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A B S T R A C T   

Efficient characterization of wastewater stream quality is vital to ensure the safe discharge or reuse of treated 
wastewater (WW). There are numerous parameters employed to characterize water quality, some required by 
directives (e.g. biological oxygen demand (BOD), total nitrogen (TN), total phosphates (TP)), while others used 
for process controls (e.g. flow, temperature, pH). Well-accepted methods to assess these parameters have 
traditionally been laboratory-based, taking place either off-line or at-line, and presenting a significant delay 
between sampling and result. Alternative characterization methods can run in-line or on-line, generally being 
more cost-effective. Unfortunately, these methods are often not accepted when providing information to regu-
latory bodies. The current review aims to describe available laboratory-based approaches and compare them 
with innovative real-time (RT) solutions. Transitioning from laboratory-based to RT measurements means 
obtaining valuable process data, avoiding time delays, and the possibility to optimize the (WW) treatment 
management. A variety of sensor categories are examined to illustrate a general framework in which RT ap-
plications can replace longer conventional processes, with an eye toward potential drawbacks. A significant 
enhancement in the RT measurements can be achieved through the employment of advanced soft-sensing 
techniques and the Internet of Things (IoT), coupled with machine learning (ML) and artificial intelligence (AI).   

1. Introduction 

Health hazards and diseases caused by improperly treated waste-
water (WW) are critical problems that humanity still faces today. Poor 
water quality may cause severe infections in humans and animals, limit 
food production, reduce the ecosystem’s functions and biodiversity, 
obstruct economic growth, and result in an environmental, social, and 
political disaster [1]. The United Nations (UN) adopted 17 Sustainable 
Development Goals (SDGs) within the so-called “2030 Agenda for Sus-
tainable Development” in 2015 [2]. The subject of the included sixth 
SDG refers to “Ensure availability and sustainable management of water 
and sanitation for all”. The SDG 6 progress summary reveals that in 2020 
two billion people (26% of the world’s population) were lacking access 
to a safe drinking water source, resulting in unnecessary suffering due to 
water-borne diseases [3]. Furthermore, the progressing climate change 
and the continuous surface water pollution from contaminants of 
emerging concern (CECs), such as pesticides, pharmaceutics, drugs, 

personal-care chemicals, and long-lasting chemicals [4], represents a 
grave and long-term threat to the whole of humanity and the ecosystem 
in which we live. 

Therefore, WW quality characterization and measurement needs to 
be drastically improved to monitor the WW treatment and to identify 
pollutants of concern, ensuring its sustainable discharge in surface ba-
sins or soils. The characterization is performed by calculating specific 
parameters, classified into physical, chemical, and biological [5]. The 
physical parameters (e.g., turbidity, color, odor, solids concentration, 
temperature, conductivity, pH), chemical properties (e.g., chemical 
oxygen demand (COD), total organic carbon (TOC), TN, TP, chlorides, 
sulfates, alkalinity), and biological characteristics (e.g., total coliforms, 
Escherichia coli (E. Coli), total nematodes) have to be measured 
throughout the wastewater treatment plant (WWTP) to control the 
variability of the load [6] and the subsequent effluent quality. Dis-
charging thresholds and sampling frequencies may vary in accordance 
with national or international regulations and guidelines [7]. 
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Nowadays, WW characterization state-of-practice relies mainly on 
standardized laboratory tests. These may require expensive instrumen-
tation, specific chemical reagents, and complex, and time-consuming 
tests in critical environments [8]. The sample collection, preservation, 
and analytical procedures (including all the required reagents) are 
typically noted in the Standard Methods for the examination of water 
and wastewater [9]. Based on the investigated pollutants, the analytical 
experiments may be performed through titrations, spectrophotometric 
measurements, sensor analyses, and many other methods. Each labo-
ratory-based analysis is unavoidably time-consuming, and results are 
delayed as the data must be processed [8]. Despite their widespread use, 
we are facing an ever-growing request for rapid procedures for the 
quality characterization of the WW flows. There exist real-time (RT) 
methods which address the time concerns, however, they are not 
considered entirely dependable and thus are not widely adopted yet 
[10]. 

Before proceeding, it is necessary to establish a nomenclature 
regarding WW monitoring. The two main monitoring methods typically 
employed in WWTPs are (a) traditional laboratory-based, and (b) real- 
time, as illustrated in Fig. 1. Within each, there are two different 
monitoring approaches that will be discussed. 

The traditional laboratory-based methods, including off-line and at- 
line analyses, require identical steps from sampling to laboratory con-
trols. However, in the off-line processes the sample is delivered to an 
external laboratory and not tested in the proximity of the sampling point 
[11]. The at-line analyses are processed near the location where the 
sample is collected [12]. However, building an additional area inside the 
WWTP may be challenging in terms of space, security (usage of chemical 
reagents, suitable temperature, and pressure may be required), and 
costs. It is possible to operate through automatic samplers, reducing the 
operator efforts. In any case, unavoidable delays between sample 
collection and data acquisition are occurring. 

Switching to a RT monitoring means to obtain a processed output 
data in a restrained timespan after the on-field acquisition. Even though 
in-line (also referred to as In situ) or on-line (typically installed on a 
bypass if in-line installation is not possible) measurements have existed 
since the 1970s for many applications, they have been expensive and 
required extensive maintenance [13]. Improvements in their operation 
have brought about great opportunities to attain high-performing RT 
WW characterization. The employment of RT approaches should effec-
tively substitute the current methods which are demanding of both time 
and reagents and enable rapid data availability for post-processing or 
remote-control uses [14]. As mentioned, the availability of reliable RT 
data has become essential for advanced process control in the WWTP 

[15]. Hence, this drives the development and optimization of sensors. 
Being the WW a complex mixture, sensors still need developments in 
order to reliably detect trace amounts of pollutants. Improved sensor 
capabilities allow for a more integrated control system, which in turn 
can lead to better management of the WW treatment plant in terms of 
energy and chemical reagent usage [16]. Digitalization of the WW 
monitoring process can be enhanced through emerging technologies, 
such as artificial intelligence (AI) and internet of things (IoT) [17]. 

A review focusing on WW online monitoring is presented by Bour-
geois et al. [11]. The authors introduce standard methods and then 
further discuss alternative techniques including biosensors, optical 
sensors, sensor arrays and briefly mention soft sensors. Korostynska 
et al. [18] review traditionally laboratory-based and modern RT ap-
proaches in a book chapter. The most commonly measured water pa-
rameters, current techniques in monitoring wastewater quality and their 
limitations are presented. Furthermore, a comprehensive description 
regarding sensors (electromagnetic, electronic, and biosensors) for RT 
monitoring is reported. A review on water quality sensors is authored by 
Kruse [19], presenting various water quality parameters and how these 
can be determined, dedicating special attention to chemical sensors, 
mechanical, optical, and electric transduction-based sensors in a view of 
a reagent-free, low-maintenance and continuous monitoring applica-
tion. Conventional methods and emerging technologies for general 
water quality monitoring were also reviewed by Ahmed et al. [20], 
including detection systems based on statistical inference, machine 
learning (ML), and IoT devices. A more recent review by Thakur and 
Devi [21] noted material advances, status, and future perspectives on 
water pollution monitoring. Further focuses on electrochemical, elec-
trical, and optical sensors are reported. Special attention is then dedi-
cated to IoT devices for water quality monitoring and emerging 
pollutants. 

While the available reviews provide broad and comprehensive 
overviews of WW monitoring, they do not provide deep enough insight 
into the main characteristics of WW and practices for traditional labo-
ratory-based methods as well as RT measurements. Moreover, they do 
not thoroughly explore the transition from laboratory-based tests to RT 
sensors in WWTP, nor do they offer an outlook of water quality char-
acterization opportunities in a European context. A more comprehensive 
study focusing on these aspects is therefore needed. The present litera-
ture review aims to address these gaps while highlighting algorithm- 
based sensors and cutting-edge monitoring technologies. 

The present review includes seven sections. The first section in-
troduces the theme of the paper with an in-depth focus on the definition 
of WW monitoring, while the second describes the method for literature 

Fig. 1. Main wastewater quality characterization approaches. (a) Traditional laboratory-based and (b) real-time methods.  
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search and analysis. The third chapter identifies the main characteristics 
of WW and typical concentrations in urban WWTPs. The fourth section is 
dedicated to traditional laboratory-based measurements offering an 
extensive summary of methods, instruments, and main principles of 
analysis. An important passage is dedicated to the time required for each 
analysis to be performed and references to the new proposal concerning 
urban wastewater treatment. The fifth unit introduces RT measure-
ments, summarizing parameters that are measured and sensors. The 
sixth section focuses on the future perspective of WW quality charac-
terization, including emerging pollutants as well as new frontiers for RT 
measurements and soft sensors. The last chapter concludes the paper. 

2. Literature analysis method 

Publications between 2010 to 2022 have been the focus of this re-
view. Several large scientific databases (Scopus, Web of Science Core 
Collection, and Dimension AI) were used to identify the topic research 
trend. The investigation examines the keywords “wastewater quality”, 
inquiring about the interest in the document’s title or abstract. To define 
the literature research trend, all types of available documents were 
included, i.e. research and review articles, book chapters, journal and 
conference papers, theses and dissertations, short reviews, encyclope-
dias, academic books, pre-prints, abstracts, short communications, 
technical reports and other scholarly literature. All the publishing access 
classes were considered. The total number of outputs was reported on a 
yearly basis and can be seen in Fig. 2. Note that the exact numbers may 
differ slightly based on the organizational login. The methodology to 
identify the research trend is comparable to several previous works 
[14,22,23]. The results show a consistent increase in the number of 
publications on the topic of WW quality. Scopus, Web of Science Core 
Collection, and Dimension AI give respectively a +190%, +198%, and 
+341% increase in publications over the period 2010-2022. Considering 
the field of science and engineering (S&E, all fields) from the 15 largest 
production countries, the mean increase in the published literature is 
around 52% above the same period [24]. Therefore, comparing the 
relative increase in the whole S&E area with the wastewater quality 
field, it is possible to identify the latter as attractive for researchers 
during recent years. 

When selecting literature to be included in the current review, the 
aforementioned scientific databases were used in combination with 
Google Scholar. Documents were identified using the keywords 
“wastewater quality” in addition to one of the several selected knowl-
edge-based appropriate terms, such as “biosensors”, “real-time”, 

“characterization”, “IoT”, and more. Relevant guidelines, handbooks, 
and regulations were also included as necessary. 

3. Main characteristics of wastewater 

The following two categories of WW are distinct from one another: 
(a) domestic wastewater (DWW), and (b) non-domestic wastewater (N- 
DWW). DWW is defined as water altered in quality after being in contact 
with anthropic activities, such as human metabolism and household 
uses. Whereas N-DWW is discharged into collecting systems from other 
processes, mainly industries, exercises of trade, and institutions. The 
mixture of these two different wastewaters and the run-off stormwater is 
called urban wastewater (UWW) [25]. 

The composition and the load of organic compounds, solids, nutri-
ents, micropollutants, and microorganisms may vary based on the 
different WW sources. Large discrepancies in properties (amount and 
kind of contaminants) of DWW, N-DWW, and UWW result in challenging 
measurements [26]. These heterogeneities may require different mea-
surement campaign designs and equipment, adding extra cost and 
complexity to the characterization process. Countries and organizations 
commonly define specific guidelines or regulations to standardize the 
number of parameters (physical, chemical, and biological) needed for 
WW characterization. Different criteria may be required depending on 
the discharge location [4]. The prevailing pollutants residing in the WW 
are summarized in Table 1. 

Commonly only a few of the parameters specified in Table 1 are 
mandatory water quality measurements in the treatment process. The 
European Council Directive 91/271/EEC defines the “Requirements for 
discharges from urban wastewater treatment plants” as a broad 
threshold or a percentage of reduction (effluent concentration compared 
to the influent characteristics) [32]. The WW quality is defined through 
an organic matter content, BOD (BOD5 without nitrification) or COD, 
total suspended solids (TSS), and nutrients, through TN and TP. The 
discharge of WW is allowed when the analysis returns a concentration 
below the given limits or a reduction percentage higher than the one 
established by the Directive. Knowledge of the parameters at the inlet 
and the outlet of the WWTP is required to monitor the WW treatment 
progress [33]. Moreover, the European Directive suggests specific 
evaluation methodologies to be followed [32]. 

For further characterizations, COD is generally divided into its Total, 
Suspended, and Soluble fractions. Solids, specifically the suspended and 
volatile parts, are important in the treatment processes. WW streams 
contain concentrations of nutrients (N-P-K are the predominant ones) 

Fig. 2. Number of publications resulting from systematic web search.  
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which vary in magnitude from 1’s to 10’s of mg L-1. These compounds 
may be traceable under several forms: nitrogen as ammonia, nitrate, and 
nitrite; phosphorus as orthophosphates and polyphosphates, having 
both organic and inorganic forms. All of them are essential for nour-
ishing numerous life forms [34]. An excessive amount of nutrients dis-
charged in static water basins may provoke the eutrophication of the 
environment [35]. 

Nevertheless, the European Council Directive 91/271/EEC does not 
consider heavy metals (HMs), pathogens, and surfactants as mandatory 
quality controls, even though WW possesses significant amounts. HMs 
and microorganisms must be considered for an ecotoxicity analysis [36]. 
However, due to demanding analysis (mainly in terms of sample prep-
aration and cost) less frequent HM tests are made. Microorganisms are 
an essential indicator due to their potential long-lasting impact on 
human health [37]. Moreover, surfactants are widely employed in 
households’ activities and discharged in the drainage systems, reaching 
a WWTP with significant concentrations [38]. 

A recent proposal for a directive of the European Parliament and of 
the Council [25] concerning urban wastewater treatment from 26/10/ 
2022, updated the 1991 Directive. The proposal substitutes the old 
thresholds and introduces relevant requirements that must be satisfied 
before WWTP effluent is discharged into receiving water bodies. On top 
of that, a quaternary treatment is requested, and “substances that can 
pollute water even at low concentrations” became mandatory to 
analyze. The latter compounds, being part of the CECs, are not given a 
concentration threshold but rather a minimum percentage of removal to 
be reached. A list of twelve compounds, divided into two groups, is re-
ported by the new proposal. Category 1 (substances that can be very 
easily treated): (i) Amisulprid, (ii) Carbamazepine, (iii) Citalopram, (iv) 
Clarithromycin, (v) Diclofenac, (vi) Hydrochlorothiazide, (vii) Meto-
prolol, (viii) Venlafaxine; Category 2 (substances that can be easily 
disposed of): (i) Benzotriazole, (ii) Candesartan, (iii) Irbesartan, (iv) 
mixture of 4-Methylbenzotriazole and 6-methyl- benzotriazole. 
Remarkably, being these compounds currently part of the proposal, 
slight changes may occur when it is implemented. 

Looking at a global perspective, regulations or guidelines adopted to 
assess the WW flows can be even stricter than EU legislation, adding a 
larger number of requirements or lower thresholds [7]. 

4. Traditional laboratory-based measurements 

Several laboratory-based methods are available and recognized by 
the international scientific community. The most common are spectro-
photometric, colorimetric, and titration measurements [39]. Sampling 
campaigns, obtaining appropriate containers for storage, and trans-
portation to the laboratory are required steps preceding analysis [40]. 
These steps represent a non-negligible time delay toward a measurement 
output. 

As expressed in Table 2, several standardized methods are available. 
By reason of well-established analytical approaches in WW laboratories, 
brief descriptions are given as in-depth details (such as preparation, 
calibration of instruments, interferences, and more) are specified in 
manuals and standards [9,41]. Parameters in Table 2 are categorized in 
alphabetical order. 

The followed procedures during laboratory-based analysis are 
mainly reported within the Standard Methods for the Examination of 
Water and Wastewater [9]. Moreover, the Water Analysis Handbook 
from Hach [41] serves as an additional reference. The handbook con-
tains approved methods by the United States Environmental Protection 
Agency (USEPA) or patented by the HACH Lange company. 

As mentioned above, the prevailing parameters that must be moni-
tored in an urban WWTP are defined by the European Council Directive 
91/271/EEC [32]. In addition, the new proposal [25] introduces the 
TOC measure as an alternative to COD and sets the parameter TSS as 
optional. BOD5, TOC, and COD measurement procedures are often time 
demanding. For instance, BOD5 or ultimate BOD20 require 5 and 20 
days, respectively, to complete the analytical process [42]. A respiro-
metric test to fractionate the COD could take more than 24 hours 
[43,45]; even if less time is required to attain the output values, a delay 
between the sampling and the availability of the result is unavoidable. 
Different interferences are observed inside WW when analyzed via light 
penetration for example TSS can inhibit adequate light transmission and 
reduce the accuracy of the measurements. Filtration is commonly 
adopted to remove settleable solids from a liquid sample. Other solid 
removal procedures are centrifugation or flocculation [46,47]. The 
standard laboratory tests for nutrient estimation, including nitrogen, 
phosphorus, and potassium, are mostly spectrophotometric- or colori-
metric-based. Careful considerations on each test range define the re-
quirements for sample dilution. 

Other parameters, such as color, DO, turbidity, temperature, pH, 
alkalinity, and conductivity, are widely monitored through optical and 
membrane probes and can also be characterized with spectrophoto-
metric or colorimetric methods [9]. Available tests for pathogens are 

Table 1 
Main parameters for wastewater characterization.  

Category Parameter Acronym Typical 
concentration in 
urban WWTPs (mg 
L-1)* 

Reference 

Physico- 
chemical 

Alkalinity - 100-200 [5,27] 
Conductivity - 600-800 mS cm-1 [5,28] 
Dissolved 
oxygen 

DO 5 [29] 

Ph - 7-8 [30] 
Total hardness - 300 [5] 
Turbidity - 50 NTU ** [31] 

Organic matter Biochemical 
oxygen 
demand 

BOD 80-300 (BOD5) [30,31] 

Chemical 
oxygen 
demand 

COD 160-500 (Total) 
200 (Soluble) 
300 (Suspended) 

[28,30] 

Total organic 
carbon 

TOC 30-200 [29] 

Solids Total dissolved TDS 600 [29] 
Total 
suspended 

TSS 200-400 [28] 

Volatile 
suspended 

VSS 320 [28] 

Nutrients Nitrogen N 60–110 (TKN) 
50-100 (NH4-N) 
0.5 (Nitrate +
Nitrite) 
25 (Organic N) 

[28,30] 

Phosphate P 15 (TP) 
10 (Ortho-P) 
5 (Organic P) 

[28] 

Potassium K 9 [31] 
Heavy metals Aluminum Al 0.6 [28] 

Cadmium Cd 0.002 [28] 
Chromium Cr 0.025 [28] 
Copper Cu 0.07 [28] 
Lead Pb 0.06 [28] 
Mercury Hg 0.002 [28] 
Nickel Ni 0.025 [28] 
Silver Ag 0.007 [28] 
Zinc Zn 0.2 [28] 

Microorganisms Coliphages - 105 CFU (100 mL)- 

1 *** 
[28] 

Escherichia 
coli 

E. Coli 107 CFU (100 mL)- 

1 *** 
[28] 

Roundworms - 10 eggs L-1 [28] 
Salmonella - 150 CFU (100 

mL)-1 *** 
[28] 

Surfactants Total - 13 [31]  

* Where not further specified, the concentration measure unit is mg L-1 

** NTU: Nephelometric Turbidity Unit 
*** CFU: Colony forming unit 
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Table 2 
Main traditional laboratory-based procedures for wastewater characterization.  

Parameter Method ID* or instrument Principles and reagents Reference 

Alkalinity 2320 B. Titration - [9] 
Biochemical oxygen demand (BOD) 5210 B. 5-Days Test - [9] 

5210 C. Ultimate Test - [9] 
5210 D. Respirometric Method - [9] 
Fluorescence - [10,42] 
UV adsorption - [10] 

Carbon – total organic (TOC) 5310 B. High-Temperature Combustion Method - [9] 
5310 C. Persulfate-Ultraviolet or Heated-Persulfate 
Oxidation Method 

- [9] 

10128. Direct HR Test ‘N Tube Vials [41]    

10129. Direct LR Test ‘N Tube Vials [41] 
10173. Direct MR Test ‘N Tube Vials [41] 
UV adsorption - [10] 

Chemical oxygen demand (COD) 5220 B. Open reflux method - [9] 
5220 C. Closed reflux, titrimetric method Oxidation, digestion, and titration [9] 
5220 D. Closed reflux, colorimetric method Oxidation, digestion, and spectra acquisition [9] 
8000. Reactor digestion - [41] 
8000. Reactor digestion TNT Plus [41] 
10067. Manganese III Reactor Digestion Method (with 
Chloride Removal) 

- [41] 

10067. Manganese III Reactor Digestion Method 
(without Chloride Removal) 

- [41] 

10211. Reactor Digestion ULR TNT - [41] 
10212. UHR Reactor Digestion - [41] 
10236. Mercury-Free Reactor Digestion, TNT plus 825 - [41] 
Respirometry - [43] 
UV adsorption - [10] 

Coliforms (total, fecal, E. Coli) 8001-8001A. Most probable number (MPN) USEPA Lauryl Tryptose Broth presumptive test with BGB, EC 
medium, and EC/MUG confirmation 

[41] 

8091. Most probable number (MPN) Lauryl Tryptose with MUG Broth [41] 
8368. Most Probable Number (MPN) Method USEPA A-1 Medium [41] 
9221. Multiple-Tube Fermentation Technique (Total, 
Fecal and E. Coli) 

- [9] 

9222. Membrane Filter Technique (Total, Fecal and E. 
Coli) 

- [9] 

9223. Enzyme Substrate Coliform Test - [9] 
10018 Using LT/BCP Broth Ampules - [41] 

Color 2120 B. Visual Comparison Method - [9] 
2120 C. Spectrophotometric Single-Wavelength Method - [9] 
2120 D. Spectrophotometric Multi-Wavelength Method - [9] 
2120 E. Tristimulus Spectrophotometric Method - [9] 
2120 F. ADMI Weighted-Ordinate Spectrophotometric 
Method 

- [9] 

8025. Platinum-Cobalt Standard (true and apparent) - [41] 
Conductivity 2510 B. Laboratory Method Conductivity cell [9,10] 

8160. USEPA Direct measurement Conductivity probe [41] 
Annular ring electrode; nickel electrode; titanium or 
noble metal electrode 

- [10] 

Dissolved oxygen (DO) 4500-O B. Iodometric Method - [9] 
4500-O C. Azide Modification - [9] 
4500-O D. Permanganate Modification - [9] 
4500-O E. Alum Flocculation Modification - [9] 
4500-O F. Copper Sulfate-Sulfamic Acid Flocculation 
Modification 

- [9] 

4500-O G. Membrane-Electrode Method - [9,10] 
4500-O H. Optical-Probe Method - [9] 
8157. Direct measurement Clark-type Amperometric Sensor [41] 
8166. HRDO AccuVac Ampuls [41] 
8316 Indigo Carmine AccuVac Ampuls [41] 
8333. Ultra High Range AccuVac Ampuls [41] 
10360. Direct Measurement Luminescent dissolved oxygen (LDO) probe [41] 
Colorimetric Manganese sulfate and alkaline [44] 

Hardness 2340 B. By Calculation - [9] 
2340 C. EDTA Titrimetric Method - [9] 
8030. Calmagite Colorimetric Method - [41] 
8204. Digital Titrator EDTA (Calcium) - [41] 
8213. Titration Method with EDTA Digital Titrator [41] 
8222. Buret Method (Calcium) - [41] 
8226. Titration Method with EDTA Buret Titration [41] 
8329. Titration Method with EDTA (Sequential) Digital Titrator [41] 
8338. Titration Method with EDTA (Sequential) Buret Titration [41] 
8374. Chlorophosphonazo Rapid Liquid Pour-Thru Cell [41] 
Colorimetric Calmagite [44] 

(continued on next page) 
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Table 2 (continued ) 

Parameter Method ID* or instrument Principles and reagents Reference 

Heavy metals 
(HMs) 

Ag 8120. Colorimetric Powder Pillows [41] 
Al 3500-Al B. Eriochrome Cyanine R - [9] 

8012. Aluminon Powder Pillows [41] 
10215. Chromazurol S TNTplus 848 [41] 
Colorimetric - [10] 
Atomic absorption spectrometry - [10] 

As 3500-As B. Silver Diethyldithiocarbamate - [9] 
Cd 8017. Dithizone Powder Pillows [41] 

10217. Cadion TNTplus 852 [41] 
Cr 3500-Cr B. Colorimetric - [9] 

3500-Cr C. Ion Chromatographic Method - [9] 
8023. USEPA 1,5-Diphenylcarbohydrazide (Hexavalent) Powder Pillows [41] 
8024. Alkaline Hypobromite Oxidation (Total) Powder Pillows [41] 
10218. 1,5-Diphenylcarbohydrazide (Hexavalent) TNTplus 854 [41] 
10219. 1,5-Diphenylcarbohydrazide (Total) TNTplus 854 [41] 

Cu 3500-Cu B. Neocuproine Method - [9] 
3500-Cu B. Bathocuproine Method - [9] 
8026. USEPA Bicinchoninate (CuVer 2) Powder Pillows or AccuVac Ampuls [41] 
8143. Porphyrin Powder Pillows [41] 
8506. USEPA Bicinchoninate (CuVer 1) Powder Pillows or AccuVac Ampuls [41] 
10238. Bathocuproine TNTplus 860 [41] 

Fe 3500-Fe B. Phenanthroline Method - [9] 
8008. FerroVer Powder Pillows or Accu Vac Ampuls [41] 
8112. TPTZ Powder Pillows or Accu Vac Ampuls [41] 
8146. 1,10 Phenanthroline Powder Pillows or Accu Vac Ampuls [41] 

Hg 10065. Cold Vapor Mercury Concentration - [41] 
10066. AnaLig/HgEx Mercury extraction Method - [41] 
Stripping - [44] 

Ni 8037. USEPA Heptoxime Powder Pillows [41] 
8150. 1-(2 Pyridylazo)-2-Napthol (PAN) Powder Pillows [41] 
10220. Dimethylglyoxime TNTplus 856 [41] 

Pb 3500-Pb B. Dithizone Method - [9] 
8317. LeadTrak Fast Column Extraction - [41] 
10216. PAR TNTplus 850 [41] 

Zi 3500-Zn B. Zincon - [9] 
Nitrate 4500-NO3

- B. Ultraviolet Spectrophotometric Screening 
Method 

- [9] 

4500-NO3
- C. Second-Derivative Ultraviolet 

Spectrophotometric Method 
- [9] 

4500-NO3
- D. Nitrate Electrode Method - [9] 

4500-NO3
- E. Cadmium Reduction Method - [9] 

4500-NO3
- F. Automated Hydrazine Reduction Method - [9] 

4500-NO3
- H. Automated Cadmium Reduction Method - [9] 

4500-NO3
- I. Cadmium Reduction Flow Injection Method - [9] 

8358. Direct ISE Nitrate ISE [41] 
10020. Chromotropic Acid HR Test ‘N Tube Vials [41] 
10206. Dimethylphenol TNTplus 835 and TNTplus 836 [41] 
Colorimetric Chromotropic acid [44] 

Nitrite 4500-NO2
- Colorimetric Method Diazotization or Ferrous Sulfate [9,44] 

8351. Ceric Acid Titration Digital Titrator [41] 
8507. Diazotization Chromotropic Acid Test ‘N Tube Vials [41] 
10019. Diazotization Test ‘N Tube Vials [41] 
10207. USEPA Diazotization TNTplus 839 [41] 
10237. USEPA Diazotization TNTplus 840 [41] 

Nitrogen Ammonia 4500-NH3 C. Titrimetric Method - [9] 
4500-NH3 D. Ammonia-Selective Electrode Method - [9] 
4500-NH3 E. Ammonia-Selective Electrode Method 
Using Known Addition 

- [9] 

4500-NH3 F. Phenate Method - [9] 
4500-NH3 G. Automated Phenate Method - [9] 
4500-NH3 H. Flow Injection Analysis - [9] 
8038. USEPA Nessler Reagent Solution [41] 
8155. Salicylate Powder Pillows [41] 
10023. Salicylate Test ‘N Tube Vials [41] 
10031. Salicylate Test ‘N Tube Vials [41] 
10201. Indophenol Powder Pillows [41] 
10205. Salicylate TNTplus 830 (ULR) – 831 (LR) – 832 (HR) [41] 
Colorimetric Indophenol [10]  

Berthelot reaction [10] 
Ion chromatography - [10] 

Total (TN) 4500-Norg B. Macro-Kjeldahl Method - [9] 
4500-Norg C. Semi-Micro-Kjeldahl Method - [9] 
4500-N B. Uv/Persulfate Digestion and Oxidation - [9] 
4500-N C. Persulfate Method - [9] 
4500-N D. Conductimetric Determination (Inorganic N) - [9] 
8075. Nessler with digestion (Kjeldahl) Nessler reagent [41] 

(continued on next page) 
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mostly related to the most probable number (MPN) and membrane 
filtration. These processes are characterized by a long preparation and 
incubation of the cultures [48]. The Table 2 parameters not covered by 
the directive, such as surfactants and HMs, can be assessed with a vast 
range of laboratory instruments. Almost all laboratory-based analyses 
are time intensive, from the sample preparation (i.e. filtration, dilution) 
to the duration of the laboratory analysis (i.e. digestion, reaction time, 
mixing) [41]. Table 3 reports the mean duration of the overall labora-
tory test, maintaining the parameters defined in Table 2. 

It is important to clarify that these durations must be considered as 
the time needed to perform the test and read the result on the device, 
starting with a sample fully prepared. The sample collection (normally 
24 hours), transport to the laboratory location (variable from minutes to 
hours), and preparation (variable from minutes to hours) are not 
included. Moreover, the reagents preparation and the test management 
may augment the required time. 

In addition to the aforementioned methods, high-precision in-
struments (tracing parts per billion (ppb) concentrations) may be 
employed to characterize the liquid matrix [50]. However, longer 
sample preparations, expensive reagents, and higher process complexity 

are possible drawbacks. Instruments, such as Inductively coupled 
plasma-optical emission spectrometry/mass spectrometry (ICP-OES/ 
MS), nuclear magnetic resonance (NMR), and high-performance liquid 
chromatography (HPLC), are typically used for qualitative assessments 
[51–53]. However, the requirements and costs for installation, standard 
references, and maintenance requirements are onerous. The ICP-OES/ 
MS principle is based on a coupled effect between inductively coupled 
plasma (ICP), optical emission spectrometry (OES), (sometimes also 
referred to as atomic emission spectrometry (AES)) and mass spectros-
copy (MS). This instrument can determine the concentration of metallic 
and non-metallic inorganic substances at ppb [54]. Gas chromatography 
(GC) is used for the characterization of several WW micropollutants 
[55]. Moreover, fluorescence techniques are employed for WWTP pro-
cess control [42,56]. Laboratory analyses along with nuclear magnetic 
resonance (NMR) are useful to detect liquid organic contents. A wide 
variety of compounds may successfully be quantified through the 1H 
NMR [57]. Furthermore, solid-state 13C NMR revealed promising fea-
tures for its application as a qualitative detection of organic matter [58]. 
Evaluations of several HMs have been performed through flame atomic 
absorption spectrophotometry (FAAS) on water samples [20,59,60]. 

Table 2 (continued ) 

Parameter Method ID* or instrument Principles and reagents Reference 

10021. Titanium Trichloride Reduction Test ‘N Tube Vials [41] 
Colorimetric Chromotropic acid [44] 

pH 4500-H+ B. Electrometric Method - [9] 
Colorimetric Litmus (pH 5–8) methyl orange 2–7.0 mmol L-1 H+ (pH 

3.1–4.4) 
[44] 

Ion-sensitive field effect transistor (ISFET) - [10] 
Titration Sodium hydroxide [10] 

Phosphates Ortho 4500-P G. Flow Injection Analysis - [9] 
8048. USEPA PhosVer 3 Test ‘N Tube Vials [41] 
8048. USEPA PhosVer 3 (Ascorbic Acid) Powder Pillows or AccuVac Ampuls [41] 
8114. Molybdovanadate Test ‘N Tube Vials or Reagent Solution [41] 
8178. Amino Acid Reagent Solution [41] 
10055. Ascorbic Acid Rapid Liquid Method - [41] 
10209. Ascorbic Acid TNTplus 843 (LR) – 844(HR) – 845 (UHR) [41] 
10214. Molybdovanadate TNTplus 846 [41] 

Total (TP) 4500-P C. Vanadomolybdophosphoric Acid Colorimetric 
Method 

- [9] 

4500-P D. Stannous Chloride Method - [9] 
4500-P E. Ascorbic Acid Method - [9] 
4500-P F. Automated Ascorbic Acid Reduction Method - [9] 
4500-P H. Manual Digestion and Flow Injection Analysis - [9] 
4500-P I. UV/Persulfate Digestion and Flow Injection 
Analysis 

- [9] 

4500-P J. Persulfate Method - [9] 
Potassium (K) 3500-K B. Flame Photometric Method - [9] 

3500-K C. Potassium-Selective Electrode Method - [9] 
8049. Tetraphenylborate Powder Pillows [41] 

Salinity 2520 B. Electrical Conductivity Method - [9] 
2520 C. Density Method - [9] 
2520 D. Algorithm of Practical Salinity - [9] 
10073. Titration Mercuric Nitrite [41] 

Solids Total (TS) 2540 B. Dried at 103-105◦C - [9] 
8271. USEPA Gravimetric - [41] 

Total dissolved 
(TDS) 

2540 C. Dried at 180◦C - [9] 
8163. USEPA Gravimetric - [41] 

Total suspended 
(TSS) 

2540 D. Dried at 103-105◦C - [9] 
Centrifuging and drying - [32] 
8006. Photometric - [41] 

Volatile suspended 
(VSS) 

2540 E. Ignited at 550◦C - [9] 
2540 G. - [9] 
8164. USEPA Gravimetric - [41] 

Surfactants 5540 B. Separation by Sublation - [9] 
5540 C. Anionic Surfactants as MBAS Colorimetric equipment [9] 
5540 D. Nonionic Surfactants as CTAS Ion-exchange column [9] 
8028. Cristal violet (anionic) - [41] 

Temperature 2550 B. Laboratory and Field Methods - [9] 
Thermistor - [10] 

Turbidity 2130 B. Nephelometric Method - [9,10]  

* Methods reported with the number of references and name 
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Towards the assessment of the twelve emerging compounds from the 
2022 proposal [25], a brief investigation is reported. The following 
references are obtained by searching in the above-mentioned databases 
for the name of the substance and “wastewater”. The most relevant re-
sults were examined and reported in Table 4. It is common that no 

standard laboratory tests (i.e. titration, colorimetric evaluations) are 
available for their measurement except advanced and demanding in-
struments, such as liquid chromatography (LC), HPLC, ultra HPLC 
(UHPLC), reversed-phase LC (RPLC), diode-array detection (DAD), and 
GC, regularly coupled with MS. 

The identification of a single compound inside WW can be chal-
lenging due to the large number and variety of compounds present and 
potential interferences. The availability of a reference standard for the 
compound of interest can impact the applicability of the analytical 
methodologies, such as LC which is not suitable to identify a single 
target without a reference [86]. However, analytical procedures that do 
not require standard references for target identification are potential 
solutions (non-target screening) [87]. The concentrations of micrograms 
per liter or lower are currently challenging to be measured. Regardless 
of the difficulties, the monitoring of WWTP discharges into water bodies 
must consider these CECs. Removal through tertiary [88] or quaternary 
[25] treatments is required to meet new regulatory requirements. 

5. Overview of real-time measurements 

RT techniques may provide a solution to overcome struggles 
regarding the preparation, collection, and storage of WW samples, 
resulting in faster data acquisition from WWTP flows [89]. The RT 
measurements, as previously mentioned, are carried out with sensor- 
based in-line or on-line monitoring. Precise, accurate, cost-effective, 
operator-friendly, and fast-response procedures must be introduced to 
optimize the WWTP and improve control and the detection of abnor-
malities throughout the processes [15]. Among all the above-mentioned 
parameters, WW inflow concentrations of BOD, COD, TN, and TP and 
DO values throughout the treatment are most influential to the perfor-
mance of WWTPs [90]. By characterizing the inflow, aeration processes 
and chemical addition can be optimized in RT [91,92]. Focusing on the 
energy and the operational costs, several literature studies reported 
monitoring strategies for process control. Continuous influent RT char-
acterization of pilot- and full-scale plants are shown to be capable of 
reducing the annual energy consumption from 13 to 30%, through 
improving the accuracy of process control [15]. So, developed sensors 
may improve WWTP supervision, leading to an optimal management 
and overview of the WWTP’s energy consumption [93]. Overall, it ap-
pears that implementing RT measurements of relevant parameters can 
improve the operation of the WWTP [94]. However, as with most 
technologies, improper use can cause malfunctions which represents a 
grave drawback [93]. The sensor installation and maintenance need to 
be considered; periodic calibration and repairs could be an inconve-
nience for the WWTP administration [95,96]. Furthermore, a robust 
elaboration/processing model is needed to set the variables and manage 

Table 3 
Relation between the compound measured in the laboratory and the duration of 
the analysis.  

Parameter Duration Reference 

Alkalinity < 1 min * [9] 
Biochemical oxygen demand (BOD) 5-20 d ** [10,41,42] 
Carbon – total organic (TOC) 2 h [9,10,41,49] 
Chemical oxygen demand (COD) > 2 h [9,10,41,43] 
Coliforms (total, fecal, E. Coli) > 24 h [9,41] 
Color < 1 min * [9,41] 
Conductivity < 1 min * [9,10,41] 
Dissolved oxygen (DO) < 1 min * [9,10,41,44] 
Hardness < 1 min * [9,41,44] 
Heavy metals (HMs) Ag > 2 min [41] 

Al > 5-15 min ** [9,10,41] 
As > 45 min [9] 
Cd > 2 min [41] 
Cr > 10 min [9,41] 
Cu > 2 min [9,41] 
Fe > 3 min [9,41] 
Hg > 2 h [41,44] 
Ni > 15 min [41] 
Pb > 1 min [9,41] 
Zi > 3 min [9] 

Nitrate > 5 min [9,41,44] 
Nitrite > 20 min [9,41,44] 
Nitrogen Ammonia > 1-20 min ** [9,10,41] 

Total (TN) > 2-40 min ** [9,41,44] 
pH < 1 min * [10,41,44] 
Phosphates Ortho > 2 min [9,41] 

Total (TP) > 2 min [9] 
Potassium (K) > 3 min [9,41] 
Salinity < 1 min * [9,41] 
Solids Total (TS) > 6 h [9,41] 

Total dissolved (TDS) > 2 h [9,41] 
Total suspended (TSS) > 2 h [9,41] 
Volatile suspended 
(VSS) 

> 2-7 h ** [9,41] 

Surfactants > 30 min [9,41] 
Temperature < 1 min * [9,10] 
Turbidity < 1 min * [9,10]  

* Measured with digital instruments, outdated laboratory tests for that 
parameter. 

** Depending on the adopted method. 

Table 4 
Substances that can pollute water at low concentrations.  

Substance CAS number Analytical method Usage Mean UWW concentration 
(mg L-1) 

Reference 

Amisulprid 71675-85-9 UHPLC-MS, LC-HRMS Atypical antipsychotics 10-6-10-7 [61] 
Carbamazepine 298-46-4 LC-MS/MS, GC-MS/MS, 

HPLC-MS 
Analgesic, antiepileptic 10-6-10-8 [62–65] 

Citalopram 59729-33-8 LC-MS/MS, HPLC-DAD Antidepressant 10-7 [66,67] 
Clarithromycin 81103-11-9 LC-MS/MS; HPLC-MS/MS Antibiotic 10-6 [68,69] 
Diclofenac 15307-86-5 LC-MS/MS, GC-MS Analgesic, anti- 

inflammatory 
10-6-10-8 [65,70,71] 

Hydrochlorothiazide 58-93-5 LC-MS/MS Antihypertensive 10-6 [72] 
Metoprolol 37350-58-6 LC-MS/MS Antihypertensive 10-7 -10-8 [73] 
Venlafaxine 93413-69-5 HPLC-MS; GC-MS Antidepressant 10-6-10-8 [74–77] 
Benzotriazole 95-14-7 LC-MS/MS; HPLC-MS Corrosion inhibitor 10-5-10-8 [78–81] 
Candesartan 139481-59-7 RPLC-MS; LC-MS Antihypertensive 10-6-10-7 [82,83] 
Irbesartan 138402-11-6 RPLC-MS; HPLC-MS; LC- 

MS 
Antihypertensive 10-6-10-7 [82–84] 

Mixture of 4-Methylbenzotriazole and 6-methyl- 
benzotriazole 

29878-31-7 and 
136-85-6 

LC–MS/MS; 
HPLC-MS/MS 

Corrosion inhibitors 10-6 [79,85]  
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the extensive datasets acquired during the continuous measurement 
[89]. The main RT available technologies are reported in Table. Pa-
rameters are listed in alphabetical order. 

Available sensors allow the measurements of a wide range of pa-
rameters, useful for characterizing WW. Each parameter reported in 
Table 5 is related to an appropriate sensor for its evaluation. Principles 
of measurement are also reported. Innovative applications consist of 
fiber optics, potentiometric, and electrochemical biosensors, adopted in 
the In situ WW quality assessment [103,108]. 

In general, a sensor is responsive to changes of certain liquid prop-
erties. The acquired signal is transduced into a readable value 
[109,110]. Input sources may vary from sensor to sensor: voltage, cur-
rent, conductivity, and dielectric constant are monitorable. 

5.1. Optical sensors 

Optical sensors are referred to when a direct optical property of WW 
can be measured [111] differencing from chemical-optical sensors 
where an analyte-sensitive receptor is required [112,113]. Optical ul-
traviolet-visible (UV-Vis) sensors are widely employed; however, issues 
during In situ analysis such as sensor fouling (i.e. various deposit accu-
mulation on the optical surfaces) often occur [98]. Among all the 
traceable WW compounds, only a fraction of them absorb light in the 
UV-Vis range (wavelength from 190 to 850 nm) [114]. This results in a 
need to combine UV-Vis sensors with other optical analytical methods in 
order to cover a wider wavelength spectrum. Infrared (IR), fluorescence, 
and Raman spectrophotometric investigations are nowadays applied in 
WWTP RT monitoring [10]. Despite technological developments with 
the achievement of higher precisions, optical methods still in many cases 
remain bound to laboratory validation and the reusability of these 
sensors has still to be assessed [107]. Promising In situ analysis can be 
achieved by optical fiber sensors that are easy to place in hard-to-reach 
areas due to small probe size and are resilient in tough conditions (i.e. 
noise, vibrations, and heat) [115]. The composition of optical fiber 
sensors differs from the electrical due to the introduction of glass fibers 
instead of copper cables, capturing light as an indicator. The fiber’s 
protective coating plays a significant role in avoiding external in-
terferences [116]. In addition, transducers and detectors are required 
[98]. Polymeric fibers are also used in these sensors. Nowadays, 
commercially available fiber optic sensors may cover the whole UV-Vis- 
IR spectrum. Detection limit improvements are under development, 
with novel materials implementation [108]. 

5.2. Chemical sensors 

Chemical sensors are able to detect particular chemical properties 
from an analyte. The detected input has to be further transduced into a 
readable physical signal. Three main mechanisms of transduction are 
available: (a) mechanical, (b) optical, and (c) electrical [19]. To elabo-
rate on these: (a) An atom, composing a molecule, fills a precise amount 
of physical space (i.e. steric effect concept). Mechanical transduction 
works through the understanding of this physical space taken by an 
analyte species. Therefore, the signal, converted before the final 
recognition, is uniquely defined. Previous studies employed mechanical 
sensors for the evaluation of ammonium ions [117] and total hardness 
[118]. Continuing to (b), optical transduction identifies changes in the 
electronic structure of the receptor molecule. An analyte detector is 
required to provide acquirable optical signals [113,119]. Absorbance, 
chemiluminescence, fluorescence, and phosphorescence are evaluated 
as optical properties [15]. Optical fibers are adopted as transductor as 
well [120]. As reported in Table, chemical sensors with optical trans-
ductor may identify several parameters, such as pH, total hardness, ni-
trates, phosphates, different metal cations, DO, and surfactants [19]. 
Finally, (c), the electrical transductor requires direct contact with the 
liquid sample. The presence of high solid concentrations or aggressive 
compounds may lead to malfunctions in sensors of this type. The 

Table 5 
Available real-time measurement processes for wastewater characterization.  

Parameter Instrument Principle Reference 

Alkalinity Chemical sensor Optical, electrical [19] 
Biochemical oxygen 

demand (BOD) 
Microbial fuel cell  [97] 
Fiber optic sensor  [98] 

Carbon – total organic 
(TOC) 

Optical chemical 
sensor 

Infrared absorption [19] 

Chemical oxygen 
demand (COD) 

Microbial fuel cell  [97] 
Fiber optic sensor  [98] 
Electromagnetic 
wave sensor  

[99] 

Color Fiber optic sensor  [98] 
Conductivity Conductometric 

sensor  
[100] 

Dissolved oxygen (DO) Electrochemical 
sensor 

Amperometric, [19,101] 
Potentiometric 

Optical chemical 
sensor 

Luminescence, 
fluorescence 

[19] 

Microbial fuel cell  [97] 
Escherichia coli (E. 

Coli) 
Biosensors Optical [23,102] 

Amperometric 
Electromagnetic 
wave sensor  

[99] 

Hardness Chemical sensor Mechanical [19] 
Electrochemical 
sensor 

Potentiometric [19] 

Optical chemical 
sensor 

Colorimetric, 
fluorescence 

[19] 

Heavy 
metals 
(HMs) 

Ag Biosensor Colorimetric [103] 
Al Optical chemical 

sensor 
Fluorescence [19] 

Cd Optical chemical 
sensor 

Colorimetric, 
fluorescence 

[19] 

Electrochemical 
sensor 

Anodic stripping 
voltammetry 

[19] 

Biosensor  [103] 
Cr Optical chemical 

sensor 
Fluorescence [19] 

Biosensor Electrobiochemical [103] 
Cu Optical chemical 

sensor 
Colorimetric, 
fluorescence 

[19] 

Biosensor Fluorescence [103] 
Hg Optical chemical 

sensor 
Absorption, 
fluorescence, 
colorimetric 

[19] 

Electrochemical 
sensor 

Chemiresistive [19] 

Biosensor Bioluminescence, [103]  
Optical, 
Piezoelectric 

Ni Optical chemical 
sensor 

Colorimetric [19,104] 

Pb Electrochemical 
sensor  

[19] 

Optical chemical 
sensor 

Colorimetric [19] 

Biosensor Electrochemical [103] 
Zn Electrochemical 

sensor 
Anodic stripping 
voltammetry 

[19] 

Nitrate Electrochemical 
sensor 

Potentiometric, 
amperometric, 
voltametric 

[19] 

Optical chemical 
sensor 

Colorimetric, 
fluorescence 

[19] 

Nitrite Optical chemical 
sensor 

Absorbance, 
fluorescence 

[19] 

Electrochemical 
sensor 

Potentiometric [19] 

Electromagnetic 
wave sensor  

[99] 

Nitrogen Ammonia Chemical sensor Mechanical [19] 
Total 
(TN) 

Ion-selective 
membranes 
sensor  

[105] 

pH Optical chemical 
sensor 

Raman, fluorescence [19] 

(continued on next page) 
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principle of detection is based mainly on potentiometric, amperometric, 
voltametric, and electrochemical impedance measurements [19]. 

Recent studies have revealed that the chemical sensors may be 
applied successfully for RT In situ analyses [14,100]. Further studies are 
needed to evaluate their long-term applicability, overtaking additional 
WW pre-treatments to enhance the signal’s acquisition [121]. 

5.3. Biosensors 

Biosensors are currently employed for the evaluation of organic 
compounds, microorganisms, and heavy metals [103]. Biosensors are 
made up of two main components: a bioreceptor and a transducer [122]. 
Amperometric biosensors are used for BOD and COD assessments [123]. 
Heat variations are also considered in COD measurements [124]. 
Persistent organic compounds are traceable in WWTP connected to in-
dustrial discharges [125]. Microbial fuel cell (MFC)-based biosensors 
have been introduced in the detection of organic compounds [97,126]. 
The application of biosensing techniques may also provide RT controls 
for microorganisms [127]. European guidelines and regulations for the 
assessment of Total Coliforms, E. Coli, Enterococcus, and Intestinal 
Nematodes as microorganism indicators [7] have conferred even more 
importance to their RT surveillance [102]. Recent studies focused on the 
detection of microorganisms in WW through optical and electrochemical 
biosensors. Surface plasmon resonance (SPR) [128,129], resonant 
mirror (RM) [106], sensitive chemiluminescence immunosensors [130], 
and amperometric biosensors [131,132] were reviewed, resulting in 
precisions closer to μg L-1. Increasing attention is also given to the 
assessment of HMs in waste liquids [133]. Biosensors and nano-bio-
sensors have been introduced in WW analysis as a substitute for 
analytical methods. Even though laboratory analysis possesses sufficient 
precision and reliability, the establishment of sensor-based In situ mea-
surements is preferred due to the faster response time, as previously 
mentioned. Taking advantage of bacteria as a bioluminescence source, 
microbial biosensors are able to detect the presence of low-concentrated 
HMs [104,134]. Nano-biosensors, based on the fluorescence resonance 
energy transfer (FRET) principle, can measure trace concentrations of 
metals. A broad range of enzymes have been applied in these RT 
monitoring techniques through enzyme-based electrochemical bio-
sensors and aptasensors [135,136], with the potential addition of 
nanomaterials to enhance their detectable capabilities [137]. Moreover, 
ion-selective polymer membranes [138,139] and fluorescent-based 
microfluidic devices [140–142] have shown potential in pollution con-
trol of aqueous solutions. A combination of two or more methods [143] 
or materials [144] may be convenient. Recent studies have reported that 
MFC-based biosensors have the potential to be a cost-effective device for 
WW RT monitoring [23,97]. Small-scale devices were developed even 
though their stability, sensitivity, repeatability, and selectivity have still 
to be validated. MFCs have been additionally tested for the investigation 

of BOD, COD, and DO [145–147]. 

5.4. Ion-selective membrane sensors 

Ion-selective membrane (ISM) sensors are established detectors for 
measuring the ammonium concentration in water [148]. A new gener-
ation of solid-state ion-selective membranes (S-ISMs) is studied to 
overtake the high costs and fragility of the available ISMs [149]. S-ISM 
performances have shown to be more durable, accurate, have a more 
rapid response time, and be cheaper than ISM sensors [105]. Moreover, 
electrospray printing technology was successfully employed in the 
preparation of an ultrathin S-ISM. Results showed an increase in the 
sensor response, still maintaining a restrained error [149]. Metal ions 
are also monitored in RT within industrial WW flows [150,151] and 
WWTPs [152] using these technologies. 

5.5. Lab-on-chip and electrochemical sensor-based systems 

Lab-on-chip (LOC) and electrochemical sensor-based systems were 
tested for WW characterization [153]. The introduction of In situ LOC 
aimed to transform the whole analytical laboratory process (sampling, 
preparation, addition of reagents, chemical reactions, and measure-
ments) into a simplified, fast-responding, and restrained-volume 
approach. The integration of microelectrodes and micro-
electromechanical systems with potentiometric and voltametric sensors 
was assessed. Applications on real plants for nutrients evaluation are 
reported in the literature [154,155]. 

5.6. Electromagnetic wave sensors 

Recent applications of electromagnetic wave (EM-W) sensors aimed 
to control WW pollution through important parameters like COD and 
nitrates [156], HMs [157], E. coli, and Pseudomonas Aeruginosa [99] 
with frequencies in the range of 0-15 GHz. In order to evaluate Cu, Ni, 
and Zn concentrations, the EM-W reflection technique was flanked with 
an open-ended coaxial sensor. Moreover, phosphates, ammonium, and 
other HMs (Hg, Pb, Cr) were tested at 1-10 GHz [158]. The electro-
magnetic waves, interacting directly with the analyte, generate a sin-
gular response that is specifically related to the WW properties [159]. 
Microwave sensing allows the non-invasive RT characterization of WW. 
Considering variations between the output transmittance (or reflec-
tance) wave and the input signals at peculiar frequencies, the compo-
sition of the liquid can be established. The fluctuations of the 
surrounding environmental conditions (temperature, pH, turbidity, etc.) 
have to be taken into account while comparing analyses along time 
[160,161]. 

5.7. Electronic tongues 

An electronic tongue (ET) structure is based on a group of low se-
lective sensors that, through the avail of data processing analysis, 
emerged to be suitable for a quantitative WW characterization [162]. 
The voltametric ET is the most diffused detector, assessing the potential 
variations over time. These devices are composed of a set of metallic 
sensors covered with films (useful for sensitivity improvement) coupled 
with a reference electrode [163]. ETs are efficient, low-volume 
requiring, cost-effective, faster-response, and automatic detectors. 
Moreover, the In situ measurements do not require qualified operators 
[164]. Amperometric bioelectronic tongues are likewise considered in 
literature [165]. principal component analysis (PCA), partial least 
square analysis (PLS) and neural networks analysis (NNA) are diffused 
elaboration processes to handle the huge quantity of output acquisitions 
[15]. 

Table 5 (continued ) 

Parameter Instrument Principle Reference 

Electrochemical 
sensor 

Potentiometric [19,106] 

Electrical sensor Chemiresistive [19] 
Phosphates Electrochemical 

sensor 
Potentiometric, 
amperometric 

[19] 

Optical chemical 
sensor 

Fluorescence [19] 

Potassium (K) Biosensors Potentiometry [106] 
Salmonella spp. Biosensors Optical [102] 

Amperometric 
Conductometric 

Solids, total 
suspended (TSS) 

Optical chemical 
sensor  

[107] 

Surfactants Electrochemical 
sensor 

Potentiometric, 
conductometric 

[19]  
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5.8. Final remarks 

The use of hardware redundancy, multiple sensors for the same 
parameter placed at a single measurement location, is a common way to 
detect errors in the measurements provided by RT sensors. Another 
approach is the use of sensor fusion technology, which leads to an 
improved ability to detect errors through combining information from 
multiple measurement types [130]. Sensor fusion can also take the form 
of analytical redundancy, as opposed to hardware redundancy, through 
the use of different models, soft sensors, or analyses of the measurements 
[166]. Despite having a single sensor, more signals could highlight a 
malfunction, or error, in the measurements [167]. Similarly, data 
reconciliation techniques can be employed to correct, validate, and 
harmonize data from disparate sensor sources, enhancing accuracy and 
reliability in the detection of discrepancies or errors [168]. Several de-
vices are being, and have been, developed for RT measurements of WW 
quality parameters. However, a small percentage of them are suitable for 
multiple purposes. Sensors are ordinarily built for a specific purpose and 
are not reusable in other environments [21]. Several challenges are 
faced during RT analysis, exceeding precision and general applicability. 
The harsh conditions in WW flows require sensors either specifically 
designed to withstand the hostile environment or extensive maintenance 
[169]. Both cases are costly and time-consuming. Fault detection is 
likewise essential. For instance, air bubble interference may alter the 
optical sensor outputs, and clogging due to the presence of small par-
ticulates can cause permanent damage [170]. Moreover, biofouling (an 
undesired formation of bacteria colonies that alters the sensor perfor-
mance [171]) is a challenge for any sensor in direct liquid contact. 
Copper-based and plastic protections are valid anti-biofouling counter-
measures [19]. Thus, the sensors’ lifetime and performance in WW are 
strongly impacted by these malfunctions. As briefly mentioned earlier, 
the need for correct installation, maintenance, and continuous calibra-
tion of these RT sensors is therefore essential for ensuring measurements 
of a good and reliable quality. The question of when to calibrate a sensor 
is of great importance, and, when laboratory measurements are used for 
calibration of RT sensors, an awareness of the uncertainties introduced is 
essential [172]. Data validation and fault detection methods should be 
considered and prioritized when working with RT measurements. For 
example, monitoring of measurement ranges, variance analysis, and 
well-known control chart techniques are commonly used tools for vali-
dating the quality of the signal [173]. 

Notwithstanding, it is still possible to notice a dearth in RT moni-
toring towards the contaminants of emerging concerns. The 2022 pro-
posal forces the WWTP stakeholders to control the removal rate of 
twelve emerging pharmaceutical parameters. Nowadays, exclusively the 
non-targeted advanced laboratory analysis can determine their con-
centration [67]. Moreover, WW flows may contain microplastics, per-
sonal care products, pesticides, and drugs [174,175] which are not 
required to be monitored but can be harmful to the surrounding envi-
ronment. Thus, WW flows are one of the hardest liquid solutions to deal 
with, especially due to the heavy load of hazardous micropollutants. In- 
line sensor-based processes are not recognized as reliably able to 
monitor trace elements at low concentrations (below a ppm). So, WW 
outflows could not be completely characterized in RT as soon as all the 
trace contaminants are. Further studies need to be designed to give so-
lutions for their employment in real WWTPs. Furthermore, high-sensi-
tivity sensors are required to reach advanced precision, moving closer to 
the μg L-1 thresholds and beyond. 

6. Future prospectives of wastewater quality characterization 

As the requirements placed on WWTP discharges become stricter, 
evidenced by changes to the urban WW treatment directives (for 
instance, Council Directive 91/271/EEC required a 80% reduction in TP 
and minimum 70% reduction in TN [32]; these will change to 90% and 
85% reductions respectively considering the recent proposal for a 

directive of the European Parliament and of the Council concerning 
urban wastewater treatment 26/10/2022 [25]), some adjustments in 
the WWTP have to be considered. While these changes may involve 
infrastructural modifications, a more cost-effective first approach would 
develop the monitoring and control of the process. Various studies over 
the years have shown that significant improvements on nutrient removal 
and process efficiency can be made simply through the use of advanced 
process control [13,176], and as the available sensor and measurement 
technology for water quality characterization improves so do the options 
and opportunities for the implementation of control. 

Another important aspect of the tightening of regulations is the in-
crease in monitoring requirements described in the directives that has 
been discussed in previous sections. Currently, in order to show 
compliance with regulatory limits, parameters must be monitored 
through reference measurement methods which are often time- 
consuming and expensive (Section 4). A question that should be pursued 
by the research community is: How can the RT measurement become 
reliable enough to be included in directives and regulations and carry some of 
the regulatory monitoring burden? This will require extreme improve-
ments in trust of the technology, as well as methods for proving its 
trustworthiness. However, this is immensely important for the field of 
RT WW quality characterization – while not all treatment plants may be 
interested in the potential of improved monitoring capabilities with 
regards to control opportunities, all treatment plants must be concerned 
monitoring with regards to regulations. Advancing technology to 
enhance efficiency and reduce costs in this domain is of significant 
importance. 

While the focus of the discussion thus far has been on the treatment 
of WW, additional parameters must be characterized to support water 
reuse [177] due to increased water scarcity and deterioration of water 
quality caused by climate change, increasing unpredictable weather 
events and drought [178]. In line with this, the restrictions for reuse of 
water have been defined (Regulation (EU) 2020/741 [179] on minimum 
requirements for water reuse). These reuse restrictions detail quality 
parameters such as E. coli, BOD5, TSS, Turbidity and Legionella spp. 
which must be monitored with specifically defined frequencies. There 
are also requirements to perform risk assessments, possibly identifying 
additional or stricter limitations; including HMs, pesticides, disinfection 
by-products, pharmaceuticals, and micro-plastics. A special attention 
must be dedicated to antibiotic resistance genes (ARGs), antibiotic 
resistant bacteria (ARBs) and per- and polyfluoroalkyl substances 
(PFAS), which are toxic, persistent, and bio-accumulative chemicals 
[180]. This introduces yet another driving force behind the improve-
ment and development of RT water quality characterization methods, 
for possibly an even wider range of quality parameters than those 
required by urban WW treatment regulations. 

Aside from regulatory push factors, there are many technological 
factors that are currently impacting the research progress in these areas. 
Readily available computing power, the sudden improvements to AI and 
ML and their accessibility, as well as the quality of cheap and readily 
available IoT sensors, to name a few, are major contributors to the di-
rection that research in this field will likely take over the coming years. 
Many of these technologies are not new, but the prevalence of their use 
and their general acceptance is expected to improve greatly. 

6.1. Soft sensors and IoTs 

Soft sensors have emerged as one of the critical technologies for 
monitoring and controlling WW treatment processes in RT, thanks to 
advances in data analytics, digitalization, and increased availability of 
computational power. Soft sensors are developed by using data from 
multiple hardware sensors to create a mathematical model that outputs 
a target parameter estimation (Fig. 3). 

The status and advances of soft sensors are extensively discussed in 
several comprehensive studies, such as Haimi et al. [181], that focus on 
advancing biological WW treatment through data-driven soft sensors, 
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emphasizing their utility in RT monitoring and optimization. The review 
summarizes mathematical methods, processes where soft sensors are 
employed, if the soft sensors are practically implemented, and presents a 
list of estimated target parameters. Special attention is dedicated to 
process monitoring and fault detection. A more recent review by Ching 
et al. [94] extensively examines soft sensor development methods and 
their effectiveness in relation to hardware technology. The authors list 
input sensors used for soft sensor development, mathematical methods 
as well as target parameters and resulting model performances. 
Furthermore, artificial neural network (ANN) applications for soft- 
sensing and comparison of different architectures are reviewed by Wang 
et al. [182]. The study outlines challenges in soft-sensing model appli-
cations, including low data effectiveness (high complexity and external 
disturbances of WWTP) and the need for robust, efficient, and accurate 
models as well as the importance of reliability and uncertainty analyses. 

Based on current literature, the input sensors (i.e. predictors) utilized 
for development of soft sensors typically include the following param-
eters, ranging from influent to effluent: TSS [183–185], COD [185–187], 
TP [183,187], TN [183,186], ammonia [185,188], oxidation-reduction 
potential (ORP) [187,189], DO [187,190], flowrate [186,191], pH 
[184,185,192], temperature [184,185], BOD [183,184,187], nitrite and 
nitrate [185,188], filling time [193], reaction time [193], aeration rate 
[193,194], recycling rate [194], volume of WW [185], alkalinity 
[195,196], and turbidity and colour [188]. Models estimating target 
parameters (i.e. soft sensor readings) are then primarily developed for 
prediction of effluent properties as well as other parameters: BOD 
[197–199], COD [195,198,200], TSS [188,201], nitrogen [202,203] 
and phosphate [189,200,204] contents, turbidity [201,205], DO [206], 
E. Coli [188,207], as well as energy consumption [16] and a weather 
signal [208]. Among the examined soft sensors, several studies reported 
on-going developments while others are well-established full-scale in-
dustrial applications. 

Mathematical models used for soft sensor development include 
multivariate linear methods such as PCA, PLS, MLR and other ML and AI 
methods including neural networks (NN), kernel machines, decision 
tree-based methods and autoregressive and time series models. Tradi-
tional statistical and multivariate linear methods are however consid-
ered not sufficient for such applications therefore adaptive nonlinear 
models and ANN, especially feedforward NN with backpropagation, 
should be preferred in soft sensor development to achieve higher ac-
curacies [181]. Furthermore, the deep learning (DL) methods exten-
sively reviewed by Alvi et al. [209] demonstrate superior capabilities 
not only in soft sensor development but also fault detections, including 
long short-term memory (LSTM) - a type of recurrent neural network 
(RNN) [210]. Aside from NN based methods, decision tree-based and 
adjunct statistical methods have high potential to improve soft sensor 
performance [94]. Recent popularity was gained by transformer models 
that are based on multi-head attention mechanism requiring less 
training than RNN [211,212]. The increased availability of algorithms 
and computational power, combined with continuous hardware input 
sensor accuracy and durability improvements are key in expanding soft 

sensors in WW treatment sector. 
In parallel, IoT technology is driving the development towards fully 

connected WWTPs. This interconnected network of sensors and actua-
tors will enable RT data collection and analysis, resulting in more 
responsive and adaptive WW treatment processes. As extensively 
reviewed by Thakur and Devi [21], IoT sensor networks may include 
electrochemical sensors [213], electrical and optical sensors (absor-
bance, fluorescence, colorimetric, X-ray fluorescence (XRF), and chem-
iluminescence) and biosensors [214], as well as surface enhanced 
Raman spectroscopy (SERS), and SPR sensors and other devices. How-
ever, because of advancements in digitalization, traditional at-line 
methods such as titration, colorimetry, chemiluminescence, ion selec-
tive sensors (ISE), and voltammetry that are integrated into modern 
instruments also have a considerable potential for use in IoT networks. 
These methods can measure properties such as biological contamination 
(through portions of adenosine triphosphate (ATP)), toxicity, trace 
metals, as well as organics, inorganics, and nutrients [215]. 

Advanced data analytics and cloud computing will play a crucial role 
in managing big data from these sensors, facilitating RT decision-making 
and predictive analytics [216]. An important advance is the develop-
ment of automated control systems that use IoT data to dynamically 
adapt WW treatment processes. This automation aims to optimize effi-
ciency and reduce manual intervention, resulting in cost savings and 
lower error rates [217]. In addition, these technologies are expected to 
improve energy optimization and resource recovery in WWTPs and 
contribute to their transformation into water resource recovery facilities 
(WRRFs) [218]. However, these advancements also bring challenges in 
terms of data security [219], scalability and maintenance that need to be 
addressed for widespread adoption. Further integration of soft sensors 
and IoT technologies into WW management will significantly revamp 
the WWTPs RT monitoring and control [94]. In essence, the integration 
of soft sensors and IoT represents a step towards more efficient, accurate 
and sustainable WW treatment that aligns with broader urban sustain-
ability and environmental protection goals [217]. 

6.2. Smartphone-based sensors 

Smartphone sensors are emerging as cost-effective, user-friendly, 
and quick RT analyzers. Various studies showcase different sensors 
linked with smartphone apps. An integrated electrochemical device 
measured pH, free chlorine, temperature, pharmaceuticals, and HMs 
[220]. Metal ions like mercury, lead, chromium, nickel, copper, and iron 
were analyzed using a paper-based microfluidic device (μPAD), trans-
forming the smartphone into a triple-indicator sensor [221]. Another 
μPAD, utilizing a smartphone camera, monitored hardness (calcium and 
magnesium ions), total phenols, and pH [222]. Additionally, water 
quality parameters such as nitrites, phosphates, and chromium were 
tracked via smartphone camera and analyzed with a reference model 
[223]. The device also processed colorimetric data for mercury con-
centration [224,225]. Furthermore, a miniaturized smartphone fluo-
rescence microscope detected mercury, serving as both a signal collector 

Fig. 3. Soft sensor concept overview, adapted from [94].  
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and image processor [226]. Recent literature, mostly within 2-3 years, 
indicates ongoing advancements in this field. Currently, the smart-
phone-based devices are not commercially available, and measurements 
are best performed on tap water or clear samples, as high solid con-
centrations hinder sensor performance [227]. 

6.3. Aquaphotomics 

Aquaphotomics is an innovative field that utilizes mainly near- 
infrared (NIR) spectroscopy to analyze the interaction between water 
and light, revealing insights into water’s structure and function in 
various systems [228]. This discipline examines water’s absorbance 
patterns in the NIR region (traditionally in the area of first overtone of 
water i.e. 1300-1600 nm, but more recently also in other wavelength 
ranges) to study water content, hydrogen bonds, and hydration states in 
a range of applications [229], from WW treatment [230] and agriculture 
to pharmaceutical sciences [228]. Central to aquaphotomics is the 
“water mirror approach,” which detects changes in water molecular 
networks due to physical or chemical perturbations, reflected in altered 
NIR spectra. The technique introduces water absorbance spectral pat-
terns (WASPs), which capture these changes and serves as holistic 
markers in diverse applications. Key to successful aquaphotomics 
studies is the precise experimental setup, including high-quality spectral 
signals and specific instrument requirements, to accurately analyze and 
interpret the complex water species in aqueous systems [231]. While 
aquaphotomics presents a revolutionary approach, the industrial 
implementation of the technology is anticipated to be a gradual process 
due to the complexities involved in this advanced scientific field. 

7. Conclusions 

This review focuses on WW quality characterization and measure-
ment technologies while including the main characteristics of WW, 
traditional laboratory-based assessments, an overview of RT process 
monitoring, and a future perspective on water quality control with 
emerging technologies. 

The following conclusions can be drawn:  

- WW quality characterization today is proven to be still ruled mainly 
by traditional laboratory-based measurements;  

- The employment of sensors is getting more attention, and it is 
demonstrated that a vast number of parameters needed for a WW 
evaluation could be monitored through RT acquisitions; 

- Advantages in the introduction of RT sensors throughout the treat-
ment processes include faster, more frequent, and effortless ways of 
characterizing the WW, thus avoiding delays in time and sampling 
procedures; 

- Currently, non-target screening measurements are the preferred so-
lution to evaluate persistent compounds and hazardous chemicals;  

- Breakthrough developments regarding modeling and optimization 
processes could be developed exclusively with the introduction of RT 
sensors within the WW treatment plant process control; 

- Soft sensors employed to predict values of several WW target pa-
rameters as well as IoT technologies are gradually becoming estab-
lished practices, with several examples reported, emphasizing their 
usefulness for a RT monitoring;  

- Further advantages may derive from the implementation of new 
mathematical and statistical methods, such as AI and ML. Aqua-
photomics methodology reveals its potential to extract important 
characteristics from NIR wastewater spectra;  

- Future needs for WW quality characterization will be driven by the 
implementation of new legislative frameworks and new technolog-
ical developments in analytical chemistry and sensors, that are 
becoming more accessible and affordable;  

- Important roles will be also played by new scientific findings 
regarding pollutants and their potential effects on human health and 
the environment;  

- Future works should be dedicated to the development of robust, 
long-lasting, and precise RT technologies allowing the detection of 
low concentrated pollutants with minimum sample preparation re-
quirements. Economic and feasibility assessments should be 
considered before designing and implementing RT sensors In situ. 
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UN United Nations 
USEPA United States Environmental Protection Agency 
UV-Vis ultraviolet-visible 
UWW urban wastewater 
VSS volatile suspended solids 
WASP water absorbance spectral pattern 
WRRF water resource recovery facilities 
WW wastewater 
WWTP wastewater treatment plants 
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