and IR divergent thereby setting all matrix
elements to zero. In fact, the Hermiticity property (5.9) together with the vanishing of (5.24)
for i= j non-trivially implies that the integral remains positive definite upon including all s

contributions. Performing the integration over ω reproduces the kernel Rss′ and gives

Ssoft =
∏
i ̸=j

exp
{
− 1
2(2π)3

∞∑
s=0

∫
d2z(−1)sŜ

(s)
−,i(z)S

(s)
+,j(z)

}
, (5.29)

where we have introduced the Goldstone mode operator

Ŝ
(s)
±,i(z) :=

∑
s′

Rss′S
(s′)
±,i (z). (5.30)

This relation is analogous to (3.32) and provides the action of the Goldstone charge G±(s,z)
on the external states.

It is expected but still remarkable that this evaluation can be reproduced as the ex-
pectation value of dressing operators

⟨out|
∏

i

D(pi)|in⟩=Ssoft. (5.31)

To derive this result we use the formula (F.25) in appendix F.2. The i= j contributions
vanish as explained after (5.22). In (5.29) the would-be i= j terms correspond to diagrams
where the internal graviton attaches to the same external leg (see figure 1).

If one restricts the dressing (5.5) to include only the s=0 term, one then reproduces the
conformal primary (Lorentz invariant) Faddeev-Kulish dressings introduced in [18, 25]. These
vertex operators were shown in [25] to compute the infrared soft S-matrix in gravity. (5.5)
on the other hand represents the gauge invariant generalization of the conformal primary
dressings in [18] resulting from the infinity of conservation laws associated with the tower
of tree-level soft theorems.

Note that (5.21), together with (5.25), imply that

⟨0|G±(s,z)G†
±(s′,z′)|0⟩=

κ2Rss′

2s!s′! (z−z′)s(z̄′−z̄)s′ |z−z′|2 log
(
Hss′ |z−z′|2

)
. (5.32)

32We have used the completeness relation for the polarization tensors
∑

α,β,γ,δ
παγ;βδεµ

αγεν
βδ = ηµν to recast

the integrand into a product of soft factors.
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In particular, for s=0 this precisely agrees with the two point function of Goldstone operators
derived in [25].33 One puzzle that we are facing is that the Goldstone 2-point function (5.32)
is increasingly divergent when s≥ 1 since Rss′ ∼ ϵ−(s+s′). Moreover this divergence is for
s≥ 1 a UV divergence since ϵ→ 0 appears in the integrals as a UV regulator e−ϵω. One
is left to wonder whether it is possible to understand these UV divergent correlators in a
more regular manner? This is what we investigate next where we show that they can be
understood in terms of Goldstone insertions.

5.4 The Goldstone insertion

In the previous section we have seen that the soft S-matrix involves the insertion of a Goldstone
operator Ŝ

(s)
± (z,p)=

∑
s′ Rss′S

(s′)
± (z,p). This expression is formal and doubly divergent since

the sum involves negative powers of ϵ, as well as growing factorial Γ(s+s′). However, it turns
out that we can resum this formula into a meaningful expression.

This follows from the analysis done in sections 2 and 3. There we have seen that
the relationship Ŝ

(s)
± (z,p)=

∑
s′ Rss′S

(s′)
± (z,p) should be interpreted as the relationship be-

tween the evaluation of a Mellin space operator S±(∆;z,p) at positive and negative integer
dimensions, namely

Res∆=1−s[S±(∆;z,p)] =S
(s)
± (z,p), S±(∆=1+s;z,p)= Ŝs

±(z,p). (5.33)

The celestial OPE analysis has revealed such an operator [7, 11, 13, 59, 60]. It is given,
when pi = ηiωiq(zi), by

S−(∆;z,pi)=
κ

2 (ηiωi)∆
(

z−zi

z̄−z̄i

) ∞∑
ℓ=0

Γ(∆−1+ℓ)Γ(2hi+1)
ℓ!Γ(∆+2hi+ℓ) (z−zi)ℓ∂ℓ

zi
, (5.34)

where 2hi =−ωi∂ωi+si. S+(∆;z,pi) is given by the replacements z ↔ z̄ and 2hi → 2h̄i

(see (5.15)). Using that Res∆=−nΓ(∆)= (−1)n

n! , we get that the residue of this operator
at ∆=1−s is

Res∆=1−s[S−(∆;z,pi)] =
κ

2 (ηiωi)1−s
(

z−zi

z̄−z̄i

) s∑
ℓ=0

(−1)ℓ−s

ℓ!
(2hi)s−ℓ

(s−ℓ)! (z−zi)ℓ∂ℓ
zi

, (5.35)

which is equal to S
(s)
− (z,p) (see (5.14)). Evaluating this operator at ∆=1+s instead, leads

to our proposal for the resummed Goldstone operator

Ŝ
(s)
− (z,pi)=

κ

2 (ηiωi)1+s
(

z−zi

z̄−z̄i

) ∞∑
ℓ=0

Γ(s+ℓ)Γ(2hi+1)
ℓ!Γ(2hi+1+s+ℓ)(z−zi)ℓ∂ℓ

zi
. (5.36)

This operator is our ansatz for the resummation of (5.30). It is well defined if s > 0 while for
s=0 we should omit the term ℓ=0 in the sum. We have not attempted to prove this formula
by explicitly resumming (5.30), so (5.36) should be regarded as a physically motivated guess.

33Note that our normalization for the Goldstone operator differs by a factor of i
4π

from that in [25], namely
−⟨p| i

4π
(G+(0)+G−(0))= ⟨p|C. Moreover, recall that in contrast to [25] we use a parameterization (4.4) for

the momenta which is such that pi ·pj = ϵiϵjωiωj |zij |2.
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We leave a proof of this to future work. This Ansatz means that we expect the dressing
operator (5.5) to be equal to

D(p)= exp
{ ∞∑

s=0

1
(2π)2κ

∫
d2z

[
(−1)sŜ

(s)
− (z;p)M(s,z)−Ŝ

(s)
+ (z;p)M†(s,z)

]}
,

=exp
{ ∞∑

s=0

1
(2π)2κ

∫
d2z

[
(−1)sS

(s)
− (z;p)S(s,z)−S

(s)
+ (z;p)S†(s,z)

]}
. (5.37)

The expression (5.29) for the soft S-matrix then trivially follows from these expressions
and the commutators

[M(n,z),S†(m,z′)] =πκ2δn,mδ2(z,z′). (5.38)

6 Higher spin charges

In this section we write the tower of charges introduced in [24, 50, 61] as corner charges
expressed in terms of the memory and Goldstone variables.

The result we establish in this section can be summarized as follows: we first use that
the integrated charges can be decomposed as a sum Qs =Q1

s+Q2
s+· · · of soft plus hard plus

higher order contributions. We then show that the higher spin charges can be decomposed
into positive and negative helicity sector as

Qs(τ)=−1
4
[
isQ−(s)+i−sQ∗

+(s)
]
, (6.1)

and that each contribution can be written as a corner charge in terms of M(n,z),S(n,z).
For the soft charges we have seen that Q1∗

s+(τ)=
∫

S τ(z)Ds+2M∗
+(s,z) while for the quadratic

charges, their corner expression read34

Q2∗
s+(τ)=− 1

2π

∞∑
n=0

s∑
ℓ=0

(−)ℓ+s(ℓ+1)(s+n−ℓ)s−ℓ

(s−ℓ)!

∫
S

Ds−ℓτs(z)S+(n,z)DℓM∗
+(s+n−1,z).

(6.2)

6.1 Complex mass aspect

We start with the complex mass aspect or the spin-0 charge. This is given by [50]

mC(z)=
∫ +∞

−∞
du

(1
2D2N(u,z)+ 1

4C(u,z)Ṅ(u,z)
)

. (6.3)

For the linear/soft term we simply have

1
2

∫ +∞

−∞
duD2N(u,z)= 1

4D2
[
M−(0,z)+M

†
+(0,z)

]
. (6.4)

The quadratic term reduces to a sum of positive and negative helicity contributions∫ +∞

−∞
duC(u,z)Ṅ(u,z)=

∫ +∞

−∞
du
(
C+(u,z)Ṅ †

+(u,z)+C†
−(u,z)Ṅ−(u,z)

)
. (6.5)

34In this section we use the shorthand D =Dz and D̄ =Dz̄.
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Using the expansion (2.27) we then find∫ +∞

−∞
duC+(u,z)Ṅ †

+(u,z)=− 1
2iπ

∫ +∞

−∞
du

( ∞∑
n=0

un

n! (i
−nS+(n,z))

)
Ṅ †

+(u,z)

=− 1
2π

∞∑
n=1

S+(n,z)
(

in−1
∫ +∞

−∞
du

un−1

(n−1)!N+(u,z)
)†

=− 1
4π

∞∑
n=1

S+(n,z)M†
+(n−1,z). (6.6)

In the third equality we integrated by parts and used the boundary conditions [unN+(u,z)]+∞
−∞=

0. Similarly we find∫ +∞

−∞
duC†

−(u,z)Ṅ−(u,z)=− 1
4π

∞∑
n=1

S
†
−(n,z)M−(n−1,z). (6.7)

Putting everything together, the mass aspect is MC= 1
4(M−+M†

+), where

M†
+(z)=D2M†

+(0,z)− 1
4π

∞∑
n=0

S+(n+1,z)M†
+(n,z),

M−(z)=D2M−(0,z)− 1
4π

∞∑
n=0

S
†
−(n+1,z)M−(n,z). (6.8)

6.2 Renormalized higher spin charges

As shown in [50], the mass charge aspect (6.3) has a finite action on the gravitational phase
space at null infinity; however, for charges of spin s≥ 1 a renormalization procedure is required.
The renormalized higher spin generators are defined as [24, 50]

q̂s(u,z) :=
s∑

n=0

(−u)s−n

(s−n)! Ds−nQn(u,z) , (6.9)

where Qn(u,z) are solutions to the recursion relation

Qn =D∂−1
u (Qn−1)+

(n+1)
2 ∂−1

u (CQn−2) . (6.10)

From (6.9) the renormalized higher spin charge aspects are obtained as the limit

qs(z)= lim
u→−∞

q̂s(u,z). (6.11)

By smearing these charge aspects with arbitrary spin-s transformation parameters, we obtain
the renormalized charges

Qs(τ) :=
∫

S
qs(z)τs(z). (6.12)

We now want to express these renormalized charges in terms of the variables parametrizing
the corner symplectic potential (C.7). The charge aspects solving (6.10) admit an expansion
in terms of powers of radiation fields as

Qs =
max[2,s+1]∑

k=1
Qk

s , (6.13)
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where Q−2 = 1
2Ṅ , Q−1 = 1

2DN . Moreover, each Qk
s obeys the following recursion relation

Qk
s =D∂−1

u (Qk
s−1)+

(s+1)
2 ∂−1

u (CQk−1
s−2). (6.14)

From (6.14) one can derive the relation of the charges at order k in terms of those at order
k−1, for k ≥ 1, as

Qk
n(u,z)= 1

2

n∑
ℓ=0

(ℓ+1)∂−1
u (∂−1

u D)n−ℓ
[
C(u,z)Qk−1

ℓ−2 (u,z)
]
. (6.15)

When k ≥ 3 the sum over ℓ can be restricted to be for ℓ≥ k as the first terms vanish. This
can be used to write the renormalized aspects (6.9) as

q̂k
s (u,z)=

s∑
n=k−1

(−u)s−n

(s−n)! Ds−nQk
n(u,z)

= 1
2

s∑
n=k−1

n∑
ℓ=0

(ℓ+1)(−u)s−n

(s−n)! (∂
−1
u )n−ℓ+1Ds−ℓ

[
C(u,z)Qk−1

ℓ−2 (u,z)
]

= 1
2∂−1

u

s∑
ℓ=0

(ℓ+1)(−u)s−ℓ

(s−ℓ)! Ds−ℓ
[
C(u,z)Qk−1

ℓ−2 (u,z)
]

, (6.16)

where in the last passage we have switched sums and used the generalized Leibniz rule

∂−1
u

(
(−u)k

k! f(u)
)
=

k∑
n=0

(−u)(k−n)

(k−n)! ∂−(n+1)
u f(u). (6.17)

In the following sections we derive expressions for these higher spin charges for arbitrary
s and k =1,2. For k ≥ 3 we derive a recursive formula (the explicit expression of the cubic
charges k =3 in the new discrete basis is derived in [62]).

6.3 Positive and Negative helicity charges

Let us emphasize that the decomposition into positive and negative helicity sector defined
for the soft sector in (2.17) can be extended to all the non-linear charges. This means
that we can define

Qs(τ)=−1
4
[
isQs−(τ)+i−sQ†

s+(τ)
]
. (6.18)

As we have in (2.18), this means for the linear charges that

Q1
s−(τ)= (−1)s

∫
S

Ds+2τ(z)M−(s,z), Q1
s+(τ)= (−1)s

∫
S

D̄s+2τ(z)M+(s,z) . (6.19)

The quadratic contribution to the renormalized higher spin charge aspects (6.11) is given
by (see appendix G.1 for details)

q2
s(z) := lim

u→−∞
q̂2

s(u,z) (6.20)
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with

q̂2
s(u,z)= 1

4∂−1
u

[
s∑

ℓ=0

(ℓ+1)(−u)s−ℓ

(s−ℓ)! Ds−ℓ
[
CDℓ∂−ℓ+1

u N
]
(u,z)

]
. (6.21)

This expression of the charge aspects allows us to write the higher spin quadratic charges
as the single integral of a charge density as

Q2
s(τ)=−1

4

s∑
ℓ=0

(ℓ+1)
(s−ℓ)!

∫
I
C(u,z)

[
Dℓ(∆̂−1)s−ℓ∂

1−s
u N(u,z)

]
Ds−ℓτs(z),

=−1
4

s∑
ℓ=0

(ℓ+1)
(s−ℓ)!

∫
I
C†(u,z)

[
Dℓ(∆̂+3)s−ℓ∂

1−s
u N †(u,z)

]
Ds−ℓτs(z) , (6.22)

where we have introduced the operator ∆̂ := ∂uu, and in general

Qk
s(τ) :=

∫
S

qk
s (z)τs(z) (6.23)

is the integrated charge operator and we have denoted
∫
I :=

∫+∞
−∞ du

∫
S d2z

√
q.

From the two expressions (6.22), it is straightforward to verify that the action of the
quadratic higher spin charges on the conformal graviton is given by [24]

[Q2
s(τ),N±(∆)]= κ2

8

s∑
ℓ=0

(ℓ+1)(∆+1±2)s−ℓ

(s−ℓ)! Ds−ℓτsDℓN±(∆+1−s) . (6.24)

As said above, the quadratic charge is expressible as a sum

Q2
s(τ)=−1

4
[
isQ2

s−(τ)+i−sQ†2
s+(τ)

]
. (6.25)

In terms of the soft and Goldstone variables M(n),S(n), the + component reads

Q2†
s+(τ)=− 1

4π

∞∑
n=0

s∑
ℓ=0

(−)ℓ+s(ℓ+1)(s+n−ℓ)s−ℓ

(s−ℓ)!

∫
S

Ds−ℓτs(z)S+(n,z)DℓM
†
+(s+n−1,z)

=−(−)s

4π

∞∑
n=0

s∑
ℓ=0

(ℓ+1)(3−n)s−ℓ

(s−ℓ)!

∫
S

Ds−ℓτs(z)S†+(n,z)DℓM+(s+n−1,z) ,

(6.26)

where the two expressions follow respectively from the first and second line of (6.22) (again
see appendix G.1 for a detailed derivation). The same expression holds for Q2

s−(τ) in terms
of the negative components of the corner variables.

The action of the quadratic charge (6.26) on the Goldstone operators is given by (see
appendix (G.1))

[Q2†
s,+(τ),S+(n,z)] =−(−)sκ2

4

s∑
k=0

(s−k+1)
(

n+3
k

)
Dkτs(z)Ds−kS+(n−s+1,z) . (6.27)
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6.4 Order k > 2 charges

For the order k > 2 contributions to the charge aspects (6.11) we derive a recursion relation.
We start with the general expression for the non-renormalized charge aspects solving (6.14).
This is given by

Qk
s(u,z)= 1

2

s∑
ℓ=k

(ℓ+1)∂−1
u (∂−1

u D)s−ℓ
[
C(u,z)Qk−1

ℓ−2 (u,z)
]
. (6.28)

As shown in appendix G.2, the renormalized charge aspects at a given order k can be
written in terms of the aspects at order k−1 as

q̂k
s (u,z)=

s∑
n=k−1

(−u)s−n

(s−n)! Ds−nQk
n(u,z)

= 1
2∂−1

u

s−k∑
m=0

(−u)m

m! DmC(u,z)
[
(s−m+1)q̂k−1

s−m−2(u,z)+uDq̂k−1
s−m−3(u,z)

]
.(6.29)

Therefore, the k-th order contribution to the higher spin charges reads

Qk
s(τ)=−1

2

s−k∑
m=0

∫
I

(−u)m

m! τs(z)DmC(u,z)
[
(s−m+1)q̂k−1

s−m−2(u,z)+uDq̂k−1
s−m−3(u,z)

]
.

(6.30)

This formula, together with (2.27), (6.19) and (6.26), allows for the recursive generation of
the nonlinear contributions to the higher spin charges in terms of the memory and Goldstone
variables. We leave the implications of this formula for the calculation of the non-linear
charge algebra to future analysis.

7 Conclusions

We have shown in this work that, for radiation signals that belong to a Schwartz space where
both an IR (exponential decay for u→±∞) and a UV (exponential decay for ω →+∞)
completeness conditions are satisfied, one can introduce a discrete basis for the radiative
phase space at null infinity. This basis is formed by the memory observables and the conjugate
Goldstone gravitons defined respectively in (2.12) and (2.22), and it is labelled by a non-
negative integer number. This allowed us to recast the radiative phase space at I as a corner
phase space on an arbitrary cut.

We have exploited this new discrete basis in three applications, providing a consistency
test of our analysis. First, we have used the Goldstone operators to define generalized dressed
states (5.5) that diagonalize the whole tower of higher spin soft charges. These states were
used to construct the soft part of gravitational scattering amplitudes at tree-level, where
the infinity of charge conservation laws is now implemented. We also have constructed the
higher spin generalization of the Goldstone two-point function. This provides a fully gauge
invariant generalization of the leading order (s=0) [18, 25] and sub-leading order (s=1) [21]
construction of the soft S-matrix in terms of correlation functions of exponentiated Goldstone
operators. Second, we have shown that the Goldstone dressing can also be expressed in

– 32 –



J
H
E
P
0
2
(
2
0
2
4
)
1
7
6

terms of the discrete memory observables and revealed a duality between the soft graviton
and the Goldstone insertions in the decomposition of the ladder diagram into soft emissions.
Third, we have shown how the infinite tower of celestial charges constructed in [24] can be
expressed, both at the linear and the quadratic orders, in terms of the memory and Goldstone
variables. This way, we have recast all the higher spin charges as corner integrals, removing
the integral over the I time direction.

Beyond these initial applications, introducing a discrete basis for conformal primary
wavefunctions presents several advantages. From a more conceptual point of view, it naturally
resolves the tension between the original basis given by the principal continuous series
∆∈ 1+iR obtained in [2] and the derivation of the soft theorems from the OPE of two
conformal primary gravitons which involves the conformally soft limit ∆→ 1−s. An argument
for understanding the insertion of this conformally soft graviton as an analytical continuation
of conformal dimensions through certain contour integrals along the principal continuous
series was presented in [19]. The results of this work provide a uniform and more transparent
treatment. From a more technical perspective, the computational advantages of the new
discrete basis can help investigate the mixed helicity sector of the charge algebra to elucidate
the fate of the w1+∞ structure in full general relativity.

A related application regards the formulation of a dictionary between the multipole
moments of the gravitational radiation emitted by a source and the complex charges forming
the higher spin algebra initiated in [38, 63]. Extension beyond the linearized theory would
represent an exciting step in the programme of reconstructing an asymptotically flat metric
from holographic data.

In our analysis, we have proposed, through (5.30) and (5.37), that the higher spin soft
graviton insertions can be re-summed as the insertion of a higher spin Goldstone operator.
Part of the derivation involved in this resummation is conjectural and deserves a more
thorough mathematical study. Nevertheless, it opens up the fascinating possibility to recast
the gravitons amplitudes entirely in terms of the insertions of higher spin memory or Goldstone
operators. We hope to come back to this question in the future.

It would be extremely interesting to understand precisely to what extent such correlation
functions approximate the infrared-finite gravitational scattering amplitude and whether
similar ideas can be used to systematically calculate scattering amplitudes beyond the leading
eikonal regime. Another interesting aspect to investigate is whether celestial amplitudes
involving Goldstone insertions obey special identities paralleling the Ward identities for
tree-level soft insertions. Our expansion for the tower of charges in terms of Goldstone and
conformally soft operators suggests this may be the case. Such an identity has been used
in [64, 65] for the s=0 Goldstone operator to recast loop correction as the dressing of the
charge operators. This required to derive the IR-divergent part of the corrected subleading
soft graviton theorem as a Ward identity for a certain “symmetry-improved” subleading soft
charge. It would be remarkable to establish from first principle this identity. And one can
wonder if the dressing mechanism, including loop corrections, can be generalized to the whole
tower of Goldstone insertions using the techniques we develop here. Eventually, one may ask
if our all-order dressings can also play a role in extending the description of the manifold of
CCFT vacua initiated in [66] to subleading orders in the soft expansion.
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We conclude with a word of caution. It is well known that the soft theorems receive loop
corrections [67–69]. These corrections introduce log terms in the soft expansion

Ñ±(ω)=
∞∑

n=0

n∑
m=0

ωn(logω)mM±(n,m), (7.1)

where the soft order bounds the power of the log terms: ωn(logω)m with m≤n. It implies
that the Mellin transform admits poles of higher order in the external dimensions. More
precisely the poles at ∆=1−n are of at most order n:

N̂±(∆)≍
∞∑
n

n∑
m=0

M±(n,m)
(∆+n)m

, (7.2)

where ≍ denotes the asymptotic pole expansion. For such states, we cannot argue any longer
that the higher spin charges are well defined, and we leave the analysis beyond the single
pole states to future investigation.

Finally, our analysis only addresses the evaluation of the real part of the higher spin
soft graviton exchange. For completeness, we would have to investigate if one can access
the virtual imaginary component of that exchange in a similar manner.
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A Properties of the Fourier and Mellin transform

In this appendix we collect some properties of the position, momentum and Mellin space
representations of the shear. It is straightforward to show using the definitions that C(u),
C̃(ω), Ĉ(∆) satisfy

[C(u)→ ∂uC(u)]≡
[
C̃±(ω)→−iωC̃±(ω)

]
≡
[
Ĉ±(∆)→−iĈ±(∆+1)

]
,

[C(u)→uC(u)]≡
[
C̃±(ω)→−i∂ωC̃±(ω)

]
≡
[
Ĉ±(∆)→ i(∆−1)Ĉ±(∆−1)

]
,

[C(u)→ (∂uu)C(u)]≡
[
C̃±(ω)→−(ω∂ω)C̃±(ω)

]
≡
[
Ĉ±(∆)→∆Ĉ±(∆)

]
. (A.1)

The last line shows that the Mellin transform diagonalizes the rescaling operator ω∂ω with
eigenvalue −∆ [2].
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We conclude with a derivation of the contour prescription in (2.13). We start with

M+(n) :=
in

n!

(∮
U
duun∂uC+(u)

)
(A.2)

where U a contour in the upper half complex u plane. Using (2.5) we find

M+(n)=− in

n!
1
2πi

∮
U
duun∂u

∫ ∞

−∞
du′ 1

u′−u+iϵ
C(u′)

= lim
ω→0+

− in

n!
1
2πi

∫ ∞

−∞
du′∂u′C(u′)

∮
U
du

uneiωu

u′−u+iϵ

= lim
ω→0+

in

n!

∫ ∞

−∞
du′ eiωu′(u′+iϵ)n∂u′C(u′),

(A.3)

where in the second equality we evaluated the contour integral after noting that ∂u
1

u′−u+iϵ =
−∂u′ 1

u′−u+iϵ and integrating ∂u′ by parts. Note that it is necessary to regulate the integrand
such that the contribution from the contour at infinity vanishes.

B Signal reconstruction from Goldstones

In this appendix we show that the Ramanujan master theorem can be used to reconstruct
the news signal from the tower of Goldstone modes S(n),n≥ 0. We start from the definition

iN̂+(∆)=Γ(1+∆)
∫ +∞

−∞
du(−iu+ϵ)−∆−1C(u)

=Γ(1+∆)
[∫ +∞

0
du
[
(−iu+ϵ)−∆−1C(u)+(iu+ϵ)−∆−1C(−u)

]]
,

= iΓ(1+∆)
[∫ +∞

0
duu−∆−1

[
i∆C(u)−i−∆C(−u)

]]
, (B.1)

where by i∆ := ei∆ π
2 . To get this we used that the principal branch of the logarithm is such that

ln(−iu+ϵ)= ln |u|−isign(u)π

2 . (B.2)

Moreover, as explained before, the iϵ prescription allows us to replace C(u) by C+(u). This
implies that

N̂+(−∆)=Γ(1−∆)
[∫ +∞

0
duu∆−1

[
i−∆C+(u)−i∆C+(−u)

]]
. (B.3)

Using that

C±(u)=
i

2π

∞∑
n=0

(−u)n

n! [inS±(n)] , (B.4)

we get, from the Ramanujan master theorem, that

N̂+(−∆)= i

2π
Γ(1−∆)Γ(∆)[i−2∆−i2∆]S+(−∆)

= π

sinπ∆
(eiπ∆−e−iπ∆)

2iπ
S+(−∆) . (B.5)

The calculation for N̂− is analogous.
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C Symplectic potential

Using that N(u)= ∂uC∗(u) and the Fourier decomposition

C̃(ω)=
∫ ∞

−∞
dueiωuC(u), ω ∈R, (C.1)

we see that the symplectic potential takes the form

θ= 2
κ2

∫ +∞

−∞
duN(u)δC(u)= 1

πκ2

∫ +∞

0
dω
[
Ñ(ω)δC̃(−ω)+Ñ(−ω)δC̃(ω)

]
. (C.2)

Hence,

θ= 1
πκ2

∫ +∞

−∞
dωÑ(−ω)δC̃(ω)=− 1

iπκ2

∫ +∞

−∞
dωωC̃∗(ω)δC̃(ω)

= 1
iπκ2

∫ +∞

0
dωω

[
C̃∗(−ω)δC̃(−ω)−C̃∗(ω)δC̃(ω)

]
= 1

iπκ2

∫ +∞

0
dωω

[
C̃+(ω)δC̃∗

+(ω)−C̃∗
−(ω)δC̃−(ω)

]
= 1

iπκ2

∫ +∞

0
dωω

[
C̃+(ω)δC̃∗

+(ω)+C̃−(ω)δC̃∗
−(ω)

]
− 1

iπκ2 δ

[∫ +∞

0
dωω

[
C̃∗
−(ω)C̃−(ω)

]]
, (C.3)

where C̃±(ω) are positive energy modes at I+,

C(u)= 1
2π

∫ ∞

0
dω
[
e−iωuC̃+(ω)+eiωuC̃∗

−(ω)
]
. (C.4)

Therefore we see that, after a canonical transformation generated by the number of negative
helicity gravitons, namely α−= i

πκ2
∫+∞

0 dωω
[
C̃∗
−(ω)C̃−(ω)

]
, the symplectic potential can

be written as θ= θ++θ− where

θ±= 1
iπκ2

∫ +∞

0
dωω

[
C̃±(ω)δC̃∗

±(ω)
]

. (C.5)

Note that shifts of the symplectic potential that are exact on phase space do not affect the
symplectic form and, hence, the canonical commutation relations.

We could equivalently use the fundamental reconstruction theorem to rewrite (3.2) in
terms of the soft residues, namely

θ±= 1
πκ2

∫ ∞

0
dωÑ±(ω)δC̃∗

±(ω)=
1

πκ2

∫ ∞

0
dω

( ∞∑
n=0

M±(n)ωn

)
δC̃∗

±(ω)

= 1
πκ2

∞∑
n=0

M±(n)
(∫ ∞

0
dωωnδC̃∗

±(ω)
)

= 1
πiκ2

∞∑
n=0

M±(n)δS∗±(n), (C.6)

where in the last line we used (2.7) and (2.22).
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The conjugates of the Goldstone operators are the conformally soft operators. We could
have also seen this by using the Taylor expansion of C(u) and evaluating

θ+ = 1
πiκ2

∞∑
n=0

(
in

n!

∫ +∞

−∞
duunN+(u)

)
δS∗+(n)=

1
πiκ2

∞∑
n=0

M+(n)δS∗+(n) , (C.7)

in agreement with (C.6). In the last equality we used (2.5a) and (2.13). Similarly, one finds

θ−= 1
πiκ2

∞∑
n=0

M−(n)δS∗−(n). (C.8)

Note that the relation (2.7) between N̂ and Ĉ implies that M(n) have dimensions 1−n

while S(n) have dimensions 1+n.

D R-matrix

In this appendix we provide first the derivation of (3.24), (3.27). By plugging (3.22) into
the definition (3.23) and integrating by parts, we find

δ̂mn(α)=
1√
2πα

im−n

(m−1)!

∫ +∞

−∞
(∂n−1

u um−1)e−
u2
2αdu, (D.1)

which thus vanishes for n > m. Hence, assuming n≤m, we arrive at

δ̂mn(α)=
1√
2πα

im−n

(m−n)!

∫ +∞

−∞
um−ne−

u2
2αdu

= (1+(−)m−n)
2 im−n (2α)

m−n
2

Γ
(

m−n+1
2

)
√

πΓ(m−n+1)

=πm−n

(
−α

2

) (m−n)
2 1

Γ
(

m−n
2 +1

) , (D.2)

where we used the identity

Γ
(

m−n+1
2

)
√

πΓ(m−n+1) =
1

2m−nΓ
(

m−n
2 +1

) , (D.3)

and defined

πm−n :=
{

0 n > m
(1+(−)m−n)

2 n≤m
. (D.4)

We now consider the Schwartzian state (3.25) and plug it into (3.26) to derive (3.27) as

δnm(α)=
√

2
πα

m!cn

n!(m−n)!

∫ ∞

0
ωm−n

(
1−e−

ω2
2α

)n

e−
ω2
2α dω

=
√

2
πα

m!cn

n!(m−n)!

n∑
k=0

(−)k

(
n

k

)∫ ∞

0
ωm−ne−

ω2(k+1)
2α dω

= 1√
π

m!cn

n!(m−n)! (2α)
m−n

2 Γ
(

m−n+1
2

) n∑
k=0

(−)k

(
n

k

)
(k+1)

n−m−1
2 ∀ m−n≥ 0.

(D.5)
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In the case m < n, we have

δnm(α)=
√

2
πα

(−)n−m m!cn

n!

∫ ∞

0
∂n−m

ω

[(
1−e−

ω2
2α

)n

e−
ω2
2α

]
dω

=
√

2
πα

(−)n−m m!cn

n! ∂n−m−1
ω

[(
1−e−

ω2
2α

)n

e−
ω2
2α

]∣∣∣∣∣
∞

0
=0 . (D.6)

Next, we evaluate the unregularized Goldstone two-point function using (2.26) as follows

⟨0|S±(n,z)S†±(m,w)|0⟩ = (2π)2in−m ∂n
u ∂m−1

u′ ⟨0|C±(u,z)N †
±(u′,w)|0⟩

∣∣∣
u=u′=0

= 2πin−m+1 κ2

2 ∂n
u ∂m−1

u′
−i

u−u′−iϵ

∣∣∣∣
u=u′=0

δ2(z,w)

= κ2πin−m+1(−1)n(n+m−1)! −i

(u−u′−iϵ)n+m

∣∣∣∣
u=u′=0

δ2(z,w)

= κ2π
Γ(n+m)

ϵn+m
δ2(z,w). (D.7)

On the other hand, upon regularization, we find that the Goldstone two-point function
is proportional to

Rnm(α)= im−n+1

α

∫ ∞

−∞
du∂n−1

u e−
u2
2α ∂m

u e−
u2
2α

=
∫ ∞

0
dωωn+m−1e−αω2 =

Γ(m+n
2 )

α
m+n

2
,

(D.8)

where in the second line we have used the Fourier representation of the Gaussian projected
onto the positive/negative energy components

e−
u2
2α

∣∣∣∣
±
=

√
2πα

2π

∫ ∞

0
dωe−iωue−

αω2
2 . (D.9)

Finally, the regulated memory two-point function is proportional to

R̃nm(α)= 1
(2π)2

∫ ∞

0
dωωΨ∗

n,α(ω)Ψm,α(ω), (D.10)

where Ψn,α(ω) is given in (3.25). This can be written in terms of the Fourier transform

Ψ̃n,α(u)=
1
2π

∫ ∞

0
dωe−iωuΨn,α(ω)=

1
2π

2
√

2π

α

1
n!

∫ ∞

0
dω(−iu)ne−iωucn(1−e−

ω2
2α )ne−

ω2
2α

=
n∑

k=0

(
n

k

)
(−1)k

n!
√
1+k

e
− αu2

2(1+k) (−iu)ncn

(
1−Erf

[
i

√
αu√

2(1+k)

])
(D.11)

as

R̃nm(α)= 1
2π

∫ ∞

−∞
duΨ̃∗

n,α(u)(i∂u)Ψ̃m,α(u). (D.12)

We can now change variables x=
√

αu in which case the α dependence factorizes and we
are left with

R̃nm(α)= Cnm

α
m+n

2
, (D.13)
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where the α-independent coefficient is

Cnm = 1
2π

n∑
k=0

m∑
k′=0

(
n

k

)(
m

k′

)
in−m+1(−1)k+k′

n!m!
√
(1+k)(1+k′)

×
∫ ∞

−∞
dxe

− x2
2(1+k) c∗ncmxn

(
1−Erf

[
ix√

2(1+k)

])
∂x

[
xme

− x2
2(1+k′)

(
1−Erf

[
ix√

2(1+k′)

])]
.

(D.14)

E Delta function identity

Consider a Schwartzian function f(u)∈S and define

F+(u,v) := 1
2iπ

∑
n≥0

(
v+iϵ

u−iϵ

)n 1
u−iϵ

. (E.1)

We also denote F(u,v)=F+(u,v)+F+(v,u). In this section we show that when f ∈S we have∫ ∞

−∞
dvF+(u,v)f(v)= f+(u),

∫ ∞

−∞
dvF+(v,u)f(v)= f∗

−(u), (E.2)

where we denote by f±(u) the positive and negative energy component of f(u)= f+(u)+f∗
−(u).

These are defined according to the formulae (2.5a), (2.5b).
In order to prove the first equality in (E.2) we use (2.5a) to get an asymptotic expansion

of f+(u) around u=∞35

f+(u)=
1
2iπ

∫ +∞

−∞
dv

f(v)
[(u−iϵ)−v] =

1
2iπ

∞∑
n=0

1
(u−iϵ)n+1

[∫ +∞

−∞
dvvnf(v)

]
. (E.4)

The existence, the integral coefficients and the convergence of the sum for large u follows
from the assumption that f is Schwartzian.

Similarly, to prove the second equality in (E.2), we use (2.5b) to get a Taylor expansion
of f−(u) near u=0. First one establishes that

∂n
u f∗

−(u)=
n!
2iπ

∫ +∞

−∞
dv

f(v)
(v−u−iϵ)n+1 , (E.5)

which implies

f∗
−(u)=

1
2iπ

∞∑
n=0

un
[∫ +∞

−∞
dv

f(v)
(v−iϵ)n+1

]
. (E.6)

Given these results, we can now straightforwardly conclude that∫ ∞

−∞
dvF(u,v)f(v)= 1

2iπ

∑
n≥0

i

(u−iϵ)n+1

∫ ∞

−∞
dv vnf(v)+ 1

2iπ

∑
n≥0

[∫ +∞

−∞
dv

unf(v)
(v−iϵ)n+1

]
= f+(u)+f∗

−(u)= f(u).
(E.7)

35This expansion is ambiguous as the iϵ could be split differently as

1
2iπ

∞∑
n=0

1
(u−iϵ)n+1

[∫ +∞

−∞
dvvnf(v)

]
or 1

2iπ

∞∑
n=0

1
un+1

[∫ +∞

−∞
dv(v+iϵ)nf(v)

]
. (E.3)

In the main text we choose the iϵ prescription in the denominators since for all practical purposes (v+iϵ)n is
equal to vn.
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F All order dressing identity

In this section we want to evaluate

Inm
ij :=

∫
d2w

(zi−w)n

(z̄i−w̄)
(z̄j−w̄)m

(zj−w) = (2π)2n!m!
∫

d2wG+
n+1(w,zi)G−

m+1(w,zj). (F.1)

The second expression shows that this integral satisfies the identities

∂n+1
zi

Inm
ij =2πn! (z̄i−z̄j)m

(zi−zj)
, ∂m+1

z̄j
Inm

ij =2πm! (zj−zi)n

(z̄j−z̄i)
. (F.2)

We see that we can write (5.24) as

Inm
ij = 1

n!

∫
d2z(zi−z)n∂n+1

z̄

(
(z̄−z̄i)n log |z−zi|2

) (z̄j−z̄)m

(z−zj)
. (F.3)

The validity of this expression follows from the recursion relation

∂n+1(zn log |z|2)= ∂n(nzn−1 log |z|2+zn−1)=n∂n(zn−1 log |z|2)= n!
z

, (F.4)

or alternatively, by direct computation

∂n+1
z̄

[
(z̄−z̄i)n log |z−zi|2

]
=

n+1∑
p=1

(−1)p−1(n+1)!n!
p!(n−p+1)!

1
z̄−z̄i

= n!
z̄−z̄i

. (F.5)

Now, integrating by parts and assuming wlog that n≥m, we find

Inm
ij (zi,zj)=−2π(zi−zj)n(z̄j−z̄i)m log

(
|zi−zj |2Hnm

)
. (F.6)

Hnn =1 while in general Hnm is given by

logHnm = |Hn−Hm|, (F.7)

where Hn :=
∑n

k=1
1
k are the harmonic numbers. One can directly check that (F.6) satis-

fies (F.2).
This is obtained as follows (for n≥m)

Inm
ij = 1

n!

∫
d2z(zi−z)n∂n+1

z̄

(
(z̄−z̄i)n log |z−zi|2

) (z̄j−z̄)m

z−zj

=−m!
n!

∫
d2z(zi−z)n∂n−m

z̄

(
(z̄−z̄i)n log |z−zi|2

)
2πδ(2)(z−zj)

=−2π(zi−zj)n(z̄j−z̄i)m log |zi−zj |2−2π

 n∑
k=m+1

1
k

(zi−zj)n(z̄j−z̄i)m,

(F.8)

where in the last line we used the generalization of (F.4) to arbitrary powers of derivatives

∂n
(

zm

m! log |z|
2
)
= ∂n−1

(
zm−1

(m−1)! log |z|
2+ zm−1

m!

)
= ∂n−1

(
zm−1

(m−1)! log |z|
2
)
+ 1

m

zm−n

(m−n)!

=
(

zm−n

(m−n)! log |z|
2
)
+
(

n−1∑
k=0

1
m−k

)
zm−n

(m−n)! .

(F.9)

The polynomial contribution is absent for n=m.
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F.1 Unitarity of dressing

In this section we study the hermiticity property of the soft operators (5.7). We prove that

[
m

(s)
+ (z;w)

]†
=(−1)sm

(s)
− (z;w). (F.10)

The Klein-Gordon inner product (4.13) is given by

⟨f |g⟩≡−i
2
κ2

∫
du

∫
S2

d2w∂uf∗(u,w)g(u,w)= i
2
κ2

∫
du

∫
S2

d2wf∗(u,w)∂ug(u,w). (F.11)

We consider

⟨f |m(s)
+ (z;w)|g⟩≡ ⟨f |m(s)

+ (z;w)[g]⟩=−i
2
κ2

∫
du

∫
S2

d2w∂uf∗(u,w)m(s)
+ (z;w)[g(u,w)].

(F.12)

And we evaluate

is⟨f |m(s)
+ (z;w)|g⟩ (F.13)

= 1
2

s∑
ℓ=0

∫
du

∫
S2

d2w∂s−ℓ
w δ(2)(z,w)∂uf∗(u,w)(ℓ+1)(∆̂+2)s−ℓ

(s−ℓ)! ∂ℓ
w∂1−s

u g(u,w)

= 1
2

s∑
ℓ=0

(−1)ℓ
∫

du

∫
S2

d2w∂ℓ
w(∂s−ℓ

w δ(2)(z,w)∂uf∗(u,w))(ℓ+1)(∆̂+2)s−ℓ

(s−ℓ)! ∂1−s
u g(u,w)

= 1
2

s∑
ℓ=0

ℓ∑
p=0

(−1)ℓ
∫

du

∫
S2

d2w∂p
w∂uf∗(u,w)∂s−p

w δ(2)(z,w)(ℓ+1)(∆̂+2)s−ℓ

(s−ℓ)!
(ℓ)p

p! ∂1−s
u g(u,w)

= 1
2

s∑
p=0

∫
du

∫
S2

d2w∂s−p
w δ(2)(z,w)∂p

w∂uf∗(u,w)

 s∑
ℓ=p

(−1)ℓ (ℓ+1)(∆̂+2)s−ℓ

(s−ℓ)!
(ℓ)p

p!

∂1−s
u g(u,w) .

We can simplify this expression using the binomial identity

(x−ℓ−1)s

s! =
s∑

n=0
(−)n (ℓ+n)n

n!
(x)s−n

(s−n)! , (F.14)

which allows us to evaluate

s∑
ℓ=p

(−1)ℓ (ℓ+1)(ℓ)p

p!
(∆̂+2)s−ℓ

(s−ℓ)! = (−1)p(p+1)
s−p∑
n=0

(−1)n (n+p+1)p+1
(p+1)!

(∆̂+2)s−ℓ

(s−ℓ)!

= (−1)p(1+p)(∆̂−p)s−p

(s−p)! . (F.15)

To continue the evaluation we take advantage of the useful identities

un∂n
u =(∆̂−1)n , ∂n

u un =(∆̂+n−1)n , u−n∂−n
u =(∆̂+n−1)−1

n ,

∂u(∆̂+α)n =(∆̂+α+1)n∂u , ∂−1
u (∆̂+α)n =(∆̂+α−1)n∂−1

u , (F.16)
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which allow us to evaluate[
(∆̂−p)s−p

]†
=
[
∂1−p

u (∆̂−1)s−p∂p−1
u

]†
= ∂p−1

u

[
us−p∂s−p

u

]†
∂1−p

u

=(−1)s−p∂p−1
u

[
∂s−p

u us−p]∂1−p
u

=(−1)s−p∂p−1
u (∆̂+s−p−1)s−p∂1−p

u

=(−1)s−p(∆̂+s−2)s−p. (F.17)

We can thus write

is⟨f |m(s)
+ (z;w)|g⟩

= 1
2

s∑
p=0

(−1)p
∫

du

∫
S2

d2w∂s−p
w δ(2)(z,w)∂p

w∂uf∗(u,w)
[
(1+p)(∆̂−p)s−p

(s−p)!

]
∂1−s

u g(u,w)

= 1
2

s∑
p=0

(−1)p−s
∫

du

∫
S2

d2w∂s−p
w δ(2)(z,w)∂ug(u,w)∂−s

u

[
(1+p)(∆̂−p)s−p

(s−p)!

]†
∂p

w∂uf∗(u,w)

= 1
2

s∑
p=0

∫
du

∫
S2

d2w∂s−p
w δ(2)(z,w)∂ug(u,w)∂−s

u

[
(1+p)(∆̂+s−2)s−p

(s−p)!

]
∂p

w∂uf∗(u,w)

= 1
2

s∑
p=0

∫
du

∫
S2

d2w∂s−p
w δ(2)(z,w)∂ug(u,w)

[
(1+p)(∆̂−2)s−p

(s−p)!

]
∂p

w∂1−s
u f∗(u,w)

=
[
is⟨g|m(s)

− (z;w)|f⟩
]∗

. (F.18)

F.2 State factorization

It will be convenient to decompose the operator into a product

D(p)=N (p)D†
+(p)D

†
−(p)D+(p)D−(p), (F.19)

where N (p) is a normalization factor and where

⟨p|D±(p) := ⟨p|exp
{ ∞∑

s=0

i−s

πκ2

∫
d2w

∫
d2z

[
m

(s)
∓ (w;p)G±

s+2(w;z)S±(s,z)
]}

. (F.20)

These operators are such that

[D+(pi),D−(pj)] = 0, i ̸= j. (F.21)

To compute correlation functions for a product of exponential operators, we need to use
the Baker-Campbell-Hausdorff formula

eA+B = eAeBe−
1
2 [A,B], (F.22)

valid when [A,B] is a c-number, that allows us to derive an important identity obeyed by
coherent states of the form

Wi =exp
{

αi
−(a+−a†

−)+αi
+(a−−a†

+)
}

. (F.23)
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Here a±,a†
± are harmonic oscillators while αi

± are (possibly operator-valued) coefficients that
commute with the oscillators, as well as each other for i ̸= j. Note that such coherent states
mimick our dressings (5.5) and, using (F.22), can be equivalently written as

Wi = e−αi
−a†

−e−αi
+a†

+eαi
−a+eαi

+a−e−
1
2αi

+αi
−([a+,a†

+]+[a−,a†
−]). (F.24)

Correlation functions of coherent states (F.23) are then evaluated by successively moving
all of the a†

± to the left, namely

⟨0|W1 · · ·Wn|0⟩

=exp

−
∑
i<j

αi
+αj

−

(
[a+,a†

+]+[a−,a†
−]
)exp

{
−

n∑
i=1

1
2αi

−αi
+([a+,a†

+]+[a−,a†
−])
}

.
(F.25)

G Charges

In this appendix we collect technical aspects concerning the formulation of the tower of higher
spin charges in terms of the discrete tower of Goldstone and memory operators.

G.1 Quadratic charges

The quadratic higher spin charge aspects are obtained from the general relation (6.16) as

q̂2
s(u,z)= 1

4∂−1
u

[
s∑

ℓ=0

(ℓ+1)(−u)s−ℓ

(s−ℓ)! Ds−ℓ
[
CDℓ∂−ℓ+1

u N
]
(u,z)

]
. (G.1)

We can further simplify this expression by defining the operator ∆̂ := ∂uu and using
that un∂n

u =(∆̂−1)n, where (x)n =x(x−1) · · ·(x−n+1) is the falling factorial. This allows
us to rewrite

us−ℓ∂−ℓ+1
u N =(∆̂−1)s−ℓ∂

1−s
u N, (G.2)

and therefore we get the charge expression

Q2
s(τ)=−1

4

s∑
ℓ=0

(ℓ+1)
(s−ℓ)!

∫
I

[
C
(
Dℓ(∆̂−1)s−ℓ∂

1−s
u N

)]
(u,z)Ds−ℓτs(z). (G.3)

This gives us the first line of (6.22). Integrating by parts and using that

∫ +∞

−∞
du∆̂A(u)B(u)=

∫ +∞

−∞
duA(u)(1−∆̂)B(u) , (G.4)
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we get the alternate expression

Q2
s(τ)=−1

4

s∑
ℓ=0

(ℓ+1)
(s−ℓ)!

∫
I

(
Dℓ(∆̂−1)s−ℓ∂

1−s
u N(u,z)

)[
C(u,z)Ds−ℓτs(z)

]
=−1

4

s∑
ℓ=0

(ℓ+1)
(s−ℓ)! (−1)ℓ−s

∫
I
C∗(u,z)Dℓ

[(
∂2−s

u (−∆̂)s−ℓC(u,z)
)

Ds−ℓτs(z)
]
,

=−1
4

s∑
ℓ=0

(ℓ+1)
(s−ℓ)!

∫
I
C∗(u,z)Dℓ

[(
(∆̂+1−ℓ)s−ℓ∂

1−s
u N∗(u,z)

)
Ds−ℓτs(z)

]

=−1
4

s∑
p=0

 s∑
ℓ=p

(ℓ+1)!
p!(ℓ−p)!(s−ℓ)!

∫
I
C∗(u,z)Dp

(
(∆̂+1−ℓ)s−ℓ∂

1−s
u N∗(u,z)

)
Ds−pτs(z) ,

(G.5)

where we used ∂−1
u ∆̂∂u =∆̂−1 and (−x)n =(−1)n(x+n−1)n in the third equality, which

implies that ∂2−s
u (−∆̂)s−ℓ =(−1)s−ℓ(∆̂+1−ℓ)n∂2−s

u ; we also expanded the derivative Dℓ in
the fourth equality. To evaluate this expression one uses the identity

s∑
ℓ=p

(ℓ+1)!
(ℓ−p)!(s−ℓ)! (∆̂−ℓ)s−ℓ =

(p+1)!
(s−p)! (∆̂+2)s−p, (G.6)

which means that

Q2
s(τ)=−1

4

s∑
p=0

(p+1)
(s−p)!

∫
I

[
C∗Dp

(
(∆̂+3)s−p∂1−s

u N∗
)]

(u,z)Ds−pτs(z) , (G.7)

and we obtain the second line of (6.22).
To re-express the quadratic term (G.1) in terms of the corner variables M±(n,z),S±(n,z),

we start with

Q2
s(τ)=−1

4

s∑
ℓ=0

(ℓ+1)
(s−ℓ)!

∫
I

Ds−ℓτs(z)
[
(C+(u,z)+C∗

−(u,z))
(

Dℓ(∆̂−1)s−ℓ∂
1−s
u (N−(u,z)+N∗

+(u,z))
)]

=−1
4

s∑
ℓ=0

(ℓ+1)
(s−ℓ)!

∫
I

Ds−ℓτs(z)
[
C+(u,z)Dℓ(∆̂−1)s−ℓ∂

1−s
u N∗

+(u,z)

+C∗
−(u,z)Dℓ(∆̂−1)s−ℓ∂

1−s
u N−(u,z)

]
.

We thus see that again we can split the quadratic charge aspects as (6.25) into

Q2
s(τ)=−1

4
[
isQ2

−(s)+i−sQ∗2
+ (s)

]
, (G.8)
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where

Q2∗
s+(τ)=

i1+s

2π

∞∑
n=0

s∑
ℓ=0

i−n

n!
(ℓ+1)
(s−ℓ)!

∫
I
Ds−ℓτs(z)S+(n,z)unDℓ(∆̂−1)s−ℓ∂

1−s
u N∗

+(u,z)

= i1+s

2π

∞∑
n=0

s∑
ℓ=0

i−n

n!
(ℓ+1)
(s−ℓ)!

∫
S

Ds−ℓτs(z)S+(n,z)(−n−1)s−ℓD
ℓ
∫ ∞

−∞
duun∂1−s

u N∗
+(u,z)

=− i1+s

2π

∞∑
n=0

s∑
ℓ=0

(−)s+ℓ+1i−n

n!
(ℓ+1)(n+s−ℓ)s−ℓ

(s−ℓ)!

×
∫

S
Ds−ℓτs(z)S+(n,z)Dℓ

∫ ∞

−∞
duun+s−1(∆̂+s−2)−1

s−1N∗
+(u,z)

=− i1+s

2π

∞∑
n=0

s∑
ℓ=0

(−)s+ℓ+1i−n(ℓ+1)(n+s−ℓ)s−ℓ

n!(−n−1)s−1(s−ℓ)!

×
∫

S
Ds−ℓτs(z)S+(n,z)Dℓ

∫ ∞

−∞
duun+s−1N∗

+(u,z)

=− 1
4π

∞∑
n=0

s∑
ℓ=0

(−)ℓ+s(ℓ+1)
(

s+n−ℓ

n

)∫
S

Ds−ℓτs(z)S+(n,z)DℓM∗
+(n+s−1,z).

(G.9)

We have used (2.13), (2.27) and the identities

1
(−n−1)ℓ

=(−)ℓ n!
(n+ℓ)! , u(∆̂+α−1)±1

n =(∆̂+α−2)±1
n u, (G.10)

valid ∀ n≥ 0 ,α∈Z, and the fact that the operator ∆̂ integrates to zero due to choice of
boundary conditions.

Let us perform an extra integration by parts to write

Q2∗
s+(τ)=−(−)s

4π

∞∑
n=0

s∑
m=0

s∑
ℓ=m

(ℓ+1)(n+s−ℓ)s−ℓ

(s−ℓ)!
(ℓ)m

m!

∫
S

Ds−mτs(z)M∗
+(s+n−1,z)DmS+(n,z)

=−(−)s

4π

∞∑
n=0

s∑
m=0

(m+1)(n+s+2)s−m

(s−m)!

∫
S

Ds−mτs(z)M∗
+(s+n−1,z)DmS+(n,z) ,

(G.11)

where we used

s∑
ℓ=m

(ℓ+1)(n+s−ℓ)s−ℓ

(s−ℓ)!
(ℓ)m

m! = (m+1)(n+s−m)n

n! 2F1[2+m,m−s,m−n−s,−1]

= (m+1)(n+s+2)s−m

(s−m)! . (G.12)

Analogous expressions are obtained for Q2
s−(τ) in terms of S−(n),M∗

−(s+n−1).
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It is also useful to derive the corner variables expression of the quadratic charge starting
from the version (G.7) in terms of the complex conjugate fields. We have

Q2
s(τ)=−1

4

s∑
p=0

(p+1)
(s−p)!

∫
I

Ds−pτs(z)(C∗
+(u,z)+C−(u,z))Dp

(
(∆̂+3)s−p∂1−s

u (N∗
−(u,z)+N+(u,z))

)
=−1

4

s∑
p=0

(p+1)
(s−p)!

∫
I

Ds−pτs(z)
[
C∗

+(u,z)Dp
(
(∆̂+3)s−p∂1−s

u N+(u,z)
)

+C−(u,z))Dp
(
(∆̂+3)s−p∂1−s

u (N∗
−(u,z)

)]
.

Hence, using again the split (G.8), we have for the positive component

Q2∗
s+(τ)=− is+1

2π

s∑
ℓ=0

∞∑
n=0

(ℓ+1)
(s−ℓ)!

(−i)−n

n!

∫
I
Ds−ℓτs(z)S∗+(n)Dℓ

(
un(∆̂+3)s−ℓ∂

1−s
u N+(u,z)

)
= is

2π

s∑
ℓ=0

∞∑
n=0

(ℓ+1)
(s−ℓ)!

in−1

n!

∫
I
Ds−ℓτs(z)S∗+(n)Dℓ

(
(3−n)s−ℓu

n+s−1(∆̂+s−2)−1
s−1N+(u,z)

)
= is

2π

s∑
ℓ=0

∞∑
n=0

(ℓ+1)
(s−ℓ)!

in−1

n!
(3−n)s−ℓ

(−n−1)s−1

∫
S

Ds−ℓτs(z)S∗+(n)Dℓ
∫ ∞

−∞
duun+s−1N+(u,z)

=−(−)s

4π

s∑
ℓ=0

∞∑
n=0

(ℓ+1)(3−n)s−ℓ

(s−ℓ)!

∫
S

Ds−ℓτs(z)S∗+(n)DℓM+(n+s−1) .

(G.13)

Finally we compute the quantum action36

[Q2†
s+(τ),S+(n,z)] =−(−)s

4π

∞∑
m=0

s∑
ℓ=0

(−)ℓ(ℓ+1)
(

s+m−ℓ

m

)

×
∫

S
d2z′

√
q Ds−ℓ

z′ τs(z′)S+(m,z′)Dℓ
z′ [M

†
+(s+m−1,z′),S+(n,z)]

= κ2

4 (−)s
s∑

ℓ=0
(−)ℓ(ℓ+1)

(
n+1−ℓ

n+1−s

)∫
S
d2z′

√
q Ds−ℓ

z′ τs(z′)S+(n−s+1,z′)Dℓ
z′δ

(2)(z,z′)

= κ2

4 (−)s
s∑

ℓ=0

ℓ∑
k=0

(ℓ+1)
(

n+1−ℓ

n+1−s

)(
ℓ

k

)
Ds−kτs(z)DkS+(n−s+1,z)

=−κ2

4 (−)s
s∑

k=0
(s−k+1)

(
n+3

k

)
Dkτs(z)Ds−kS+(n−s+1,z),

(G.14)

36We restore here explicit measure on the 2-sphere to avoid confusion between different sets of coordinates.
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where we used

s∑
ℓ=k

(ℓ+1)
(

n+1−ℓ

n+1−s

)(
ℓ

k

)

=−(1+k)(n+3)Γ(k−n)Γ(n−k+1)
(n+k−s+3)(s−k)!Γ(n−s+2)

Γ(s−n−k−2)
Γ(s−n−1)Γ(−n−2)

= (−)s+k+1 (1+k)(n+3)
(n+k−s+3)(s−k)!

Γ(s−n−k−2)
Γ(−n−2)

=−(1+k)
(

n+3
s−k

)
. (G.15)

G.2 Higher order charges

Starting again from (6.16), the renormalized charge aspects at a general order k are given by

q̂k
s (u,z)= 1

2∂−1
u

s∑
ℓ=k

s−ℓ∑
m=0

(ℓ+1)(−u)s−ℓ

(s−ℓ)!

(
s−ℓ

m

)
DmC(u,z)Ds−ℓ−mQk−1

ℓ−2 (u,z)

= 1
2∂−1

u

s−k∑
m=0

(−u)m

m! DmC(u,z)
s−m−2∑
ℓ=k−2

(ℓ+3) (−u)s−ℓ−m−2

(s−ℓ−m−2)!D
s−ℓ−m−2Qk−1

ℓ (u,z) (G.16)

= 1
2∂−1

u

s−k∑
m=0

(−u)m

m! DmC(u,z)

3q̂k−1
s−m−2(u,z)+

s−m−2∑
ℓ=k−2

ℓ
(−u)s−ℓ−m−2

(s−ℓ−m−2)!D
s−ℓ−m−2Qk−1

ℓ (u,z)

 ,

where in the second line we used the relation (6.15). We now use the simple identity

ℓ

(s−m−2−ℓ)! =− 1
(s−m−ℓ−3)!+

(s−m−2)
(s−m−2−ℓ)! (G.17)

to rewrite

s−m−2∑
ℓ=k−2

ℓ(−u)s−m−2−ℓ

(s−m−2−ℓ)!D
s−m−2−ℓQk−1

ℓ (u,z)

=−
s−m−3∑
ℓ=k−2

(−u)s−m−2−ℓ

(s−m−ℓ−3)!D
s−m−2−ℓQk−1

ℓ (u,z)+(s−m−2)q̂k−1
s−m−2(u,z)

=uDq̂k−1
s−m−3(u,z)+(s−m−2)q̂k−1

s−m−2(u,z) , (G.18)

and finally arrive at

q̂k
s (u,z)= 1

2∂−1
u

s−k∑
m=0

(−u)m

m! DmC(u,z)
[
(s−m+1)q̂k−1

s−m−2(u,z)+uDq̂k−1
s−m−3(u,z)

]
. (G.19)
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