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Abstract: Here “group” means additive abelian group. A compact group G contains δ–subgroups,
that is, compact totally disconnected subgroups ∆ such that G/∆ is a torus. The canonical subgroup
∆(G) of G that is the sum of all δ–subgroups of G turns out to have striking properties. Lewis, Loth
and Mader obtained a comprehensive description of ∆(G) when considering only finite dimensional
connected groups, but even for these, new and improved results are obtained here. For a compact
group G, we prove the following: ∆(G) contains tor(G), is a dense, zero-dimensional subgroup of G
containing every closed totally disconnected subgroup of G, and G/∆(G) is torsion-free and divisible;
∆(G) is a functorial subgroup of G, it determines G up to topological isomorphism, and it leads to a
“canonical” resolution theorem for G. The subgroup ∆(G) appeared before in the literature as td(G)

motivated by completely different considerations. We survey and extend earlier results. It is shown
that td, as a functor, preserves proper exactness of short sequences of compact groups.

Keywords: full free subgroup; (locally) compact abelian group; Pontryagin Duality; totally discon-
nected; 0-dimensional; precompact; functorial subgroup; quasi-torsion element; minimal group;
totally minimal group; exotic torus

MSC: 20K15; 22K45; 22C05

1. Introduction

The topological groups studied in this paper are mainly the Pontryagin duals of
discrete abelian groups with some emphasis on the duals of torsion-free groups. The lat-
ter are exactly the compact connected abelian groups. Non-compact topological groups
prominently appear in Section 7.

The result ([1], Proposition 8.15, p. 416) deals with the existence of compact totally
disconnected subgroups ∆ of a compact group G such that G/∆ is a torus. These δ–
subgroups enter into the Resolution Theorem for compact abelian groups ([1], Theorem 8.20,
p. 420, see also Section 6). The duals of the short exact sequences ∆ � G � T where G
is a compact group, ∆ is a δ–subgroup of G and thus T is a torus, are precisely the exact
sequences F � A � D where A is a discrete group, F is a free subgroup of A and D
is a torsion group. This suggests the study of the full free subgroups F of A, i.e., the
free subgroups of A with torsion quotient. Let F (A) denote the family of all full free
subgroups of A and let D(G) denote the family of all δ–subgroups of the compact group
G. In Theorem 1, a comprehensive description of F (A) is established, and by duality a
similarly comprehensive description of D(G) is obtained (Theorem 6). In fact, there is an
anti-isomorphism of semi-lattices δ : F (A)→ D(G) where G = A∧ (Theorem 5).

The canonical subgroup ∆(G) := ∑D(G) of G, referred to as “Fat Delta”, has interest-
ing properties:
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(FD1) It contains tor(G), is dense in G, and G/∆(G) is torsion-free and divisible (Theo-
rem 6(2),(4),(6) and Theorem 10(2)).

(FD2) If G is not totally disconnected, then ∆(G) is a proper subgroup of G, and hence is
not locally compact (Proposition 6(1)).

(FD3) ∆(G) is zero-dimensional (Theorem 19), and contains every closed totally discon-
nected subgroup of G (Proposition 5).

(FD4) Fat Delta is a functorial subgroup in the sense that for any morphism f : G → H we
have f [∆(G)] ⊆ ∆(H) (Corollary 3, Proposition 10(1)), moreover f [∆(G)] = ∆(H) if
f is surjective (Proposition 10(2)).

(FD5) The Fat Delta of a product is the product of the Fat Deltas of the factors (Theo-
rem 10(4), Proposition 10(4)).

(FD6) If G = A∧ is a compact group, then ∆(G) = Hom(A,Q/Z) (see Theorem 10(1) for a
more rigorous formulation).

(FD7) ∆(G) determines G up to topological isomorphism (Theorem 12).

The group ∆(G) coincides with tor(G) if and only if G = T × E with T a finite
dimensional torus and E a bounded group (Theorem 9). We obtain a “canonical” resolution
theorem (Theorem 15) for a compact abelian group G where the canonical ∆(G) replaces a
random δ–subgroup.

In [2], the case of connected compact groups of finite dimension was studied; here we
generalize to arbitrary compact abelian groups of any dimension, but even in the case of
finite dimension, our results on Fat Delta surpass by far those in [2].

Furthermore, Fat Delta, defined differently, in greater generality, and called td(G),
previously appeared in the literature ([3], pp. 127–128, [4]). We quote, elaborate, and extend
results from earlier works as follows.

In Section 7, we provide a different ‘projective’ characterization of td(G) (see Propo-
sition 9(1)) and various applications of ∆(G) = td(G). It is proved that td, as a functor,
preserves proper exactness of short sequences of compact groups (Corollary 4). The interest
in the subgroup td(G) of compact groups (see Definition 4) was triggered by the intensive
research on the Open Mapping Theorem since the early seventies of the last century [3–15]
(see Definition 5 for the relevant properties and Theorem 17 for criteria for the inheritance of
these properties from dense subgroups). Section 7.3 is focused on the topological p-Sylow
subgroups tdp(G) of td(G).

The characterization (FD6) of Fat Delta for compact groups first appeared in ([6], (2),
p. 217) and ([3], Proposition 4.1.4).

In Section 8, we discuss some open problems.
In a forthcoming paper [16], we extend the characterization (FD6) to larger classes of

topological abelian groups (e.g., subgroups of LCA groups). To this end, we introduce there
a new series of functorial subgroups in TAG, related to td(G) and tdp(G), and consider
alternative definitions of Fat Delta for non compact groups.

2. Notation and Background

Our reference on abelian groups is [17]. As a rule A, B, C, D, E, . . . denote discrete
groups and G, H, K, L, . . . are used to denote topological groups. Unless otherwise stated,
p is an arbitrary prime number. If C is a category of groups, then “A is a C–group” and
“A ∈ C” means that A is an object of C. By A ≤ B we mean that A is a sub-object of B when
A, B ∈ C. We will deal with the following categories:

• The category AG of discrete abelian groups with morphisms algebraic homomor-
phisms, ∼= denoting isomorphism in this category, also called algebraic isomorphism;

• TAG is the category of topological abelian groups with morphisms continuous alge-
braic homomorphisms, ∼=t denoting isomorphism in this category;

• LCA is as usual the full subcategory of TAG consisting of locally compact Hausdorff
groups.

We will use N := {1, 2, . . .} and N0 := N ∪ {0} while P denotes the set of all prime
numbers. Furthermore, R denotes the additive group of real numbers, Z the integers and
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T the additively written circle group R/Z equipped with the compact quotient topology.
A torus is a topological group isomorphic with a power Tm where m is any cardinal.

The torsion subgroup (p-torsion subgroup) of an abelian group G is denoted by tor(G)
(torp(G), respectively). We have tor(T) = Q/Z ≤ T with the subspace topology, and
torp(T) ≤ Q/Z with the subspace topology. We use Z(p∞) := torp(T) = {m/pn + Z |
m, n ∈ N0} in agreement with ([1], p. 27).

The m–socle of a group X is X[m] := {x ∈ X | mx = 0} and the socle of X is
Soc(X) =

⊕
p∈P X[p]. By µX

m we denote multiplication by m in X. For a subgroup, Y of X
and m ∈ N, define

m−1
X Y = {x ∈ X | mx ∈ Y}, equivalently, m−1

X Y/Y = (X/Y)[m].

This concept is used to construct larger full free subgroups from given full
free subgroups.

In the following discussion of divisible hulls, Z(p∞) is the discrete quasi-cyclic
group ([17], p. 16).

The group D is a divisible hull of A if D is divisible and A is an essential subgroup
of D, equivalently, if D/A is a torsion group and

⊕
p∈P D[p] ⊆ A. Divisible hulls exist for

any group and divisible groups are direct sums of copies of Q and of Z(p∞), p ∈ P ([17],
p. 136).

The Z–adic topology of Z (having as a local base at 0 the filter base {nZ : n ∈ N}) will
be denoted by νZ. We denote by G∧ the Pontryagin dual of a TAG–group G, while Ĝ is
reserved for the completion of G. In particular, Ẑ is the completion of (Z, νZ) and Ẑp is the
completion of Z in the p-adic topology.

For topological groups G, H we will deal with cHom(G, H), the set of all continuous
homomorphisms from G to H. Throughout, we assume that the groups of morphisms
cHom(G, H) carry the compact-open topology. We will use the notation of ([1], p. 337), so
recall that the sets W(C, U) = { f ∈ cHom(G, H) | f [C] ⊆ U} where C is compact in G and
U is open in H, form a basis for the topology of cHom(G, H).

By c(G) we denote the 0–component of G and by a(G) the arc component of 0 ∈ G.
A Hausdorff topological group G is zero-dimensional if G has a base of clopen sets. Clearly,
every linearly topologized group is zero-dimensional and every zero-dimensional group is
totally disconnected. Recall that a group is linearly topologized if it possesses a neighbor-
hood basis at 0 consisting of subgroups.

Lemma 1 ([1], E8.6, p. 414). Let G be a locally compact abelian group. Then G is totally discon-
nected if and only if G is zero-dimensional.

A topological abelian group G is said to be precompact if its completion is compact.
It is a well-known and deep fact that a topological abelian group G is precompact if and
only if the topology of G is generated by its continuous characters, which means that the
characters χ ∈ G∧ separate the points of G and the injective (continuous) diagonal map
G → ∏χ∈G∧ χ[G] ≤ TG∧ is an embedding ([3]).

Proposition 1. Let G be a topological abelian group and let Gi, i ∈ I, be a family of topological
groups. Then

cHom(G, ∏i∈I Gi) ∼=t ∏i∈I cHom(G, Gi).

Proof. Let πj : ∏i∈I Gi → Gj be the projections. Then

π : cHom(G, ∏i∈I Gi)→ ∏i∈I cHom(G, Gi) : π( f ) = (. . . , πi ◦ f , . . .).

is the restriction of the well-known algebraic isomorphism. Evidently, π( f ) = (. . . , πi ◦
f , . . .) ∈ ∏i∈I cHom(G, Gi), so π is well-defined.
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To show that π is continuous, consider the generic open neighborhood V = ∏i∈I Vi,
Vi = W(C, Ui), of 0 ∈ ∏i∈I cHom(G, Gi) where J is a finite subset of I, C ⊆ G is compact,
Uj, j ∈ J, is an open neighborhood of 0 ∈ Gj, ∀ i /∈ J : Ui = Gi. Then W := W(C, ∏i∈I Vi) is
an open neighborhood of 0 ∈ ∏i∈I cHom(G, ∏i∈I Gi) and π[W] ⊆ V.

To show that π is open, we consider a basic open subset U of Hom(A, ∏i∈I Gi),
i.e., U = W(C, ∏i Ui) where C is compact in G and ∏i Ui is open in ∏i∈I Gi, i.e., there
is a finite subset J of I such that ∀ i ∈ J : Ui is open in Gi and ∀ i 6∈ J : Ui = Gi. Then
∀ i ∈ J : W(C, Ui) is open in Hom(G, Gi) and ∀ i 6∈ J : W(C, Ui) = W(C, Gi) = Gi. Hence,
∏i∈I W(C, Ui) is open in ∏i∈I Hom(G, Gi) and it is easily checked that π[W(C, ∏i Ui)] =

∏i∈I W(C, Ui) showing that π is an open map.

Let A be a discrete group and G any topological group. Then, the compact open
topology on Hom(A, G) coincides with the subspace topology of Hom(A, G) ⊆ GA where
GA carries the product topology (=topology of point-wise convergence). This is well-known
and is easily seen noting that the compact subsets of A are exactly the finite subsets.

Let G and H be topological groups. Recall ([18], p. 1) that α ∈ cHom(G, H) is proper if
α is open onto its range. A short exact sequence K � G � H is proper if both maps are
proper. Embeddings of subgroups are examples of proper monomorphisms, and proper
epimorphisms are quotient maps. For a subgroup H of an abelian group G, we denote by

H
ins
� G the inclusion homomorphism, a proper map.

In ([1], Proposition 1.17, p. 12) Proposition 2 is proved for G = T in which case
∏i∈I Hom(Ai, G) is compact and it is easy to show that Φ is a quotient map.

Proposition 2. Let Ai, i ∈ I, be a family of discrete abelian groups, G a topological abelian
group. Then

Φ : ∏
i∈I

Hom(Ai, G)
→∼=t Hom

(⊕
i∈I

Ai, G

)
: (Φ((. . . , fi, . . .)))

(
∑
i∈I

ai

)
= ∑

i∈I
fi(ai).

Proof. Let insi : Ai →
⊕

i∈I Ai be the insertions belonging to the direct sum. The map Φ is
the standard algebraic isomorphism and

Φ−1 : Hom(
⊕

i∈I Ai, G)→ ∏i∈I Hom(Ai, G) : Φ−1( f ) = (. . . , f ◦ insi, . . .).

We first show that Φ−1 is continuous. By definition of the product topology, Φ−1 is
continuous if and only if πi ◦Φ−1 : Hom(

⊕
i∈I Ai, G)→ Hom(Ai, G) is continuous where

πi : ∏j∈I Hom(Aj, G) → Hom(Ai, G) is the projection belonging to the product. Let U
be an open neighborhood of 0 ∈ G and let F be a finite subset of Ai. Then W := W(F, U)
is a generic neighborhood of 0 ∈ Hom(Ai, G). As F ⊆ ⊕

i∈I Ai, the set W ′ = { f ∈
Hom(

⊕
i∈I Ai, G) | f [F] ⊆ U} is an open neighborhood of 0 ∈ Hom(

⊕
i∈I Ai, G). Evi-

dently Φ−1[W ′] ⊆W.
We show next that Φ is continuous. Let F be a finite subset of

⊕
i∈I Ai and U an

open neighborhood of 0 ∈ G. Then W = W(F, U) is a generic open neighborhood of
0 ∈ Hom(

⊕
i∈I Ai, G). Then there is a finite subset J of I such that F ⊆ ⊕

i∈J Ai. Fur-
thermore, for j ∈ J, there exist finite sets Bj ⊆ Aj such that F ⊆ ∑j∈J Bj. For i /∈ J,
let Bj = {0}. There exists an open neighborhood V of 0 ∈ G such that V|J| ⊆ U.
Then ∏i∈I W(Bi, V) is an open neighborhood of 0 ∈ ∏i∈I Hom(Ai, G). We claim that
Φ[∏i∈I W(Bi, V)] ⊆ W(F, U). Let f = ( fi) ∈ ∏i∈I W(Bi, V) and b = ∑j∈J bj ∈ F. Then
(Φ( f ))(b) = ∑j∈J f j(bj) ∈ V|J| ⊆ U.

The following is surely well-known.

Lemma 2. Let G and H be topological abelian groups and ϕ : G → H a surjective homomorphism
with kernel K.
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(1) Suppose that ϕ is continuous and K is dense in G. Then H is indiscrete.
(2) Suppose that ϕ is an open map and H is indiscrete. Then K is dense in G.
(3) Suppose that H is indiscrete and cHom(G, H) is endowed with the compact-open topology.

Then cHom(G, H) is indiscrete.

Proof. (1) Suppose that C is a non-empty closed subset of H. Then ϕ−1[C] is closed in G
containing K. As K is dense in G it follows that ϕ−1[C] = G. It follows that C = H. Hence,
the only closed sets in H are H and ∅, so H is indiscrete.

(2) Let x ∈ G and U = −U a symmetric open neighborhood of 0 ∈ G. Then ϕ[U] is
non-empty and open in H and as H is indiscrete, ϕ[U] = H. Hence, there is y ∈ U such
that ϕ(y) = ϕ(x) and so x− y = z ∈ K and z ∈ x + U showing that K is dense in G.

(3) The open sets of cHom(G, H) are the sets of the form W := W(C, U) = { f ∈
cHom(G, H) | f [C] ⊆ U} where C is a compact subset of G and U is an open subset of H.
By hypothesis U = ∅ or U = H. Whatever C may be, in the first case W = ∅ and in the
second case W = cHom(G, H).

3. The Meet Semi-LatticeF (A)F (A)F (A) of Full Free Subgroups in AG

The following notation relating an arbitrary group A with its torsion-free quotient
A0 := A/ tor(A) will be used throughout.

Let A ∈ AG and let ϕ0 : A → A0 be the natural epimorphism. For future use we
record the short exact sequence

E0 : tor(A)
ins
� A

ϕ0
� A0.

It is well-known that QA0 := Q⊗Z A0 ∼= Q⊗Z A is a Q–vector space containing
A0 ∼= Z⊗Z A0 as an essential subgroup. Thus QA0 is a divisible hull of A0. The rank of A
is the dimension of QA0: rk(A) := rk(A0) := dimQ(QA0).

For F ∈ F (A), set F0 := ϕ0[F] =
F⊕tor(A)

tor(A)
∼= F. Then rk(A) = rk(F) = rk(F0).

In the literature, the dimension of a compact abelian group is defined in several
equivalent ways. The cardinal dim(G) = rk(G∧) will serve for the purposes of this article.

For every prime p we define the p-rank of A by rkp(A) := dimZ/pZ(A[p]).
A discrete divisible group D is determined up to isomorphism by the invariants rkp(D)

counting the summands isomorphic to Z(p∞) and rk(D/ tor(D)) counting the summands
isomorphic to Q. See ([17], Chapter 4) for details.

Lemma 3. If A is a torsion-free group, then rkp(A/pA) ≤ rk(A).

Proof. It suffices to check that if {b1, . . . , bn} is a linearly independent subset of A/pA,
where bi = ai + pA, ai ∈ A, then {a1, . . . , an} is linearly independent in A. Assume that
m1a1 + · · ·+ mnan = 0, with mi ∈ Z for i = 1, 2, . . . , n. As A is torsion-free, we can assume
without loss of generality that gcd(p, mj) = 1 for some j = 1, 2, . . . , n. After projecting in
A/pA we obtain m1b1 + · · ·+ mnbn = 0. By the choice of {b1, . . . , bn} this gives mi = pZ
for all i. This contradicts gcd(p, mj) = 1.

Now we see that the p-ranks of a compact connected group G of finite dimension are
bounded from above by dim(G).

Corollary 1. Let A be a discrete torsion-free group of finite rank n. Then rkp(A∧) = rkp(A/pA) ≤ n.

Proof. Clearly, G = A∧ is a compact connected group with dim(G) = n. The socle G[p] of
G is the kernel of µG

p , the multiplication by p in G, and hence closed and therefore compact.

We have the proper exact sequence G[p] � G
µG

p
� G which gives the proper exact sequence
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G∧
µG∧

p
� G∧ = A∧∧ = A � A/pA ∼= G[p]∧. Hence, rkp(G[p]∧) = rkp(A/pA) ≤ rk(A) =

n < ∞, by Lemma 3. Thus, G[p] ∼= G[p]∧ and rkp(G) = rkp(G[p]) = rkp(G[p]∧) ≤ n.

We first illuminate the abundance of full free subgroups in a group.

Lemma 4. Let tor(A) 6= A ∈ AG. Then the following hold.

(1) {ai | i ∈ I} is a linearly independent set in A if and only if {ai + tor(A) | i ∈ I} is a linearly
independent set in A0. Moreover, {ai | i ∈ I} is maximal linearly independent if and only if
{ai + tor(A) | i ∈ I} is maximal linearly independent.

(2) If {ai | i ∈ I} is a (maximal) linearly independent set in A and ∀ i ∈ I : ti ∈ tor(A), then
{ai + ti | i ∈ I} is a (maximal) linearly independent subset of A.

(3) Every linearly independent set extends to a maximal linearly independent set. In particular,
every torsion-free element in A is contained in a maximal linearly independent subset.

(4) If {ai | i ∈ I} is a maximal linearly independent subset of A, then F =
⊕

i∈I Zai is a full free
subgroup of A. Conversely, if F =

⊕
i∈I Zai is a full free subgroup of A, then {ai | i ∈ I} is

a maximal linearly independent subset of A.
(5) If F ∈ F (A), then F0 ∼= F and A0/F0 ∼= A/(F⊕ tor(A)), F0 ∈ F (A0), and ϕ−1

0 [F0] =
F⊕ tor(A).

(6) Given F0 ∈ F (A0), there exists F ∈ F (A) such that ϕ0[F] = F0 and ϕ−1[F0] = F ⊕
tor(A). If F, F′ ∈ F (A) and F0 = F′0, then there is ϕ ∈ Hom(F, tor(A)) such that
F′ = {ϕ(x) + x | x ∈ F}. Note that Hom(F, tor(A)) ∼= tor(A)rk(A)

(7) A maximal linearly independent subset of A0 is a Q–basis of QA0.
(8) If {vi | i ∈ I} is a Q–basis of QA0, then there exist positive integers mi such that ∀ i ∈ I :

mivi ∈ A and F =
⊕

i∈I Z(mivi) is a full free subgroup of A.

Proof. Maximal linearly independent subsets exist by Zorn’s Lemma.
(6) Suppose that F, F′ ∈ F (A) and F0 = F′0. Then F⊕ tor(A) = F′ ⊕ tor(A). By ([19],

Lemma 1.1.3, p. 6) there exists ϕ ∈ Hom(F, tor(A)) such that F′ = {ϕ(x) + x | x ∈ F}.
The rest consists of easy and well-known observations.

We always assume that A0 6= {0}, i.e., we assume that A is not a torsion group.
The dual T∧ of a torsion group T is a compact totally disconnected group.

Theorem 1. For A ∈ AG, the family F := F (A) has the following properties.

(1) Let F, F′ ∈ F . Then F ∩ F′ ∈ F .
(2) If F ∈ F , F′ ≤ F and F/F′ is a torsion group, then F′ ∈ F .
(3) If F ∈ F , then ∀m ∈ N : mF ∈ F and

⋂
m mF = {0}.

(4)
⋂F = {0}. If A 6= tor(A) then

⋃F = A \ tor(A) and ∑F = A.
(5) F is a meet semi-lattice with meet ∩.
(6) Let F ∈ F . Then ∀m ∈ N : m−1

A F = F′ ⊕ A[m] for some F′ ∈ F , and (F′ ⊕ A[m])/F =

(A/F)[m]. If A is torsion-free, then m−1
A F ∈ F .

Proof. (1) Certainly F ∩ F′ is free as subgroup of free groups. The map A/(F ∩ F′) →
A/F⊕ A/F′ : a + (F ∩ F′) 7→ (a + F, a + F′) is well-defined and injective. Hence, A/(F ∩
F′) is torsion.

(2) and (3) are trivial.
(4) It follows from (3) that

⋂F = {0}. If A 6= tor(A), then
⋃F = A \ tor(A) is

evident, and it follows from Lemma 4(2) that ∑F = A.
(5) Follows from (1).
(6.1) We first assume that A is torsion-free. Then the multiplication µA

m is injective,
and µA

m : A→ mA is an isomorphism. Thus, m−1F = (µA
m)
−1[mA ∩ F] is free since F is free.

As F ⊆ m−1
A F it follows that m−1

A F ∈ F .
(6.2) Recall that F0 ∈ F (F0) and by (6.1) F0 ⊆ m−1

A0
F0 ∈ F (A0) with (m−1

A0
F0)/F0 =

(A0/F0)[m]. It is straightforward to check that ϕ0[m−1
A F] ⊆ m−1

A0
F0 and it follows that
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ϕ0[m−1
A F] is free. Hence, the epimorphism ϕ0 : m−1

A F → ϕ0[m−1
A F] splits with kernel

m−1
A F ∩ tor(A) = tor(A)[m]. Hence, m−1

A F = F′ ⊕ tor(A)[m] for some free group F′ ∼=
ϕ0[m−1

A F].
It remains to show that A/F′ is a torsion group. As A0/F0 is torsion and F0 ⊆

ϕ0[m−1
A F], we see that A0/ϕ0[m−1

A F] is a torsion group. Let a ∈ A. Then there is k ∈ N
such that kϕ0(a) ∈ ϕ0[m−1

A F] = ϕ0[F′]. Hence, kϕ0(a) = ϕ0(ka) = ϕ0(b) for some b ∈ F′

and ka− b ∈ Ker(ϕ0) = tor(A). Thus, there is k′ ∈ N such that k′ka = k′b ∈ F′. Finally,
(F′ ⊕ A[m])/F = (m−1

A F)/F = (A/F)[m].

Remark 1. In general, F (A) is not closed under finite sums, so F (A) may not be a lattice, and
therefore, A = ∑F (A) may not be the directed union (direct limit) of its members. However, for
A = A0, using Theorem 1(6) (with tor(A) = {0}), given F ∈ F (A), also the larger m−1

A F is a
full free subgroup, and as A/F is a torsion group, we obtain an ascending chain

F = (1!)−1
A F ⊆ (2!)−1

A F ⊆ · · · ⊆ (m!)−1
A F ⊆ ((m + 1)!)−1

A F ⊆ · · ·

of full free subgroups of A whose union is A.

In the case of a torsion-free group A of finite rank, the quotients A/F for F ∈ F (A) are
somewhat alike ([2], Theorem 3.5(9)). For arbitrary rank there is a great variety of quotients
A/F.

Proposition 3. Let A be an abelian group of infinite rankm. Let F ∈ F (A). Then rk(F) = |F| = m.
Let T be any torsion group that is m–generated. Then there is an epimorphism ϕ : F � T with
Fϕ := Ker(ϕ) ∈ F (A), and there is an exact sequence T � A/Fϕ � A/F. Moreover,
rkp(A/F) ≤ m.

Proof. Routine and simple.

In the case of infinite rank, the sum of two full free subgroups need not be free,
as shown by Jim Reid (([20], Theorem 2.2)):

Theorem 2. Let A be a torsion-free group of infinite rank.

(a) (([20], Theorem 2.2) and its proof) Given a free subgroup F of A with rk(F) = rk(A), there
is a second free subgroup F1 such that A = F + F1.

(b) ([20], Corollary 3.5) There exists a full free subgroup F0 of A such that A/F0 is divisible (A is
“quotient divisible”).

One can deduce from (a) that in a torsion-free group A of infinite rank every non-free
subgroup of torsion index is the sum of two full free subgroups.

Definition 1. An abelian group A is F-summable if for any F1, F2 ∈ F (A) also F1 + F2 ∈
F (A).

Theorem 2(a) yields:

Theorem 3. A ∈ AG is F -summable if and only if A is either torsion-free of finite rank or is free
of arbitrary rank.

Proof. If tor(A) 6= {0}, then there are full free subgroups whose sum contains torsion
elements (Lemma 4(2)). So a summable group must be torsion-free.

Suppose that A is torsion-free and F -summable of infinite rank. Then A is the sum
of two free subgroups and hence of two full free subgroups. As A is summable, it is free.
The converse is clear.
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If the torsion-free group A has finite rank, then full free subgroups are finitely gener-
ated and finitely generated torsion-free subgroups are free.

4. The Semi-LatticesF (A)F (A)F (A) andD(G)D(G)D(G)

Let A ∈ AG and G = A∧. Then G is compact, not necessarily connected. Let F ∈ F (A).

Then F
ins
� A

α
� A/F is exact where α is the natural epimorphism. Therefore,

(A/F)∧
α∧
� G

restr
� F∧

is exact, where F∧ is a torus isomorphic to Trk(A) and α∧[(A/F)∧] is a compact totally
disconnected subgroup of G. Hence, α∧[(A/F)∧] ∈ D(G). We obtained the mapping

F (A)→ D(G) : F 7→ α∧
[
(A/F)∧

]
. (1)

Let G be a compact group and A = G∧. Then A is a possibly mixed group. Let

∆ ∈ D(G). Then ∆
ins
� G

β
� G/∆ is exact where β is the natural epimorphism and G/∆ is a

torus. Therefore,

(G/∆)∧
β∧

� A
restr
� ∆∧

is exact, where ∆∧ is a torsion group and β∧[(G/∆)∧] is a full free subgroup of A. Hence,
β∧[(G/∆)∧] ∈ F (A). We obtained

D(G)→ F (A) : ∆ 7→ β∧
[
(G/∆)∧

]
. (2)

Lemma 5. Let G ∈ LCA and H a closed subgroup of G. The sequence H
ins
� G

ϕ
� G/H is exact

in LCA. Hence,

(G/H)∧
ϕ∧

� G∧
restr
� H∧ (3)

is exact in LCA, and ϕ∧[(G/H)∧] = (G∧, H).

Proof. Suppose first that χ ∈ (G∧, H). Then χ[H] = {0}, so χ �H= 0. Hence, χ is in
the kernel of the restriction map in (3), i.e., χ ∈ Ker(restr) = α∧[(A/F)∧]. Conversely,
if χ ∈ Ker(restr), then χ[H] = {0} and χ ∈ (G∧, H).

For a general topological abelian group G, the family Lat(G) of closed subgroups is
a lattice with the operations C1 ∧ C2 = C1 ∩ C2 and C1 ∨ C2 = C1 + C2. There also exist
greatest lower bounds and least upper bounds for infinite families: Let C be a family of
closed subgroups of G. Then

⋂ C is a closed subgroup of G and
⋂ C = ∧ C. The subgroup

∑ C is closed and ∑ C =
∨ C. See ([1], p. 361).

We will establish that F (A) and D(A∧) are anti-isomorphic semi-lattices. To do so,
we use results of ([1], p. 351) where we find annihilators H⊥ defined as follows.

For G ∈ LCA, we have the pairing G∧ × G → T : (χ, g) 7→ χ(g). For a subset X of G,
we define the annihilator X⊥ of X ⊆ G in G∧ by X⊥ := (G∧, X) = {χ ∈ G∧ | χ[X] = 0}
while for Y ⊆ G∧, we define Y⊥ = {g ∈ G | ∀ ρ ∈ Y : ρ(g) = 0}

Note that X⊥⊥ ⊆ G is not the same as (G∧∧, X⊥) = (G∧∧, (G∧, X)). However, they
are topologically isomorphic:

Lemma 6. Let A ∈ LCA. Then, for X ⊆ A, the natural evaluation isomorphism ηA : A→ A∧∧

restricts to an isomorphism X⊥⊥ → (A∧∧, X⊥), ηA
[
X⊥⊥

]
= (A∧∧, X⊥). In particular, X⊥⊥ is

a full free subgroup of A if and only if (A∧∧, X⊥) is a full free subgroup of A∧∧.

Proof. We need to check that ηA[X⊥⊥] = (A∧∧, X⊥). Let a ∈ A. Then
ηA(a) ∈ (A∧∧, X⊥)⇐⇒ ∀ χ ∈ X⊥ : ηA(a)(χ) = χ(a) = 0⇐⇒ a ∈ X⊥⊥.
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We rely on the basic properties of annihilators ([1], pp. 351–362), in particular see ([1],
Theorem 7.64, p. 392); alternatively see ([21], pp. 270–275).

Theorem 4 ([1], Theorem 7.64(iv),(v), (vi), p. 392). Let G ∈ LCA. Then H 7→ H⊥ = (G∧, H)
with H⊥⊥ = H, is a lattice anti-isomorphism between Lat(G) and Lat(G∧). In particular, H ⊆ K
if and only if K⊥ ⊆ H⊥.

If H � G � G/H is proper exact in LCA, then

(G/H)∧ ∼=t H⊥ and H∧ ∼=t G∧/H⊥.

Theorem 5. Let A ∈ AG and G = A∧. The lattice anti-isomorphism H 7→ H⊥ of Theorem 4
restricts to an anti-isomorphism of semi-lattices δ : F (A)→ D(G). In particular we have:

• D(G) is a join semi-lattice with join +.
• ∀ F, F1, F2 ∈ F (A) : δ(F) = F⊥ ∈ D(G); if F1 ⊆ F2, then δ(F2) ⊆ δ(F1); δ(F1 ∩ F2) =

δ(F1) + δ(F2).

Proof. By Theorem 4 we only need to show that δ(F (A)) = D(G).
Let F ∈ F (A). Then F⊥ = (G, F) by definition, and (G, F) = α∧[(A/F)∧] ∈ D(G) by

Lemma 5 and (1). So δ is well defined.
Let ∆ ∈ D(G). By (2) β∧[(G/∆)∧] ∈ F (A∧∧) and by Lemma 6 ∆⊥ ∈ F (A) and

δ(∆⊥) = ∆⊥⊥ = ∆.

We now establish, for a compact group G = A∧, the properties ofD(G) corresponding
to the properties of F (A). Recall that for any m ∈ N and any subgroup Y of X, we have
m−1

X Y = {x ∈ X | mx ∈ Y}.

Definition 2. For a compact abelian group G set ∆(G) := ∑D(G).

We collect here some properties of the subgroup ∆(G), “Fat Delta”.

Theorem 6. Let G = A∧, A ∈ AG. The family D := D(G) has the following properties.

(1) D is a join semi-lattice with join +. Hence, ∆(G) =
⋃D.

(2) ∆(G) is dense in G, while
⋂D = {0} if c(G) 6= {0}, otherwise

⋂D = G.
(3) Let ∆ = δ(F) and ∆′ = δ(F′) and assume that ∆ ⊆ ∆′. Then F′ ⊆ F and ∆′/∆ ∼=t (F/F′)∧.
(4) If ∆ ∈ D, then m−1

G ∆ ∈ D for any m ∈ N. Hence, tor(G/∆) ⊆ ∆/∆ and tor(G) ⊆ ∆(G).
(5) Let ∆ ∈ D and m ∈ N. Then there is ∆′ ∈ D such that m∆ = ∆′ ∩mG. If A is torsion-free,

then m∆ ∈ D.
(6) G/∆(G) is torsion-free.

Proof. (1) Theorem 5 establishes the semi-lattice property. AsD is closed under finite sums,
we have ∑D =

⋃D.
(2) By ([1], Theorem 7.64(vii), p. 392)

⋃D = (G,
⋂F (A)) = (G, 0) = G and

⋂D =
(G, ∑F (A)). If A 6= tor(A), then ∑F (A) = A, by Theorem 1(4). So,

⋃D = (G, A) = {0}
in this case. If G is totally disconnected, then D = {G}, so

⋂D = G.
(3) We have the following commutative diagram with natural maps and exact rows

F/F′

F′ A A/F′

F A A/F

ins

ins

ins

ϕ′

= ψ

ins ϕ

and its dual

(A/F)∧ G F∧

(A/F′)∧ G (F′)∧

(F/F′)∧

ψ∧

ϕ∧

=

restr

restr

(ϕ′)∧

restr

restr
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We conclude that

∆′

∆
=

(ϕ′)∧[(A/F′)∧]
ϕ∧[(A/F)∧]

∼=t
(A/F′)∧

ψ∧[(A/F)∧]
∼=t

(
F
F′

)∧
(4) Let ∆ = F⊥ = (G, F) ∈ D with F ∈ F (A). If m ∈ N, then m−1

G ∆ = m−1
G (G, F) =

(G, mF) (cf. [21], Lemma 6.4.14, p. 274), so since mF ∈ F (A) we have m−1
G ∆ ∈ D.

(5) Let ∆ = δ(F) for some F ∈ F (A). By Theorem 1(3) we know that m−1
A F = F′ ⊕

A[m] for some F′ ∈ F (A). Using ([21], Lemma 6.4.13, p. 27) and ([21], Lemma 6.4.15, p. 27)
we obtain m∆ = mδ(F) = m(G, F) = (G, m−1

A F) = (G, F′ + A[m]) = (G, F′)∩ (G, A[m]) =
δ(F′) ∩mG. Furthermore, δ(F) and G are both compact and hence, so are mδ(F) and mG,
therefore closed, and equal to the closures.

(6) Let x ∈ G. If mx ∈ ∆(G) for some m ∈ N, then mx ∈ ∆ for some ∆ ∈ D. Then
x ∈ m−1

G ∆ ∈ D by (4), thus x ∈ ∆(G). Therefore G/∆(G) is torsion-free.

The fact that linearly independent sets can be enlarged to maximal linearly indepen-
dent sets has the following dual.

Proposition 4. Let G = A∧ be a compact abelian group of infinite dimension.
Suppose that Θ is a subgroup of G such that G/Θ is a torus of dimension m. Then Θ contains

some ∆ ∈ D(G) and m ≤ dim(G).

Proof. Θ = E⊥ for some subgroup E of A (Theorem 4). We claim that E is a free subgroup

of A. From Θ
ins
� G � T where T is a torus of dimension m, we conclude the exact sequence

T∧ � A∧∧
restr
� Θ∧. By Lemma 5 T∧ ∼= (A∧∧, Θ) and by Lemma 6 (A∧∧, Θ) ∼= (A, Θ) =

E⊥⊥ = E. As T∧ is free of rank m as the dual of a torus, so is E and m ≤ rk(A). Let F be a
full free subgroup containing E. Then ∆ := F⊥ ∈ D(G) and Θ = E⊥ ⊇ F⊥ = ∆.

Let G = A∧. We next study the connection betweenD(G),D(c(G)), ∆(G), and ∆(c(G)).
Given A, let T = tor(A) and let F ∈ F (A). Then, we obtain the following commutative
diagram with exact rows and its dual.

F F0

T A A0

T⊕F
F

A
F

A0
F0

ϕ0

ins ins

ins

ψT

ϕ0

ψ ψ0

ins ϕ0

with dual

(
A0
F0

)∧ (
A
F

)∧ (
T⊕F

F

)∧

A∧0 G T∧

F∧0 F∧

ψ∧0

ϕ∧0

ψ∧

restr

ψ∧T
ϕ∧0

restr

restr

restr

ϕ∧0

We now set

• ∆ := ψ∧[
(

A
F

)∧
]

• G0 := ϕ∧0 [A
∧
0 ]

• ∆0 := (ϕ∧0 ◦ ψ∧0 )[
(

A0
F0

)∧
] = (ψ∧ ◦ ϕ∧0 ))[

(
A0
F0

)∧
] ⊆ G

and obtain
∆0 ∆ T∧

G0 G T∧

F∧ F∧

ins

ins

ins∆

restr∆

=

ins

restr

restr

restrG

=

(4)
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We have the following easy consequences.

Theorem 7. Let G = A∧ where A ∈ AG and consider (4), where T = tor(A).

(1) G0 = ϕ∧0 [A
∧
0 ] = tor(A)⊥ coincides with the 0–component c(G) of G.

(2) c(G) is divisible and so, algebraically, G ∼= c(G)⊕ T∧ and G ∼=t c(G)⊕ T∧ if and only if A
splits, i.e., A ∼= A0 ⊕ T.

(3) ∆0 = ∆ ∩ c(G). Thus D(c(G)) = {D ∩ c(G) | D ∈ D(G)}, ∆(c(G)) = ∆(G) ∩ c(G),
and ∆(c(G)) is closed in ∆(G).

(4) G = ∆ + c(G) and ∆(G) = ∆ + ∆(c(G)).
(5) c(G)/∆0 ∼=t G/∆ and ∆/∆0 ∼=t G/ c(G) ∼=t T∧.
(6) With the established notation ∆(c(G)) is divisible and hence algebraically a direct summand

of ∆(G).
(7) There is a topological isomorphism tor(A)∧ ∼=t

∆
∆0
→ ∆(G)

∆(c(G))
.

Proof. (1) As A0 is torsion-free, its dual G0 is connected and G/G0 is totally disconnected.
Hence, G0 is the 0–component of G: c(G) = G0. The equality ϕ∧0 [A

∧
0 ] = tor(A)⊥ follows

from Lemma 5.
(2) c(G) is divisible as the dual of a torsion-free group. The rest is evident.
(3) It follows from the definition that ∆0 ⊆ ∆ ∩ c(G). On the other hand, let x ∈

∆ ∩ c(G). Then 0 = restrG(x) = (restrG ◦ ins∆)(x) = restr∆(x), hence, x ∈ ∆0. This proves
the equality ∆0 = ∆ ∩ c(G).

The topological isomorphism A∧0 → c(G) = ϕ∧0 [A
∧
0 ] maps the family D(A∧0 ) onto

D(c(G)). Thus, the annihilator (A∧0 , (F⊕ T)/T), a typical member of D(A∧0 ), is mapped
onto ∆0 = (G, F) ∩ c(G), a typical member of D(c(G)). Therefore, D(c(G)) = {D ∩ c(G) |
D ∈ D(G)} and ∆(c(G)) = ∆(G) ∩ c(G).

(4) We have ∆ + c(G) = ψ∧[(A/F)∧] + ϕ∧0 [A
∧
0 ] = (G, F) + (G, T) = (G, F ∩ T) = G.

By (4) we have ∆ + ∆(c(G)) = ∆ + (c(G) ∩ ∆(G)) = (∆ + c(G)) ∩ ∆(G) = ∆(G).
(5) Follows immediately from (3) and (4).
(6) c(G) is divisible and ∆(c(G)) is pure in c(G). Hence, ∆(c(G)) is divisible.
(7) We have the following commutative diagram with exact row and natural maps:

∆0 ∆ ∆
∆0

∆(c(G)) ∆(G) ∆(G)
∆(c(G))

ins

ins

ins

α

ξ

ins

The map ξ is injective because ∆ ∩ ∆(c(G)) = ∆0. By (5), ∆(G) = ∆ + ∆(c(G)), so ξ is
surjective. To show that ξ is continuous, let U be open in ∆(G)/∆(c(G)). By commutativity
of the right square in the diagram, W := {x ∈ ∆ | ξ(α(x)) ∈ U} is open in ∆, thus
ξ−1[U] = α[W] is open in ∆/∆0. Therefore, ξ is continuous. Since ∆/∆0 is compact, we
conclude that ξ is a topological isomorphism.

A number of results on free subgroups are worth dualizing.

Theorem 8. Let G = A∧ be a compact abelian group of infinite dimension.

(1) Suppose that D is a closed subgroup of G such that G/D is a torus. Then there exists
∆ ∈ D(G) such that D ∩ ∆ ∩ c(G) = 0. In particular, for every ∆ ∈ D(G), there is
∆′ ∈ D(G) such that ∆ ∩ ∆′ ∩ c(G) = 0.

(2) There exists ∆ ∈ D(G) such that ∆0 = ∆ ∩ c(G) ∈ D(c(G)) is torsion-free.

Proof. (1) Let F = D⊥. Then F ∼=t (G/D)∧ is a free subgroup of A. So ϕ0[F] is free
in A0. By Theorem 2(a), there exists a free subgroup F1 of A0 such that A0 = F + F1.
By enlarging F1 if necessary we may assume that F1 is maximal, i.e., full free. There exists
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a (full) free subgroup F2 of A such that ϕ0[F2] = F1. Then A = F + F2 + tor(A) and
0 = F⊥ ∩ F⊥2 ∩ tor(A)⊥. The claim is established by setting ∆′ = F⊥2 .

(2) By Theorem 2(b), there exists a full free subgroup F0 of A0 such that A0/F0 is
divisible. There exists F ∈ F (A) : ϕ0[F] = F0 and tor(A)⊕F

F � A
F � A0

F0
is exact. By duality

(A0/F0)
∧ � (A/F)∧ � tor(A)∧. As A0/F0 is divisible, its dual is torsion-free ([1],

corollary 8.5, p. 410), so ∆0 := (A0/F0)
∧ ∈ D(A∧0 ) is torsion-free. Modulo embeddings

∆0 ⊆ ∆ = (A/F)∧ ∈ D(A) and ∆0 = ∆ ∩ c(G).

Corollary 2. Let G = A∧ be a compact connected abelian group of infinite dimension, i.e., A is
torsion-free of infinite torsion-free rank.

(1) Suppose that D is a subgroup of G such that G/D is a torus. Then there exists a subgroup D′

of G such that D ∩ D′ = 0 and G/D′ is a torus. In particular, for every ∆ ∈ D(G), there is
∆′ ∈ D(G) such that ∆ ∩ ∆′ = 0.

(2) There exists a torsion-free ∆ ∈ D(G).

We can easily settle the question when ∆(G) is as small as possible, i.e., ∆(G) = tor(G).

Theorem 9. Let G = A∧ be a compact abelian group. Then ∆(G) = tor(G) if and only if
G ∼=t Tn × E where n ∈ N0 and E is bounded.

Proof. We only need to consider the consequences of ∆(G) being a torsion group. As ∆(G) =

∑D(G), this occurs if and only if every ∆ ∈ D(G) is a torsion group. Since ∆ is compact, it
must be bounded torsion. Furthermore, we use that for every F ∈ F (A), the dual (A/F)∧

is topologically isomorphic to some ∆ ∈ D(G), so a bounded torsion group.
(a) Assume first that A is torsion-free. By Corollary 2(2) we have n := rk(A) < ∞.

Now pick an arbitrary F ∈ F (A). Since (A/F)∧ is a bounded torsion group, so is A/F,
hence, mA ⊆ F for some m ∈ N, so A ∼= mA is free of rank n and G ∼=t Tn.

(b) In the general situation, by Theorem 7(3), ∆(c(G)) must be a torsion group and
hence by (b), A/ tor(A) must be free of finite rank. So A = F ⊕ tor(A) for some finite
rank free subgroup F of A, thus G ∼=t H × E with H ∼=t Tn and E ∼=t tor(A)∧ ∼=t (A/F)∧.
For the latter group to be torsion, it must be bounded.

Remark 2. The dual concept (in the category sense of reversing arrows) of F (A) is the family
K(A) := {Ker(ψ) | ψ ∈ Hom(A, F), F free}. It is easy to see that K(A) is closed under
finite intersections and K(A) =

⋂K(A) =
⋂{Ker(ψ) | ψ ∈ Hom(A,Z)} is a fully invariant

subgroup of A that has no free direct summands. Mostly we have K(A) = A, e.g., if A is divisible
or torsion. We call A free-reduced if Hom(A,Z) = {0}, equivalently, if A has no free direct
summands. Evidently, A is free-reduced if and only if G = A∧ is torus-free. For a compact
group G, let T (G) = {T | T is a torus subgroup of G}.

For any A ∈ AG, and a short exact sequence K
ins
� A

ϕF
� F where F is free, it follows that

F∧
ϕ∧F
� G := A∧

restr
� K∧ is exact in LCA. Hence, ϕ∧F [F

∧] = K⊥ is a torus subgroup of G and we
have a map

κ : K(A)→ T (G) : κ(K) = K⊥.

As for F (A) and D(G) it follows that κ is a bijective map satisfying κ(K1 ∩ K2) = κ(K1) + κ(K2)
and K1 ⊆ K2 if and only if κ(K2) ⊆ κ(K1). In particular, T(G) := ∑ T (G) =

⋃ T (G) and
κ(K(A)) = (K(A))⊥ = T(G). This recaptures most of the results of ([1], p.p 440, 441). The group
A/K(A) need not be free and the dual group T(G) need not be a torus.

A theorem of K. Stein ([17], Corollary 8.3, p. 114) says that every countable torsion-free group
A0 has a decomposition A0 = F⊕K(A0) where F is free. The duals of countable torsion-free groups
are exactly the compact connected metric groups ([1], pp. 447–450).
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Remark 3. One can ask further whether a compact group has other connected factors of dimension
1 (so-called solenoids of which T is an example). For finite dimensional connected compact groups
this leads to the “Main Decomposition” that was derived in [22].

5. The Fat Delta of Compact Groups

So far we know from Theorem 6 that for any compact abelian group G,

• ∆(G) = ∑D(G) =
⋃D(G),

• ∆(G) is dense in G,
• tor(G) ⊆ ∆(G) and G/∆(G) is torsion-free.
• ∆(c(G)) is divisible.

In this section, we will establish further properties of Fat Delta. We start with a
preliminary observation.

Lemma 7. Let G and H be compact abelian groups and let α : G → H be a continuous epimor-
phism. Then we have:

(1) If G is totally disconnected, then so is H.
(2) If G is a torus, then so is H.

Proof. (1) Since α is surjective, the adjoint map α∧ : H∧ → G∧ is injective ([23], (24.38),
p. 392). Assume that G is totally disconnected. Then G∧ is torsion, thus H∧ is torsion and
therefore H is totally disconnected (see [23], (24.26), p. 385).

(2) Now suppose G is a torus. Then G∧ is free, so since subgroups of free groups are
free, H∧ is free. Thus, H is a torus.

In general, Fat Delta does not contain every totally disconnected subgroup. However,
it contains all closed totally disconnected subgroups:

Proposition 5. Let G be a compact abelian group and D a closed totally disconnected subgroup of
G. Then D ⊆ ∆(G). Thus ∆(G) is the subgroup of G generated by all closed totally disconnected
subgroups of G.

Proof. Choose ∆ ∈ D(G). Then ∆ + D is compact ([23], (4.4), p. 17), and the natural map
α : ∆ × D → ∆ + D is a continuous epimorphism. By Lemma 7(1), ∆ + D is totally
disconnected. Now consider the continuous epimorphism β : G/∆ → (G/∆)/[(∆ +
D)/∆] ∼=t G/(∆ + D) (see [23], (5.35), p. 45). Since G/∆ is a torus, so is G/(∆ + D) by
Lemma 7(2). This means that ∆ + D ∈ D(G), so D ⊆ ∆ + D ⊆ ∆ as claimed.

The significance of Proposition 5 is that it shows that for a compact group G Fat Delta
∆(G) coincides with the subgroup td(G) that is defined and motivated by totally different
considerations (see Definition 4 and Proposition 9(2)). For the sake of easy reference, we
list the results that could be proved easily in the present context but are proved in greater
generality in the exhaustive study of td(G) in Section 7.

Proposition 6. Let G be a compact abelian group. Then the following are true.

(1) ∆(G) is zero-dimensional, in particular totally disconnected (Theorem 19). Consequently,
if G is not totally disconnected, then G 6= ∆(G) and hence ∆(G) is not a locally compact
subgroup of G.

(2) Any countable extension of ∆(G) is zero-dimensional (in particular totally disconnected) as
well (Proposition 11).

∆(A∧) = Hom(A,Q/Z)
We first establish some background.

Lemma 8. Let G, H, K be topological abelian groups.
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(1) Suppose that H is a topological subgroup of K such that for all f ∈ cHom(G, K) we have
f [G] ⊆ H. Let ins : H → K be the insertion. Then ins∗ : cHom(G, H) → cHom(G, K) :
ins∗( f ) = ins ◦ f is a topological isomorphism.

(2) Suppose that H
α
� K

β
� L is a short exact sequence in TAG, α is proper, and G is some other

topological group. Then

cHom(G, H)
α∗
� cHom(G, K)

β∗→ cHom(G, L), where α∗( f ) = α ◦ f , β∗( f ) = β ◦ f ,

is an exact sequence in TAG and α∗ is proper. The map β∗ is not claimed to be surjective.

(3) Let A
α
� B

β
� C be a short exact sequence of discrete groups and let G be a divisible

topological group. Then

cHom(C, G)
β∗

� cHom(B, G)
α∗
� cHom(A, G), where β∗( f ) = f ◦ β, α∗( f ) = f ◦ α,

is an exact sequence of topological groups. In addition, β∗ is proper.
(4) For a discrete torsion group T =

⊕
p∈P torp(T), we have cHom(T,Q/Z) ∼=t T∧, the topo-

logical isomorphism being ins∗, and T∧ ∼=t ∏p∈P(torp(T))∧ where (torp(T))∧ ∼=t
Hom(torp(T),Z(p∞)).

Proof. (1) It is evident that ins∗ is bijective and maps W(C, H ∩V) onto W(C, V) where C
is compact in G and V is open in K.

(2) By standard discrete homological algebra

Hom(G, H)
α∗
� Hom(G, K)

β∗→ Hom(G, L)→ Ext(G, H)

is exact in AG. Let f ∈ cHom(G, H). Then α∗( f ) = α ◦ f is continuous and α∗ is well-
defined. Similarly, β∗ : cHom(G, K)→ cHom(G, L) is well-defined.

To show that α∗ is continuous, let C be a compact subset of G and let UK be an
open neighborhood of 0 ∈ K. Then V := W(C, UK) is a basic open neighborhood of
0 ∈ cHom(G, K). It follows that U := W(C, α−1[UK]) is an open neighborhood of 0 ∈
cHom(G, H) and α∗ maps U into V as is easily checked.

We show next that our sequence is exact at cHom(G, K). As β∗ ◦ α∗ = (β ◦ α)∗ = 0
we have Im(α∗) ⊆ Ker(β∗). To show that Ker(β∗) ⊆ Im(α∗), let f ∈ Ker(β∗). By the
discrete exactness there exist g ∈ Hom(G, H) such that f = α ◦ g. To conclude, we need to
show that g is continuous. To do so let U be open in H. By assumption α is proper, hence,
there is an open set V ⊆ K such that α[U] = α[H] ∩V. Then U ⊆ α−1[α[H] ∩V] = α−1[V]
and actually U = α−1[V]. In fact, let x ∈ H such that α(x) ∈ V ∩ α[H] = α[U]. So there
exists x′ ∈ U such that α(x) = α(x′) and as α is injective, x = x′ ∈ U. We now get that
g−1[U] = g−1[α−1[V]] = f−1[V] is open in G, showing that g is continuous.

It remains to show that α∗ is proper. Let C be compact in G and U open in H. Then
W(C, U) is a generic open set in cHom(G, H) and W(C, V), where α[U] = α[H] ∩ V, is
open in cHom(G, K). We claim that

α∗[W(C, U)] = α∗[cHom(G, H)] ∩W(C, V).

Let f ∈W(C, U). Then f [C] ⊆ U and hence α∗( f )[W(C, U)] ⊆ α∗[cHom(G, H)]∩W(C, V)
because (α ◦ f )[C] ⊆ α[U] ⊆ V.

Now let g ∈ α∗[cHom(G, H)] ∩W(C, V). Then there is f ∈ cHom(G, H) such that
g = α ◦ f . We show that f ∈W(C, U). In fact, (g[C] ⊆ V) =⇒ ((α[ f [C]] ⊆ α[H]∩V = α[U].
As α is injective it follows that f [C] ⊆ U, i.e., f ∈W(C, U).

(3) By discrete abelian group theory we have that Hom(C, G)
β∗

� Hom(B, G)
α∗
�

Hom(A, G) → Ext(C, G) is exact and Ext(C, G) = {0} as G is divisible. We have
cHom = Hom as A, B, C are discrete, so the exactness of the claimed sequence is clear.
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We need to show that β∗ and α∗ are continuous when the Hom groups are given the
compact-open topology.

To show that β∗ is continuous, let K be a compact (=finite) subset of B and let UG be
an open neighborhood of 0 ∈ G. Then V := W(K, UG) is a generic open neighborhood of
0 ∈ cHom(B, G). Hence, U := W(β[K], UG) is an open neighborhood of 0 ∈ cHom(C, G).
Let f ∈ U. Then f [β[K]] = β∗( f )[K] ⊆ UG, i.e., β∗( f ) ∈ V showing that β∗ is continuous.
Similarly, α∗ is continuous.

It remains to show that β∗ is proper. The set V := W(K, UG), where K is compact
(=finite) in C and UG open in G, is a generic open subset of cHom(C, G). As β is surjective,
there is a finite subset K′ of B such that β[K′] = K. Then U := W(K′, UG) is an open subset
of cHom(B, G). We claim that β∗[V] = U ∩ β∗[cHom(C, G)]. In fact, f ∈ V means that
f [K] ⊆ UG and hence β∗( f )[K′] = f [β[K′]] = f [K] ⊆ UG, so β∗[V] ⊆ U ∩ β∗[cHom(C, G)].
To show equality, let g ∈ U ∩ β∗[cHom(C, G)]. Then there exists f ∈ cHom(C, G) such that
g = f ◦ β and UG ⊃ g[K′] = ( f ◦ β)[K′] = f [β[K′]] = f [K], so f ∈ V.

(4) By Lemma 8(1) we have cHom(T,Q/Z) ∼=t cHom(T,T) ∼=t T∧. By Proposition 2
T∧ ∼=t ∏p∈P(torp(T))∧, and again Lemma 8(1) entails (torp(T))∧ ∼=t
Hom(torp(T),Z(p∞)).

Lemma 9. Let K, X, Y, K′, X′, Y′ be topological abelian groups. It is assumed that the diagram

K X Y

K′ X′ Y′

ins

ξK

α

ξX η

ins β

is commutative, all maps are continuous, its rows are exact, ξX is proper, β is a quotient map, i.e., β
is open, and ξK is an isomorphism. Then α is a quotient map.

Proof. Let U be open in X. As ξ is proper, there is an open set V of X′ such that
ξX [U] = ξX [X] ∩V. We claim that α[U] = η−1[β[V]] that is open in Y.

First let x ∈ U. Then η(α(x)) = β(ξX(x)) ∈ β[V], hence, α(x) ∈ η−1β[V].
Now suppose that y ∈ η−1[β[V]] ⊆ Y. Then η(y) = β(v) for some v ∈ V. There exists

x ∈ X such that α(x) = y. Hence, β(ξX(x)) = η(α(x)) = β(v), and thus,
v − ξX(x) ∈ Ker(β). It follows that there exists k ∈ K such that ξK(k) = v − ξX(x)
and so ξX(k + x) = v ∈ ξ[X] ∩ V = ξ[U]. As ξ is injective it follows that k + x ∈ U and
α(k + x) = α(x) = y.

We have the proper short exact sequence of topological groups

E : Q/Z
ins
� T

γ
� R/Q

where, as usual, T is the quotient group of R, Q/Z the subgroup of T, and R/Q carries the
quotient topology which is indiscrete as Q is dense in R (Lemma 2(1)).

Let A be a discrete group and F a full free subgroup of A of rank m := rk(A). We

have exact sequences F
ins
� A

ϕF
� A/F where A/F is a torsion group. We obtain a diagram

as follows.

Hom(A/F,Q/Z) Hom(A,Q/Z) Hom(F,Q/Z)

Hom(A/F,T) Hom(A,T) Hom(F,T)

Hom(A,R/Q) Hom(F,R/Q)

ϕ∗F

ins∗

ins∗

ins∗ ins∗
ϕ∗F ins∗

γ∗ γ∗

ins∗

(5)
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(1) By standard discrete homological algebra the diagram is commutative and rows and
columns are exact.

(2) All the domains of the Hom groups carry the discrete topology, hence cHom = Hom
in all cases.

(3) All Hom groups in the diagram carry the compact-open topology. It follows from
Lemma 8(2) that all the maps (·)∗ are continuous. It follows from Lemma 8(3) that all
the maps (·)∗ are continuous.

(4) By Lemma 8(1) the left most ins∗ is a topological isomorphism.
(5) By Lemma 8(2) columns 2 and 3 are exact in TAG.
(6) By Lemma 8(3) the three rows are exact in TAG.
(7) The situation of Lemma 9 matches the top part of (5) and we conclude that ins∗ :

Hom(A,Q/Z) → Hom(F,Q/Z) is a quotient map. It is easy to see that ins∗ :
Hom(A,R/Q) → Hom(F,R/Q) is an isomorphism. Since both groups are indis-
crete (by Lemma 2(3)), this is a topological isomorphism.

Theorem 10. Let G = A∧ where A ∈ AG has torsion-free rank m. Then:

(1) ∆(G) = ins∗[Hom(A,Q/Z)] ⊆ G where ins : Q/Z→ T.
(2) G/∆(G) ∼= Rm. Algebraically, c(G) = ∆(c(G))⊕ K where K ∼= Rm.
(3) If Gi = A∧i where Ai ∈ AG (i ∈ I), then ∆(∏i∈I Gi) ∼=t ∏i∈I ∆(Gi).

Proof. (1) Row 2 of (5) implies that ϕ∗F(Hom(A/F,T)) ⊆ ins∗[Hom(A,Q/Z)] where
∆ = ϕ∗F(Hom(A/F,T)) is a delta subgroup of G. As F was arbitrary it follows that
∆(G) ⊆ ins∗[Hom(A,Q/Z)]. It remains to show that ∆(G) ⊃ ins∗[Hom(A,Q/Z)].

Let f ∈ Hom(A,Q/Z) and set K = Ker( f ). Then f [A] ⊆ Q/Z is a torsion group, so
A/K is a torsion group and any full free subgroup F of K is a full free subgroup of A. Let
F be so given. Then g : A/F → Q/Z : g(a + F) = f (a) is a well-defined homomorphism
and f = g ◦ ϕF = ϕ∗F(g), so f ∈ ∆ ⊆ ∆(G).

(2) We have algebraic isomorphisms G/∆(G) ∼= Hom(A,R/Q) ∼= Hom(F,R/Q) ∼=
(R/Q)m ∼= Rm, the first isomorphism granted by exactness of column 2 of (5), the second
isomorphism by (7), and the remaining isomorphism is easy to see. The group ∆(c(G))
is divisible as observed earlier (see Theorem 6(6)), so it is algebraically a direct summand
of c(G). Since rk(A0) = m, applying the above argument to c(G) = A∧0 we deduce
that c(G)/∆(c(G)) ∼= (R/Q)m. Therefore, we have c(G) = ∆(c(G)) ⊕ K, with K ∼=
c(G)/∆(c(G)) ∼= (R/Q)m ∼= Rm.

(3) Set A =
⊕

i∈I Ai and G = ∏i∈I Gi. Then we have G = ∏i∈I A∧i ∼=t A∧, so G ∼=t A∧

and ∆(G) ∼=t Hom(A,Q/Z) ∼=t ∏i∈I Hom(Ai,Q/Z) ∼=t ∏i∈I ∆(Gi).

From now on, we will identify ∆(G) with Hom(A,Q/Z) if G = A∧ is compact.
The next corollary, establishing that ∆ is a functorial subgroup and showing that ∆, as a
functor, preserves exactness of short sequences of compact groups, will be reproved in
greater generality in Proposition 10.

Corollary 3. (1) Let G and H be compact abelian groups and g ∈ cHom(G, H). Then
g(∆(G)) ⊆ ∆(H); in particular ∆(G) is fully invariant in G and if G ≤ H, then
∆(G) ≤ ∆(H).

(2) Let G, H, K be compact abelian groups. Suppose that G � H � K is a short exact sequence
in TAG. Then ∆(G) � ∆(H) � ∆(K) is a short exact sequence in TAG.

Proof. (1) Without loss of generality G = A∧, H = B∧ and g = f∧ = f ∗ for some

f ∈ Hom(B, A). Then ∆(G) = Hom(A,Q/Z)
g→ Hom(B,Q/Z) = ∆(H).

(2) Without loss of generality G = A∧, H = B∧, K = C∧ and G � H � K is the
dual of C � B � A. Then Hom(A,Q/Z) � Hom(B,Q/Z) � Hom(C,Q/Z) is an exact
sequence of topological groups (Lemma 8(3)).
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The next proposition shows how Fat Delta can be used to recognize finite-dimensional
compact groups.

Proposition 7. Let G be a compact abelian group and ∆ ∈ D(G) with G/∆ ∼=t Tκ , where
κ = dim(G) = rk(G∧). Then ∆(G)/∆ ∼= (Q/Z)κ . In particular, ∆(G)/∆ = tor(G/∆) if and
only if G is finite-dimensional.

Proof. To the proper short exact sequence ∆ � G � G/∆ apply Corollary 3(2) to deduce
that ∆(G)/∆ ∼= ∆(G/∆), due to the fact that ∆ = ∆(∆). Since G/∆ ∼=t Tκ , we have
∆(G)/∆ ∼= ∆(Tκ) ∼=t (∆(T))κ = (Q/Z)κ by Theorem 10(3). Since (Q/Z)κ is torsion
precisely when κ < ∞, we are done.

We will use the following well-known result below.

Theorem 11 ([24], page 86, Corollary 8.48). Let G, C be Hausdorff abelian groups, assume that
C is complete, H is a dense subgroup of G. Then every morphism f : H → C has a unique extension
f : G → C.

Theorem 12. Let G and H be compact abelian groups. Then G ∼=t H if and only if ∆(G) ∼=t ∆(H).

Proof. (a) Suppose φ : G → H is an isomorphism of topological groups. By Corollary 3
applied to φ and φ−1, we obtain φ(∆(G)) = ∆(H), hence ∆(G) ∼=t ∆(H).

(b) Let f : ∆(G) → ∆(H) be an isomorphism of topological groups. The group H
is compact, hence complete, and ∆(G) is dense in G. Hence, there is a unique extension
morphism f : G → H of f . Similarly, we have the unique continuous extension f−1 : H →
G of f−1 : ∆(H)→ ∆(G). The morphism f−1 ◦ f : G → G extends id∆(G) : ∆(G)→ ∆(G)

which is also extended by idG, hence, by uniqueness we have f−1 ◦ f = idG. Similarly,
f ◦ f−1 = idH . Hence, ( f )−1 = f−1 is continuous.

Theorem 12 and Corollary 3 imply that G 7→ ∆(G) is a category equivalence on the
category of compact abelian groups to the category of all ∆(G). This calls for a useful
characterization of the class of topological groups that appear as ∆(G) for some compact abelian
group G. So far we can say the following. If D is a topological group such that D ∼=t ∆(G)
for some compact group G, then the following are true.

(1) D is totally disconnected and zero-dimensional (Proposition 11).
(2) The completion D̂ of D is compact (i.e., D is precompact), D = ∆(D̂) and tor(D) =

tor(D̂).
(3) D contains a directed family D of compact totally disconnected subgroups such that

D =
⋃D.

(4) D ∈ LCA if and only if D̂ is totally disconnected, and, if so, D = D̂ is compact.
(5) D is totally minimal (Theorem 19).

Given a group D with all the required properties, we would have ∆(D̂) ∼=t D, i.e., the
completion functor is the inverse of the functor ∆.

Theorem 12 and the preceding discussion suggest to study the structure of ∆(G) for
a given compact group G. We will attempt this below in the simplest possible case of
solenoids. A solenoid is a compact connected group of dimension 1, i.e., the dual of a
torsion-free group of rank 1. To do so, we will use a simple result on divisible hulls of
discrete groups and Lemma 10 on divisible hulls of certain products of groups.

Lemma 10. Let P be a set of prime numbers, Xp be discrete groups and X = ∏p∈P Xp. For each
p ∈ P, let Dp be a divisible hull of Xp. Let D := ∏p∈P Dp. Assume that each Dp/Xp is a p-
primary group. Let D(X) be a subgroup of D containing X such that D(X)/X = tor(D/X). Then

(1) D(X) is a divisible hull of X,
(2) D(X) = ∏loc

p∈P(Dp, Xp) := {(dp) ∈ D | dp ∈ Xp for almost all p ∈ P},
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(3) D(X)/X ∼=
⊕

p∈P Dp/Xp.

Proof. (1) Clearly D is divisible as a product of divisible groups and

D/ D(X) ∼= (D/X)/(D(X)/X) ∼= (D/X)/(tor(D/X))

is torsion-free, hence D(X) is pure in D and therefore divisible. It remains to show that X is
essential in D(X). For any prime q, we have D[q] = ∏p∈P Dp[q] ≤ ∏p∈P Xp = X. Indeed,
for q 6= p ∈ P we have Dp[q] ≤ Xp because Dp/Xp is p-primary, while Dq[q] ⊆ Xq because
Dq is the divisible hull of Xq.

(2) Let (dp) ∈ D(X). Then m(dp) ∈ X for some m 6= 0 which requires that ∀ p ∈ P :
mdp ∈ Xp. Our hypotheses imply that dp ∈ Xp for all those p that do not divide m. So
D(X) ⊆ ∏loc

p∈P(Dp, Xp) and equality is evident.
(3) The map ξ : D(X) → ⊕

p∈P Dp/Xp : ξ((dp)) = ∑p∈P dp + Xp is evidently well-
defined, surjective, and Ker(ξ) = X.

Torsion-free groups A with rk(A) = 1, rank-one groups for short, are discussed and
classified in ([17], Chapter 12, Section 1). These are exactly the groups isomorphic with
additive subgroups of Q containing Z. Types are equivalence classes [(hp)p∈P] of “height
sequences” (hp)p∈P where 0 ≤ hp ≤ ∞. Two height sequences are equivalent if they differ
only at finitely many places where both sequences have finite entries. For the precise
definition of type see Lemma 11(1) or ([17], p. 409, 411).

Two rank-one groups are isomorphic if and only if their types are equal.
Lemma 11 displays a representative rank-one group, its type, and dual solenoid. For a

prime p, we define 1
p∞ Z :=

〈
1
pk Z | k ∈ N

〉
.

Lemma 11. (1) Let Z ≤ A ≤ Q. Then there exist values hp such that

A =

〈
1

php Z | p ∈ P, 0 ≤ hp ≤ ∞
〉

, A
Z
∼=
⊕

p∈P Z(php), and tp(A) = [(hp)p∈P].

For P∞ := {p | hp = ∞}, one has p ∈ P∞ if and only if pA = A.
(2) Let Σ = A∧ and ∆ := (A/Z)∧. Then (with a harmless identification) ∆ ∈ D(Σ), and ∆ ∼=t

∏p∈P Ẑ(php) where Ẑ(p∞) = Ẑp is the group of p-adic integers and Ẑ(php) = Z(php) is
the cyclic group of order php for hp < ∞. Furthermore, Σ and ∆(Σ) are divisible, ∆(Σ)/∆ ∼=
Q/Z, and tor(Σ) ⊆ ∆(Σ).

(3) Soc(Σ) =
⊕

p 6∈P∞ Z(p) and tor(Σ) =
⊕

p 6∈P∞ Z(p∞).

Proof. (1) Given p ∈ P either A contains every fraction 1/pk (in which case hp = ∞) or A
contains a smallest fraction 1/php . These fractions generate A and determine the type of A.
(The hp are the “p-heights” of 1 ∈ A.)
To prove the last assertion, note that pA = A implies hp = ∞. Conversely, if hp = ∞, then

1
php Z = 〈 p

pk Z | k ∈ N〉 = p
(

1
php Z

)
, thus pA = A.

(2) Σ is divisible by ([1], Corollary 8.5, p. 410). By Theorem 6(6) it follows that ∆(Σ) is
pure in Σ and hence is also divisible. By Proposition 7 ∆(Σ)/∆ ∼= Q/Z and by Theorem 6(4)
tor(Σ) ⊆ ∆(Σ). The rest is clear.

(3) By Corollary 1, rkp(Σ) = rkp(A/pA) ≤ 1.
According to (1), rkp(A/pA) > 0 if and only if A 6= pA, i.e., when hp < ∞. Hence,

rkp(Σ) > 0 if and only if hp < ∞ (i.e., when p 6∈ P∞) and in this case rkp(Σ) = 1.
This proves that Soc(Σ) =

⊕
p/∈P∞ Z(p). As tor(Σ) is divisible, it is the divisible hull of⊕

p/∈P∞ Z(p) and so tor(Σ) =
⊕

p/∈P∞ Z(p∞).

We illustrate the situation with some special cases.
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Example 1. (1) For a first concrete example, let A1 = ∑p∈P
1
pZ and Σ1 = A∧1 . Then

tp(A1) = [(1, 1, . . .)], and ∆(Σ1) is the divisible hull of ∆ = ∏p∈P Z(p) and ∆(Σ1) =

∏loc
p∈P(Z(p∞),Z(p)).

(2) Next let A2 = Q. Then tp(A2) = [(∞, ∞, . . .)], Σ2 = Q∧ is torsion-free, ∆ = ∏p∈P Ẑp

and ∆(Σ2) is the divisible hull of ∆, so ∆(Σ2) = ∏loc
p∈P(Q̂p, Ẑp) where Q̂p = 1

p∞ Ẑp is the
additive group of p-adic numbers.

(3) For A3 = Z, tp(A3) = [(0, 0, . . .)], Σ3 = Z∧ = T, ∆ = {0}, but Soc(Σ3) =
⊕

p∈P Z(p) ⊆
∆(Σ3), ∆(Σ3) is the divisible hull of Soc(Σ3), so ∆(Σ3) =

⊕
p∈P Z(p∞) = Q/Z = tor(Σ3).

Note that ∆ is a particular δ–subgroup of Σ. Sometimes (e.g., (1), (2)), but not always
(e.g., (3)), ∆(Σ) is the divisible hull of ∆. In the general case additional δ–subgroups must
be employed.

Proof. (1) In this case, ∀ p ∈ P : hp = 1. By Lemma 11(1) ∆(Σ1) is the divisible hull of ∆,
and the rest follows from Lemma 10.

(2) Σ2 = Q∧ is torsion-free, Soc(Σ2) = {0} ⊆ ∆, A/Z = Q/Z =
⊕

p∈P Z(p∞),
∆ := (A/Z)∧ = ∏p∈P Ẑp, and ∆(Σ) is the divisible hull of ∆.

(3) Clear.

The next theorem deals with the general case. The relevance of the final assertion will
become clear in Section 7.3 (see Definition 9 and Example 4, see also Problem 2).

Theorem 13. Let A = ∑p∈P
1

php Z. Define Σ = A∧ and P∞ as above, and let

Pfin := {p | 0 < hp < ∞} and P0 := {p | hp = 0}.

Then ∆(Σ) is the divisible hull of ∏p∈P∞ Ẑp ⊕∏p∈Pfin
Z(php)⊕⊕p∈P0

Z(p), so

∆(Σ) =
loc

∏
p∈P∞

(Qp, Ẑp)⊕
loc

∏
p∈Pfin

(Z(p∞),Z(php))⊕
⊕
p∈P0

Z(p∞). (6)

Moreover, Soc(Σ) is dense in Σ if and only if P0 is infinite.

Proof. ∆ = ∏p∈P∞ Ẑp ⊕∏p∈Pfin
Z(php) ⊆ ∆(Σ) and ∆(Σ) is not the divisible hull of ∆ if

P0 6= ∅. However, (Lemma 11) D := ∆⊕⊕p∈P0
Z(p) ⊆ ∆(Σ) and Soc(∆(Σ)) ⊆ Soc(Σ) ⊆

D. Hence, ∆(Σ) is the divisible hull of D. Apply Lemma 10.
Recall that Soc(Σ) =

⊕
p∈P0

Z(p)⊕⊕p∈Pfin
Z(p), where Z(p) = Σ[p] when the latter

is non-trivial. Let φ : Σ→ Σ/∆ = T. We claim that

φ(
⊕
p∈P0

Z(p)) =
⊕
p∈P0

T[p]. (7)

Indeed, if t = φ(x) ∈ (Σ/∆)[p] for some x ∈ Σ and p ∈ P0, then hp = 0 and pt = 0 in
Σ/∆, so px ∈ ∆. It follows from the above description of ∆ that ∆ is p-divisible for p ∈ P0.
Hence, px = pz where z ∈ ∆. Then px − pz = 0, so x − z = Σ[p] = Z(p). Therefore,
t = φ(x) = φ(x− z). This proves (7).

If P0 is infinite,
⊕

p∈P0
T[p] is dense in T, hence (7) implies that the compact subgroup

Σ1 :=
⊕

p∈P0
Σ[p] of Σ satisfies φ(Σ1) =

⊕
p∈P0

T[p] = T. Hence, 1 = dimT ≤ dim Σ1 ≤
dim Σ = 1 and consequently, dim Σ1 = dim Σ = 1, hence dim Σ/Σ1 = dim Σ−dim Σ1 = 0.
Since Σ/Σ1 is connected, this implies Σ1 = Σ.
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If P0 is finite, then Σ1 is finite, while Σ2 =
⊕

p∈Pfin
Σ[p] ≤ ∆. Therefore, using again

Lemma 11(3),

Soc(Σ) =
⊕
p∈P0

Σ[p] +
⊕

p∈Pfin

Σ[p] = Σ1 +
⊕

p∈Pfin

Σ[p] = Σ1 + Σ2 ≤ Σ1 + ∆ 6= Σ,

since Σ1 + ∆ is a totally disconnected, while Σ is connected.

Remark 4. By Theorem 12, two compact groups are isomorphic if and only if their Fat Deltas
are isomorphic as topological groups. A classification of Fat Deltas amounts to a classification of
compact groups. A compact group is just the completion of its Fat Delta. Solenoids indicate the
problems ahead.

For any solenoid Σ, we have rkp(Σ) = 0 for p ∈ P∞, rkp(Σ) = 1 for p ∈ P f in ∪ P0.
For the concrete examples rk(∆(Σ1)) = 2ℵ0 , rk(∆(Σ2)) = 2ℵ0 , while rk(∆(Σ3)) = 0. In general
rk(∆(Σ)) = 2ℵ0 except that rk(∆(Σ)) = 0 for Σ = Z∧ = T. The algebraic invariants of ∆(Σ)
are the same for many non-isomorphic solenoids Σ. So the topological isomorphism class of ∆(Σ),
and hence of Σ, is in no way determined by these invariants. To distinguish between two Fat Deltas
that are algebraically isomorphic one needs to know their topology. The description (6) involves the
types of Σ. It may help in determining the topology of ∆(Σ). Conversely, knowing the topology of
∆(Σ) should make it possible to recapture the type of Σ.

6. Resolutions

The Resolution Theorem, a structure theorem for compact abelian groups, first ap-
peared in [25] and later in an extended form in ([1], Theorem 8.20, p. 420), where it got
its name.

Definition 3. Recall that the “Lie algebra” of G, L(G), defined as L(G) = cHom(R, G), is a
real topological vector space via the stipulation (r f )(x) := f (rx) where f ∈ L(G) and r, x ∈ R,
and carries the topology of uniform convergence on compact sets ([1], Definition 5.7, p. 117,
Proposition 7.36, p. 373). For every morphism ϕ : G → H in TAG, one obtains a morphism L(ϕ) :
L(G)→ L(H) in the category TAGR of real topological vector spaces by letting L(ϕ)( f ) := ϕ ◦ f
for f ∈ L(G). This defines a functor L : TAG→ TAGR with the following useful properties:

(i) ([1], Proposition 7.38(i), p. 374) L(G) = L(c(G)) and L commutes with products, i.e.,
L(∏i Gi) ∼=t ∏i L(Gi).

(ii) ([1], Proposition 7.38(ii), p. 374) If ϕ : G → H is a morphism in TAG, then L(ϕ) is injective,
whenever Ker ϕ is totally disconnected;

(iii) ([1], Corollary 8.19, p. 419) if G is a compact group and ∆ ∈ D(G) with G/∆ = Tm, then,
with ϕ : G → G/∆, L(ϕ) : L(G)→ L(G/∆) = Rm is a topological isomorphism. The last
equality is in fact a topological isomorphism obtained as composition of two others. The first
one is the isomorphism L(Tm) ∼=t L(T)m from (i). The second one is L(T) ∼=t R, that can be
obtained from the obvious equality L(T) = R∧, by letting ρ : R→ L(T) : ρ(r)(x) = rx +Z
for r, x ∈ R.

The exponential map is the morphism expG : L(G) → G defined by exp(χ) = χ(1) ([1],
p. 372). It “commutes" with morphisms ϕ : G → H in TAG, i.e., ϕ ◦ expG = expH ◦L(ϕ). This
means that exp = (expG)G∈TAG is a natural transformation from the functor L to the identity
functor of TAG. For further properties of the “Lie algebra” L(G) and the “exponential morphism”
see ([1] Proposition 7.38, p. 374, Theorem 7.66, p. 395)). In particular, expT : L(T)→ T is defined
by expT(ρ(r)) = r +Z for r ∈ R and ρ as in (iii) above.

We can now recall the original Resolution Theorem.
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Proposition 8 ([25], Proposition 2.2). For a compact abelian group G there is a compact zero-
dimensional subgroup ∆ of G such that the homomorphism

ϕ : ∆× L(G)→ G : ϕ((d, χ)) = d + exp(χ)

satisfies the following conditions:

(1) ϕ is continuous, surjective, and open, i.e., is a quotient morphism.
(2) Ker(ϕ) is algebraically and topologically isomorphic to Γ := exp−1[∆], and Γ is a closed to-

tally disconnected subgroup of L(G). In particular, it does not contain any nonzero vector spaces.
(3) ϕ[{0} × L(G)] = exp[L(G)] is dense in c(G), the identity component of G.

In the above notation, one can prove also that exp[L(G)] = a(G), the path connected
component of 0, while c(G) = a(G) ([1], Theorem 8.30, p. 430 and Theorem 8.4, p. 409).

We first revisit the classical Resolution Theorem for compact connected groups of
finite dimension with substantial additions as we determine the kernel of the resolution
map ϕ explicitly up to topological isomorphism (see (4)).

Theorem 14 (Resolution Theorem). Let G be a compact abelian group of finite dimension n :=
dim(G). For ∆ ∈ D(G) define ϕ : ∆ × L(G) → G by ϕ(d, χ) = d + exp(χ) for (d, χ) ∈
∆× L(G). Then:

(1) ϕ is surjective, continuous, and open.
(2) Γ := Ker(ϕ) = {(− exp(χ), χ) | χ ∈ exp−1[∆]}. The projection ∆ × L(G) → L(G)

maps Γ isomorphically onto exp−1[∆], so Γ ∼=t exp−1[∆]. Furthermore, exp−1[∆] is a closed
totally disconnected subgroup of L(G).

(3) L(G) ∼=t Rn, in particular dimR(L(G)) = n;
(4) Γ ∼=t Zn where Zn carries the discrete topology, i.e., the subspace topology in Rn.
(5) exp[exp−1[∆]] = ∆ ∩ a(G) is dense in ∆.

Proof. (1) and (2) are part of ([1], Theorem 8.20, p. 420).
(3) Follows from (iii).
(4) By (2) the projection ∆× L(G)→ L(G) induces a continuous epimorphism

G ∼=t
∆× L(G)

Γ
�

L(G)

exp−1[∆]

hence L(G)
exp−1[∆] is compact. By ([1], Theorem A1.12.(i), p. 715) and (3), there is a basis {ei}

of L(G) ∼=t Rn, i.e., L(G) = Re1 ⊕ · · · ⊕ Ren, such that exp−1[∆] ∼=t Re1 ⊕ · · · ⊕ Rep ⊕
Zep+1 ⊕ · · · ⊕Zep+q and L(G)

exp−1[∆]
∼=t Tq ⊕Rn−p−q. As exp−1[∆] is totally disconnected we

have p = 0, and as L(G)/ exp−1[∆] is compact, 0 = n− p− q = n− q and it follows that
q = n.

(5) It is routine to verify that exp[exp−1[∆]] = ∆ ∩ a(G). Set Z∆ := ∆ ∩ a(G). It is
easily seen that Γ ⊂ Z∆ × L(G) ⊂ Z∆ × L(G) ⊂ ∆× L(G). We obtain the exact sequence

Z∆ × L(G)

Γ
ins
�

∆× L(G)

Γ

f
�

∆× L(G)

Z∆ × L(G)
∼=t

∆
Z∆

Here ∆×L(G)
Γ

∼=t G is connected, hence ∆/Z∆ is connected as well, by the surjectivity of
f . On the other hand, ∆/Z∆ is totally disconnected because ∆, being compact and totally
disconnected is profinite ([1], Theorem 1.34, p. 22), and quotients of profinite groups are
profinite ([26], Proposition 2.2.1(a), p. 28), and in particular totally disconnected. This is
possible only when the quotient ∆/Z∆ is trivial. Therefore, Z∆ = ∆.
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Remark 5. (a) For the torus G = Tn one has L(G) = Rn, so the Resolution theorem applied to G
is simply the covering homomorphism ϕ : Rn → Tn if one takes ∆ = 0 (in general ∆ must be a
finite subgroup of Tn).

(b) Using the fact that exp[L(G)] = a(G), the covering map ϕ could be replaced by the
surjective, continuous, and open map ψ : ∆× a(G)→ G : ϕ(d, x) = d+ x, for (d, x) ∈ ∆× a(G)
which has the advantage that now both groups ∆ and a(G) are subgroups of G. One has to
take into account that the map expG : L(G) → a(G) need not be injective. More precisely,
K(G) = Ker(exp) is trivial precisely when G is torus-free. However, even when G is torus-free,
this map is only a continuous isomorphism that need not be a homeomorhism.

(c) As an application of Theorem 14 we obtain a nice presentation of the solenoid Σ2 = Q∧
from Example 1 (2). As shown there, Σ2 has a delta subgroup ∆ = Ẑ = ∏p∈P Ẑp and Σ2/∆ ∼= T.
So by Definition 3 (iii), L(Σ2) ∼=t R. Hence, Theorem 14 gives a resolution ϕ : ∆× R → Σ2,
with Γ = ker ϕ ∼=t Z and ∆∩ a(Σ2) = 〈χ1〉 ∼= Z, where χ1 : Q→ T is defined by χ1(x) = x+Z
for x ∈ Q.

The same representation can also be obtained directly by standard use of Pontryagin duality.
Indeed, let 1 = (1p)p∈P ∈ ∆ and u = (1,−1) ∈ ∆×R. Then 〈u〉 ∼=t Z and K = (∆×R)/〈u〉
is a compact connected torsion-free group of dimension one, so its dual K∧ is a discrete divisible
torsion-free group of rank one. Therefore, K∧ ∼= Q and K ∼=t Q∧.

We also obtain a “canonical resolution”, where the arbitrary ∆ ∈ D(G) is replaced by
the canonical subgroup ∆(G).

Theorem 15 (Canonical Resolution Theorem). Let G be a compact abelian group and ∆(G) =⋃D(G). Then

(1) the map ϕ : ∆(G) × L(G) → G : ϕ((d, χ)) = d + exp(χ) = d + χ(1) is surjective,
continuous, and open;

(2) Γ := Ker(ϕ) = {(exp(χ),−χ) | χ ∈ exp−1[∆(G)]} ∼=t exp−1[∆(G)] ⊂ L(G) is
torsion-free and ϕ induces an isomorphism (∆(G)× L(G))/Γ ∼=t G;

(3) If G is connected of finite dimension dim(G) = n, then Γ ∼=t Qn.
(4) exp[exp−1[∆(G)]] = a(G) ∩ ∆(G) is dense in G.

Proof. (1) The map ϕ is clearly homomorphic, continuous and surjective. To show that it is
open, let W be an open set in ∆(G)× L(G). We can assume without loss of generality that
it is a basic open set, i.e., W = U ×U′, where U is open in ∆(G) and U′ is open in L(G).
Then ∀∆ ∈ D(G) : ∆ ∩U is an open set of ∆, so (∆ ∩U)×U′ is an open set of ∆× L(G).
By the ordinary Resolution Theorem O∆ := ϕ[(∆ ∩U)×U′] is open in G. Hence, so is

ϕ[U ×U′] = ϕ

 ⋃
∆∈D(G)

(∆ ∩U)

×U′

 = ϕ

 ⋃
∆∈D(G)

(∆ ∩U)×U′

= ⋃
∆∈D(G)

O∆.

(2) The map Γ → exp−1[∆] : (exp(χ),−χ) → χ clearly is bijective, homomorphic,
continuous and open. Being isomorphic to a subgroup of L(G), the group Γ is torsion-free.
The last assertion is obvious.

(3) Fix arbitrarily ∆ ∈ D(G) and let

ϕ∆ : ∆× L(G)→ G, defined by ϕ∆(d, χ) = d + exp(χ), and Γ∆ = Ker(ϕ∆).

By (2) Γ is torsion-free. We will show that Γ is divisible and Γ/Γ∆ is a torsion group. This
says that Γ is the usual algebraic divisible hull of Γ∆

∼=t Ze1 ⊕ · · · ⊕ Zen ⊂ L(G) (see the
proof of item (4) of Theorem 14). Hence, exp−1[∆(G)] ∼=t Γ is the divisible hull of exp−1[∆]
and is Qe1 ⊕ · · · ⊕Qen ⊂ L(G) with the subspace topology. This shows that Γ ∼=t Qn.

To show that exp−1[∆], and hence Γ, is divisible, suppose that x ∈ L(G) and exp(x) ∈
∆(G). As L(G) is divisible, given m ∈ N, there is y ∈ L(G) such that my = x. Hence,
m exp(y) = exp(x) and as ∆(G) is divisible (Proposition 7(4)) there is d ∈ ∆(G) such that
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m exp(y) = md. It follows that exp(y)− d ∈ tor(G) ⊂ ∆(G), hence exp(y) ∈ ∆(G) and
y ∈ exp−1(∆) which establishes the claim.

Finally, to show that Γ/Γ∆ is a torsion group let χ ∈ exp−1[∆(G)], i.e., exp(χ) ∈ ∆(G).
By Proposition 7, there is m ∈ N such that mχ ∈ ∆. It follows that m(exp(χ),−χ) =
(exp(mχ),−mχ) ∈ Γ∆.

(4) Write ∆(G) =
⋃

∆∈D(G) ∆ and use the fact that a(G) ∩ ∆ is dense in ∆ for every
∆ ∈ D(G), by Theorem 14(5). Then

a(G) ∩ ∆(G) = a(G) ∩
⋃

∆∈D(G)

∆ =
⋃

∆∈D(G)

a(G) ∩ ∆ ⊇
⋃

∆∈D(G)

a(G) ∩ ∆ ⊇
⋃

∆∈D(G)

∆ = ∆(G).

Since ∆(G) is dense in G, this proves that a(G) ∩ ∆(G) is dense in G.

In the next example, we apply the canonical resolution theorem 15 to two solenoids.
The first one is T = Z∧ and its canonical resolution adds nothing essentially new.

Example 2. (a) For the solenoid, T = Z∧ there is an isomorphism ρ : R → L(G) and
exp(ρ(r)) = r + Z, where r ∈ R, by Definition 3(iii). Since ∆(T) = tor(T) = Q/Z, we
obtain the canonical resolution ϕ : Q/Z×R→ T : ϕ((a +Z, r)) = (a +Z) + (r +Z) =
a + r +Z with Γ = {(r +Z,−r) | r ∈ Q} and evidently Γ ∼=t Q.

(b) For the solenoid Σ2 = Q∧ from Example 1 (2) ∆(Σ2) is the divisible hull of its delta subgroup
∆ = ∏p Ẑp. Moreover, L(Σ2) ∼=t R (see Remark 5(c)). Theorem 15 gives the canonical
resolution ϕ : ∆(Σ2)×R → Σ2 with Γ = ker ϕ ∼=t Q as in (a) and a(Σ2) ∩ ∆(Σ2) ∼= Q
dense in Σ2.
Denote by Q̃ the group ∆(Σ2) equipped with the finer topology obtained by taking ∆ as an
open topological subgroup of Q̃. Then Q̃ is a locally compact ring and A := Q̃×R is the adele
ring of Q. Composing ϕ with the identity A→ ∆(Σ2)×R we obtain a continuous surjective
homomorphism ϕ : A → Σ2 which is again open by the Open Mapping Theorem (as A is
σ-compact). Hence, Σ2 is a quotient of A.

7. Fat Delta Through the Looking Glass of Quasi-Torsion Elements

Fat Delta existed previously in the literature in a rather different form and in greater
generality. In Section 7.1 we recall the definition of quasi-torsion element and the sub-
group td(G) of quasi-torsion elements, showing that td(G) = ∆(G) for compact groups
(Proposition 9).

7.1. Quasi-Torsion Elements

Definition 4 (([3], p. 127), [4]). Let G be a Hausdorff abelian topological group. Define td(G) to
be the set of all quasi-torsion elements of G, where x ∈ G is quasi-torsion if 〈x〉 is either finite or
its subspace topology is non-discrete and linear.

This definition was given by [4] for arbitrary, not necessarily abelian, topological
groups. Then td(G) need not be a subgroup of G, as the following example shows.

Example 3. Take the compact group G = SL3(R) of rotations of R3. Then td(G) = tor(G) is
the set of all torsion elements of G, while the subgroup 〈td(G)〉 generated by td(G) is the whole
G since td(G) is invariant under conjugations and G is a simple group. A geometric proof of the
equality 〈td(G)〉 = G is based on the well-known fact that every rotation can be presented as a
composition of two symmetries (known to have order 2).

Remark 6. If every convergent sequence is eventually constant in a topological abelian group
G, then td(G) = tor(G) (the assumption td(G) 6= tor(G) leads to a contradiction: if x ∈
td(G) \ tor(G), then the group 〈x〉 is non-discrete and metrizable, so 〈x〉 has convergent sequences
that are not eventually constant).
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Infinite compact groups always have convergent sequences that are not eventually constant
(since they contain copies of the Cantor set {0, 1}ω). An example of an infinite precompact abelian
group where every convergent sequence is eventually constant can be obtained as follows. For a
TAG–group (G, τ) the Bohr topology of (G, τ) is the initial topology τ+ of all χ ∈ (G, τ)∧ (that
can be obtained by the diagonal embedding G → TG∧ ). For the sake of brevity we also write G+ for
(G, τ+). In case τ is discrete, G+ is usually denoted by G#. It is a well-known fact that in G# every
convergent sequence is eventually constant ([3]), so td(G#) = tor(G#).

Proposition 9. Let G be a topological abelian group.

1. If x ∈ G, then x ∈ td(G) if and only if there exists a continuous homomorphism f :
(Z, νZ)→ G with f (1) = x;

2. td(G) is a subgroup of G containing every compact totally disconnected subgroup of G;
3. If G is complete (in particular, locally compact), then td(G) coincides with the union of all

compact, totally disconnected subgroups of G.

Proof. (1) Assume that x ∈ td(G). If 〈x〉 is finite, then 〈x〉 is isomorphic to a quotient
group of (Z, νZ), so the desired homomorphism f is easy to obtain. If 〈x〉 is infinite
and carries a non-discrete linear topology, then the homomorphism f : (Z, νZ) → G
with f (1) = x is obviously continuous. On the other hand, if there exists a continuous
homomorphism f : (Z, νZ) → G with f (1) = x, then the subgroup 〈x〉 is either finite or
has linear precompact topology, so x ∈ td(G).

(2) If x, y ∈ td(G), then by (1) there exist continuous homomorphisms f , g : (Z, νZ)→
G with f (1) = x and g(1) = y. This gives a continuous homomorphism h = f ⊕ g :
(Z, νZ) × (Z, νZ) → G defined by h(n, m) = nx + my. The restriction h �∆Z : ∆Z → G
satisfies h(1, 1) = x + y and since ∆Z ∼= (Z, νZ), witnesses x + y ∈ td(G) by (1).

If N is a compact, totally disconnected subgroup of G, then N has a linear topology.
Therefore, for every x ∈ N, the subgroup 〈x〉 is either finite or its subspace topology is linear
and non-discrete (as otherwise 〈x〉 it would be a closed (so compact) discrete subgroup of
N, a contradiction). Therefore, x ∈ td(G).

(3) Assume now that G complete and x ∈ td(G). Then x is quasi-torsion and 〈x〉 is
either finite or its subspace topology is non-discrete and linear. Hence, its closure 〈x〉 is the
completion of 〈x〉, and thus, compact and totally disconnected.

For a compact group G = A∧, by Proposition 5 and Proposition 9(2), we have td(G) =
∆(G), and by Theorem 10 ∆(G) = Hom(A,Q/Z). We summarize:

Theorem 16. Let G = A∧ where A ∈ AG. Then

∆(G) = td(G) = Hom(A,Q/Z).

We quote from previous papers reconfirming foregoing results.

Proposition 10. (1) ([3], Theorem 4.1.7(a)) If f : G → H is a continuous homomorphism of
topological abelian groups, then f [td(G)] ⊆ td(H), i.e., td is a functorial subgroup; in
particular td(G) is fully invariant in G.

(2) ([27], Theorem 11) If G and H in (1) are compact and f is surjective, then f [td(G)] = td(H).
(3) (([4], Proposition 1.3(a)) and ([3], Theorem 4.1.7(b))) If G is a topological abelian group and

H is a subgroup of G, then td(H) = H ∩ td(G);
(4) (([4], Proposition 1.4(a)) and ([3], Theorem 4.1.7(e))) Let {Gi : i ∈ I} be a family of topological

abelian groups. Then td(∏i∈I Gi) = ∏i∈I td(Gi).

Remark 7. Comments on the various items of Proposition 10.

(a) Items (1), (3) and (4) follow from Proposition 9 and reinforce Corollary 3(1) by showing that
td is a functorial subgroup in the larger category TAG.
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(b) In (2) “compact" cannot be replaced by “locally compact" (take G = R, H = T and f the
canonical quotient map, then td(R) = {0}, while td(T) = Q/Z 6= {0}).

(c) Item (4) reinforces Theorem 10(3) showing that it remains valid in the larger category TAG.

Now we use item (1) from Proposition 10 to show that the subgroup td(G) is zero-
dimensional when G is precompact, i.e., a subgroup of a compact group. We shall see
in [16] that this remains true under the weaker assumption that G is locally precompact,
i.e., a subgroup of a locally compact group.

Proposition 11. Let G be a precompact abelian group. Then every subgroup H of G with [H :
(H ∩ td(G))] < c is zero-dimensional. In particular, td(G) is zero-dimensional.

Proof. The following folklore fact will be needed in the sequel:

Claim 1. Every proper subgroup H of T is zero-dimensional.

Proof. H is either finite of dense. If H is finite then it is clearly zero-dimensional. If H
is dense, then for any fixed a ∈ T \ H also a + H is dense and disjoint from H. Hence,
{Γb,c ∩ H : b, c ∈ a + H}, where Γb,c is an open arc in T with ends b and c, is a base of the
induced topology on H consisting of clopen sets of H.

First, we show that χ[td(G)] ⊆ Q/Z for any χ ∈ G∧. Assume that x ∈ td(G), to check
that χ(x) ∈ Q/Z pick an arbitrary χ ∈ G∧. Then χ(x) ∈ td(T), by Proposition 10(1).
By Example 1(3), td(T) = Q/Z, so χ(x) ∈ Q/Z.

Since H/(H ∩ td(G)) ∼= (H + td(G))/ td(G), our hypothesis implies that [(H +
td(G)) : td(G)] < c. Hense, for every χ ∈ G∧ the subgroup χ[H + td(G)] contains
the countable subgroup χ[td(G)] ⊆ Q/Z as a subgroup of index < c, so |χ[H]| ≤
|χ[H + td(G)]| < c too. Consequently χ[H] 6= T, so χ[H] is zero-dimensional for every
χ ∈ G∧. Since zero-dimensionality is preserved under taking direct products, ∏χ∈G∧ χ[H]
is zero-dimensional, by Claim 1. Since H is precompact (as a subgroup of G), H isomor-
phic to a subgroup of ∏χ∈G∧ χ[H] by ([3], Theorem 2.3.2). Since zero-dimensionality is
preserved under taking subgroups, we deduce that H is zero-dimensional.

7.2. The Subgroup td(G) of Compact Groups and Minimality

The Open Mapping Theorem can be reached in two steps:

Definition 5. A Hausdorff topological group G is:

(a) minimal if every continuous isomorphism f : G → H onto a Hausdorff topological group H
is open.

(b) totally minimal if G satisfies the (full) Open Mapping Theorem, i.e., every continuous
homomorphism f : G → H onto a Hausdorff topological group H is open.

Compact groups are well-known to be totally minimal. On the other hand, a Haus-
dorff topological group G is totally minimal if and only if all Hausdorff quotients of G
are minimal.

The first supply of non-compact (totally) minimal groups was obtained by means of
the following notions of “strong" density:

Definition 6 ([28]). A subgroup H of a topological abelian group G is totally dense if N ∩ H = N
for every closed subgroup N of G.

Clearly, totally dense subgroups are dense (while Z(p∞) is dense in T, but not totally
dense). Obviously, the totally dense subgroups have the following weaker property:
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Definition 7 ([5,11,15]). A subgroup H of a topological abelian group G is topologically essen-
tial if N ∩ H 6= {0} for every non-trivial closed subgroup N of G.

The term used for this property in [5,11,15] and in the remaining literature on the
Open Mapping Theorem is “essential”, but we prefer the more precise term “topologically
essential” to avoid possible confusion.

Theorem 17. Let H be a dense subgroup of a compact abelian group G.

(a) ([11,15]) H is minimal if and only if H is topologically essential in G.
(b) ([28]) H is totally minimal if and only if H is totally dense in G.

Banaschewski [5] found the following general criterion: if H is a dense subgroup of a
topological abelian group G, then H is minimal if and only if G is minimal and H is topologically
essential in G. These criteria match perfectly the following remarkable result of Prodanov
and Stoyanov [14] proved at a later stage, but conjectured by Prodanov in 1972 (see [13] for
an earlier partial result in the totally minimal case):

Theorem 18 (Prodanov–Stoyanov Theorem). Minimal abelian groups are precompact.

This theorem allows one to use exclusively the form of the criteria given in Theorem 17,
so to reduce the study of the (totally) minimal abelian groups to that of the dense topo-
logically essential (resp., totally dense) subgroups of the compact abelian groups. This
explains the interest in topologically essential or totally dense subgroups of the compact
abelian groups.

Proposition 12 ([11]). The minimal topologies on Z are precisely the p-adic topologies.

It was proved in [9] that the 2–adic topology of Z is minimal.

Proof. Assume that τ is a minimal topology on Z and let K be the completion of (Z, τ).
By the Prodanov–Stoyanov Theorem the group K is compact. By Theorem 17(a), Z is
essential in K, hence K is torsion-free. Therefore, the dual of K is a discrete divisible
group [1,3,23,29], hence a direct sums of copies of Q and of Z(p∞), p ∈ P. Therefore,

K = (Q∧)α ×∏p Ẑ
βp
p . Again by Theorem 17(a), Z must be essential in this product, hence

only one of these cardinals α, βp can be non-zero, and it must be equal to 1. Since Q∧ has
a Delta subgroup isomorphic to ∏p Ẑp, again Theorem 17(a) implies that α = 0. In other
words, K ∼= Ẑp for some prime p, therefore, τ coincides with the p-adic topology on Z.
To conclude, the minimality of the p-adic topology follows from Theorem 17(a), since Z is
essential in K = Ẑp, as all non-trivial closed subgroups of K are open.

A similar argument shows that Qn admits no minimal topologies for 0 < n < ∞.
The functorial subgroup td(G) of a compact abelian group G is not only dense in G

(Theorem 6(2)), but it is totally dense in G, as the next proposition shows.

Proposition 13. Let G be a compact abelian group. Then td(G) is totally dense in G.

Proof. Let N be a closed subgroup of G. Then N ∩ td(G) = td(N) by Proposition 10.
Therefore, it suffices to check that td(G) is dense in G for every compact group G. This
follows from Theorem 6, but we prefer to give an independent proof here.

Let N := td(G). Applying to the closed subgroup N of G the exactness of td in
the sense of Proposition 10(2), we deduce that td(G/N) = {0}. To see that this implies
G/N = {0} and so N = G, consider the discrete dual X = (G/N)∧ and assume by way
of contradiction that X 6= {0}. Then there exists a subgroup Y of X such that X/Y 6= {0}
is torsion. Then Y⊥ ∼= (X/Y)∧ is a non-trivial compact totally disconnected subgroup of
G/N, so td(G/N) 6= {0}, a contradiction.
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We obtain the following theorem which, among other things, reconfirms that ∆(G) is
dense in G when G is compact.

Theorem 19. Let G be a compact abelian group. Then td(G) is a dense totally minimal zero-
dimensional subgroup of G.

Proof. Proposition 13 ensures the total density (hence, density as well) of td(G). Total
minimality of td(G) is then an immediate consequence of Theorem 17. To prove that td(G)
is zero-dimensional, apply Proposition 11.

Since td(G) 6= G when G is not totally disconnected, this theorem provides a universal
example of a non-compact totally minimal (and zero-dimensional) abelian group. This
explains why it is not surprising that most of the first known examples of non-compact
totally minimal groups known in the seventies were just Q/Z = td(T) ([15]), (Q/Z)n =
td(Tn) ([9]), (Q/Z)N = td(TN) ([10]), and (Q/Z)α = td(Tα) ([27,30]).

Corollary 4. Let G be a compact abelian group and H be a closed subgroup of G. Then td(H)
ins
�

td(G) � td(G/H) is a proper short exact sequence in TAG.

Proof. By Proposition 10 td(H) = td(G) ∩ H and q[td(G)] = td(G/H) for the quotient
homomorphism q : G → G/H. This proves the exactness of the short exact sequence

td(H)
ins
� td(G)

f
� td(G/H), where f = q �td(G). The openness of f follows from the fact

that td(G) is totally minimal, in view of Theorem 19.

7.3. Sylow Subgroups of td(G) for G ∈ TAG

The characterization in Theorem 9 of the compact abelian groups G with td(G) =
tor(G) gives a very narrow class (practically rather close to the class of Lie groups). This
shows that the restraint td(G) = tor(G) is too stringent, or from another point of view,
the subgroup td(G) is too large to be useful in certain circumstances. This is why here
we recall a smaller subgroup of td(G) containing tor(G) that still keeps the advantages of
td(G), but it is closer to tor(G). This subgroup is simply the subgroup generated by all
topologically p-Sylow subgroups tdp(G) of td(G) defined as follows:

Definition 8 ([3,31]). An element x of a topological abelian group G is topologically p-torsion
if pnx → 0. Let

Gp := {x ∈ G | x is topologically p-torsion}

and let tdp(G) := (td(G))p.

Then Gp is a subgroup of G. In case G is a profinite group, Gp is usually called the
topological p-Sylow subgroup of G. We shall also keep this terminology when G is not
necessarily profinite. Clearly, Hp = Gp ∩ H for a subgroup H of G.

Obviously, torp(G) ≤ tdp(G) ≤ Gp for every G.
The notation tdp(G) used in Definition 8 is borrowed from [4,27], where tdp(G)

denotes the subgroup of all elements x ∈ G (called quasi-p-torsion in [4]) such that
〈x〉 is either a cyclic p-group, or 〈x〉 is isomorphic to Z equipped with the p-adic topology.

The equivalence of both definitions follows from: if 〈x〉 ∼= Z is equipped with a
Hausdorff linear topology such that pnx → 0, then this linear topology necessarily coincides
with the p-adic topology.

The sum ∑p tdp(G) is direct ([4]). Following [4], we write wtd(G) =
⊕

p∈P tdp(G) in
the sequel. Clearly,

tor(G) ≤ wtd(G) ≤ td(G),

but these subgroups need not coincide in general. It is proved in [4] that, when G is
compact, even the smaller subgroup wtd(G) is still totally dense in G. Since both total
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density and topological essentiality are transitive properties, a dense subgroup G of a
compact abelian group K is totally dense (resp., topologically essential) in K if and only
if td(G) = G ∩ td(K) is totally dense (resp., topologically essential) in td(K) if and only if
wtd(G) is totally dense (resp., topologically essential) in wtd(K).

The next theorem from [29] shows that one can characterize the totally disconnected
compact abelian groups in the class of all compact abelian groups G by specifying whether
the subgroups tdp(G) of G are closed (compact) or not:

Theorem 20 ([3,29]). For a compact abelian group G and every prime p the subgroup tdp(c(G))
is dense in c(G). In particular, the following conditions are equivalent:

(1) G is totally disconnected;
(2) td(G) = G, i.e., td(G) is compact;
(3) tdp(G) is compact for every prime p;
(4) tdp(G) is compact for some prime p;
(5) tdp(G) is closed in G for some prime p (equivalently, for all primes p);
(6) the topology induced from G on wtd(G) =

⊕
p∈P tdp(G) coincides with the topology induced

by the product topology of ∏p∈P tdp(G).

In case these conditions hold, then G ∼=t ∏p∈P tdp(G).

In Theorem 9, we determined the compact groups for which ∆(G) = tor(G). Using
the smaller subgroup wtd(G) instead of ∆(G), we impose the condition wtd(G) = tor(G)
instead of collapsing the whole chain tor(G) ≤ wtd(G) ≤ td(G). This leads to a concept
introduced in [32]:

Definition 9 ([32]). A compact abelian groups G is an exotic torus, if wtd(G) = tor(G).

Clearly, the usual tori are also exotic tori, but the solenoid Σ1 defined in Example 1(1)
is an exotic torus that is not a torus. The next theorem from [32] giving eleven equivalent
characterizations of exotic tori (of those (2) was used in [32] as the original definition)
provides further examples of exotic tori (see also Example 4 (3), (4)).

Theorem 21 ([32]). For a compact abelian group G = A∧ the following are equivalent:

(1) wtd(G) is torsion;
(2) Soc(G) is topologically essential;
(3) G contains copies of the p-adic integers Ẑp for no prime p;
(4) n = dim(G) < ∞ and for every continuous surjective homomorphism f : G → Tn we have

Ker f = ∏p Bp, where each Bp is a (bounded) compact p-group;
(5) n = dim(G) < ∞ and there exists a homomorphism f : G → Tn as in (3);
(6) wtd(G) ∼= (Q/Z)n ×⊕p∈P Bp algebraically, where each Bp is a (bounded) compact p-

group;
(7) A is strongly non-divisible, i.e., all non-trivial quotients of A are non-divisible;
(8) every proper subgroup of A is contained in some maximal subgroup of A;
(9) A admits a surjective homomorphism A→ Z(p∞) for no prime p;
(10) n = rk(A) < ∞ and A/F ∼=

⊕
Tp, where each Tp is a bounded p-group, for every

F ∈ F (A);
(11) n = rk(A) < ∞ and there exists F ∈ F (A) as in (10).

Corollary 5. If G is a non-trivial connected exotic torus, then n = dim(G) < ∞ and wtd(G) =
tor(G) ∼= (Q/Z)n, i.e., all p-ranks of G coincide and equal dim(G).

It was deduced from this corollary that the only divisible torsion abelian group that
may carry minimal topologies are the groups (Q/Z)n, n ∈ N ([32]).
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Following [12], call a compact group almost countable if it is the completion of count-
able minimal abelian group. This class of compact groups was described by Prodanov [12]
as follows: a compact abelian group G is almost countable if and only if n = dim(G) < ∞
and there exists a homomorphism f : G → Tn such that Ker f = ∏p(Ẑ

ep
p × Fp), where Fp is

a finite p group and ep ∈ {0, 1} for every prime p. These are the compact abelian groups G
such that td(G) has a countable essential subgroup.

The larger class K of compact abelian groups, that contain copies of the group ẐN
p

for no prime p was studied in [6]. It is stable under extension and contains all almost
countable compact groups, as well as all exotic tori. Its subclass of compact groups G that
contain copies of the group Ẑ2

p for no prime p coincides with the completions of minimal
abelian groups of countable rank, or equivalently, these are the compact abelian groups G
such that td(G) has an essential subgroup of countable rank (see [3] or [6]).

Example 4. Let G = A∧ where Z ≤ A ≤ Q, be a solenoid, as in Lemma 11 and Theorem 13. It
follows from Z � A � A/Z ∼=

⊕
p∈P Z(php) that

(A/Z)∧ = Hom(A/Z,Q/Z)→ G = A∧
φ
� T

is exact and (A/Z)∧ → ∆(G) = Hom(A,Q/Z) � Q/Z is exact, with (A/Z)∧ ∼=t ∏p∈P ∆p

where ∆p ∼=t Z(php)
∧

, so ∆p ∼=t Ẑp when p ∈ P∞ and ∆p is a cyclic p-group otherwise.

(1) G is an exotic torus if and only if P∞ = ∅ (i.e., tp(A) has no entries ∞).
(2) It follows from (1) that there are c many pairwise non-isomorphic connected one-dimensional

exotic tori G; they all have wtd(G) ∼= Q/Z, according to Corollary 5. Nevertheless, for these
exotic tori G the subgroups wtd(G) remain pairwise non isomorphic (since, similarly to
Theorem 12, if wtd(G) ∼=t wtd(H), then G ∼=t H for every pair of compact abelian groups
G, H).

(3) According to Theorem 13, if G is an exotic torus, then Soc(G) is dense in G if and only if P0
is infinite (see ([32], Proposition 2.5) for a more general result in the case of connected exotic
tori of arbitrary dimension). According to Theorem 21, in this case, Soc(G) is the smallest
dense topologically essential subgroups of G.

(4) The second assertion in (3) is related to the following more general fact proved in ([33],
Theorem 5.1) justifying the interest in dense socles: a connected compact abelian group G
contains a smallest dense topologically essential (i.e., smallest dense minimal) subgroup of G
if and only if G is an exotic torus with dense Soc(G).

8. Final Comments and Open Problems

One can deduce from Lemma 11(2) that for a solenoid Σ all delta subgroups ∆ of Σ
have the property that all subgroups of finite index of ∆ are open.

Problem 1. Classify the compact abelian groups whose delta subgroups have the property that all
their subgroups of finite index are open.

If G = A∧ is a finite-dimensional compact connected abelian group, one can easily
extend the argument in the proof of Theorem 13 and prove that Soc(G) is dense in G if
P0(G) is infinite, where P0(G) is defined in this more general case as follows (a different
proof in case G is an exotic torus can be found in ([32], Proposition 2.5)). Let n = dim G,
then there exists a short exact sequence Zn � A � A/Zn, where A/Zn is torsion (actually,
isomorphic to a subgroup of (Q/Z)n). In this notation, P0(G) = {p ∈ P : rkp(A/Zn) = 0}.
Obviously, P0(G) = P0, as defined in Theorem 13, when n = 1. The following example
shows that when dim G > 1, infinity of P0(G) is not a necessary condition for the density
of Soc(G).

Example 5. Split P = π1 t π2 in two disjoint infinite subsets π1, π2 (e.g., take π1 to be the set of
all primes of the form 4k + 1). For i = 1, 2 define the rational group Ai = 〈1/p : p ∈ πi〉 and the
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solenoid Σi = A∧i . Then both Σ1 and Σ2 have dense socles, by Theorem 13, so G = Σ1 × Σ2 has
dense socle as well. Nevertheless, P0(G) = ∅.

Problem 2. Find a criterion for density of Soc(G) for a finite-dimensional compact connected
abelian group G.
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