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Abstract
Environmental monitoring is a task that requires to surrogate system-wide
information with limited sensor readings. Under the proximity principle, an
environmental monitoring system can be based on the virtual sensing logic
and then rely on distance-based prediction methods, foremostly spatio-temporal
kriging. The last one is cumbersome with large datasets, but we show that a suit-
able separability assumption reduces its computational cost to an extent broader
than considered typically. Only spatial interpolation needs to be performed in a
centralized way, while forecasting can be delegated to each sensor. This simpli-
fication is related to the fact that two separate models are involved, one in time
and one in the space domain. Any of the two models can be replaced without
re-estimating the other under a composite likelihood (CL) approach. Moreover,
the use of convenient spatial and temporal models eases up computation, not
only in the CL approach, but also in maximum likelihood estimation. We show
that this perspective on kriging allows to perform virtual sensing even in the case
of tall datasets.
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1 INTRODUCTION

Environmental monitoring systems rely on virtual sensing logic to predict relevant variables of their target environment.
While the information on the whole system is of interest, this is typically based on sensor readings, which are limited in
both space and time, so it is necessary to surrogate them based on some suitable statistical method.1 Variables of interest
may include, for instance, room temperature,2 energy consumption,3 and air quality.4 We consider the case of enclosed
environments,2,4,5 as contrasted to other applications that are aimed at larger environments like ecosystems.6,7 Moreover,
our focus is on applications that need real-time control.8

The motivating example for this work comes from a virtual sensing project at Silicon Austria Labs GmbH, a European
research center for electronic-based systems.9 The data relate to an office room in Villach, Austria, that has been moni-
tored for 19 weeks between October 2019 and March 2020. The temperature (in ◦C) is reported by 12 sensors every 10 s,
along with other physical measurements like pressure (in Pa) and light (in lx). The room is 127 m2 large and it is structured
as reported in Figure 1. The picture also shows the locations of sensors and windows, along with the cardinal points.

The sensors are all Raspberry Pi Zero boards. Their measurements are broadcast over a wireless network to a database
server, which is a Raspberry Pi 3 instead. Raspberry Pis are popular and affordable single-board computers that are
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F I G U R E 1 Room with windows, cardinal points, and sensor locations, modified from the original map9

widely used in home automation and smart systems.10 This example has some key aspects, including data referenced both
temporally and spatially, high-frequency measurements, resulting in multivariate times series with as many as 106 obser-
vations for each sensor. The server has a limited yet non-negligible computational power, which is also important, as it
allows to process data locally if this task is planned carefully, considering the limitations of the monitoring system.

As common in modern data analysis, there are at least two main and opposite approaches to deal with sensor data.
These two opposites are represented by interpretable models and black-box algorithms, respectively. The former include
specifications based on actual knowledge about physical aspects of the system,8 often hard to formulate; the latter include
neural networks and other machine learning techniques that achieve remarkable performance levels and are readily
available in general software. Other authors addressed the same datasets of our present analysis,9 but they used techniques
such as XGBoost regression11 and LSTM recurrent neural networks.12 These methods do not provide spatial interpolation
by design, but they can do so only after some suitable engineering, thus some generalization issues emerge.

Here we advocate for an approach lying between the two extremes, which is statistically sound without compromising
the predictive performance. We are interested in simple models and distributed computing, thus on scalable methods
that leverage the proximity principle. It is then natural to resort to distance-based prediction methods,13 which include
for instance inverse distance weighted regression (IDWR), k-nearest-neighbors (k-NN),14 and spatio-temporal kriging.15

These methods are somewhat related to pure spatial data analysis.16 The focus of the present article is on the kriging
method. This approach relies on a correlation model, which depends on distances between measurements in time and
space. A crucial assumption for distributed calculus is spatio-temporal separability, which implies two separate models
for spatial and temporal correlations.7 This assumption is hardly suitable for large environments, where some locations
can anticipate events that will occur somewhere else. In smaller environments, separability provides instead a useful
approximation that may perform similarly to more complicated, nonseparable models.17

While involving a simple model, kriging is cursed by the enormous cost of computation, mostly due to the inversion of
large correlation matrices. Some approximations have been devised to make kriging tractable like, for instance, covariance
tapering.18 A composite likelihood (CL) approach can be used to estimate a separable model, which allows to separate the
estimation of the spatial model from the estimation of the temporal model. Also, some models in the time domain can
spare the cumbersome matrix inversions and thus simplify both estimation and prediction. For instance, autoregressive
(AR) models can be estimated just by minimizing the conditional sum of squares, and they come with compact forecasting
rules.19 As to spatio-temporal predictions, we show that these can be seen as a spatial interpolation of temporal forecasts
under separability, which allows to leverage specific advantages of time series and spatial models. These possibilities seem
somewhat overlooked in the literature, in spite of the attention received by separability itself.

All in all, the main contributions of this article can be summarized as follows. First, a CL-based fitting procedure is
proposed that is both memory- and compute-efficient. An affordable implementation of the maximum likelihood (ML)
estimator is also presented, which is slower to compute but serves as the natural benchmark for our proposal. Second, this
article provides significant simplifications of computational order in both estimation and prediction related to Gaussian
processes (GPs), in the case of separable covariance structures, making it possible to carry out scalable sensor data analysis.
As a result, it expands the range of models that can be addressed in spatio-temporal kriging, as we point out that the
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allegedly required covariance matrices need not to be evaluated directly. Thus, even rich seasonal models can be addressed
without directly evaluating the autocorrelation function.

The plan of this article is as follows. In Section 2, we review the literature in brief as it concerns GPs and their applica-
tions to large datasets. In Section 3, we recall basic kriging formulation, while emphasizing some correlation structures
of practical importance. In Section 4, we detail our inferential and predictive framework, focusing on distributed com-
puting. Section 5 illustrates the application of the proposed methodology to the motivating example, whereas Section 6 is
devoted to some possible twists and extensions. Finally, Section 7 presents some concluding remarks.

2 LITERATURE REVIEW

We deal with the task of surrogate modeling, estimation and prediction.1 Consider a function or a process defined over a
domain. This can represent the temperature at given times and locations,9 groundwater levels over a region,20 material
properties of different portions of a solid,21 wind speed at turbine locations,22 turbulence around airships,23 or robots’
reliability over time,24 to name a few examples. The process is feasibly observed only at selected points in the domain.
For instance, room temperature may be known only at sensor locations and at discrete times. In many of these examples,
inputs and outputs of some production systems can be thought of, respectively, as domain points and process outcomes.
The unavailable information, that is, the process at unobserved locations and times, has thus to be surrogated. Opti-
mization tasks may involve some interpolation steps,23,25 for which a proximity principle is implicitly trusted. From a
statistical viewpoint, a stochastic process is assumed to rule the target of knowledge, and suitable regularity assumptions
will be made: these reflect the heuristic that similarity comes with proximity and independence comes with distance.
For instance, atmospheric events and air conditions often exhibit such regularity.26 From an operational standpoint, a
distance measure must be defined, which must be meaningful within the specific geometry of the domain on focus.27

For example, a domain can even be made up of functions: even in such a case, a meaningful distance measure has been
proposed recently.28,29

Gaussianity, coupled with a suitable correlation structure, is a common assumption in statistical modeling that is cen-
tral to kriging, as it translates straightforwardly into first- and second- order conditions.30,31 Moreover, GPs arise naturally
in the case of spatially and temporally referenced data. The term kriging in broad generality refers to the task of making
predictions based on conditional normal distributions, where the covariance structure depends on a suitably defined dis-
tance measure.32 By extension, the model underlying kriging has been called the kriging model.33 Kriging has become
an umbrella name to include many variants, like ordinary, simple, and universal kriging, which differ in the specifica-
tion of the mean. Moreover, co-kriging involves regression on covariates that are known beforehand; on the contrary,
semantic kriging involves covariates that are not known in advance and thus need to be predicted in turn.34 In machine
learning, kriging often uses rich and nonlinear trend formulations,35 see, for instance, the polynomial chaos approach.36

Intrinsic kriging revolves around the process of differences, which is approximately de-trended if the mean varies slowly
with distance.37 The main point of all these variants of kriging is in the way of formulating or estimating the mean of the
process.

The estimation of kriging models often involves two subsequent steps: the first one is devoted to estimating the mean,
which may depend on covariates, and the second one is devoted to estimating the correlation structure parameters, based
on the residual or de-trended process that results from the first step. This procedure is known as residual kriging.38 When
the mean model is complicated, Kaufman et al.39 advocate for separating the estimation of trend and covariance struc-
tures. The residual process is indeed hard to model in terms of correlations.40 Some kriging applications may actually fail
due to little spatial regularities left in the process after accounting for covariates.41 By converse, missing covariates can be
thought of as a source of residual correlation, which leaves room for spatio-temporal modeling.42 Similar issues may arise
when attempting to estimate both spatial and temporal correlations. One may thus generalize Kaufman et al.’s approach to
separate the estimation of dependence for each domain, being it either space, time or covariates, thus borrowing predictive
power from all the domains.43

The scalability of GPs is concerning in the case of large datasets. Accessible reviews are available on this topic, focus-
ing on big data applications.44 All scalable GPs generally involve approximating the information that could be extracted
from a full dataset, provided a sufficient computational power. Data subsetting, partitioning,45 or subsampling46 involve
retaining only a fraction of training data points: moving kriging,47 as a local estimation method, belongs to this category.
Related but distinct are local approximations such as Markov assumptions,48 which are based on selecting a smaller train-
ing dataset that is relevant for a specific prediction task. Covariance tapering18 involves bounded support kernels49 that
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induce sparsity in large correlation matrices, which are then more manageable both memory- and compute- wise. Other
algebraic approximations allow for parsimonious, low-rank representations for large matrices: for instance, separabil-
ity assumptions involve writing large matrices as a Kronecker product of multiple smaller matrices, which are easier to
invert.7

Computational concerns make it difficult to deploy an otherwise interesting, functional variant of kriging called GP
regression (GPR).50 However, even plain GPs can be troubled within the same setting. The aforementioned approxi-
mations can be useful, but they require tuning of some sort. For instance, in Markov modeling, the extent of Markov
neighborhoods is a tuning aspect of the problem.

The focus of this article is on separability assumptions, which may fit into the category of parsimonious, low-rank
approximations for spatio-temporal correlation matrices.17 Separability assumptions arise naturally in multivariate nor-
mal modeling. In the literature, one may find this model stated in terms of a normally distributed random vector with
covariance matrices in Kronecker form, which come in handy even in problems with fewer data than the one we present
here.42 An iterative procedure attributed to Arendt et al.51 allows to estimate the correlation structures in time and space
domains. This technique consists in estimating the spatial correlation of data that have been temporally decorrelated, then
estimating the temporal correlation of data that have been (by converse) spatially decorrelated; the two steps are iterated
until convergence. What we highlight in our contribution is that the practitioner may find it useful to adopt some suitable
time series models19 for which the matrix transformations need not be evaluated explicitly, as it may be cumbersome. The
advantages of separability have not been exploited in full yet. A likelihood function for separable kriging models in many
domains has already been considered and maximized with iterative procedures, though without leveraging convenient
correlation models.52

Separable models have already been addressed using CLs, which are nongenuine likelihoods based on working
independence assumptions.53 Pairwise CLs help avoid matrix inversion.54 Basically, a CL allows to make inference
even based on under-specified models, on trusted assumptions, thus making the analysis more robust55 to model
misspecification. Furthermore, under a separable spatio-temporal model, temporal and spatial parameters can be
estimated separately for added robustness with respect to each other’s misspecification.56 The composite estima-
tor provides stronger consistency guarantees in this sense.57 The potential of composite estimation has also been
investigated in terms of the other kinds of robustness that are common in statistics, with respect to outliers and
data contamination.58 Given these interesting results, the present article aims at presenting a composite estimation
approach to the reader, as it promises to make kriging applications more computationally sustainable and, hopefully,
robust.

3 MODEL SPECIFICATION

We deal with the case of data that are both spatially and temporally referenced, so we use a space index s and a time index
t. The space index s takes its value in  = {1, … , S} and is a pointer to one out of S locations in space, while the time
index t takes its value in  = {1, … ,T} and is a pointer to one out of T time frames. A joint index ts denotes location s at
time t. Since dealing with a constant sampling rate, we consider a discrete-time system with equispaced time frames. In
the long run, it holds T ≫ S.

Let ds,s′ be a spatial distance, defined for all pairs of locations s, s′ ∈  , thus endowed with non-negativity, sym-
metry and triangle inequality. Distance is ordinarily evaluated along straight lines in the absence of physical obsta-
cles; otherwise, the length of the shortest path is considered. We choose the Euclidean distance for this purpose,
namely,

ds,s′ =
√
(xs − xs′ )2 + (ys − ys′ )2 , (1)

where (xs,ys) and (xs′ ,ys′ ) are the two-dimensional Cartesian coordinates of s, s′ ∈  , respectively. Temporal distance is
defined analogously59 for all pairs of t, t′ ∈  as

dt,t′ = |t − t′| , (2)

with | ⋅ | denoting the absolute value. Here, ds,s′ is the generic (s, s′)th entry of the S × S spatial distance matrix dS and dt,t′

is the generic (t, t′)th entry of the T × T temporal distance matrix dT , respectively.
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The observed data y are structured as follows:

y =
⎡
⎢
⎢
⎢
⎣

y11 … y1S

⋮ yts ⋮

yT1 … yTS

⎤
⎥
⎥
⎥
⎦

, (3)

so the data related to location s are all stored in the same sth column, while those related to the time frame t are all stored
in the same tth row. As new data are observed, they are appended to y as a new row. The data y are modeled by the random
matrix Y and the mean matrix 𝜇 with the same number of rows and columns of y.

Let vec be a unary operator defined for matrices that stacks their columns into a single vector.60 Y is assumed to be a
multivariate normal with scale parameter 𝜎 > 0 and correlation matrix R, in the sense that R is the correlation matrix of
vec(Y ). More formally, we assume that Y has the following density function.

f (y;𝜇, 𝜎,R) = 1
√
|2𝜋𝜎2R|

⋅ exp
{
−1

2
vec

(y − 𝜇
𝜎

)
⊤

R−1 vec
(y − 𝜇

𝜎

)}
, (4)

where | ⋅ | is the determinant of a square matrix. In kriging-related applications, R is a positive definite square matrix that
depends on spatial and temporal distances through spatial and temporal autocorrelation functions discussed further in
this section. The definition in use throughout this article will be given later in Equation (11).

We assume that the expected value of Y at time t and location s, denoted by 𝜇ts, is a smooth function of t and is shared
across locations, so it makes sense to estimate it with the asymmetric moving average mt defined below, which pools data
from across all the observed locations, limited to w time frames preceding t. The trend 𝜇ts is thus estimated via �̂�ts, defined
as

�̂�ts = mt, for all s,with mt =
1

S ⋅ w

S∑

s=1

w∑

i=1
Y(t−i)s . (5)

Here, Y(t−i)s is the process at time t − i and location s. We set w equal to the number of observations per sensor in 24 h to
remove the observed daily seasonality. The latest estimate available for 𝜇ts can also serve as an estimate for future trend
𝜇t′s, t′ > t, assuming stability in the short term. Such an assumption can be credible when the univariate time series may
agree on a single latent factor ruling all of them.

The parameter 𝜎 > 0 contributes only to making predictions probabilistically calibrated,61 because it is just a scale
parameter, like the error standard deviation in classical linear regression, thus involved in prediction variance but not in
mean predictions; see Appendix A.

We resort to the classical kriging approach, which belongs to frequentist statistics, but this methodology also has a
Bayesian counterpart involving a prior distribution on parameters.62 As per kriging approach, we assume that correlations
between components of Y are stationary and thus depend on their distances in space and time. The covariance between
any two components of Y , say, Yts and Yt′s′ , is modeled as

cov(Yts,Yt′s′ ) = 𝜎2 ⋅ corS(ds,s′ ) ⋅ corT(dt,t′ ) , (6)

where corS(⋅) is the spatial autocorrelation function (ACF),63 while corT(⋅) is the temporal ACF;19 few examples of
definition for corS(⋅) and corT(⋅) are provided in the next paragraph. The product between spatial and temporal corre-
lations is implied by the separability assumption. ACFs depending on distances and not directions are implied by an
isotropy assumption. Both separability and isotropy can simplify modeling and computing.1,2,6,7,64

For the sake of illustration, we recall few possible definitions for the spatial ACF corS(⋅) and the temporal ACF corT(⋅).
The spatial ACF can be, for instance, one of the following:13,16,59

• Matérn ACF65

corS(d) =
21−𝛼

Γ(𝛼)
(d∕𝜆)𝛼K

𝛼
(d∕𝜆) , (7)
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with Γ(⋅) the gamma function and K
𝛼
(⋅) the modified Bessel function of the second kind; 𝛼 > 0 is a smoothing

parameter, 𝜆 > 0 is a range parameter.
• Power exponential ACF1

corS(d) = exp{−(d∕𝜆)𝛽} . (8)

Here, 𝛽 > 0 is a smoothing parameter, 𝜆 > 0 is a range parameter.

Both Matérn and power exponential ACFs include two notable sub-cases:

• When 𝛼 = 1∕2 and 𝛽 = 1, the exponential ACF is implied.6

• When 𝛼 →∞ and 𝛽 = 2, the Gaussian ACF is implied,1,66 which is also known as squared-exponential ACF3,4,67 and
involved in the double-stable model.2

The temporal ACF corT(⋅) in discrete time can be, for instance, one of the following:19

• ACF of a stationary AR of order 1

corT(d) = 𝜙|d| , (9)

where 𝜙 ∈ ] − 1,+1[ is the correlation parameter.
• ACF of an invertible moving-average model of order 1

corT(d) =
⎧
⎪
⎨
⎪
⎩

1, d = 0,
𝜂, d = ±1,
0, otherwise,

(10)

where 𝜂 ∈ ] − 1∕2,+1∕2[ is the correlation parameter.

More complicated ACFs are possible when looking at more flexible time series models, such as the multiplicative
seasonal AR models that are used in the empirical application presented later. Some approaches assume weak or no cor-
relation structure, like empirical kriging.15 These approaches are necessarily less scalable but may still work for suitably
targeted tasks.

Let corS(⋅) and corT(⋅) be vectorized functions, that is, they transform matrices in an entry-wise fashion. Then, RS =
corS(dS) will be a spatial correlation matrix and RT = corT(dT) a temporal correlation matrix. We call

R = RS ⊗ RT , (11)

the spatio-temporal correlation matrix, this expression denoting also a Kronecker correlation structure due to the
Kronecker product ⊗.

Both temporal and spatial ACFs can be modified to account for noisy data by including a so-called nugget effect.1,65

This means that the spatial ACF corS(d) and the temporal ACF corT(d) are multiplied by 𝛽S and 𝛽T when d > 0, respec-
tively, the parameters 𝛽S and 𝛽T taking values in the interval ]0, 1].15 We refer to 1 − 𝛽S and 1 − 𝛽T as the nugget parameters,
in space and time domains, respectively. Some authors apply the nugget directly to the spatio-temporal covariance func-
tion, but this will break up separability.64,68 The latter way of modeling is more natural in the case of additive covariance
models.69

4 INFERENTIAL ASPECTS

This section presents two strategies that allow to perform estimation and prediction under a separable model
with a low computational cost. In particular, we base estimation on a novel CL approach. Then, leveraging
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the peculiar expression of the kriging mean formula, we show how to compute predictions efficiently under
separability.

4.1 Estimation

The distribution of Y in Equation (4) is assumed to be indexed by 𝜇, 𝜎,R. As per residual kriging, 𝜇 is replaced with its
estimate �̂� via Equation (5). The parameters left to be estimated are 𝜃 = (𝜎, 𝜓⊤)⊤, with𝜓 the correlation parameters ruling
R. Moreover,𝜓 can be partitioned as𝜓 = (𝜓⊤

S , 𝜓
⊤

T )
⊤, where𝜓S and𝜓T are the spatial and temporal correlation parameters,

respectively. In particular, RS depends only on 𝜓S, while RT depends only on 𝜓T . As a starting point, we consider the
pseudo likelihood function (𝜃), defined as

(𝜃) = (𝜃; ỹ) = f (ỹ; 0, 𝜎,R) , (12)

with ỹ = y − �̂� the de-trended data. The maximizer of (𝜃) with respect to 𝜃 is referred to as the ML estimate. Under
the separability assumption in Equation (11), it is possible to evaluate ML efficiently as illustrated in Appendix C. The
ML approach is the natural benchmark for any other estimator, due to its asymptotic efficiency. Nevertheless, robustness
concerns and computational issues may arise in practical data analysis, for which the following CL estimation approach
can be more suited.

Let the sample correlation matrix be defined as rank-1 matrix

̂M = 1
�̂�

2 vec(y − �̂�) vec(y − �̂�)⊤ , (13)

where �̂� is a working estimate of 𝜎, defined as

�̂� =

√√√√ 1
TS

S∑

s=1

T∑

t=1
(yts − �̂�ts)2 . (14)

The likelihood function is thus replaced with a so-called pseudo likelihoodp(𝜓), defined as follows, that allows to make
inference on 𝜓 alone.65,70


p(𝜓) = |R|−1∕2 exp

{
−1

2
tr
(

R−1
̂M
)}

. (15)

Here, tr(⋅) is the trace operator.
Kriging is often cumbersome due to the inversion of R, and actually the pseudo likelihood in Equation (15) is

intractable with high-dimensional data. Separability reduces the dimensionality of the problem, as it holds

R−1 = (RS ⊗ RT)−1 = R−1
S ⊗ R−1

T , (16)

so two smaller inverse matrices must be computed instead of a single and larger one. However, as T ≫ S, inverting RT
alone can also be difficult.

Our proposal is two-fold. First, a marginal CL approach56 can be used, exploiting separability more in depth so that
the tasks of estimating 𝜓S and 𝜓T can even be addressed separately. Second, a suitable time series model can help handle
the temporal correlation implicitly, as RT must not be evaluated at all, and make it possible to address tall data and high
sampling rates.

CLs are known in spatial statistics mainly as tools that simplify estimation and inference, like the pairwise likelihood,53

and they can also be used in model selection.71 CLs allow to make inference on under-specified models but, even in
the case of fully specified models, like in kriging, a suitable CL can reduce the computational cost of estimation. The
estimator based on the full model can be computed in some cases, but it would be generally cumbersome with large
datasets, without the convenient temporal models discussed here. We remark the tractability of our estimator by carrying
out inference based on bootstrap. Cheaper computation comes at a price, since the estimator is naturally sub-optimal with
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respect to the ML estimator. Nonetheless, the loss of efficiency might be not significant when dealing with high-frequency
data.

With CLs, as with any so-called pseudo likelihood, estimation variance cannot be assessed as with classical likelihood
functions based on the Hessian matrix. Parametric bootstrap can be used72 in the case of kriging because the model is
fully specified, and one can simulate datasets based on it. It is straightforward to simulate datasets under separability and
some temporal models. We detail a bootstrap strategy in Appendix B.

Within a single time frame t ∈  , it holds R = RS, as per Equation (11). Let the spatial pseudo CL be as follows,

S(𝜓S) =
∏

t∈
f (ỹt; 0, �̂�,RS) = |RS|−T∕2 exp

{
−T

2
tr
(

R−1
S
̂MS
)}

, (17)

with ỹt the de-trended data vector at time frame t. This allows to make inference on the spatial correlation parameters 𝜓S
alone. The expression is the same of a “small blocks” marginal CL.56 Here, ̂MS is the sample correlation matrix between
the univariate time series at distinct locations, defined as

̂MS =
1

T�̂�2 (y − �̂�)
⊤(y − �̂�) . (18)

The estimator �̂�S for the spatial correlation parameters 𝜓S is defined as the maximizer of (17). If RS is a smooth
function of 𝜓S, the estimator can be seen as the solution of a system of estimating equations, the equation for the generic
parameter 𝛼 ∈ 𝜓S being defined as follows:

𝛼 ∶ tr

{
(

RS − ̂MS
) 𝜕R−1

S

𝜕𝛼

}

= 0 . (19)

The above equation looks like a weighted average of the equations from the over-determined system RS − ̂MS = 0. It is
worth noticing the close resemblance between the pseudo likelihoods in Equations (15) and (17), but the correlation
matrices involved are strikingly different in their sizes, as RS is much smaller than R in practical applications.

The temporal correlation parameter 𝜓T can be estimated analogously to 𝜓S, by defining a temporal pseudo CL T as

T(𝜓T) =
∏

s∈
f (ỹs; 0, �̂�,RT) = |RT|−S∕2 exp

{
−S

2
tr
(

R−1
T
̂MT
)}

, (20)

with ỹs the de-trended univariate time series at location s. Here, ̂MT is the sample temporal correlation matrix, defined as

̂MT =
1

S�̂�2 (y − �̂�)(y − �̂�)
⊤

. (21)

This operation will completely disentangle the estimators of spatial and temporal parameters from each other. As con-
trasted to RS, RT will be high-dimensional, so it is even more pressing the need to use a convenient correlation structure
in the time domain, to simplify the estimation of 𝜓T otherwise based on directly maximizing (20). In particular, we resort
to an AR model with multiple overlapping seasonal lags. For its definition, the classical lag operator B can be introduced,
such that

BYts = Y(t−1)s , (22)

and BΔYts = Y(t−Δ)s more in general, where Y(t−Δ)s is the process Y at time t − Δ and location s. Then, letting 𝜀s be a white
noise time series process, the multiplicative seasonal AR model is defined as follows.19

[ K∏

k=1
(1 − 𝜙kBΔk )

]

⋅ (Ys − 𝜇s) = 𝜀s , (23)

where Δ1, … ,Δk, … ,ΔK are the structural lags, and 𝜙1, … , 𝜙k, … , 𝜙K ∈ ] − 1,+1[ the model coefficients.
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Equation (23) reduces the temporal correlation parameter to 𝜓T = (𝜙1, … , 𝜙K)⊤. AR modeling also makes it easy to
approximately maximize the likelihood by minimizing the conditional sum of squares,19 which can be attained via the
coordinate descent method.73 In this sense, we define

V−h
s =

[
∏

k≠h
(1 − 𝜙kBΔk )

]

⋅ (Ys − 𝜇s) , (24)

and, by Equation (23), it holds

(1 − 𝜙hBΔh)V−h
s = 𝜀s , (25)

so, the transformed time series V−h
s satisfies

𝜙h = cor(V−h
s ,BΔh V−h

s ) . (26)

This relation motivates an iterative procedure that loops over the correlation parameters, and repeats until convergence.
For each 𝜙h, one evaluates the current estimate of the process V−h

s and then updates 𝜙h as the sample ACF of V−h
s at lag

Δh.
An online learning approach may be considered as an alternative. For instance, estimates can be updated continually

via batch learning14 or exponentially weighted moving means and covariances,74,75 which require additional tuning.

4.2 Prediction

Separability assumptions also simplify prediction, as we show in this section. To this end, we must expand our notation.
Then, let Y ′ be from unobserved locations or times and with the mean matrix 𝜇′, while previously introduced matrices Y
and 𝜇 are now related to the available data y. The correlation matrix of vec(Y ′) is R′, whereas R is the correlation matrix of
vec(Y ). The cross-correlation matrix between vec(Y ′) and vec(Y ) is generally not square, and it is denoted by 𝜌, which is
based on a suitable joint distance matrix. Like R in Equation (11), also R′ and 𝜌 are defined in terms of Kronecker products
as, respectively,

R′ = R′S ⊗ R′T , 𝜌 = 𝜌S ⊗ 𝜌T , (27)

where R′S and R′T are the spatial and temporal correlation matrices of Y ′, analogously to RS and RT , while 𝜌S and 𝜌T are the
spatial and temporal cross-correlation matrices between Y ′ and Y . These in turn depend on suitable spatial and temporal
distance matrices. As typical in kriging, we treat Y and Y ′ as jointly normally distributed.

Kriging revolves around the conditional distribution of Y ′ given Y = y,1 though it was originally motivated as the
linear unbiased prediction that is optimal with respect to the squared prediction error criterion.76 Conditional to Y = y,
the distribution of Y ′ is multivariate normal. The conditional mean matrix of Y ′, denoted by ŷ′, and the conditional
variance-covariance matrix of vec(Y ′), denoted by R′cond, satisfy the following conditions.

vec(ŷ′) = vec(𝜇′) + 𝜌R−1vec(y − 𝜇) , R′cond = R′ − 𝜌R−1
𝜌

⊤

. (28)

Let 𝛽S and 𝛽T be spatial and temporal regression coefficients, defined as

𝛽S = 𝜌SR−1
S , 𝛽T = 𝜌TR−1

T , (29)

then the kriging mean formula in Equation (28) can be written as

ŷ′ − 𝜇′ = ẑ𝛽⊤S , (30)

where ẑ is a matrix of centered temporal forecasts only, defined as
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ẑ = 𝛽T(y − 𝜇) . (31)

We prove this fact in Appendix A.1. The proof also covers existing applications of multivariate normal models.77

The above result allows for at least two interesting uses. First, our result allows for distributed calculus in kriging.
Indeed, spatio-temporal prediction under separability can be carried out in two steps. The first step, in Equation (31), is
temporal forecasting only within sensor locations. The second step, in Equation (30), is the spatial interpolation of such
forecasts for the needed locations. Then, spatio-temporal predictions can be seen as spatial interpolation of temporal
forecasts. So, a separability assumption allows to separate domains also in prediction. Distributed calculus can be used
for evaluating Equation (31), as each univariate time series is transformed separately by the matrix product.

This insight into the meaning of matrix quantities cannot be found in other works,77 as they lack both the interpreta-
tion of 𝛽S and 𝛽T . Moreover, an automatic application of their findings would be too compute-intensive with large datasets,
because it would require evaluating 𝛽T explicitly.

Correlation models affect prediction only through 𝛽S and 𝛽T . So, any specification of time or space models can
be employed if it implies tractable prediction. This view motivates, for instance, the use of general interpolators, or
state-space models,78 or integrated AR time series models,19 that allow for simple prediction since 𝛽T in Equation (29) is
sparse and explicit. The rather general auto-regressive moving-average model (ARMA) has already been considered by
some authors79 though the MA component makes the model harder to estimate.

In applications, one may consider adding covariates to the analysis. Assume that there are p variables indexed by
j = 1, … , p, so Yjts denotes the jth variable at spatio-temporal coordinates ts. In this case, the marginal means 𝜇jts will
likely depend on j. The correlation structure can be simplified according to a fully factored model,7 such that

cov(Yjts,Yj′t′s′ ) = 𝛾j,j′ ⋅ corS(ds,s′ ) ⋅ corT(dt,t′ ) . (32)

Here, the new quantity 𝛾j,j′ represents the cross-sectional covariance between the jth and j′th variables at the same time
and location. Thus, under a fully factored model, our kriging mean formula scales easily, as an additional set of regression
coefficients 𝛽C is defined besides 𝛽S and 𝛽T , implied by the newly added domain of covariates.

We provided a simple expression for mean predictions, along with some optimization strategies. For the sake of
completeness, we now illustrate how to compute prediction variances. In our view, the model can be used to design a pre-
diction rule, resulting in mean prediction, while prediction variance is a performance measure, which can, for instance,
be evaluated on a test set. This approach may be favored when the focus is especially on prediction.

Let V be a matrix with the same size as Y ′ with the entrywise variances of Y ′ conditional to Y = y. Let diag(M) be the
operator that returns the diagonal entries of a square matrix M as a column vector. Then, vec(V) = 𝜎2diag(R′cond), so it
holds

V = 𝜎2
{

diag(R′T) diag(R′S)
⊤ − diag(R′T − R′T,cond) diag(R′S − R′S,cond)

⊤

}
, (33)

where R′S,cond and R′T,cond are defined as follows.

R′S,cond = R′S − 𝜌SR−1
S 𝜌

⊤

S , R′T,cond = R′T − 𝜌TR−1
T 𝜌

⊤

T . (34)

We prove this result in Appendix A.2. Equation (33) has an advantage over direct evaluation of (28), as the expression for
R′T,cond is simple to retrieve under some time series models. For instance, with stationary AR processes, in one-step-forward
forecasting, R′T,cond is the ratio between the variance of the innovation term and the marginal variance of the process.

5 EMPIRICAL APPLICATION

Now we illustrate our proposed methodology on the SAL dataset presented in the introduction. The dataset is publicly
available on GitHub, as submitted by the authors of the first paper addressing it,9 at https://github.com/dslab-uniud/
virtual-sensing. We performed all our analyses in the statistical computing environment R.80 Both the ML and CL estima-
tors were given a custom implementation that minimizes the conditional sum of squares in the estimation of the temporal
model and maximizes a spatial pseudo likelihood for the estimation of the spatial model. All the analyses were carried
out using typical laptop computers.

https://github.com/dslab-uniud/virtual-sensing
https://github.com/dslab-uniud/virtual-sensing
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5.1 Explorative analysis

The SAL dataset consists of temperature sensor readings from an office room and has been briefly described in the intro-
ductory section. The goal is to develop a spatio-temporal prediction rule for temperature based on these data. Some
candidate spatial models are estimated on a training set, and the best one is selected based on a test set. The full dataset
comprises 19 weeks of data, and it is partitioned accordingly, with the leading 8 weeks of data for training and the trail-
ing 11 weeks as the test set. This choice is challenging for our method, as it is more exposed to shifts in the regime, but
a longer training phase might not be reasonable for some applications, where a monitoring system shall be calibrated in
short amounts of time.

Data were missing less than 1% of the times, resulting from miscommunication faults unrelated to the data and thus
statistically random. Kriging can handle missings at random, but we used a simpler imputation method called last obser-
vation carried forward (LOCF), which uses the last valid reading to impute missings.81 In fact, we require gridded data
and the LOCF approach solves the problem rapidly and efficiently, so we can focus on other aspects of the problem.

Figure 2 presents the training set. The sensors are numbered from 1 to 12 as in Figure 1. Troughs are concentrated
in the mornings, as windows are opened, and cold air flows in the room during routine cleaning. Peaks are concentrated
around noon, as direct sunlight overheats the sensors facing south, the ones numbered 5, 10, and 11. Weekly trends are
highlighted in Figure 3, with temperature median and other percentiles reported throughout weekdays. Troughs seem to
occur mostly on Mondays and Fridays, so on the first and last workdays in the week. Peaks instead concentrate on Fridays
and weekends.

Similar conditions between subsequent days motivate using time series models with seasonal components, the period
being one day long. Similar events occurring on the same weekday motivate considering one more seasonal component,
whose period should be 1 week long.

One may consider adding covariates into the model, in particular the physical variables mentioned in the introduction.
Some preliminary analyses show that their explanatory power is limited, since spatial and temporal dependencies seem
able to explain most of the variability of temperature data. As a consequence, they will not be considered further.

5.2 Model estimates

We compared our proposed CL estimator with the ML approach. The model chosen was separable, as discussed in previous
sections. We considered four candidate models in the space domain, namely, exponential, Gaussian, power exponential,
and Matérn ACFs. In the time domain, we considered a few candidate models, all multiplicative AR as in Equation (23),
with a short term lag Δ1 and two seasonal lags, Δ2 = 1 day and Δ3 = 1 week. We probed some alternative values for the
short term lag Δ1, ranging in 10, 20, 30, 40 min, 1, 2, 3, 4, 6, 12 h. The longer lags were of interest because they implied
higher estimates of 𝜙2 and 𝜙3, so that one could leverage seasonal dynamics and spatial regularities. All the candidate
spatio-temporal models were then compared on the test set in terms of their performance in the spatial interpolation of
each sensor based on the other ones, see Figure 5 in the following paragraphs.

The estimation of all the spatio-temporal models via ML took no more than 10 min. The estimation of spatial models
via CL was essentially instantaneous by comparison, as the small size of the sample spatial correlation matrix made the
computation fast. The estimation of temporal models via CL takes a few seconds, namely about one-fourth of the time
required for ML. The four spatial ACFs estimated with either ML or CL appears to be very similar. In Figure 4, this
similarity is illustrated based on just the CL estimate.

Figure 5 summarizes the predictive performance of the estimated spatio-temporal models on the test set. The per-
formance is assessed in terms of spatial interpolation of each sensor, surrogated via all the others in turn. Three
performance metrics are used, namely, the mean absolute prediction error (L1), the root of mean square error (L2),
and the 95th percentile of the absolute prediction error (P95). In comparing ML and CL methods, these are seen to
provide model estimates that turn out to be rather interchangeable for predictive tasks. Sensor 10 is uniformly poorly
surrogated by the other sensors, which marks its outlying nature in the example. This sensor is better accommodated
by the CL estimate, in line with its higher degree of robustness. CL seems otherwise a good approximation to ML in
general.

Lastly, Table 1 summarizes the CL estimates and standard errors for the four spatio-temporal models we are going
to consider in the next section with Δ1 = 10 min. Point estimates of the temporal parameters are shared across the
four spatio-temporal models. Their standard errors are based on parametric bootstrap, as outlined in Appendix B. The
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F I G U R E 2 Univariate time series of temperature per sensor, training set (October through December). Peaks and troughs are
thresholded and highlighted with dots.
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F I G U R E 3 Sample quantiles of temperature, aggregation according to the weekday, training set (October through December)
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F I G U R E 4 Spatial ACFs estimated via CL (lines) with sample correlations (dots). See Table 1 for the estimated parameters

estimation variance does, instead, depend on the joint spatio-temporal model, so it is different across them. For boot-
strap, we carried out inference based on parametric bootstrap by simulating and analyzing 1000 datasets for each
joint spatio-temporal model. Performing the bootstrap took about 3 h on a single laptop computer based on the CL
approach. Standard errors, all multiplied by 103 in the table, are all rather small, as expected based on the large
sample size.

5.3 Sensor network optimization

In the previous subsection, CL turned out to be capable of surrogating the efficiency of ML, with the help of a large training
dataset. Now a practical concern is the selection of a few operation sensors from the initial set, as twelve of them are too
many for a room that is 127 m2 large. Under the proximity principle, some sensors could be dropped, and their location
could be just virtually sensed since their data can be surrogated82 with predictions from the remaining sensors.

Different network configurations can be evaluated and compared according to a metric, which should reflect the
priorities and objectives of stakeholders. The 95th percentile of absolute prediction errors on all but active sensors9

can be used for an approximate minimax decision. For comparison, we illustrate a sensor selection based on this cri-
terion alongside one that uses the more classical mean absolute prediction error. The performance of spatial models
and sensor configurations is evaluated and compared on the test set. For each sensor configuration, we interpolate
data from selected locations to the unselected ones within time frames, as implied by separability. Prediction errors are
then summarized according to the metrics. We perform selection in a forward fashion by starting with the best per-
former alone and then adding the sensor that led to the best improvement at each step. Adding sensors can worsen
the performance because we are evaluating models on the test set. In Figure 6, a summary of the selection process is
reported. The sensor added at each step appears within a box and is numbered as in Figure 1. An alternative prediction
is given by the simple mean, which assumes that a single latent temperature is ruling the whole room. The selection
took no more than 10 min in total, so it would be easy to perform it multiple times ad interim to check on the quality of
predictions.

We show only the power exponential ACF. The result based on the Matérn function is very similar, and the expo-
nential and Gaussian ones are slightly outperformed. The percentile performance seems in line with k-NN and IDW
benchmarks.9 Based on performances in Figure 6, the power exponential ACF may be preferred over the mean prediction
because this choice seems more robust with respect to the metric. Moreover, the mean prediction yields some narrowly
spaced sensor configurations under both metrics.
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F I G U R E 5 Performance in spatial interpolation of each sensor based on the other ones, for ML and CL (linetype) with different metrics
(labels, y-axis) depending on the short term lag Δ1 (x-axis). Multiple lines refer to distinct spatial models, essentially overlapped. Metrics in
use are: mean absolute prediction error (L1), root mean square error (L2), and 95th percentile of the absolute prediction error (P95).
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T A B L E 1 Point estimates and standard errors for spatial and temporal correlation parameters, case Δ1 = 10 min

Spatial model Parameter Est. Std. err. (×103)

Exponential 𝜙1 0.977 0.206

𝜙2 0.078 0.950

𝜙3 0.047 0.990

Nugget 0.191 2.307

Range 24.692 446.329

Gaussian 𝜙1 0.977 0.203

𝜙2 0.078 0.936

𝜙3 0.047 0.975

Nugget 0.250 2.470

Range 15.011 140.078

Matérn 𝜙1 0.977 0.206

𝜙2 0.078 0.950

𝜙3 0.047 0.991

Nugget 0.187 4.805

Range 25.993 1547.047

Smoothness 0.479 22.544

Power exponential 𝜙1 0.977 0.205

𝜙2 0.078 0.946

𝜙3 0.047 0.986

Nugget 0.217 3.057

Range 19.883 424.822

Smoothness 1.312 28.654

F I G U R E 6 Forward selection of sensors, distinct per metric, prediction error versus number of selected sensors. The sensor added at
each step appears within a box. Run on test set (December through March)
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F I G U R E 7 Examples of prediction via four sensors, based on the power exponential model. Forecasts for February 17, 12:00, based on
data from 10 min before. Circles are colored based on observed temperatures, the floor based on predicted temperatures, selected sensors only
are numbered as in Figure 1. (A) Anomalous sensors, (B) regular sensors, (C) selection via 95th percentile absolute error, and (D) selection
via mean absolute error

5.4 Behavior of the monitoring system

Using different sensor configurations, we show a few examples of actual situations and the behavior of a possible moni-
toring system. The environment in focus has some peculiarities that somehow affect the performance of the system. As
an illustration, we combine interpolation and forecasting by predicting temperatures 10 min forward for the whole floor
plan, as in Figure 7.

We anticipated that there would be differences between regular and anomalous sensors. Concerns relate to sensors
facing direct sunlight around noon (numbered 5, 10) or close to other sources of anomalies (7, 12). If these were used to
make predictions, the results would hardly reflect the normalcy ruling the interior of the room, see Figure 1A. On the
contrary, a system based on more regular sensors only, like in Figure 1B, would yield more constant predictions that are
likely exchangeable with mean prediction. The sensor selection illustrated in the previous section is aimed at selecting a
solution between these two extremes.

The two metrics considered suggest similar solutions. Figure 1C reports the prediction provided under the power
exponential ACF by the four best sensors according to the percentile metric. Figure 1D shows the selection based on the
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mean absolute error instead. Both configurations attempt to replicate the north-south gradient, which requires to choose
between sensors 5 or 10. However, neither of these choices can surrogate sensors 11 and 3. Selecting sensors 5 and 10
would fail the whole interior of the room and, by converse, the sensors in the interior of the room cannot surrogate 5 and
10.

6 SOME EXTENSIONS

In the previous section, we presented an application of our compute-efficient approach to spatio-temporal kriging. Here
we describe two possible extensions that look legitimate under our prediction-oriented view of kriging. For instance, it
is possible to include some spatial interpolators or temporal forecasting methods that do not necessarily underlie any
stationary ACF. It is also possible to use distinct temporal models for each sensor location to provide more specialized
forecasting. Both these extensions share at least the advantage of further distributing calculus across the sensor network
and simplifying server-side computations.

6.1 Nonstationary modeling

The kriging approach relies on stationary ACF models, which offer a wide variety of possibilities, but some problems may
be addressed only with nonstationary models. For instance, integrated AR models need no trend formulation. Another
alternative is k-NN, which returns the sample average of response values from the k sensors closest to the desired location.

This solution could be useful in cases like ours, where distinct sensors might have different equilibria. We used a
moving average to accommodate nonstationarity in the mean, which conciliates with stationarity in ACF, but one can use
integrated AR and k-NN as an alternative. With high-frequency data, long-term stationarity may coexist with short-term
nonstationarity, resulting from locally linear trends, so it might be useful to consider a nonstationary model that copes
with both aspects.

We considered an integrated AR model in our analysis but without obtaining any significant improvement. Indeed,
the chosen AR model was already able to cope with nonstationarity due to both a moving average trend and a near-unit
first AR coefficient, which implied integration de facto.

6.2 Sensor-specific temporal correlation parameters

A limitation of separable ACFs is that they imply the same marginal dynamics for all locations. As an extension, the
temporal correlation parameters can be sensor-specific: each sensor can estimate and update a distinct temporal model
that is valid at least for its location and approximately also for a neighborhood.

Distinct temporal models can each be based on a different CL and use different portions of data, so they will not affect
each other. In mean prediction, as per Equation (31), ẑ can be replaced with a matrix, where each column is made up of
the temporal forecasts based on a model with limited scope that works for just one location or a neighborhood. When
interpolating these forecasts spatially, via Equation (30), more weight is given to forecasts close to the needed locations.
This implies that all temporal models are involved but to a varied extent, depending on the distance.

This extension with distinct temporal models per location adds flexibility to monitoring in at least two ways.

• It adds flexibility to network management. Each sensor has to estimate and update its own temporal model, so this has
not to be handled by the server, which thus must be in charge only of the spatial interpolation task.

• Statistical modeling becomes more flexible too. Prior to this, a single overall temporal model is formulated that has to
fit all locations forcefully. Distinct temporal models may now be used to address subsets of locations, so that they can
cope with more local and specific dynamics.

Anomalous sensors may be more effectively dealt with by allowing them to make predictions based on a more specific
model targeted to them only. The office room in our example is too small to allow for a variety of temporal models. Larger
environments will likely be more heterogeneous and will thus need many local models to provide better forecasts. Indeed,
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since spatio-temporal prediction is made up of both interpolation and forecasting, the quality of the latter is a necessary
ingredient to joint predictive performance.

7 DISCUSSION

We have proposed a separable kriging approach that allows to analyze large datasets by exploiting some overlooked aspects
of separability. Even high-frequency data can be processed in a reasonable amount of time using a maximum CL estima-
tor and optimized calculus in prediction. The assumption of separability allows to distribute calculus across the sensor
network by delegating as many operations as possible to the components that gather the relevant data. Separability is a
strong assumption, though, which can be trusted at least in settings close to ours with sensor data from indoor environ-
ments. Probably, when considering less controlled environments and even weather data, this assumption is restrictive
and unrealistic, and other nonseparable models may be considered instead. Future research may investigate the viability
of CL approaches also in such settings.

To our knowledge, the use of marginal CL is novel to sensor data analysis. Its most appealing aspect is that the
spatial and temporal models under separability can be estimated in parallel without affecting each other. The spatial
model must be estimated in a centralized way, but the temporal model may be addressed in a decentralized way by
allowing sensors to estimate a temporal model valid for their location or neighborhood, as described in Section 6.2.
This idea relates to stratified variograms,16,83 but it has even more in common with the estimation of a single vari-
ogram with data pairs sharing some identical conditions.84 The CL approach is thus computationally convenient and
potentially more robust to model misspecification, as a wrong temporal model does not affect the estimation of the
spatial model, and vice versa. There is, necessarily a loss in efficiency, which may be more noticeable in small sam-
ples, but should be less relevant to big data applications. In the case of challenging estimation problems, CL estimates
are also readily available and may help initialize other iterative estimation procedures, if a more efficient estimate is of
interest.

The predictive part of our approach was already common in climate and weather sciences but mostly confined
to spatial interpolation.85 Instead, we provide a formal motivation for this way of computing predictions based on
separability. We found a related simplification in jointly spatio-temporal prediction, which we guess can be easily
extended to separability in more than two domains via Tucker products instead of Kronecker ones. For instance,
covariates could be included in kriging via fully factored modeling,7 but feature engineering seemed necessary in our
case,9 which is not typical in kriging. For the sake of completeness, alternative modeling strategies include additive
covariances,86 process convolution,87 and linear mixed models,69 for which simplifications might be different where
possible.

In developing our proposal, we require data to be gridded, which means that all sensors provide simultaneous readings.
However, this requirement can be weakened, since data can be at least projected onto a grid.88

Kriging computation is hugely simplified by assuming separability and choosing a suitable spatial or (especially)
temporal model. Both estimation and prediction can bypass the evaluation and inversion of large correlation matrices
by treating the data as univariate time series or cross-sections and thus splitting a generally complicated calculation into
simpler operations. For instance, AR models may have an intractable ACF, but they can be estimated easily by minimizing
a conditional sum of squares, and their forecasts based on Equation (23) are simple to calculate as well. Our approach
allows to blend together and leverage known strengths of time series analysis and spatial statistics without the need to
outline a joint spatio-temporal framework from scratch.
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APPENDIX A. PROOFS

A.1 Kriging mean formula
Predictions can be computed in a vectorized form, as follows, after Equation (28).

vec(ŷ′ − 𝜇′) = 𝜌R−1vec(y − 𝜇) . (A1)

By using definitions in Equations (11) and (27), it follows that

vec(ŷ′ − 𝜇′) = (𝜌S ⊗ 𝜌T)(RS ⊗ RT)−1vec(y − 𝜇) . (A2)

Next, we use the inversion behavior of the Kronecker product.

vec(ŷ′ − 𝜇′) = (𝜌S ⊗ 𝜌T)(R−1
S ⊗ R−1

T )vec(y − 𝜇) . (A3)

Then, it comes in handy to use the mixed-product property of the Kronecker product.

vec(ŷ′ − 𝜇′) =
{
(𝜌SR−1

S )⊗ (𝜌TR−1
T )

}
vec(y − 𝜇) . (A4)

At this point, the regression coefficients of Equation (29) can be recognized.

vec(ŷ′ − 𝜇′) = (𝛽S ⊗ 𝛽T)vec(y − 𝜇) . (A5)

Lastly, we use Roth’s column lemma.60 One can find it uncredited in recent algebra handbooks, see Steeb’s book,
Chapter 9, Problem 22.89

vec(ŷ′ − 𝜇′) = vec
{
𝛽T(y − 𝜇)𝛽⊤S

}
. (A6)

Then, the vec operator can be dropped and the matrix ŷ′ is obtained.

A.2 Kriging variance formula
Using Equation (28) as a starting point, it holds

diag(R′cond) = diag(R′) − diag(𝜌R−1
𝜌

⊤) . (A7)

Similarly to the proof in Appendix A.1, we exploit again the inversion behavior and the mixed-product property of the
Kronecker product. We also use Equations (11) and (27) to obtain

diag(R′cond) = diag(R′S ⊗ R′T) − diag
{
(𝜌SR−1

S 𝜌

⊤

S )⊗ (𝜌TR−1
T 𝜌

⊤

T )
}
. (A8)

After Equation (34), it follows that

diag(R′cond) = diag(R′S ⊗ R′T) − diag
{
(R′S − R′S,cond)⊗ (R′T − R′T,cond)

}
. (A9)

One can use the self-evident property diag(A ⊗ B) = diag(A)⊗ diag(B) for A and B square matrices, which implies

diag(R′cond) = diag(R′S)⊗ diag(R′T) − diag(R′S − R′S,cond)⊗ diag(R′T − R′T,cond) . (A10)

Now, the components of diag(R′cond) can be partitioned into vectors with the same length as diag(R′T). Such vectors
can be the columns of the matrix V , which is thus defined as in our claims.
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APPENDIX B. BOOTSTRAP

Parametric bootstrap72 under separable kriging is particularly convenient because the implied model is easy to simulate,
and its parameters are simple to estimate with the approach proposed in this article.

The temporal and spatial models together identify the full model, under which one can simulate artificial datasets. In
particular, separability allows to simulate a dataset Y as

Y ∼ 𝜇 + 𝜎 ⋅ R1∕2
T ⋅ 𝜀 ⋅ R1∕2

S , (B1)

where 𝜀 is a Gaussian white noise structured into a T × S matrix, and R1∕2
T and R1∕2

S are the matrix square roots of the
matrices RT and RS, respectively.

Assuming T ≫ S, R1∕2
S may be tractable, while R1∕2

T will hardly be so. The operator R1∕2
T just makes R1∕2

T ⋅ 𝜀 a matrix
with independent columns that share the same correlation structure RT . So, as an alternative to directly evaluating R1∕2

T ,
one can generate each column of 𝜎 ⋅ R1∕2

T ⋅ 𝜀 according to the temporal model. AR(p) processes can be simulated efficiently
according to the factorized MA(∞) form.19 The first observations should be initialized according to the stationary distri-
bution of the process, but with complicated models one may instead provide an arbitrary initialization and then simulate
additional observations as a burn-in. We adopted this latter strategy. Actually, in simulating 8 weeks of data, we needed
to simulate 32 more leading weeks of data as a burn-in.

APPENDIX C. MAXIMUM LIKELIHOOD ESTIMATION

The pseudo ML estimator ̂𝜃 for 𝜃 is defined as a maximizer of (12). An iterative optimization procedure can be devised to
compute ̂𝜃, by leveraging the convenient separability assumption in Equation (16). Operationally, the components of the
parameter vector 𝜃 can be partitioned into groups of parameters, which can be updated one at a time until convergence.
In particular, we define three groups of parameters, which coincide with the scale parameter 𝜎, the spatial and temporal
correlation parameters 𝜓S and 𝜓T .

In Equation (B1), R1∕2
S and R1∕2

T were matrix square roots of RS and RT , respectively. Now, let R−1∕2
S and R−1∕2

T be their
inverses. These matrices can be feasibly estimated, as ̂R−1∕2

S and ̂R−1∕2
T , respectively, based on available estimates of 𝜓S and

𝜓T . An approximately efficient estimator can be computed iteratively by

• updating �̂�2 as the mean of squared entries of the matrix ̂R−1∕2
T (y − �̂�) ̂R−1∕2

S , based on current estimates for 𝜓S and 𝜓T ;
• updating �̂�S as the maximizer of

Ω(𝜓S) = −
T
2
{

log |RS| + tr(R−1
S
̂MS)

}
, (C1)

with respect to 𝜓S, where ̂MS = z⊤S zS∕T and zS = ̂R−1∕2
T (y − �̂�)∕�̂�, based on current estimates for 𝜓T and 𝜎; notice

the resemblance with Equations (17) and (18); this operation is equivalent to estimating 𝜓S based on T independent
cross-sections;

• updating �̂�T as the maximizer of

Ω(𝜓T) = −
S
2
{

log |RT| + tr(R−1
T
̂MT)

}
, (C2)

with respect to 𝜓T , where ̂MT = zTz⊤T∕S and zT = (y − �̂�) ̂R
−1∕2
S ∕�̂�, based on current estimates for 𝜓S and 𝜎; notice the

resemblance with Equations (20) and (21); this operation is equivalent to estimating 𝜓T based on S independent time
series.

In Appendix B, we stress that some convenient spatial or temporal models allow for sparse formulations of matrices
R−1∕2

S and R−1∕2
T . In evaluating zS, there is thus no need to allocate in memory any large matrix like R−1∕2

T .
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