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Abstract: Mitochondria are the only organelles, along with the nucleus, that have their own DNA.
Mitochondrial DNA (mtDNA) is a double-stranded circular molecule of ~16.5 kbp that can exist in
multiple copies within the organelle. Both strands are translated and encode for 22 tRNAs, 2 rRNAs,
and 13 proteins. mtDNA molecules are anchored to the inner mitochondrial membrane and, in
association with proteins, form a structure called nucleoid, which exerts a structural and protective
function. Indeed, mitochondria have evolved mechanisms necessary to protect their DNA from
chemical and physical lesions such as DNA repair pathways similar to those present in the nucleus.
However, there are mitochondria-specific mechanisms such as rapid mtDNA turnover, fission, fusion,
and mitophagy. Nevertheless, mtDNA mutations may be abundant in somatic tissue due mainly to
the proximity of the mtDNA to the oxidative phosphorylation (OXPHOS) system and, consequently,
to the reactive oxygen species (ROS) formed during ATP production. In this review, we summarise
the most common types of mtDNA lesions and mitochondria repair mechanisms. The second part of
the review focuses on the physiological role of mtDNA damage in ageing and the effect of mtDNA
mutations in neurodegenerative disorders such as Alzheimer’s and Parkinson’s disease. Considering
the central role of mitochondria in maintaining cellular homeostasis, the analysis of mitochondrial
function is a central point for developing personalised medicine.

Keywords: mitochondria; DNA damage; DNA repair pathways; neurodegenerative diseases; Alzheimer’s
disease; Parkinson’s disease

1. Introduction

Mitochondria play a central role in the modulation of various cellular functions in-
cluding energy homeostasis, proliferation, and apoptosis. Their function is crucial for ATP
production, synthesis of heme and steroid hormones, calcium and iron homeostasis and
subsequent signalling cascades [1], fatty acid oxidation, and the regulation of interorganelle
contacts with the endoplasmic reticulum (ER) [2]. The mitochondrial network is charac-
terised by a dynamic structure aimed at rapidly responding to the energy demands of the
cell [3]. Mitochondria possess their own DNA and are characterised by specific mechanisms
regulating the mitochondrial network: the turnover of mitochondrial DNA (mtDNA) [4],
the highly regulated mitochondrial fission and fusion, as well as the mitophagy that elimi-
nates dysfunctional mitochondria [5]. The pathways regulating mitochondrial turnover
and homeostasis are called mitochondrial quality control (MQC) and consist of DNA repair
mechanisms, reactive oxygen species (ROS) scavenging, chaperones and proteolytic en-
zymes, the ubiquitin–proteasome system (UPS), the mitochondria-specific unfolded protein
response (UPRmt), mitochondrial fusion and fission dynamics, and mitochondrial biogene-
sis and degradation (Figure 1) [6]. Mitochondrial injury impairs cellular function and exerts
a multiorgan effect. Neurons are particularly susceptible to mitochondrial dysfunction
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because of their high energetic demand that mostly depends on oxidative phosphorylation
(OXPHOS). Notably, the brain makes up for about 2% of the body mass but expends about
20% of the oxygen and energy of the whole body [7]. In addition, neurons are characterised
by a unique architecture including extremely long processes (axons can be longer than 1 m
in humans) and by being extremely long-lived postmitotic cells that cannot efficiently dilute
out defective organelles by cell division, making these cells very sensitive to energy alter-
ations [8]. Recent studies have revealed that age-dependent impaired energy metabolism
in neurons precedes neurodegeneration [8]. In agreement, mitochondrial dysfunction
is an early event in neurodegenerative diseases as it promotes brain decline caused by
ageing [9]. Neurodegenerative diseases are characterised by progressive atrophy and loss
of neuronal function. Although several familiar forms of neurodegenerative diseases have
been characterised by analysing the function of mutant genes, the relevance of altered
metabolic function as a key factor promoting the onset and progression of sporadic neu-
rodegenerative diseases is emerging [10]. In this context, mitochondrial alterations promote
key events occurring during ageing and in neurodegeneration. In this review, we focus on
the crucial role of mtDNA maintenance and alterations in promoting neurodegeneration.
Since mitochondria, together with the nucleus, are the only organelle possessing their
own DNA, it is relevant to point out the role of environmental factors that may affect the
integrity of mtDNA and, in turn, participate in neurodegeneration. In agreement with this,
mitochondria have developed several mechanisms necessary to maintain the integrity of
their own DNA [11]. On the other hand, alterations in mtDNA cause metabolic dysfunction
that, in turn, affects the neurons [12]. Herein, we describe the effect of mtDNA homeostasis
failure in promoting ageing and neurodegenerative processes.
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Figure 1. Mitochondrial quality control: regulating mitochondrial turnover and homeostatic mtDNA
repair mechanisms and ROS scavenging (A). Various mechanisms can be activated to either prevent
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or eliminate mtDNA damage. The first line of defence involves ROS scavenging factors such as
antioxidants, SOD, the thioredoxin system, and glutathione peroxidase (1). Repair mechanisms
become activated after damage is sensed on the mtDNA. Among these, the mitochondrial BER
pathway is the most well-characterised, but in the last decades, other common proteins of nDNA
repair mechanisms have also been identified in mitochondria, shedding light on the possibility that
these pathways have a role in mtDNA repair as well (2) [13,14]. If all these damage responses are
not able to fully repair the lesion, then a single molecule of mtDNA can be degraded. This does not
impact organelle physiology since each mitochondrion owns multiple copies of the same nucleic
acid (3). Finally, if the damage is extensive, the whole mitochondrion can be degraded through
mitophagy. Ubiquitin proteasome system (UPS) (B). Dysfunctional mitochondrial proteins can be
degraded by the UPS, a specific degradation system which relies on the covalent binding of ubiquitin
to lysine residues within target proteins. Ubiquitin is translocated via the E1, E2, and E3 enzymes
(1) before reaching the damaged protein (2). The polyubiquitin-tagged protein is then translocated
to the cytosolic proteasome for degradation (3), where the ubiquitin is recycled, ready for another
round of polyubiquitination (4). UPS is crucial in preserving mitochondrial integrity and vice versa.
Indeed, dysfunctional mitochondria with an increased number of damaged proteins could not only
overflow the proteasome but also affect the proteasomal subunits themselves, thereby affecting
the catalytic activity of the UPS. Once mitochondrial dysfunction and proteasomal impairments
develop, a vicious cycle may start, leading to a progressive failure of the UPS and, consequently,
to ageing or, in the worst scenario, to neurodegenerative diseases. Mitochondrial unfolded protein
response (UPRmt) (C). The UPRmt system can be activated in response to an accumulation of unfolded
proteins in mitochondria. The crucial role of the UPRmt protein ATF5 is explicated through its nuclear
localisation sequence (NLS) and mitochondria targeting sequence (MTS) (1). Under physiological
conditions, ATF5 is localised in mitochondria (red dashed arrow) and likely degraded by a protease
(2) such as the one characterised in C. elegans [15]. If mitochondrial import is dysfunctional, ATF5
accumulates in the cytosol and is translocated into the nucleus (blue arrow), where it can influence
the activation of the transcriptional factors c-Jun and CHOP, which in turn regulate the activation of
genes able to restore mitochondrial functions (3). Mitochondrial dynamics (D). Mitochondria can
orchestrate cycles of fusion and fission as part of their dynamic network, allowing the maintenance
of shape, distribution, and size. This mechanism can also be used to cope with unrepairable damages
such as inter-/intrastrand and DNA-protein cross-links through the removal of the damaged section
of the mtDNA by mitophagy [16]. Fusion ((1), red arrows) is mediated by Mfn1, Mfn2, and Opa1 (2)
and allows the mitochondria to bond together to respond to damage (3). Fission (blue arrows) can
also mediate the response to an external stress (3) that causes mitochondrial dysfunction. Fission is
mediated by dynamin-related protein 1 (Drp1) (4) and, opposite to fusion, acts to isolate the damaged
area of the organelle for clearance by mitophagy (5). Mitophagy (E). Defective mitochondria can
be cleared in a process called mitophagy. The whole organelle is isolated from the rest of the cell
owing to the generation of an autophagosome (1). The fusion of the autophagosome with a lysosome
gives rise to the autolysosome (2) containing a set of enzymes in an acidic environment which
drives the degradation of proteins, lipids, and nucleic acids in a controlled manner (3). BER = base
excision repair; DSB = double strand break; MMR = mismatch repair; ROS = reactive oxygen species;
SOD = super oxidase dismutase; Ub = ubiquitin; UPRmt = mitochondrial unfolded protein response;
UPS = ubiquitin proteasome system.

2. Oxidative Stress and Mitochondrial DNA Lesions
2.1. Point Mutations and Ribonucleotide Incorporation

It is has been extensively demonstrated that mtDNA mutates with higher frequency
compared to nuclear DNA (nDNA) because of mtDNA’s enhanced exposure to ROS such
as O2

− or H2O2, which can be produced during OXPHOS system [17], the lack of histones,
and a less efficient repair system for mtDNA damage compared to the nucleus [18].

Oxidative stress represents an imbalance between the production of ROS and their
elimination by protective mechanisms. In physiological conditions, ROS can activate
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diverse signalling cascades [19] and are involved in cellular processes such as prolifera-
tion [20], apoptosis [21], and senescence [22]. Antioxidant enzymes and ROS scavenger
systems such as superoxide dismutases (SODs), the thioredoxin system, and glutathione
peroxidase counteract ROS production, thus protecting the cells from the dangerous effects
associated with an imbalance in ROS production [23]. When there is an imbalance between
ROS production and the antioxidant systems, the resulting oxidative stress can damage
all the main cellular components. Indeed, oxidative stress activates various pathways
including the proinflammatory cascade and promotes the formation of promutagenic DNA
adducts creating genetic instability that leads to DNA mutations, which alter cellular home-
ostasis [24]. Consequently, oxidative DNA lesions and lipid peroxidation-derived DNA
lesions are common in mitochondria with 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dG)
being the most widely used marker for mtDNA damage.

mtDNA is constituted by an H-strand and an L-strand, which are both translated
and encoded for mitochondrial proteins. Spontaneous point mutations can arise on both
mtDNA strands. These strands are differentially affected by spontaneous deamination
giving rise to G→A/T→C transition mainly in the L-strand and C→T/A→G transition in
the H-strand. The frequency of this spontaneous phenomenon increases with age [25].

Finally, during replication, ribonucleotides (rNMPs) can be incorporated not only in
nDNA but also in mtDNA, where they are better tolerated [26]. Although the misincorpora-
tion of rNMPs can be ascribed to erroneous replication by the DNA polymerase γ (POLγ),
the major cause of the high frequency of rNMPs in mtDNA is the lack of proficient rNMP
repair systems in mitochondria. Indeed, the isoform of RNase H1 present in mitochondria
is not sufficient to compensate for the lack of RNase H2, which is the enzyme responsible
for removing single embedded rNMPs in the nucleus [27].

2.2. Deletions

The presence of mtDNA deletions has been reported since the late 1980s. Dele-
tions in mtDNA derive from alterations in two main mechanisms: (i) mtDNA replication;
(ii) mtDNA repair impairment resulting in double-strand breaks. It has been also hypothe-
sised that these two mechanisms cooperate in producing mtDNA deletions. The majority
of the mtDNA deletions occur in the major arc of the mtDNA and have been associated
with different pathologies, where the clinical prognosis directly correlates with mtDNA
deletion frequency. Nonetheless, specific deletions are also found on the minor arc [28].
The most prevalent deletion is called common deletion (CD) and is associated not only
with pathologies—it was first described in a patient with Kearns-Sayre syndrome [29]—but
also with ageing [30]. Alongside the majority of mtDNA lesions, CD levels are linked to
mosaicism [31], which influences the phenotype depending on the anatomical location and
the tissue affected by the deletion.

2.3. Single-Strand and Double-Strand DNA Breaks

Single-strand breaks (SSBs) and double-strand breaks (DSBs) are discontinuities in one
or two strands of the DNA, respectively, that can occur on mtDNA directly (e.g., from attack
of ROS) or indirectly (e.g., during the enzymatic cleavage of the phosphodiester backbone
mediated by BER). The presence of these lesions is lower compared to point mutations and
deletions, likely because they are eliminated by a specific clearance mechanism.

3. Mitochondrial DNA Repair Pathways and Coping Mechanisms
3.1. The Base Excision Repair Pathway

The first and best characterised mechanism of DNA repair described in mitochondria
is the BER pathway [32]. Oxidative damage caused by ROS is repaired by BER, which is
characterised by 3 steps: (1) recognition and excision of the damaged DNA base; (2) removal
of the resulting abasic (AP) site; and (3) gap filling and ligation (Table 1).

Step (1) is performed by a DNA glycosylase, which catalyses the cleavage of the
N-glycosidic bond between the damaged base and its deoxyribose. In step (2), the resulting
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AP site can be recognised by an AP endonuclease (APE1), which hydrolyses the phosphate
backbone (the same function can be performed by the glycosylase itself). There are two
categories of glycosylases: monofunctional and bifunctional. Monofunctional glycosylases
lack the lyase activity and rely on APE1. Bifunctional glycosylases possess a lyase activity
and are able to create a 3′ nick after the removal of the damaged base. Moreover, mono-
functional and bifunctional glycosylases recognise different DNA alterations: alkylation
and deamination are the main target of monofunctional glycosylases while oxidised bases
are repaired by bifunctional glycosylase activity [33]. In the final step (3), POLγ is recruited
to incorporate the correct nucleotide and a ligase completes the process, ligating the previ-
ously formed nick. When BER is activated, it can follow two subpathways: the short-patch
or the long-patch BER (SP- or LP-BER) [34]. The main difference is related to the number of
nucleotides that are substituted during the correction process and the proteins involved. In
the SP-BER, only the damaged nucleotide is removed and corrected, while in the LP-BER,
from two up to eight nucleotides surrounding the damaged base can be substituted during
the repair process.

The SP-BER steps are common in nuclei and mitochondria, but they differ slightly
in the enzymes involved. Particularly, in mitochondria, only one DNA ligase has been
described, DNA ligase III, which is involved in both DNA replication and repair. DNA
ligase I is also present in nuclei but not in mitochondria [35]. More interesting is the study
of the LP-BER subpathway in mitochondria. Until recently, it was believed that only the
SP-BER was active within mitochondria. However, several studies carried out in the last
decade clearly indicated the existence of a mitochondrial LP-BER, wherein the protein
FEN-1 plays a crucial role [36–38].

3.2. The Mismatch Repair Pathway and Double-Strand Break Repair Pathways

The presence of the mismatch repair (MMR) pathway in mitochondria is still unclear.
Among the proteins involved in this pathway, only YB-1 has been identified in mitochon-
dria, suggesting the presence of MMR involving the protein of the BER system. Indeed,
recent studies demonstrated that YB-1 interacts with the glycosylase NEIL2, APE1, and
the DNA ligase III (Table 1) [39]. However, more research is necessary in order to confirm
this pathway.

mtDNA is subjected to DSBs just as the nDNA, but in mitochondria, the mechanisms
involved in DSBs repair are not yet fully elucidated. Evidence of mtDSB repair has been
found in Drosophila [40] and Saccharomyces cerevisiae [41]. However, the presence of
proteins such as XRCC1 [42] or an alternate form of Ku80 [43] in mitochondria is not
sufficient to confirm the capacity of mitochondria to repair their DSB through homologous
recombination (HR) or nonhomologous end joining (NHEJ).

Some studies suggest that recombination occurs more frequently intermolecularly
than intramolecularly [44]. Interestingly, other reports support the role of a not-well-
characterised microhomology-mediated end-joining (MMEJ) repair pathway in mtDNA
repair [45–47] rather than the NHEJ, which appears to be undetectable in mitochondria.
This hypothesis is held by the detection of short repetitive sequences flanking the deletions
in mtDNA occurring in 85% of Drosophila older than 55 days and in two-thirds of the
reported mitochondrial deletions of ageing humans [48,49]. This suggests the existence of
a recombination mechanism involved in the maintenance of mtDNA integrity.

3.3. mtDNA Degradation

A single mitochondrion may contain multiple copies of mtDNA. Some mtDNA
molecules can carry lesions and give rise to a heterogeneous pool of mtDNA. This phe-
nomenon is called heteroplasmy. A heteroplasmic cell undergoing mtDNA replication—
which is independent from the cell cycle—can accumulate mutations over time [50]. When
a heteroplasmic cell undergoes cell cycle, it gives rise to a mosaic distribution of the lesion.
When the level of lesions overcome a certain threshold, the lesion manifests itself as a
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mitochondrial dysfunction. Typically, this threshold is higher than 80%, implying that most
mtDNA mutations are haploinsufficient or recessive [51].

The selective depletion of mtDNA is a phenomenon driving the control of the amount
of mutated mtDNA. In a single cell, there are thousands of mtDNA molecules present
and the clearance of only some of these molecules does not compromise mitochondrial
function [11]. It is, therefore, plausible that lesions such as DSBs can be eliminated via
mtDNA degradation [52]. The mechanisms underlying mtDNA degradation are not yet
fully elucidated. Two scenarios have been proposed: (i) degradation by nucleases [53]
and (ii) elimination of the whole mitochondria carrying the lesion via mitophagy [54,55].
mtDNA degradation is activated in the presence of excess DNA damage. This mechanism
is not damage-specific and its kinetics vary depending on the cell type [56]. Recently, it
has been shown that the linear DNA formed upon DSBs appears to be degraded via the
exonuclease activity of POLγ and MGME1 [57]. Nevertheless, the role of other mtDNA
replication enzymes such as Twinkle helicase [58] and mtSSB [59] in this pathway is still
debated (Table 1).

In 2020, Xiuli Dan and colleagues demonstrated the involvement of mitophagy in the
quality control of mitochondrial integrity [60]. They showed that mitophagy is induced
following DNA damage and its activation is independent of the stressor triggering the dam-
age. They also emphasised the critical role of Spata18 in this process, shedding light on the
mechanism of mitophagy initiation. At early timepoints following DNA damage, it appears
that cells will preserve, or attempt to preserve, enough mitochondria in order to support
the cell’s energy demands. However, this is in contrast to later timepoints, where the rate
of mitophagy is increased, and cells will clear any damaged or unnecessary mitochondria.

Overall, it has been postulated that following irreparable mtDNA damage, mitochon-
drial fission is stimulated, leading to mitophagy of the damaged mitochondrial daughter.

3.4. Mitochondrial Dynamics

Mitochondria form a dynamic network of organelles able to fuse and divide in two
phenomena known as fusion and fission, respectively. This dynamic is supported by several
proteins, which coordinate this process in a very accurate manner. Mitochondrial fission is
mediated primarily by the GTPase dynamin-related protein 1 (Drp1), whose mitochondrial
recruitment is controlled by numerous mitochondrial outer membrane receptors such as
Fis1, Mff, MiD49, and MiD51 [61]. Mitochondrial fusion is realised through mitofusin
1 (Mfn1), Mfn2, and Opa1, three GTPases of the dynamin superfamily [62]. Mitochondrial
fission and fusion are critical for the ability of the cell to cope with damaged mtDNA.
Bulky adducts that arise on mtDNA cannot be repaired by the nucleotide excision repair
(NER) pathway such as within the nucleus. Indeed, there is no clear evidence of the
existence of this pathway in mitochondria [63]. Indeed, mtDNA lesions such as pyrimidine
dimers, base modifications or inter-/intrastrand and DNA-protein cross-links are cleared by
isolating dysfunctional mitochondria and their removal by selective mitochondrial fusion
and mitophagy [64]. However, the molecular mechanism is still unclear. Moreover, whether
mtDNA damage and mitochondrial fission dynamics are correlative or consequential is also
elusive. Indeed for both fusion and fission, it is not clear if the processes start because of
stress and, so, independently of the mtDNA damage or if it is a consequence of the damage
detected on the mtDNA. On the other hand, decreased Drp1 activity and its delocalisation
contributes to neurodegeneration by promoting mitochondrial dysfunction [65]. More
studies are required to elucidate this phenomenon and its involvement in the quality
control of mtDNA.
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Table 1. Mechanisms involved in mtDNA repair. The best characterised DNA repair pathway
in mitochondria is the BER pathway. Several publications have investigated the role of the BER
machinery in mtDNA maintenance and the difference to its nuclear counterpart. Attempts to
elucidate the presence of other mtDNA repair mechanisms have been performed with contradictory
results. Here, we enlist proteins known to be involved in different nuclear repair pathways and
that have been studied for their role in mtDNA integrity and stability. Underlined text represents
enzymes with exclusive mitochondrial localisation. DSBs = double-strand DNA breaks; HR =
homologous recombination; LP-BER = long-patch base excision repair; MMR = mismatch repair;
NHEJ = nonhomologous end joining; SSBs = single-strand DNA breaks.

Repair
Pathway Lesion Enzyme Enzyme Class Function Note Ref.

BER Oxidative
damage

MUTHY
AGG
UNG

Hydrolase

Monofunctional
glycosylase

[66]OGG1
NTH

Bifunctional glycosylase
(β-elimination)

NEIL1
NEIL2

Bifunctional glycosylase
(βδ-elimination)

APE1
PNK Hydrolase Hydrolysis of

phosphate backbone [67,68]

Polγ Transferase Nucleotide
incorporation [69]

FEN-1
Hydrolase

Cleavage of 5′ flap
structures LP-BER [70]

ExoG Removal of 5′-blocking
moiety LP-BER [71]

DNA ligase III Ligase Nick ligation

MMR Base mismatches YB-1 DNA-binding
protein

Mismatch sensing and
protein recruitment [39,72]

HR/NHEJ SSBs and DSBs No evidence of HR/NHEJ activity in mammalian mitochondria

mtDNA
degradation Any lesion

MGME1 Hydrolase 5’–3’ exonuclease
activity

Involved in degradation
of linear DNA after DSBs [73]

Twinkle Helicase Unwinding of mtDNA
replication fork Potentially involved in

mtDNA degradation

[74,75]

mtSSB
Single-strand

DNA
binding protein

Enhancing Twinkle and
Polγ activity [11,59]

4. The Role of mtDNA in Ageing

Ageing is a physiological process whose basic mechanisms are generally conserved
from yeast to humans and can be classified into three categories: primary, antagonistic,
and integrative [76]. Primary features include the main causes associated with ageing
damage such as mitochondrial dysfunction due to altered mtDNA [77]. Antagonistic
and integrative features, on the other hand, focus on the response to the damage and
its consequences (Figure 2) [77]. The focal point of this section is to give an overview
of the role of mitochondria and the increasing interest in the role of this organelle in
the ageing processes. Indeed, different theories have been proposed over the years and
are summarised here [78–80]. All these approaches show both limitations and strengths
and a comprehensive theory explaining the mitochondrial role in ageing is still missing.
Nevertheless, the study of this organelle in the context of ageing is crucial considering that
ageing is a risk factor for a plethora of diseases and can severely affect the prognosis of
many patients.
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Figure 2. Ageing mechanisms.

Multiple factors are involved in ageing and can be classified in three categories:
(1) primary factors that cause the occurrence of damage; (2) antagonistic factors related to
the response of the cell to the damage; and (3) integrative factors, culprits of the phenotype.
All these phenomena are connected and, over time, lead to ageing. In this scenario,
mitochondria also have an important role both as primary (mtDNA damage) and/or
antagonistic factors (mitochondrial dysfunction).

4.1. Mitochondrial Free Radical Theory of Ageing

In 1956, Dr. Denham Harman proposed the mitochondrial free radical theory of
ageing (MFRTA) [81]. Harman’s theory starts from the simple observation that free radicals
may cause oxidative damage through attacks on cell interior mechanisms inducing the
degeneration of cells and tissues within the body. This damage could occur to nucleic acids
and genetic material, leading to mutations causing cancers, and may also be a contributing
factor to ageing. Harman concluded that with key chemical control, life itself could then
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be prolonged. In following publications, Harman suggested that these free radicals were
produced within mitochondria due to their high oxygen usage and the correlation between
basal metabolic rate and ageing. He went on to allude that ageing originates within
mitochondria as well, with mtDNA receiving around 16 times more oxidative damage than
nDNA [82].

In 2005, de Grey suggested that in nondividing cells such as neurons, oxidative dam-
age occurs at similar rate as in other cells but with less degradation of mitochondria. Thus,
these dysfunctional mitochondria are able to proliferate and accumulate over the lifetime
of nondividing cells leading to cellular dysregulation, impaired respiratory capacity, and
promotion of the ageing phenotype [83]. Direct evidence for this theory is still lacking.
On the contrary, various studies demonstrate that somatic mutations in mtDNA occur
independently of oxidative stress [84,85]. Indeed, mutations that impair SOD2 activity have
no effect on mtDNA mutation frequency in vivo [84], suggesting that the in vitro studies
supporting de Grey’s theory are not sufficient to unveil the mechanisms occurring in vivo.
In addition, other studies show that increased oxidative stress, induced by glucose restric-
tion or by hypoxia, is beneficial due to activation of cellular resistance to stress resulting in
reduced mortality in cell and laboratory animal models, and in diabetic patients [86,87].
All together, these data suggest that mtDNA mutations and alterations promote ageing in a
manner independent of oxidative stress.

4.2. Clonal Expansion Theory

A link between mtDNA deleterious mutations and ageing was first suggested in
1988 [88]. Related studies showed that low levels of common deletions in mtDNA exist in
tissues, particularly in skeletal muscle. These deletions accumulate within mtDNA through
clonal expansion [89]. Clonal expansion is a well-characterised process in B-lymphocytes
whereby a large number of cells can be selected for yielding a particular genotype char-
acterised by specific DNA deletions. This mechanism has been translated into a theory
of mitochondrial dysregulation leading to ageing called “clonal expansion theory” [90].
Positive selection pressures can occur within cells, particularly for cancer-promoting nDNA
mutations [91,92]. Interestingly, mtDNA mutations have been associated with age through
increased numbers of mutated mitochondria building up rather than individual mitochon-
dria becoming increasingly damaged. The presence of random mutations even in young
healthy individuals supports this hypothesis [93]. Specific point mutations and deletions
in mtDNA are present during early development and even in germline cells [90,94]. In
agreement, mtDNA mutations are present in those tissues known to appear very early
during embryonic development [95]. These mutations lead to a deficiency in mitochondrial
OXPHOS, inducing metabolic alterations within proliferating cells and, thus, decreasing
apoptosis. This decreased apoptosis results in dysfunctional and deficient mitochondria
remaining prevalent within cells as well as promoting premature ageing. In fact, mitochon-
drial OXPHOS deficiency is accepted as a hallmark of ageing [96]. In addition to promoting
ageing, the mutations are implicated in the promotion of cancer in proliferating cells while
also inducing senescence in nonproliferating cells [97].

4.3. The Gradual ROS Response Theory

The gradual ROS response theory postulates that ageing itself is a loss of balance
within homeostasis caused by the accumulation of unspecific ROS-dependent damage [80].
Under normal conditions and through organismal development, the stress defences and
antioxidants respond to ROS production and counteract its effects. However, over a
lifetime, the human body develops ROS-independent damage, which stimulates the cell
stress response, thereby elevating ROS production in a vicious cycle. Indeed, when this
elevation in ROS overwhelms the antioxidant system, ROS directly damage the pathways
responsible for the maintenance of cellular homeostasis. This process finally produces
the ‘ageing phenotype’. This theory explains the correlation between elevated ROS levels
and senescence. Such oxidative damage can cause additional stress responses, which
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further enhance ROS production, leading to a vicious cycle of cell damage that accelerates
ageing and mortality. From this viewpoint, it may be possible to hypothesise that ageing
is a beneficial evolutionary process in most organisms due to selection pressures and
adaptation to the damage mechanisms described above [98].

4.4. Ageing and Mitochondria: One Theory to Rule Them All

Considering the theories developed in the last decades, it has become clear that ROS are
implicated in ageing and mitochondria contribute to this process through mechanisms that
are not yet fully characterised. Up to now, it has been difficult to propose a comprehensive
picture of the molecular mechanisms responsible for the ageing process. An interconnection
of pathways and biological mechanisms promote the slow, but inexorable, decline of the
human organism. Although all three theories described above propose relevant concepts,
the validity of each of them is still debated. Indeed, some reports support the beneficial
effect of the ROS scavenger therapy in promoting longevity [99], while other studies present
the opposite results [100]. Considering the complexity of ageing, we can hypothesise that
mtDNA damage represents one of a number of mechanisms involved in ageing and can be
more relevant in some organisms compared to others. For the greater understanding of the
complexity of ageing, it is critically important to continue and extend the investigation of
mtDNA damage. This investigation is also crucial for the unveiling of mechanisms that
participate in the progression of age-related diseases. Below, we focused on the role of
mtDNA alterations in neurodegenerative diseases.

5. The Role of mtDNA in Neurodegenerative Diseases

Neurodegenerative diseases (NDs) can be either hereditary or sporadic conditions,
which define a broad range of heterogeneous disorders, caused by the progressive degener-
ation of specific neurons in the central (CNS) and peripheral nervous system (PNS) [101]. A
common feature of NDs is the initial mild condition such as, but not exclusively, coordina-
tion or memory problems due to initial neuronal dysfunction, followed over time by more
serious impairments that compromise everyday life as a consequence of neuronal loss [102].
Unfortunately, NDs are fatal, and their prevalence has been increasing in recent years [103].
Herein, we focus on the most recent studies concerning the NDs affecting the CNS.

Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis (ALS), and
Huntington’s disease are the most known and better characterised NDs. However, the
molecular mechanisms implicated in these pathologies are not yet fully elucidated. In the
last two decades, studies have revealed the pathological involvement of oxidative stress
and its crucial effect on the integrity of DNA [104–106]. It is still unclear whether oxidative
stress plays a causative role in NDs or if it is a consequence due to the degenerative process.
However, several lines of evidence suggest that it has an impact on both the onset and the
progression of NDs. Indeed, several studies focus on the role of mitochondrial dysfunctions
and oxidative damages on mtDNA integrity in the context of ND [107]. Herein, we
summarised the up-to-date knowledge about the role of mitochondria and mtDNA damage
in ND progression (Figure 3); AD and PD haplogroups are summarised in Table 2.

5.1. Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common cause of dementia among older people
and is characterised by the occurrence of extracellular amyloid deposits (senile plaques) of
the amyloid beta (Aβ) peptide and by intraneuronal aggregates of hyperphosphorylated
tau protein in structures named neurofibrillary tangles (NFTs) [108]. While about 5–10% of
AD cases are familiar due to mutations in genes related to Aβ production, the majority of
AD cases are sporadic and develop from complex interactions among genes, environment,
and epigenetic and stochastic factors [109]. The impact of each of these factors on AD
progression is still unclear, and it is possible that there is a synergy among these aspects in
promoting AD [110]. Several studies investigated the impact of mtDNA damage in AD,
but the results were contradictory [111]. However, there is evidence confirming that the
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presence of mtDNA damage in AD leads to energy failure, increased oxidative stress, and
Aβ formation, which, in turn, exacerbates mtDNA damage and oxidative stress promoting
a vicious circle of damage. Nonetheless, up to now, there is no evidence demonstrating a
causative role of mtDNA mutations in AD [112]. On the other hand, various data underline
the role of BER components acting in mitochondria. Post mortem brains of AD patients
present decreased levels of 5-hydroxyuracil (5OHU) incision as well as diminished DNA
ligase III activity, suggesting an impaired function of the DNA repair pathway, which can
have negative consequences on the overall quality of mtDNA [113].

Finally, an interesting association has been revealed between mtDNA polymorphisms
and AD. Small differences in the encoded proteins can slightly affect the OXPHOS activity
leading to either overproduction or reduction of free radicals. Thus, a polymorphism
can predispose individuals to an accumulation of somatic mtDNA mutations, OXPHOS
impairment, and, therefore, to an increased or decreased risk of developing AD. Different
haplogroups have been identified and related to both an increased or decreased risk of
AD [114]. However, these studies are controversial and deeper investigations are required
to fully understand the possible role of mtDNA polymorphism in the pathogenesis of
AD [115–117].

5.2. Parkinson’s Disease

Parkinson’s disease (PD) is the second most common neurodegenerative disorder
in the elderly population and is pathologically defined by the loss of the neuromelanin-
containing dopaminergic neurons in the substantia nigra (SN) with the development of
intracytoplasmic inclusions called Lewy bodies in the surviving neurons [118]. Clinically,
the disease manifests itself with tremors, rigidity, and bradykinesia accompanied by non-
motor symptoms such as sleep disorders or cognitive impairment [118]. Among the NDs,
PD analysis shows the best-documented information about mitochondrial dysfunction and
mtDNA damage [119,120]. Familial PD is characterised by mutations in proteins involved
in mitochondrial pathways that elicit oxidative stress and are linked to increased mtDNA
damage [121]. Sporadic PD patients, representing 80% of the cases, show an association
with mitochondrial dysfunction [122]. Studies on post mortem PD brain tissue revealed a
high level of apurinic/apyrimidinic (abasic) sites in mtDNA of nigral neurons but not in
cortical ones [123].

Studies deploying the respiratory chain complex I inhibitor rotenone in a rat PD model
demonstrated that mtDNA damage is detectable before the onset of neurodegeneration
and is produced selectively only in the midbrain neurons, suggesting that mtDNA can
be considered an early marker of PD. Indeed, when complex I was inhibited, midbrain
neurons produced more H2O2 compared to cortical neurons, consequently resulting in
oxidative damage on their mtDNA [123]. The presence of abasic sites may also underline
an impairment of the BER pathway in mitochondria of PD individuals. To this end,
Davidzon et al. showed that POLγ mutations can cause early-onset Parkinsonism and
are related to multiple mtDNA deletions in muscle [128]. However, more recently, Dai
et al. reported that in POLγ mutant mice, besides the increased mtDNA deletions in
SN dopaminergic neurons, no signs of mitochondrial dysfunction or degeneration were
found [129]. Further studies are necessary to better elucidate the involvement of POLγ in
the onset of PD.

It has also been observed that there is an accumulation of large deletions in mtDNA
and an absence of point mutations in PD patients [130–132]. In addition, it has been
hypothesised that a failure in detecting point mutations in late-stage PD tissues might be
caused by the degeneration of neurons carrying these mutations at earlier stages of the
disease [133].
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Figure 3. mtDNA damage in neurodegenerative diseases. Alzheimer’s disease (AD). mtDNA damage
in AD can lead to energy failure (1) driven by the defective complexes I, III, IV, and V (2), promotion
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of Aβ accumulation (3) and increased oxidative stress (4), which, in turn, exacerbates mtDNA damage
and increased production of ROS, creating a vicious cycle of dysfunctional and damaged mitochon-
dria. Parkinson’s disease (PD). An incremented production of ROS (1) increases the susceptibility of
mtDNA to damage (2). PD patients display either an increased amount of abasic sites and/or large
mtDNA deletions (3) with a consequent failure in the formation of a fully functional OXPHOS system.
Up to now, there have been no clear explanations about the mechanisms underpinning the dysfunc-
tion detected in the mitochondria in patient neurons, but the involvement of defects at the level of
the mitochondrial BER is plausible (4). Amyotrophic lateral sclerosis (ALS). Mutations in SOD1 cause
a cellular redox imbalance (1), but it is not clear how this phenomenon affects mtDNA stability. The
most recent theory suggests an indirect role of mutated SOD1 on the proteins involved in mtDNA
repair rather than a direct effect on ROS production with consequent mtDNA damage (2 and 3) [124].
As of yet, there is no evidence for this hypothesis even though the alteration of the nDNA repair
system supports the impairment of the mitochondrial BER as documented in ALS (4) [125–127]. Hunt-
ington’s disease (HD). Mutant huntingtin (htt) has indirect toxic effects on mtDNA. It suppresses the
expression of PGC-1α (1), which negatively impacts ROS scavenging mechanisms, ATP production,
mitochondrial membrane potential, and, more generally, the whole mitochondrial physiology (2).
Correspondingly, ROS production is exacerbated (3), leading to increased mtDNA mutation and
depletion, consequently disrupting mitochondrial integrity (4). Studies have also underlined the
presence of imbalanced Ca2+ homeostasis in HD patients (5). Highlighted complexes with a circle
represent components of the OXPHOS system, in which a mutation related to the disease described
has been reported. Aβ = amyloid beta peptide; BER = base excision repair; NFTs = neurofibrillary
tangles; ROS = reactive oxygen species; SOD1 = superoxide dismutase 1.

5.3. Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder occurring dur-
ing adulthood and characterised by a progressive degeneration of motor neurons. In
about 75–80% of the patients, symptoms manifest first in either the upper or lower limbs,
while the remaining 20% of patients develop bulbar symptoms such as dysarthria or dys-
phagia [134]. The first autosomal dominant mutation associated with familiar ALS was
identified in the SOD1 gene codifying for the cytosolic copper-zinc superoxide dismutase
protein [135]. Since SOD1 is a scavenger enzyme involved in the maintenance of cellular
redox balance, several investigations have focused on the possible contribution of oxidative
stress and mitochondrial damage in the pathophysiology of ALS. Although there is not yet
any evidence demonstrating the direct involvement of SOD1 mutations in producing mito-
chondrial dysfunction, it has been clearly shown that the most severe forms of ALS carry a
higher frequency of mtDNA lesions [136]. Murakami et al. proposed that mutant SOD1
displays less protective activity against oxidative stress, resulting in an early and selective
impairment of DNA repair enzymes rather than a direct effect on ROS [137]. Consistently,
it has been demonstrated that the nDNA repair systems are altered in ALS, leading to
DNA oxidation and neuronal dysfunction [125,126]. Notably, spinal motor neurons under
physiological conditions express higher levels of DNA repair enzymes. Thus, they are
more sensible to impairment of the DNA repair systems in ALS. In light of the results
reported above, we can hypothesise that mtDNA damages due to an altered BER system
are involved in spinal motor neuron degeneration.

5.4. Huntington’s Disease

Huntington’s disease (HD) is an autosomal dominant neurodegenerative disorder
characterised by an aberrant expansion of the cytosine adenine guanine (CAG) triplet in
the polyglutamine region of the huntingtin (HTT) gene [138]. Mutant huntingtin protein
(htt) is neurotoxic, leading to the symptoms of HD such as motor dysfunction, cognitive
impairment, and psychiatric disturbances. The molecular mechanisms driven by mutant
htt and leading to HD are not yet fully elucidated, but evidence suggests that mutant htt
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affects the transcription of certain genes and promotes mitochondrial dysfunction [139,140].
Mutant htt inhibits the expression of peroxisome proliferation-activated receptor gamma
coactivator 1α (PGC-1α), leading to mitochondrial dysfunction [141]. PGC-1α has a neuro-
protective role in transgenic HD mice, suggesting that its dysregulation can negatively affect
neuronal physiology. Impaired energy metabolism is an early marker in presymptomatic
individuals, suggesting a link between mutant htt and altered mitochondrial function. Both
HD mice models and HD patients show several mtDNA mutations and depletions as well
as a reduced activity of mitochondrial complex II and III [142–144]. Finally, HD is also
characterised by impaired calcium homeostasis, which is controlled by mitochondria [145].

Table 2. Haplogroups identified for AD and PD.

Haplogroup AD Activity References

K and U Protective effect: neutralises the harmful effect of the
APOE ε4 allele [146]

HV Acts synergistically with the APOE4 allele, significantly
associated with the risk of AD [116]

H Acts synergistically with the APOE4 allele, significantly
associated with the risk of AD [147,148]

HV5 Acts synergistically with the APOE4 allele, significantly
associated with the risk of AD [149]

B5a Genetic susceptibility to AD [150]

L1 and L3
L1 participants were at a significantly increased risk for
developing dementia. L3 participants exhibited higher

Aβ42 levels
[151]

UK, T Disparity between studies and no congruent data [152]
UK, K, J, and JT No validated relevance and no congruent studies [153]

Haplogroup PD Activity References

A5 PD-promoting [154]
B5 Preventive, resistance against PD [154,155]

UKJT and R Protective: 22% reduction in population-attributable risk
for PD [156,157]

J and K Protective: decreased PD risk [158–160]
D Increased PD risk [161]
B Decreased PD risk [161]

6. Conclusions

The studies analysing the role of mtDNA damage in promoting the onset and pro-
gression of neurodegenerative diseases are still controversial because they are very recent.
More investigations have been carried out in PD and ALS, where the familiar forms of
these pathologies are clearly linked to alterations in genes directly involving mitochon-
drial function. However, the majority of patients affected by NDs such as AD, PD, and
ALS present a “sporadic” form, which is not directly linked to mutations in those genes
promoting familiar NDs. Notably, these sporadic NDs are all characterised by impaired
energy metabolism, suggesting that alterations in mitochondrial function play a key patho-
physiological role in these diseases. Although very preliminary, the results analysing the
presence of defined mtDNA haplogroups are very relevant, because they may provide an
explanation of the incidence of NDs in defined populations or families that do not carry any
mutation in the genes responsible for the familiar forms of HDs. Knowing the alterations
in mtDNA is important in order to investigate the mechanistic pathways triggered by the
environmental and metabolic alterations that are known to be risk factors for sporadic NDs.
More studies are necessary to define the role of mtDNA damage in the onset of sporadic
NDs. Nevertheless, the current results confirm that analysis of such mtDNA alterations
can pave the way for a better understanding of the molecular mechanism involved in
sporadic NDs.
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