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A B S T R A C T

This paper is devoted to the minimization of the stress concentration factor in infinite plates with circular hole
made of functionally graded materials and subjected to a far-field uniform uniaxial tension. Despite the vast
literature on the versatility of these materials, the novelty of the results is that the material distribution is not
limited to prefixed laws, as in many works available in the literature. Instead, it is assumed to be an unknown
piecewise constant function, thus aiming to derive the material distribution by exploiting, at best, the in-
homogeneity concept associated with functionally graded materials. After a brief review of the governing
equations, the motivation, the statement and the mathematical formulation of the optimization problem are
given under the hypothesis of axisymmetric material distribution. Still, the problem could not be solved
analytically, therefore a direct transcription approach by the aid of finite difference method has been followed to
convert it into a nonlinear programming problem, whose solution has been obtained numerically by dedicated
gradient-based solvers. Numerical optimal solutions are reported in graphical forms, thoroughly discussed and
validated by means of the finite element method. The developed numerical approach yields a material in-
homogeneity obeying a sigmoid-like function and a uniform hoop stress along the radial direction, thus making
the stress concentration factor at the rim of the circular hole vanish.

1. Introduction

The study of the stress concentration in panels due to the presence of
circular holes constitutes one of the classic problems in mechanics. It is
known that if the panel is infinitely large and made of a homogenous,
linearly elastic and isotropic material and subjected to a uniform uni-
axial tension, then the stress concentration factor (hereinafter abbrevi-
ated by SCF) is identically 3. In literature, this result is commonly
referred to as the Kirsch solution, named after the German engineer who
first described the elastic stresses around the hole [1]. Since then, en-
gineers and researchers have been interested in reducing such a factor by
abandoning the aforementioned isotropic and homogeneity assumptions
and the shape of the geometrical discontinuity (see, e.g., [2,3] for an
exhaustive literature review on various analytical methods).

The adoption of functionally graded materials has propounded its
application to numerous mechanical and geotechnical models [4-6],
where the microstructure was allowed to vary along one or several di-
rections by employing isotropic, orthotropic or even anisotropic con-
stituent materials (see, e.g., [7-9]). Among all, the stress analysis of

functionally graded panels with holes has been investigated. Several
analytical and numerical efforts have been carried out aiming at
reducing the stress concentration by taking advantage of different in-
homogeneity models. For instance, the effect of the material in-
homogeneity on the SCF due to circular and elliptic holes are predicted
in [10] and [11], respectively, both by means of the finite element
method. In particular, Young’s modulus has been allowed to vary
spatially. Authors have shown that a reduction in the SCF can be ob-
tained by properly choosing the tuning parameters of the heterogeneity
factors associated with the property variations (e.g., the exponents in the
power- and exponential laws). In [12], the SCF around a circular hole in
an infinite plate subjected to uniform biaxial tension and pure shear is
analytically solved by exploiting Frobenius series. Closed-form solutions
are derived for an exponential variation of Young’s modulus along the
radius. By dividing the functionally graded plate into a series of piece-
wise homogeneous radial layers, Refs. [13,14] report the SCFs due to
circular holes and under constant loads by means of Muskhelishvili
method of the complex variable functions. In [15], closed-form solutions
for the SCF at a circular hole in functionally graded panels subject to a
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uniform far-field tensile traction are derived by using hypergeometric
functions and Frobenius series. Authors show that the SCF at the circular
hole can be considerably reduced by appropriately grading the me-
chanical properties along the radial direction. The elastic response of a
functionally graded annular ring inserted in a hole of a homogeneous
plate is derived analytically in [16,17] under different far-field loading
conditions. All the aforementioned works report a considerable stress
concentration reduction only when the Young’s modulus progressively
increases away from the hole. Moreover, it is observed that the variation
of the Poisson’s ratio on the stress distribution in the plate is negligible
[15-17].

The aforementioned considerations bring into mind the possibility of
exploiting optimization theory to enhance the elastic performance of
such structures. Many solutions have been proposed to different prob-
lems [18,19], some of which are capable of handling only
one-dimensional material distribution with one-dimensional geometry
and simple loads, while others can tackle more sophisticated problems.
Interesting results in terms of stress reduction have been achieved when
considering models such as beams, cylindrical shells, rotating disks,
pressure vessels and plates (see, e.g., [20-34]), however by imposing
prefixed laws for the variation of mechanical properties. In this way, the
optimization problems reduce to the search for the heterogeneity factors
associated with functional models describing these property variations.
On the other hand, other works dealt with the search for the best ma-
terial distribution to enhance the elastic stress performance without
prefixing the functional model. Some of these are developed within an
analytical tailoring framework [35,36], whereas others rely on
phase-field and topology optimization [37,38] or exploit principles from
the optimal control theory [39-41]. As far as infinite plates with a cir-
cular hole are concerned, the overwhelming research works impose the
Young’s modulus a priori to forecast the stress concentration near the
hole. In the uniaxial load case, to the extent of the authors’ knowledge,
Ref. [42] is the only work where the unknown Young’s modulus dis-
tribution is sought in plates with different holes and cutouts, in which
enhanced stress results have been obtained by developing an evolu-
tionary algorithm combined with the finite element method. It is worth
noting that the iteration process for updating the Young’s modulus in
each element was governed by a power-law function of local and global
stress measures. The stiffness was thus reduced only in the elements
whose stresses were higher than an imposed threshold. Although this
rule-of-thumb stiffness modification led to enhanced SCFs, we strongly
believe that optimal solutions can be achieved if the stiffness optimi-
zation is carried out in a more global sense. Accordingly, the objective of
the present article is to seek the Young’s modulus distribution around
the circular hole such that the hoop stress reaches its minimum value

along prescribed directions.
The article is organized as follows. Section 2 recalls the governing

equations for the plane stresses in linearly elastic, isotropic and inho-
mogeneous plates. Section 3 aims at presenting the motivation of the
work as well as the formulation of the optimization problem. Section 4
illustrates the direct transcription approach as a numerical procedure to
convert the optimization problem into a nonlinear programming prob-
lem, whose solution has been computed by resorting to a solver avail-
able in the literature. The optimal solution of a study case, its validation
by a finite element model and its discussion are shown in Section 5 and
conclusions are drawn in Section 6.

2. Governing equations

Consider a linearly elastic, isotropic and functionally graded infinite
plate with a circular hole of radius a. Let the thickness of the plate be
sufficiently small to the point that the stress state is two-dimensional
(plane-stress condition). Let the plate be subject to a far-field uniaxial
traction σ0, as shown in Fig. 1a, where the generic point P is described by
the polar coordinate system (r, θ), whose origin is at the center of the
circular hole, and MN denotes the vertical line associated with the polar
angle θ = π/2. Moreover, let the inhomogeneity be described by the
radial variation of the volume fraction V(r) of one of the two constituents
of the functionally graded material (e.g. material #2), which in turn are
linked to the effective Young’s modulus E(r) by the well-known Voigt
estimate

E(r) = Ẽ1(1 − V(r)) + Ẽ2V(r), (1)

where Ẽ1 and Ẽ2 denote the Young’s moduli of the constituents (e.g.,
metallic and ceramic materials), while the Poisson’s ratio ν is assumed to
be constant and not affected by the volume fraction. It is worthwhile to
note Eq. (1) is adopted in this study since it can be considered as the
simplest homogenization technique among the several approaches in
micromechanics [43].

2.1. Equilibrium, constitutive and compatibility equations

Next, equations describing the mechanical behavior of the plate are
listed. In the absence of body forces, the equilibrium equations read [44]

∂σr(r, θ)
∂r +

1
r

∂σrθ(r, θ)
∂θ

+
σr(r, θ) − σθ(r, θ)

r
= 0, (2a,b)

∂σrθ(r, θ)
∂r +

1
r

∂σθ(r, θ)
∂θ

+
2
r
σrθ(r, θ) = 0,

Fig. 1. A schematic representation of (a) an infinite plate with a circular hole subject to a far-field uniaxial traction and its split into (b) uniform biaxial and (c) pure
shear sub-problems.
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where σr, σθ and σrθ are the radial, hoop and shear stresses, respectively,
all functions of the radial r and circumferential θ coordinates. The elastic
stresses are related to the corresponding strains by the plane-stress
constitutive equations, namely [44]

E(r) εr(r, θ) = σr(r, θ) − ν σθ(r, θ), (3a-c)

E(r) εθ(r, θ) = σθ(r, θ) − ν σr(r, θ),

E(r) εrθ(r, θ) = 2(1+ ν) σrθ(r, θ),

where εr, εθ and εrθ are the radial, hoop and shear strains, respectively,
which obey the following compatibility equation [44]

∂2εθ

∂r2 +
1
r2

∂2εr
∂θ2

+
2
r

∂εθ

∂r −
1
r

∂εr
∂r =

1
r

∂2εrθ
∂r∂θ

+
1
r2

∂εrθ
∂θ

. (4)

2.2. Superposition of stresses

Due to the linearity hypothesis, if the elastic problem is split into two
sub-problems, namely the biaxial problem and the pure shear problem
(Figs. 1b,c, respectively, see [44]), the superposition of their solutions
leads to the solution of the original one. In other words, letting super-
scripts “bx” and “ps” denote respectively the uniform biaxial and pure
shear terms, stresses can be written as

σr(r, θ) = σbx
r (r) + σps

r (r, θ), (5a-c)

σθ(r, θ) = σbx
θ (r) + σps

θ (r, θ),

σrθ(r, θ) = σps
rθ(r, θ),

where it is emphasized that stresses for the biaxial problem depend on
the radial coordinate only, since the geometry of the problem, the
assumed nature of the inhomogeneity and the far-field loading are
axisymmetric (and therefore σbxrθ is identically zero). Substitution of the
constitutive relations Eqs. (3a-c) into the compatibility Eq. (4) yields the
following boundary-value problem for the radial stress

B X
(
σbx
r (r)

)
= 0, a ≤ r < ∞ (6a-c)

σbx
r (a) = 0,

lim
r→∞

σbx
r (r) =

σ0
2
,

where the differential operator B X (⋅) is given by d2(⋅)
dr2 +αbx(r) d(⋅)dr +

βbx(r) (⋅) with αbx = 3
r −

1
E
dE
dr and βbx = (ν − 1) 1

rE
dE
dr.

Moreover, the hoop stress can be obtained from the equilibrium Eq.
(2a)

σbx
θ (r) = σbx

r (r) + r
dσbx

r (r)
dr

. (7)

In parallel, and similar to the Kirsch solution, the pure shear problem
can be solved by introducing the Airy stress function φ(r, θ) as follows
[44]

σps
r (r, θ) =

1
r

∂φ(r, θ)
∂r +

1
r2

∂2φ(r, θ)
∂θ2

, (8a-c)

σps
θ (r, θ) =

∂2φ(r, θ)
∂r2 ,

σps
rθ(r, θ) = −

∂
∂r

(
1
r

∂φ(r, θ)
∂θ

)

,

where φ has the form [44]

φ(r, θ) = g(r)cos2θ. (9)

Consequently, Eqs. (8a-c) read

σps
r (r, θ) =

(
1
r
dg(r)
dr

−
4g(r)
r2

)

cos2θ, (10a-c)

σps
θ (r, θ) =

d2g(r)
dr2

cos2θ,

σps
rθ(r, θ) = 2

(
1
r
dg(r)
dr

−
g(r)
r2

)

sin2θ.

Combining Eqs. 10a-c and 3a-c, the compatibility Eq. (4) reduces to
the following differential equation

P S (g(r)) = 0, a ≤ r < ∞ (11)

where the differential operator P S (⋅) is given by d4(⋅)
dr4 + αps(r) d

3(⋅)
dr3 +

βps(r) d
2(⋅)
dr2 + γps(r) d(⋅)dr + δps(r)(⋅) with αps = 2

r −
2
E
dE
dr, βps = − 1

E
d2E
dr2 +

2
E2

(
dE
dr

)2
+ ν

rE
dE
dr −

2
rE

dE
dr −

9
r2, γps = ν

rE
d2E
dr2 −

2ν
rE2

(
dE
dr

)2
+ 9

r2E
dE
dr +

9
r3 and δps =

− 4ν
r2E

d2E
dr2 +

8ν
r2E2

(
dE
dr

)2
− 12

r3E
dE
dr .

Relation Eq. (11) is a fourth-order linear differential equation with
variable coefficients, and it is solved by considering the following
boundary conditions

σps
r (a, θ) = 0, (12a-d)

σps
rθ(a, θ) = 0,

lim
r→∞

σps
r (r, θ) =

σ0
2
cos2θ,

lim
r→∞

σps
rθ(r, θ) = −

σ0
2
sin2θ .

The set of the above equations for the two sub-problems can be found
in [15].

3. The optimization problem: motivation and formulation

Stresses for the case of a homogeneous infinite plate with a circular
hole and subject to a uniaxial traction can be determined by taking
Young’s modulus as constant in the aforementioned equations, leading
to the well-known Kirsch stress field [44]

σr(r, θ) =
σ0
2

(

1 −
a2

r2

)

+
σ0
2

(

1+
3a4

r4
−
4a2

r2

)

cos2θ, (13a-c)

σθ(r, θ) =
σ0
2

(

1+
a2

r2

)

−
σ0
2

(

1+
3a4

r4

)

cos2θ,

σrθ(r, θ) = −
σ0
2

(

1 −
3a4

r4
+
2a2

r2

)

sin2θ.

It can be easily shown that the SCF at the rim of the circular hole is
identically 3 by taking the limit of Eq. (13b) for r → a and θ = π/2 and
dividing by σ0. This value has been drastically reduced by replacing
homogeneous materials by functionally graded ones. For instance, ac-
cording to [15], one can reduce the SCF at the rim of the hole by suitably
varying the two heterogeneity factors n and β, linked to the Young’s
modulus through the relation

E(r) = E∞

[
1+ β

(r
a

)n]
, (14)

where E∞ = limr→∞E(r), − 1 < β < 1 and n < 0 (Fig. 2a shows the radial
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Fig. 2. (a) Variation of Young’s modulus with r/a for n = − 5 and for different values of β < 0. (b) The associated hoop stresses (solid lines) alongside with Kirsch
solution (dashed line) on the vertical line MN. Stresses associated with other Young’s modulus distributions are addressed in [15].

Fig. 3. (a) Variation of Young’s modulus with b/a = 3 and for different values of m > 0. (b) The associated hoop stresses on the vertical line MN alongside with the
Kirsch solution. (c) Contour levels for SCFs at the rim of the circular hole (solid contours), the interface between the ring and the homogeneous media (dashed
contours) and best homogeneous factors m* (scatter points). Stresses associated with other ring radii are addressed in [16].
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distribution of Young’s modulus for n= − 5 and for different instances of
β < 0). A similar relation for Poisson’s ratio has been employed with
different heterogeneity factors, but it was found that it does not affect
stresses significantly (for this problem, the order of discrepancy is <1
%). Expressions for the associated stress field on MN are lengthy and
therefore omitted in this article, but represented in a graphical form in
Fig. 2b (see [15]). It is important to notice that although the SCF may
arbitrarily tend to 0+, an increase of the hoop stress occurs elsewhere
along the radius, say at r = ã. Denoting here after by σ̂θ(r) the hoop
stress along the vertical line MN, such inevitable increase takes place
due to the equilibrium between the applied load and forces resulting
from occurring hoop stresses along the line associated with θ = π/2.

Thus, the optimum scenario, for the Young’s modulus distribution
(14), occurs when the heterogeneity factors lead to a constant hoop
stress for r ∈ [a, ã], or, lato sensu, to a hoop stress whose standard devi-
ation (or statistical variation) is as minimum as possible. This problem
has not been addressed in [15], as authors focused on finding analytical
solutions for stresses. The formulation of the SCF minimization problem
without remarkably increasing the hoop stress along the radius has been
addressed in [16], albeit for a homogeneous isotropic infinite plate
endowed with a functionally graded ring of radius b > a, where the
Young’s modulus distribution is given by

E(r) = Eb
(r
b

)m
, (15)

where Eb is the Young’s modulus at r= b andm is a real positive number
playing the role of the heterogeneity factor (see Fig. 3a where different
Young’s modulus distributions are shown).

Also here, Poisson’s ratio ν is assumed constant and equal to the
value of the homogeneous medium. Unlike [15], however, the author
not only discussed the analytical tractability of the stress field (whose
expression is omitted in this article), but also gave hints on the choice of
the best heterogeneity factor for the optimum distribution for the hoop
stress throughout the plate. In other words, the author showed that,
regardless of the ring geometry, there exists a value of m, say m*, such
that the hoop stress assumes the same value at r = a and r = band less
elsewhere, provided that the search for m* takes place in the range [16]

0 < m∗ ≤
8
(
2 −

̅̅̅
3

√ )

ν − 7+ 4
̅̅̅
3

√ (16)

to avoid complex values for the stress field. Fig. 3b shows the normalized
hoop stresses along the vertical line MN for different instances of m and
for b/a = 3 and compared with Eq. (13b). It is shown that the value of
the best heterogeneity factor is approximately m* = 1.1 [16]. For
completeness, it is desired to study the dependence of m* on the ge-
ometry of the ring. A possible way is to compute contour levels for the
SCFs at the rim of the circular hole and at the interface of the ring with
the homogeneous medium for a range of admissiblem, in the sense of the
upper and lower limits given by Eq. (16), and for different values of b/a.
By construction, the intersection of the two contour levels thus helps the
reader identify the best heterogeneity factors m* for fixed values of the
ring geometry b/a. This practical chart is shown in Fig. 3c, where the
values for m* are represented by scatter points. It is worth noting that
the optimum heterogeneity factor monotonically decreases as b/a in-
creases, namely a stiffer material at the circular hole is needed to
compensate for the increase in the ring radius.

Based on the aforementioned considerations, an optimization prob-
lem in which the distribution of Young’s modulus is sought for the
minimization of the SCF arises. In order to avoid stress peaks along the
radial direction the goal of minimizing the SCF can be replaced by the
minimization of the maximum hoop stress along the line MN (see
Fig. 1a), namely

σ̂ θ,max = max
r≥a

σ̂θ(r), (17)

as the hoop stress, for any (axisymmetric) Young’s modulus variation, is
expected to reach its peak only along this line. Hence, the optimization
problem consists in finding the Young’s modulus distribution (or,
through Eq. (1), the volume fraction) along the radial direction such that
the maximum value for the hoop stress along MN reaches its minimum
value, namely
Problem 1. min Eq. (17),

V(r)
s.t. (Eq. (1)), 

Eqs. (5a-c), 
Eqs. (6a-c), 
Eq. (11), 
Eqs. (12a-d) . 

Consequently, Problem 1 does not assume any a priori functional
form of Young’s modulus along the radial direction. The derivation of
Problem 1 is sketched in the left part of the flowchart reported in Fig. 4.
In the same figure, also the discretizing technique and the optimization
solver, described in detail in Section 4, are represented.

In the parlance of optimization theory, Problem 1 is referred to as
dynamic optimization problem, namely an optimization problem whose
decision variables are unknown piecewise continuous functions living in
a certain domain, and constraints are differential relations. Solution to
Problem 1 is cumbersome from the analytical viewpoint, requiring one
to resort to numerical methods. Among all, the so-called direct tran-
scription approach is used, which helps convert the dynamic optimiza-
tion problem into a nonlinear programming (NLP) problem, namely to
an optimization problem whose decision variables are collected in a
finite-dimensional vector and constraints consist in equality or
inequality algebraic relations. The conversion of algebraic and differ-
ential constraints Eqs. (5a-c)-(6a-c) and (11)-(12a-d) into algebraic ones
can be carried out by classic numerical methods in mechanics such as the
finite element, finite volume, or finite difference methods. In this article,
the latter method is employed because the governing equations for
stresses Eqs. (6a-c) and (12a-d) were revealed to be functions of the
radial coordinate only (and therefore 1D), not to mention the simplicity
of the geometrical domain and the prescription of boundary conditions
of the problem under consideration. The use of finite element method,
instead, would require the adoption of plane elements, which are
naturally 2D, unless ad-hoc 1D finite elements are developed along the
line MN. Hence, the governing equations for the biaxial and pure shear
problems are solved by the finite difference method, which is recalled in
the next Section for the sake of a self-contained work. Subsequently, to
validate the finite difference code, an infinite functionally graded plate
with a prefixed Young’s modulus distribution of the form (14) is
numerically solved and compared to analytical solutions in [15].

4. Direct transcription approach

Hereinafter, the discretization scheme and matrices assembly are
performed along the vertical line MN (i.e., with θ = π/2) up to a limit
radius A sufficiently large (namely a ≪ A < ∞). Denoting by K the
number of (equally distant) discretization points rk (k = 1,2,…,K) and
letting r1 = a and rk = A, Table 1 lists the finite difference expressions
employed to substitute the different derivatives appearing in the gov-
erning equations at the generic node rk, where Ψ generically represents
the unknown variable, i.e., either σbxr in Eq. (6a) or g in Eq. (11), and
Δr = A− a

K− 1 denotes the radial step. Finite difference approximation terms
have been chosen to guarantee a second-order accuracy.

Firstly, thefinitedifferencemethod is applied toEqs. (6a-c). Taking into
account the different expressions in Table 1, and after some algebra, Eq.
(6a) can be rewritten as the following system of K − 2 algebraic equations

σbx
r k+1

(
2+ Δr αbx

k
)
+ σbx

r k
(
− 4+ 2Δr2 βbxk

)
+ σbx

r k− 1
(
2 − Δr αbx

k
)
= 0,

(18)
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with k=2,3,…,K− 1,while boundary conditions Eqs. (6b,c) are simply
replaced by their approximations

σbx
r 1 = 0, (19a,b)

σbx
r K =

σ0
2

.

Eqs. (18)-(19a,b) can thus be written in the matrix form

A Σ = m, (20)

where A ∈ RK×K is a square tridiagonal matrix, Σ ∈ RK is a column
vector whose elements are the variables σbxr1 , σbxr2 ,⋯, σbxrk and m ∈ RK is a
column vector whose first K − 1 elements are zeros and the last one is
σ0/2.

The same considerations can be taken into account for Eqs. (11)-
(12a-d). Eq. (11) can be rewritten as the following system of K − 4
algebraic equations

with k=3,4,…,K− 2. Also here, the terms αpsk , βpsk , γpsk and δpsk can be
derived by using the derivative approximations in Table 1 of their ex-
pressions. Finally, boundary conditions Eqs. (12a-d), with the aid of Eqs.
(10a-c), can be approximated as follows

1
a
g3 + 4g2 − 3g1

2Δr
−
4g1
a2

= 0, (22a-d)

1
a
g3 + 4g2 − 3g1

2Δr
−
g1
a2

= 0,

1
A
gK− 2 − 4gK− 1 + 3gK

2Δr
−
4gK
A2 =

σ0
2
,

1
A
gK− 2 − 4gK− 1 + 3gK

2Δr
−
4gK
A2 = −

σ0
4
,

respectively, where the far-field boundary conditions have been evalu-
ated at the last discretization point rK= A ≫ a= r1. The resulting system
of equations can be recast in the matrix form

B Γ = n, (23)

where B ∈ RK×K is the a square pentadiagonal matrix, Γ ∈ RK is a col-
umn vector whose elements are the variables g1,g2,…, gK and n ∈ RK is a
column vector whose first K − 2 elements are zeros and the last two are
σ0/2 and − σ0/4, respectively. Elastic uniform biaxial and pure shear
stresses are embedded into Eqs. (20) and (23), respectively, whose so-
lutions are given by

Σ = inv(A) m, (24)

and

Γ = inv(B) n . (25)

where inv( ⋅ ) is the inverse operator for square matrices.
The finite difference method has been implemented successfully for

the computation of stresses arising in functionally graded bodies in
several circumstances, e.g., [46-53]. Nevertheless, before proceeding

Fig. 4. Flowchart of the employed method.

Table 1
Second-order accuracy expressions for the finite difference terms for the
approximation of the different derivatives [45]. Here, Ψk denotes the value of Ψ
at the generic node rk.

Node Derivative Approximation

First Forward 1st
derivative

dΨ
dr

≈
− Ψ3 + 4Ψ2 − 3Ψ1

2Δr
Forward 2nd
derivative

d2Ψ
dr2

≈
2Ψ1 − 5Ψ2 + 4Ψ3 − Ψ4

Δr2
Last Backward 1st

derivative
dΨ
dr

≈
ΨK− 2 − 4ΨK− 1 + 3ΨK

2Δr
Backward 2nd
derivative

d2Ψ
dr2

≈
− ΨK− 3 + 4ΨK− 2 − 5ΨK− 1 + 2ΨK

Δr2
Intermediate Central 1st

derivative
dΨ
dr

≈
Ψk+1 − Ψk− 1

2Δr
Central 2nd
derivative

d2Ψ
dr2

≈
Ψk+1 − 2Ψk + Ψk− 1

Δr2
Central 3rd
derivative

d3Ψ
dr3

≈
Ψk+2 − 2Ψk+1 + 2Ψk− 1 − Ψk− 2

2Δr3
Central 4th
derivative

d4Ψ
dr4

≈
Ψk+2 − 4Ψk+1 + 6Ψk − 4Ψk− 1 + Ψk− 2

Δr4

gk+2
(
2+ Δr αps

k

)
+ gk+1

(
− 8 − 2Δr αps

k + 2Δr2 βpsk + Δr3 γpsk
)
+ gk

(
12 − 4Δr2 βpsk + 2Δr4 δpsk

)

+gk− 1
(
− 8+ 2Δr αps

k + 2Δr2 βps
k − Δr3 γpsk

)
+ gk− 2

(
2 − Δr αps

k

)
= 0

(21)
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with the solution of the optimization problem, an example showing the
validation of the method is necessary. Analytical solutions for the
stresses are thus borrowed from the literature and compared to the
numerical results. Among others, closed-form solutions derived in [15]
are taken into account, where mechanical properties are described by
the general power-law (14) for β = ±0.9 and n = − 5. Fig. 5a shows the
analytical solutions for the radial and hoop stresses (solid lines) in the
plate along MN and the numerical solutions (scatter points) by means of
the finite difference method. Amesh convergence study has been carried
out for the Young’s modulus variation (14) adopted in [15] with β =

±0.9 and n= − 5. In particular, it was found that the maximum values of

the occurring stresses satisfy the convergence criterion σ(Ki+1)
j,max −

σ(Ki)
j,max ≤ 10− 2MPa beyond K = 300, being i and i + 1 two numerical

forecasts employing Ki and Ki + 1 nodes, respectively, and j = r, θ (see
Fig. 5b). Thus, the use of uniform grid was sufficient to accurately
reproduce the stress field at the rim of the hole and without the need to
adopt a finite difference discretization technique with non-uniform
nodes. In fact, the use of finite difference schemes with a denser grid
discretization near the hole will not lead to linear systems of algebraic
equations for the unknown variables, like Eqs. (20) and (23), and
therefore iterative techniques requiring one to resort to iterative tech-
niques [54].

Eventually, the maximum operator appearing in Eq. (17) is replaced
by its p-norm approximation (where p is an even number greater than or
equal 2), given by

σθ,max ≈

⎛

⎝
∫A

a

σ̂θ(r)pdr

⎞

⎠

1
p

(26)

and evaluated by means of the well-known trapezoidal rule, namely

σ̂ θ,max ≈

[

Δr

(

σ̂ θ(a)p + σ̂θ(A)p +
∑K− 1

i=2
σ̂θ(ri)p

)]1
p

. (27)

Thus, Problem 1 can be transcribed into the following NLP problem
(see the right part of the flowchart in Fig. 4).

Problem
2.

min
σ̂θ,max ≈

[
Δr
(

σ̂p
θ 1 + σ̂p

θ K +
∑K− 1

i=2
σ̂p

θ i

)]1
p

V ∈ RK

s.t. Ej = Ẽ1
(
1 − Vj

)
+ Ẽ2Vj , j = 1, 2,…,K 

∑K
i=1

Aji σbxr i − mj = 0, j = 1, 2,…,K 
∑K

i=1
Bji gi − nj = 0, j = 1, 2,…,K 

σ̂θ j = σbxr j − rj
σbxr j+1 − σbxr j− 1

2Δr
+
gj+1 − 2gj + gj− 1

Δr2
, j = 2,3,

...,K − 1



σ̂θ 1 = σbxr 1 − a
− 3σbxr 1 + 4σbxr 2 − σbxr 3

2Δr
+

2g1 − 5g2 + 4g3 − g4
Δr2

,



σ̂θ K = σbxr K − A
σbxr K− 2 − 4σbxr K− 1 + 3σbxr K

2Δr
+

− gK− 3 + 4gK− 2 − 5gK− 1 + 2gK
Δr2

,



where the volume fraction has been replaced by a finite-dimensional
vector V = (V1, V2, ⋯, Vk) ∈ RK, linked to Young’s modulus through
Eq. (1), being fixed the stiffness ratio Ẽ2/Ẽ1 and the exponent p for the
objective function evaluation. The vector of the decision variables of the
NLP problem consists of the K discrete variables V1,V2,…, VK. The
constraints are the discrete equations for the elastic problems Eqs. (6a-c)
and (11)-(12a-d). The optimal solution therefore yields the optimal
variation of the volume fraction and the corresponding stress behavior
throughout the plate.

5. Results and discussion

In this Section, numerical optimal solutions for Problem 2 are illus-
trated and discussed. Hereinafter, the exponent p was taken to be equal
to 200 (higher values generally lead to results too large to represent as
conventional floating-point values during the iteration process), which
yields a good approximation of the maximum hoop stress associated
with the optimal solution, as confirmed by numerical results below. A
gradient-based solver has been employed to numerically compute the
optimal decision variable such that the maximum hoop stress reaches its
minimum value. The algorithm used in this study is the well-known

Fig. 5. (a) Analytical (solid lines) versus numerical (scatter points) solutions for the normalized radial and hoop stresses along the vertical line MN associated with
the Young’s modulus distribution in Eq. (14) with β = ±0.9 and n = − 5. The parameters adopted for the simulation are ν = 0.3 and A/a = 20. (b) Convergence study
for the maximum radial and hoop stresses as functions of K.
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sequential quadratic programming algorithm [55]. Termination toler-
ances on both the function value as well as on the first-order condition
for optimality have been imposed as 10− 6. In the light of conclusions
made in [56], a linear volume fraction has been chosen as an initial
guess and the numerical optimal solution has been sought iteratively.

For the sake of comparison with the result obtained in [15], a first
simulation has been performed with a stiffness ratio Ẽ2 /Ẽ1 = 10. The
initial target is therefore to compare numerical results with the stress
performance associated with the Young’s modulus distribution obtained
with β = − 0.9 and n = − 5 (see Figs. 2a,b or 5). Fig. 6a shows the initial
guess (dashed line) and numerical optimal volume fractions with the
same load and geometrical parameters as those employed for the vali-
dation example. More precisely, successive numerical solutions were
obtained for increasing K values (dotted lines) until a prefixed conver-
gence criterion between consecutive optimal solutions is achieved. In
particular, the considered optimal solution (K = 200, solid line) was

chosen instead of another ones associated with lower nodes (e.g., K =

100) as the norm of their difference is less than 10− 2. It is worth noting
that the optimal volume fraction increases throughout the radial direc-
tion, indicating the optimality of adopting a softer material at the rim of
the circular hole. This finding is in agreement with the literature
reporting enhancement studies for the SCF for plates with circular holes
(see, e.g., [10]). The resulting optimal Young’s modulus distribution is
following a sort of sigmoid function around the linear distribution.
Moreover, the optimal material distribution does not necessarily as-
sume, as base materials, the functionally graded material constituents at
the boundaries of the plate. Similar forecasts have been performed for
different stiffness ratios Ẽ2/Ẽ1, leading to the same conclusion (see
Fig. 6b). For completeness, the history of iterations is reported in
Figs. 6c,d.

To assess the stress performance of the optimal solution, the associ-
ated elastic hoop, radial and shear stresses are respectively illustrated in

Fig. 6. (a) The linear initial guess (dashed line) as well as optimal numerical solutions (dotted and solid lines) for the volume fraction as K increases considering E2/
E1 = 10. (b) Optimal solutions for the Young’s modulus distribution considering different stiffness ratios. Numerical forecasts have been performed with p = 200 and
A/a = 20. The history of the iterations is also reported in (c) and (d).
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Figs. 7a,b,c (dotted lines). It is worth appreciating that the hoop stress is
uniform throughout the plate and free of stress peaks, yielding a pla-
teaued stress behavior and thus making the stress concentration vanish
throughout the radial domain. Moreover, the radial and shear stresses
obey the boundary conditions of the problem. It is worth noting that the
optimization output is the same if the uniaxial load direction is rotated
by π/2, provided that the optimization problem is formulated on the line
associated with θ = 0. To further assess the correctness of the stress field
obtained by the optimal Young’s modulus distribution, a finite element
(FE) forecast was carried out by commercial software. Due to symmet-
rical load and geometrical considerations, the geometrical domain
consists of the quarter of the plate and is discretized by means of second-
order quadrilateral plane stress elements. Necessary symmetric bound-
ary conditions and the uniaxial load have been suitably applied to the
model. The radial direction has been discretized into 200 radial strips
(the same discretization points used in the transcription procedure),
each of which is isotropic and homogeneous and has the same me-
chanical properties. Adjacent layers present different properties such
that the resulting piecewise constant variation approximates the optimal
Young’s modulus distribution displayed in Fig. 6b. The FE stress
behavior has been represented by scatter points, showing a remarkable
fit with the optimization solver outputs, compared to the material
modeling simplifications necessary for the FE forecast, and confirming
the uniformity of the hoop stress on the line MN. Furthermore, a com-
parison between stresses obtained by the present approach alongside
with those analytically derived in [15] (associated with β = − 0.9 and n
= − 5) and in [16] for two different ring geometries (b/a = 3 and 5) is
made (see solid lines). It is clear that the present approach leads to

Young’s modulus distributions (sigmoid-like curves) associated with the
most uniform hoop stress (and consequently the minimum peak hoop
stress) throughout the plate.

6. Conclusions

The optimization of the volume fraction distribution to minimize
peak hoop stresses in functionally graded infinite plates with a circular
hole and subjected to uniaxial traction is numerically addressed. The
optimization problem has been stated and formulated as a dynamic
optimization problem, where the variation of the decision variable,
namely the volume fraction and consequently the Young’s modulus
through the rule of mixture, is unknown beforehand and not limited to
specified functions along the radial direction. The problem has been
divided into two sub-problems, i.e., occurring stresses have been
assumed as the superposition of those resulting from the biaxial and
from the pure shear deformations. Optimality conditions for the best
distribution of the volume fraction could not be solved analytically,
hence numerical methods were necessary.

The transcription procedure consisted in approximating the peak
stress by the trapezoidal rule and converting the differential equations
accounting for the elastic problem into two systems of algebraic equa-
tions describing the two sub-problems by means of the finite difference
method due to the simplicity of the employed boundary conditions
which permitted the solution with reduced computational costs. The
obtained numerical solutions for the Young’s modulus follow a
sigmoidal behavior. The associated hoop stress revealed uniform along
the radius and has been validated by the finite element method.

Fig. 7. Stresses associated with the optimal numerical solution (dotted lines) and finite element results (scatter points). (a) Hoop and (b) radial stresses along the
vertical line MN and the (c) shear stress along θ = π/4. Comparison between optimized stresses with results in literature (solid lines) [15,16].
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The Young’s modulus distribution has been assumed to follow the
rule of mixture; however, other models for the effective Young’s
modulus can be fitted in the same framework. The present article can be
considered as a preliminary study whose results can be further extended
to other geometrical discontinuities or to plates of finite dimensions,
provided that the finite difference method is replaced by the finite
element method. In fact, other noncircular holes such as elliptic, rect-
angular slots with rounded edges or rounded-square cutouts require the
use of numerical methods capable of transcribing the governing elas-
ticity equations not anymore in a 1D geometrical domain as in the case
of plates with a circular hole (along MN), but along the whole 2D
geometrical domain. From the technological point of view, the avail-
ability of advanced fabrication routes, e.g. additive manufacturing and
spark plasma sintering, has been making the fabrication of these mate-
rials with tailored morphologies and structural properties possible, as
stated in [57].
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