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Abstract: Monitoring heart rate (HR) through photoplethysmography (PPG) signals is a challenging
task due to the complexities involved, even during routine daily activities. These signals can indeed
be heavily contaminated by significant motion artifacts resulting from the subjects’ movements,
which can lead to inaccurate heart rate estimations. In this paper, our objective is to present an
innovative necklace sensor that employs low-computational-cost algorithms for heart rate estimation
in individuals performing non-abrupt movements, specifically drivers. Our solution facilitates the
acquisition of signals with limited motion artifacts and provides acceptable heart rate estimations at
a low computational cost. More specifically, we propose a wearable sensor necklace for assessing a
driver’s well-being by providing information about the driver’s physiological condition and potential
stress indicators through HR data. This innovative necklace enables real-time HR monitoring within
a sleek and ergonomic design, facilitating seamless and continuous data gathering while driving.
Prioritizing user comfort, the necklace’s design ensures ease of wear, allowing for extended use
without disrupting driving activities. The collected physiological data can be transmitted wirelessly
to a mobile application for instant analysis and visualization. To evaluate the sensor’s performance,
two algorithms for estimating the HR from PPG signals are implemented in a microcontroller: a
modified version of the mountaineer’s algorithm and a sliding discrete Fourier transform. The goal
of these algorithms is to detect meaningful peaks corresponding to each heartbeat by using signal
processing techniques to remove noise and motion artifacts. The developed design is validated
through experiments conducted in a simulated driving environment in our lab, during which drivers
wore the sensor necklace. These experiments demonstrate the reliability of the wearable sensor
necklace in capturing dynamic changes in HR levels associated with driving-induced stress. The
algorithms integrated into the sensor are optimized for low computational cost and effectively remove
motion artifacts that occur when users move their heads.

Keywords: photoplethysmography; heart rate monitoring; electrocardiogram; motion artifacts;
sliding DFT

1. Introduction

The analysis of physiological signals has been gaining importance in various research
areas, contributing to enhancing quality of life and evaluating public health. Among these
signals, heart rate variability (HRV) is linked to the autonomic nervous system of a subject,
so it serves as a valuable measure for assessing the individual’s cardiac health, stress level,
and overall well-being [1]. The development of wearable devices for heart rate monitoring
through photoplethysmographic (PPG) signals has revolutionized the way we track and
manage health [2], particularly by monitoring stress levels of drivers and during daily
activities [3,4]. A PPG signal primarily measures the variations in blood volume within
the tissues [5]. When the heart pumps blood, the volume of blood in the arteries and
capillaries fluctuates with each heartbeat. The PPG sensor detects these changes, providing
a waveform that correlates with the cardiac cycle. PPG-based heart rate monitoring offers
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a non-invasive, continuous, and convenient method to track physiological responses to
stress and physical effort in real time [6,7]. For drivers, maintaining a calm and focused
state is essential for road safety [8–10]. Stress can adversely affect reaction times and
decision-making abilities, increasing the risk of accidents [11,12]. By monitoring heart rate
variability, it is possible to detect early signs of stress and implement timely interventions to
enhance the driver’s well-being and safety [13–15]. In daily life, especially during physical
activities, heart rate monitoring is invaluable for maintaining optimal health and fitness. It
helps individuals gauge exercise intensity, ensuring they stay within safe limits to avoid
overexertion and reduce the risk of injuries. Additionally, regular monitoring can provide
insights into cardiovascular health, allowing early detection of potential issues and enabling
proactive health management.

A PPG sensor uses a light source, typically a light-emitting diode (LED), and a pho-
todetector. The light is emitted into the skin, and the photodetector measures the amount
of light either absorbed or reflected by the blood in the tissue. The amount of absorbed
light increases with the blood volume in the capillaries and decreases when the volume is
lower [16]. By analyzing the periodicity of the PPG signal, the heart rate can be determined.
The largest peaks in the PPG waveform correspond to the systolic phase of the cardiac
cycle, during which the heart pumps blood into the arteries. Counting these peaks over
time provides an accurate measure of the heart rate. Unfortunately, the use of PPG sensors
is prone to motion artifacts that introduce noise and distortion into the signal. Movement
alters the sensor’s contact with the skin (especially in wrist sensors), causing fluctuations
unrelated to blood flow and making it difficult to isolate the actual physiological data. Mo-
tion can also create extraneous peaks and troughs in the logged signal, leading to incorrect
measurements of heart rate and other parameters [7].

The primary focus of our research is to monitor the responses of drivers, who typically
exhibit limited movements that mainly involve arm and leg motions for steering and pedal
operations. To address these issues, this paper presents the development of an innovative
wearable device in the form of a necklace that is designed to measure PPG. Using this kind
of sensor offers several advantages over traditional PPG sensors. Firstly, the necklace design
ensures consistent contact with the skin, reducing motion artifacts that commonly affect
wrist- or finger-based sensors. This improves the accuracy and reliability of measurements.
Secondly, a necklace is more comfortable for continuous use, which makes it ideal for long-
term monitoring. Furthermore, to analyze the sensor’s performance, two algorithms for
HR estimation are tested, with the aim of removing or attenuating motion artifacts in PPG
signals: a modified version of the mountaineer’s method (MM) [17], which incorporates
a new approach for peak recognition compared to its previous implementation, and a
sliding discrete Fourier transform (SDFT) [18,19]. The latter, by converting the signal from
the time domain to the frequency domain, effectively isolates the heart rate component
from other physiological and noise signals. Additionally, the sliding window approach
enables the algorithm to adapt to signal variations, maintaining accurate HR estimation
even under varying conditions. The efficiency and accuracy of the two algorithms are
evaluated using data obtained from the necklace sensor through experiments conducted in
a simulated driving scenario and on a public dataset with recordings of people carrying out
physical exercises or daily life activities [20–22]. Evaluation rules and metrics are defined
that facilitate a comparison between the different approaches. The obtained results show a
satisfactory level of accuracy for all the tested subjects, demonstrating the reliability of the
SDFT for real-time heart rate estimation from PPG signals. Regarding the mountaineer’s
algorithm, we verify that it works well on data collected using the necklace sensor but has
some limitations when tested on signals heavily affected by motion artifacts, such as those
available in public datasets recorded using a wrist-worn PPG sensor. However, we compare
the results obtained using a public dataset with those reported in the literature. The chosen
dataset currently aligns best with our objective, as it involves subjects walking or running
on a treadmill. This allows us to verify that, despite these data being quite different from
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those obtained with our necklace sensor and being more prone to motion artifacts, the
results achieved through the implementation of our algorithms are sufficiently satisfactory.

In summary, the main contributions of this paper are as follows.

• We develop an innovative necklace sensor that enables real-time monitoring of human
vital signs.

• We are able to monitor drivers’ responses, as drivers typically exhibit limited move-
ments, by recording high-quality PPG signals with minimal interference.

• We implement systems based on a low-power design and simplified low-computational-
cost algorithms that enable real-time heart rate estimation.

• We create an enhanced version of the mountaineer’s algorithm, which is already
present in the literature, making it suitable for integration into our novel sensor.

The paper is organized as follows. Section 2 describes the novel necklace sensor we
use in our experiments and its PCB design. Section 3 outlines the characteristics of the PPG
signal and its relationship with human vital signs, particularly with the cardiac cycle. In
Section 4, we present the two computationally efficient algorithms implemented in the
microprocessor to extract the heart rate from the PPG signal, which are test in terms of
performance for the developed system. In Section 5, we first examine the experimental
results obtained using the necklace sensor during preliminary desk tests, followed by the
results obtained during driving simulator tests carried out in our BioSensLab laboratory.
This section also shows some results using a public dataset. In Section 6, we discuss the
experimental results. Finally, some conclusions are drawn in Section 7.

2. Sensor Description and PCB Design

This section presents the designed wearable necklace sensor that was briefly intro-
duced in [23]. The developed sensor’s block diagram, shown in Figure 1, features the
MAX30102 sensing element from Maxim Integrated (San Jose, CA, USA), which uses
the I2C protocol for configuring red (R) and infrared (IR) LED power and duty cycles.
It acquires the photodetector signal, which is digitized at up to 18-bit precision using a
sigma–delta ADC.

The sensor is controlled by an STM32G0B1KET6 microcontroller from ST Microelec-
tronics (Plan-les-Ouates, Geneva, Switzerland) operating at a 24 MHz clock frequency and
communicating with the sensor via I2C at 100 kHz. The sensor is designed to sample at
100 Hz (every 10 ms) with 18-bit resolution for both the R and IR channels. The LEDs have
a 411 µs pulse width (4% duty cycle) and a 12 mA driving current. The microcontroller
detects PPG signal peaks to extract HR and SpO2 data, as will be detailed below.

Data are transmitted to a low-power WiFi module (USR-C216) via UART at 115.2 kbps,
allowing users to access data on a laptop or smartphone and to choose between raw data
or processed HR and SpO2 values. The sensor runs on a 3.7 V, 500 mAh LiPo battery, with
a dual LDO regulator providing 3.3 V for the microcontroller and WiFi module and 1.8 V
for the MAX30102. The battery is rechargeable via a micro-USB connector and an internal
charger set to 300 mA. As already mentioned, the current sensor prototype is equipped
with a WiFi module. However, in view of a future low-power implementation, this could
be replaced with any other alternative transmission module (e.g., Bluetooth Low Energy),
as shown in Figure 1.

The sensor, built on a two-layer PCB measuring 32 × 36 mm2, is shown in Figure 2a,b.
The bottom layer contains only the sensing element and ensures contact with the skin
by exposing the sensing area outside of the plastic case. For prototyping, we used SMD
1206 (Surface Mount Device, chip package type 1206) passive components, but production
dimensions can be reduced with smaller packages.
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Figure 1. Block diagram of the developed sensor.
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Figure 2. PCB realization of the sensor: (a) top layer and (b) bottom layer. The sensing element,
which comes into contact with the skin, is located exclusively on the bottom layer. (c) The necklace in
its 3D printed case. The elastic band can be adjusted using a buckle.

The system consumes 85 mA (0.28 W) during WiFi transmission of the raw data
stream, allowing for 6 h of continuous operation without recharging. When transmitting
only alarms for abnormal conditions, it consumes 8 mA (28 mW), enabling 2.6 days of
operation without recharging. Additionally, we designed and 3D-printed a housing for the
sensor, which is worn around the neck with an adjustable elastic band. Figure 2c shows
the necklace, whereas in Section 5.2, a volunteer wearing the sensor necklace during the
experiments conducted in a simulated driving scenario will be shown.

3. PPG Signal Properties

The extraction of the PPG signal is a sophisticated process that leverages optical tech-
niques to provide valuable insights into cardiovascular health. It involves the interaction
of light with human tissues. Variations in light intensity correspond to changes in blood
volume within the tissue that are driven by the cardiac cycle [24]. As shown in Figure 3a,
the PPG waveform consists of several distinct features. The systolic peak, which is the
highest point in the waveform, occurs during the systolic phase of the cardiac cycle, when
the heart pumps blood, causing an increase in blood volume and light absorption in the
tissue. The dicrotic notch, representing a small dip that follows the systolic peak, reflects
the transient drop in blood volume as the aortic valve closes. The diastolic peak, which is a
secondary peak or wave following the dicrotic notch, represents the diastolic phase when
the heart relaxes and fills with blood.

Figure 3b shows PPG signals acquired by the necklace sensor from the R and IR
channels. As we can see, the PPG signal exhibits a distinct periodicity reflecting the cyclical
nature of the cardiovascular system. This periodicity is characterized by rhythmic oscilla-
tions in the signal, which are typically synchronized with the cardiac cycle. Nevertheless, it
is generally difficult to discern the sequence of systolic and diastolic peaks in the recorded
PPG signals.
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In particular, PPG and ECG signals are interrelated components of the cardiovascular
monitoring ecosystem, with PPG reflecting the blood volume changes resulting from the
heart’s electrical activity as captured by the ECG. Specifically, the systolic peak of the PPG
signal occurs shortly after the R-wave of the ECG signal. This time delay is known as the
pulse transit time (PTT) and represents the time it takes for the blood pressure pulse to
travel from the heart to the peripheral site where the PPG sensor is located.

Figure 3. (a) Example of PPG and ECG waveform signals and their characteristic parameters;
(b) example of PPG signals acquired by the necklace sensor from the R and IR channels.

In addition to its crucial application for heart rate estimation, the PPG signal can be
used for measuring oxygen saturation (SpO2), which is a critical parameter for assessing
respiratory and cardiovascular health. SpO2 measurement is based on detecting peaks in
PPG signals in order to analyze variations caused by different blood oxygenation levels. In
detail, to determine SpO2, one can identify the local minimum occurring within one second
before each validated peak and then apply the following equation [25]:

SpO2 = 110 − 25
RAC/RDC

IRAC/IRDC
. (1)

Here, RAC and IRAC denote the differences between each peak value and its preceding
local minimum in the R and IR channels, respectively. Similarly, RDC and IRDC represent
the values of the local minima before each peak in the R and IR channels, respectively.

4. Methodology

Implementing efficient algorithms for estimating the heart rate from a PPG signal is
necessary to ensure real-time, accurate monitoring, particularly in wearable devices with
limited computational power. Efficient algorithms help maintain reliable HR detection
despite noise and motion artifacts.

PPG devices are sensitive to light absorption and reflection changes affected by external
factors. They detect any blood volume or tissue composition changes, which lead to signal
contamination. Variations in skin, ambient light, temperature, and anatomy, along with
sensor attachment and contact stability, can cause signal inconsistencies. For these reasons,
the collected PPG signals (see Figure 4), which represents the R and IR data obtained
using the necklace sensor, exhibit various problems, such as small PPG peaks, baseline
wandering, and motion artifacts. Small PPG peaks are typically caused by noise, low signal
amplitudes, or poor sensor contact with the skin. They can obscure the true pulsatile signal.
Furthermore, changes in the DC component of the PPG signal, which is the baseline level
around which the pulsatile (AC) component varies, can be due to various factors such as
changes in skin tone, the environmental temperature, or changes in blood volume due to
changes in posture. Baseline deviations make it challenging to isolate the AC component,
which is essential for accurate calculation of the pulse and SpO2. Finally, the movement of
the sensor or of the subjects themselves can introduce significant noise into the PPG signal.
This includes voluntary movements (like walking or talking) and involuntary movements
(like shivering). Motion artifacts can also mimic or obscure the true pulsatile signal, making
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it difficult to distinguish between actual physiological changes and artifacts. These issues
hinder the accurate detection of heartbeats and the calculation of reliable physiological
parameters such as heart rate and oxygen saturation, thus leading to incorrect estimates
and reduced data reliability.

Motion artifacts

Heartbeats

Figure 4. Raw data acquired from the R and IR channels. The peaks corresponding to heartbeats
have a much smaller amplitude compared to the overall signal amplitude, as do the baseline and
motion artifacts.

As can be seen in Figure 4, the heartbeats exhibit amplitudes of a few hundred least-
significant bits (LSBs), while the baseline measures around one million LSBs. Note that
1 LSB corresponds to a quantization step equal to 15.63 pA. The sensor provides a digital
output in I2C format, so for convenience, we refer to the raw data transmitted by the
sensor. The baseline wandering caused by the user’s slow movements can range from a few
hundred LSBs to around several thousand LSBs. Additionally, sudden neck movements
produce spikes in the signal, which are also in the thousands of LSBs and are thus signifi-
cantly larger than the heartbeat amplitudes. These artifacts should not be confused with
heartbeats by the detection algorithm. Therefore, it is crucial to accurately detect peak in-
stances while robustly removing artifacts. Furthermore, the algorithm needs to be efficient
enough to recognize peaks within 10 ms (which corresponds to the sampling interval) while
considering the limited computational power and clock frequency of the microcontroller.

4.1. Modified Mountaineer’s Method

One of the algorithms used for heart rate estimation is based on the “mountaineer’s
method” [17]. Firstly, PPG signals undergo band-pass filtering in the range of [0.5, 10] Hz.
This is achieved using a fourth-order Butterworth IIR filter. The peak detection algorithm
incorporates a novel approach for peak recognition.

More specifically, we introduce a synthesized envelope detector designed to track the
filtered signal during its rising phase and making it decay linearly during its falling phase,
as shown by the red line in Figure 5. The blue line in Figure 5 represents, instead, a detail
of the processed PPG signal from the R channel from a single experiment conducted in
our lab consisting of an individual wearing the sensor necklace and working while seated
at a desk. Potential peaks are identified when the envelope detector shifts its state from a
consistent tracking phase (defined as N = 5 consecutive samples, or 50 ms) to a consistent
decay phase (i.e., 50 ms).

Once detected, these potential peaks and their corresponding time instants are com-
pared to a time-varying hysteresis threshold, which is adjusted based on the magnitude of
the last three detected peaks. Additionally, the distances between the instants of consecu-
tive peaks are checked to ensure they are in the range of [350, 2000] ms. A potential peak is
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confirmed as a valid peak if it passes both the amplitude and distance checks. In Figure 5,
valid peak detections are indicated by black asterisks. The flowchart of the implemented
algorithm is depicted in Figure 6.

Figure 5. Processed data for peak detection from the R channel—blue line: band-passed R data; red
line: envelope detector; black markers: detected peaks.
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Figure 6. Flowchart of the algorithm implemented to extract the heart rate.

Finally, to eliminate any residual false detections, a fifth-order median filter is applied
to smooth the signal. Section 5 discusses the algorithm’s performance under conditions
wherein the subject is moving and artifacts are present in the signals. This algorithm can be
also used for the estimation of SpO2 using Equation (1) in Section 3.

4.2. Sliding DFT

Another approach for calculating HRs from PPG signals is through frequency analysis.
As shown in Figure 3, the signal is, in fact, normally quasi-periodic, with a frequency
corresponding to a normal resting human heartbeat. In the frequency domain, these
characteristics are evident in the peaks at the fundamental frequency and its harmonics of
the Fourier transform of a signal analyzed in a suitable analysis window. This approach
forms the basis of the procedures adopted in [4].

To estimate HRs from PPG signals, we employed the sliding discrete Fourier transform
(SDFT) [18,19], which allows for an almost time-continuous analysis in the frequency
domain. First, the acquired PPG signals were pre-processed to remove artifacts and noise
through a fourth-order Butterworth band-pass filter in the band [0.5 10] Hz. Afterwards,
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the SDFT was applied to successively overlapping windows of the PPG signal to obtain
continuous updating of the frequency spectrum, thus providing real-time estimates of the
heart rate.

Assuming consecutive signal blocks of N samples, i.e., xi−1(0), . . . , xi−1(N − 1) and
xi(0), . . . , xi(N − 1), respectively, we have xi−1(h + 1) = xi(h), h = 0, . . . , N − 2 because of
overlapping. The M-point DFTs of blocks i − 1 and i are related by the following expressions:

Xi−1(k) =
N−1

∑
h=0

xi−1(h)Whk

= xi−1(0) + Wk
N−2

∑
h=0

xi−1(h + 1)Whk, (2)

Xi(k) =
N−1

∑
h=0

xi(h)Whk

=
N−2

∑
h=0

xi−1(h + 1)Whk + xi(N − 1)W(N−1)k, (3)

for k = 0, . . . , M − 1, where W = e−j2π/M. We can choose M > N to increase the
frequency resolution to Fs/M Hz, corresponding to Fs/M · 60 beats/s. By combining
Equations (2) and (3), we obtain

Xi(k) = Xi−1(k)W−k − xi−1(0)W−k + xi(N − 1)W(N−1)k. (4)

Equation (4) allows the DFT values to be calculated recursively, requiring only three
complex products for each value of k. In addition, depending on the application, it is suffi-
cient to calculate the DFTs for a small number of indices k, which saves computation even
compared to a fast algorithm such as the fast Fourier transform (FFT). The recursion can, of
course, be initiated by setting x−1(h) = 0, h = 0, . . . , N − 1, and therefore, X−1(k) = 0 for
all values k of interest.

Technically speaking, Equation (4) corresponds for each k to a first-order IIR filter:

Xi = αXi−1 + si, (5)

where for ease of notation, we drop index k and denote W−k as α and −xi−1(0)W−k +
xi(N − 1)W(N−1)k as si. Note that the filter is marginally stable since it has a pole α with a
unit module. Keeping in mind a fixed-point implementation, this may lead to undesirable
and potentially destructive amplification of the rounding error due to limited precision.
Indeed, the recursive Equation (5) can be unfolded to

Xi =
i

∑
k=0

αksi−k, i = 0, 1, . . . . (6)

Following [26], the effect of the rounding error can be modeled as additive noise nk in
the accumulator, leading to a cumulative error for Xi computed as in (6) by

ei =
i

∑
k=0

αkni−k, i = 0, 1, . . . . (7)

Considering a fixed point implementation with m bits, we may assume |ni−k| ≤
√

2 · 2−m.
(The exact bound depends on the specific processor architecture. Here, we suppose that
the computation of the real part contributes the sum of two rounding errors. The same
applies for the imaginary part computation.) It is also reasonable to model ni−k as indepen-
dent random variables with independent real and imaginary parts with zero means and



Sensors 2024, 24, 5908 9 of 17

variances σ2
n = 2 · 2−2m/12, so that ei can be considered approximately complex Gaussian.

Within these hypotheses, by using (7), we can write

|ei| ≤
√

2 · 2−m(i + 1) (8)

σ2
ei
= E[|ei|2] = 2σ2

n(i + 1). (9)

As an example, considering a sample frequency Fs = 100 Hz (or Fs = 20 Hz, as
another example) and m = 32-bit precision, running the algorithm for 24 hours will result
in approximately |ei| < 3 · 10−3 (or |ei| < 6 · 10−4 at Fs = 20 Hz). As an explicative case,
consider a sinusoidal input signal with frequency f0 ≃ 1 Hz (mimicking a toy PPG signal)
and an analysis window of 10 s, so that N = 10Fs. The corresponding DFT exhibits a peak
at f0 with an amplitude of N/2, making the effect of the rounding error totally negligible
in practice. This is confirmed in our experiments with real PPG signals. The analysis of the
spectrum generated by the SDFT allows us to identify the peak frequency corresponding to
the heart rate.

5. Experimental Results

To test the performance of our measurement system, we implemented on the micro-
processor the two algorithms for HR estimation described in the previous section. Here,
we show some experimental results obtained considering three different datasets. The
first two datasets were obtained by recording the PPG signals from individuals wearing
both the necklace sensor (introduced in Section 2) and the ECG sensor described in [27,28].
This allows us to compare the extracted heart rate with a ground truth reference. In the
first dataset, an individual sat at a desk and worked on a computer. In the second dataset,
subjects drove the dynamic driving simulator available in our BioSensLab [29] at the Uni-
versity of Udine. The algorithms were also tested on a third dataset that was made publicly
available for the IEEE Signal Processing Cup 2015 [20]. In this case, subjects walked or ran
on a treadmill.

Various metrics that were also used in other studies [4,30] were calculated to evaluate
the accuracy performance and reliability of our algorithms applied to each dataset. In
particular, we defined fest(i) and ftrue(i) as the i-th estimated HR value and the i-th true
HR value in BPM, respectively (i.e., they represent the HR values in the i-th time window
for the sliding DFT), and we defined AEi = | fest(i)− ftrue(i)| as the absolute error used to
estimate the accuracy of each HR estimation. We used these three metrics: average absolute
error (avAE), standard deviation of the absolute error (sdAE), and average relative error
(avRE). These are computed as follows:

avAE =
1
N

N

∑
i=1

AEi (10)

sdAE =

√√√√ 1
N

N

∑
i=1

(AEi − avAE)2 (11)

avRE =
1
N

N

∑
i=1

AEi
ftrue(i)

(12)

where N is the total number of estimates.
To integrate both algorithms on the microcontroller, we had to convert all values from

floating-point to 32-bit fixed-point arithmetic. This led us to evaluate the processing times of
both algorithms. More specifically, under worst-case conditions, the mountaineer’s method
takes 240 µs to identify a peak, whereas the sliding DFT takes 1.1 ms. Considering that
the sampling interval is 10 ms, we confirmed that both algorithms have a computational
complexity that is much less than the sampling interval, thus fitting the requirements of
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our implementation. This will also enable us in the future to implement both algorithms in
a cascading manner, allowing one to validate the other.

5.1. Preliminary Tests

During some preliminary tests, signals were recorded for a 47-year-old male volunteer
sitting at a desk working on a computer and occasionally moving his head. He wore the
necklace sensor to acquire the PPG signal (see Figure 2) and a sensor on his chest to measure
the ECG signal. During these preliminary tests, we collected 10 tracks, each lasting 120 s,
recorded on 10 different days.

The movement of the head introduced noise and motion artifacts on the acquired data,
and this allowed us to evaluate the performance of the heart rate estimation algorithms
and their capability to remove artifacts caused by head motion. Indeed, to determine
whether the extracted heart rate was influenced by artifacts, we used the Pan–Tompkins
algorithm [31] to extract the heart rate from the ECG signal. This was used as a reference to
assess the reliability of the estimated heart rate. We then verified the performance of the
two algorithms in terms of heart rate calculation by comparing the obtained estimates with
the reference value extracted from the ECG.

Table 1 lists the metric values of the two proposed algorithms (MM and SDFT) for
all 10 traces. It also summarizes the performance for the set of recordings by showing the
average values.

The results demonstrate how both algorithms satisfactorily estimate the heart rate
while reducing motion artifacts, with average absolute errors of 1.586 BPM and 1.749 BPM
for the MM and SDFT, respectively. Figure 7 shows the estimated HR traces of both
algorithms for Recording 5. To eliminate any residual false detection, a fifth-order median
filter was also applied to the signals.

 

Figure 7. Comparison between the reference heart rate (obtained from a simultaneous ECG) and the
estimation results for Recording 5.

Table 1. Average absolute error, standard deviation of the absolute error, and average relative error
in BPM considering all 10 recordings of the subject tested during our preliminary tests for both the
MM and SDFT algorithms.

avAE sdAE avRE

Rec MM SDFT MM SDFT MM SDFT

1 1.865 2.616 2.718 2.820 0.028 0.039
2 2.043 2.179 2.420 2.424 0.031 0.033
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Table 1. Cont.

avAE sdAE avRE

Rec MM SDFT MM SDFT MM SDFT

3 0.909 1.589 0.843 1.083 0.014 0.025
4 1.265 1.542 1.464 1.490 0.02 0.024
5 1.097 1.169 1.162 1.164 0.017 0.018
6 1.197 1.088 1.880 1.883 0.019 0.017
7 0.732 1.315 0.663 1.258 0.012 0.021
8 1.183 1.422 1.914 1.929 0.018 0.022
9 3.582 2.926 4.896 5.168 0.053 0.030

10 1.985 1.640 3.790 3.806 0.030 0.026

Mean 1.586 1.749 2.175 2.265 0.024 0.026

5.2. Results Using the Driving Simulator

We carried out an experiment in our BioSensLab laboratory involving a total of twelve
subjects (2 women and 10 men), who were students at the University of Udine. Their ages
were in the [21, 34] range. We asked them to read and sign an informed consent to log their
physiological signals. The sensors were positioned on the neck for the PPG recordings and
on the chest for the ECG recordings (see Figure 2). The driving simulator employed in our
experiment consists of a three-axis moving platform (DOF Reality Professional P3) with a
curved screen, a virtual reality (VR) (Oculus Rift, Meta, Menlo Park, CA, USA) headset,
a racing seat, and a force-feedback steering wheel complete with pedals and a gearbox
(Logitech G29, Lausanne, Switzerland & San Jose, CA, USA). This setup enabled a highly
immersive driving experience for the individuals. For the driving simulator software, we
used VI-DriveSim [32] from VI-grade (Tavagnacco, Udine, Italy).

First of all, we asked the subjects to get in the simulator and drive a car with an
automatic transmission on a 14 km highway along which we added six obstacles that the
subjects had to go through while driving (see Figure 8). In particular, the complete track
had six road sections characterized by roadworks indicated by Jersey barriers. The length
of each obstacle was 200 m, and they were spaced 2 km from each other. The first obstacle
was also located 2 km from the beginning of the course. We also asked the subjects to
drive as they would normally do in a real-world scenario. In this way, they completed this
experiment phase in about 7 min, with an average speed of about 120 km/h. After this
phase was concluded, the subjects were asked to get out of the simulator.

Figure 8. A participant in the driving test scenario using our simulator.

With the aim of monitoring the health and well-being of drivers, the acquired signals
were used to estimate the heart rates of drivers using both algorithms. As can be seen
from Table 2, both algorithms perform well, even in more dynamic situations compared
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to simply sitting at a desk and moving one’s head. They satisfactorily attenuate motion
artifacts and accurately estimate the heart rate, which in this scenario experiences greater
variations than in the previous experiment.

Table 2. Average absolute error, standard deviation of the absolute error, and average relative
error in BPM considering all 12 subjects who drove the driving simulator for both the MM and
SDFT algorithms.

avAE sdAE avRE

Rec MM SDFT MM SDFT MM SDFT

1 2.214 2.305 2.184 2.186 0.024 0.026
2 4.093 3.699 9.574 9.582 0.036 0.033
3 2.033 1.799 6.080 6.084 0.021 0.017
4 1.935 2.613 2.212 2.314 0.028 0.044
5 1.095 1.401 1.228 1.266 0.018 0.024
6 1.203 1.543 0.994 1.050 0.009 0.013
7 1.643 2.834 2.805 3.048 0.025 0.043
8 4.218 2.985 8.052 8.146 0.061 0.043
9 1.611 2.152 2.097 2.166 0.021 0.028

10 1.451 2.508 1.477 1.816 0.014 0.024
11 0.920 1.131 2.011 2.022 0.010 0.014
12 0.889 1.670 1.070 1.324 0.011 0.021

Mean 1.942 2.220 3.315 3.417 0.023 0.026

Figures 9 and 10 show the results obtained considering two different recordings,
i.e., Recordings 12 and 2. These figures compare the heart rate estimates from both algo-
rithms with the reference values extracted from the ECG signal.

 
Figure 9. Comparison of reference heart rate (obtained from simultaneous ECG) and estimation
results for Recording 12.

For Recording 12 in particular, both algorithms reliably estimate the heart rate, as
demonstrated by comparing it with the reference signal (see Figure 9). The metrics reported
in Table 2 show only minor discrepancies, thus indicating good performance. However,
as shown in Figure 10, significant local artifacts may occur, leading to more substantial
estimation errors. These situations might require a strategy that considers the long-term
behavior of the signal. In the future, we plan to use both algorithms in a cascading manner
to refine this estimation, enabling one to validate the other. By doing so, we will obtain two
simultaneous estimates for comparison. If a significant discrepancy persists, we will be
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able to identify any malfunctions. Despite these challenges, the results remain acceptable,
and the heart rate is generally estimated with sufficient accuracy. A fifth-order median
filter was applied to these signals for representation.

 
Figure 10. Comparison of reference heart rate (obtained from simultaneous ECG) and estimation
results for Recording 2.

5.3. Results Using a Public Dataset

To ensure the reliability, validity, and applicability of the two implemented algorithms
in different contexts, we also tested them on the dataset from [20]. We chose this dataset,
even though many others are available online for different types of activities [21,22], because
it is currently the one that best aligns with our goal.

However, it is important to highlight that our data differ significantly from those
collected in the considered dataset and, in general, from those available in the literature,
which are gathered from wrist-worn PPG sensors used in physical activity settings. They
are, in fact, highly sensitive to dynamic movements, which makes them prone to motion
artifacts, potentially resulting in less reliable data.

In particular, the considered public dataset contains single-channel PPG signals and
ECG signals from 12 male subjects with yellow skin and aged between 18 and 35 years. For
each subject, the PPG signal was recorded from the wrist using a pulse oximeter with a
green LED. The ECG signal was recorded from the chest using wet ECG sensors. During
data recording, subjects walked or ran on a treadmill at the following speeds: speed of
1–2 km/h for 0.5 min, speed of 6–8 km/h for 1 min, speed of 12–15 km/h for 1 min, speed
of 6–8 km/h for 1 min, speed of 12–15 km/h for 1 min, and speed of 1–2 km/h for 0.5 min.

As mentioned before, the dataset from [20] and the others available online involve
more dynamic movements, and for these data, the mountaineer’s method seems to have
issues, resulting in higher errors compared to the sliding DFT. In fact, the mountaineer’s
method was specifically implemented in the microprocessor with the aim of estimating the
HRs from data collected by the necklace sensor worn by drivers, which were subjected to
minimal motion artifacts. On the other hand, the SDFT works acceptably, as can be seen
from Table 3. This table presents the values of the three metrics that were already described
for the other two datasets, summarizing the performance of the recordings available in
the public dataset. The only difference in the implementation of the SDFT between the
data acquired with the necklace sensor and the data available online lies in the setting
of the ∆max parameter. This parameter defines the maximum variation in BPM between
consecutive samples in order to restrict the heart rate search range. In particular, in the
former case, ∆max was set to 10 BPM for each overlapping window. However, for the
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dataset in [20], it was necessary to adjust this parameter for 3 out of the 12 individuals
(Recordings 2, 6, and 10) based on their characteristics, resulting in us choosing values of 3,
21, and 8 BPM, respectively. Finally, Figure 11 shows the results obtained for Recording 9
by applying the sliding DFT (we chose it because it provides us with high-performance
results and has often been considered in other studies in the literature). Here, we compare
the heart rate estimate with the reference value extracted from the ECG signal.

 
Figure 11. Comparison of reference heart rate (obtained from simultaneous ECG) and estimation
results for Recording 9.

Table 3. Performance metrics for the group of recordings for sliding DFT and the reference paper [4].

SDFT Ref Paper [4]

Rec avAE sdAE avRE avAE sdAE

1–12 1.86 2.36 0.02 0.65 1.00

6. Discussion

Our research focuses specifically on using the developed necklace PPG sensor to collect
data from drivers, who typically exhibit limited movements. These data are quite different
from those collected from wrist-worn PPG sensors employed in situations involving physi-
cal activity. Our necklace sensor has a more stable interaction with the skin surface and is
less affected by movement, as it rests against a relatively stationary area of the body. This
placement is ideal for acquiring data in a controlled environment such as a car, where the
driver’s movements are minimal. Wrist-worn PPG sensors, instead, are more sensitive to
dynamic movements and external factors due to the constant movement of the wrist during
physical activity. This can introduce significant motion artifacts, leading to less reliable data.

From the experimental results obtained using our necklace sensor (see both
Sections 5.1 and 5.2), we can observe that both algorithms estimate heart rate satisfactorily.
This is confirmed by the estimation error metrics calculated for each recording, which show
significantly low values.

Hence, our necklace sensor data benefit from a relatively stable environment with
fewer motion artifacts. This stability enhances the accuracy of heart rate measurements and
ensures high-quality PPG signals with minimal interference. Regarding the considered pub-
lic dataset, it was collected using a wrist-worn PPG sensor during physical activities, thus
involving a challenging context. Individuals often engage in rapid and multidirectional
movements, causing substantial motion artifacts that can interfere with the accuracy of the
PPG signal. Indeed, wrist-worn PPG sensors are versatile but struggle to maintain signal
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integrity during intense activities. This can lead to inaccuracies in the monitored physio-
logical parameters. For this reason, as reported in Section 5.3, the mountaineer’s method
appears to experience issues, leading to higher errors when compared to the sliding DFT.
On the other hand, the SDFT works acceptably, as can be seen from the metrics reported in
Table 3. Note that, however, the performance of the procedure described in [4] is higher
than the one obtained in our implementation. This is due to the fact that in [4], a more
elaborate system is employed to estimate HR that takes into account signals recorded by an
accelerometer and processed using a Wiener filter and other steps. Our aim, however, is to
propose a sensor using a low-power microprocessor that allows for acceptable estimation
of the heart rate. To further refine this estimation, in the future, we plan to implement both
algorithms in a cascading fashion, allowing one to validate the other. This would be feasible
given a low computational cost. Therefore, it would enable us to have two simultaneous
estimates for comparison. If a significant discrepancy between the two estimates persists
over an extended period, we would be able to identify that something is not working
correctly and take appropriate countermeasures.

7. Conclusions

This paper introduces the design of a novel PPG signal acquisition system operating
in the R and IR bands. The focus is on continuous monitoring of the HR, i.e., a vital signal
for assessing drivers’ well-being. The sensor is worn as a necklace and captures signals
from the driver’s neck, minimizing interference with driving movements while ensuring
high-quality signal acquisition. It provides a significant advantage over wrist-worn PPG
sensors used in physical activity settings, which often face challenges due to dynamic
movement and increased motion artifacts. This distinction underscores the importance
of sensor placement and the environment in which data are collected and ultimately
leads to more reliable and application-specific insights. Lab tests were conducted using
a driving simulator, demonstrating the system’s effectiveness and robustness against
motion-related artifacts. To test the sensor’s performance, two low-computational-cost
algorithms for HR estimation were implemented and integrated into it: the mountaineer’s
method and the sliding DFT, which are characterized by extremely reduced computational
times. In the future, they will allow us to estimate the heart rate in parallel, enabling
one to validate the other. Moreover, the system emphasizes a low-power design and a
streamlined algorithm. Both algorithms provided heart rate estimates that were quite
accurate compared to the reference signals recorded by an ECG sensor. They were tested
on a public dataset as well, which contained data similar to those obtained during our tests
with our necklace sensor. The results show that while the sliding DFT continues to exhibit
satisfactory performance, despite requiring some adjustments in a few recordings related
to the search range parameter for the heartbeats, the mountaineer’s method encounters
problems. These occur because the signals from the public dataset are more susceptible
to noise and motion artifacts since they are recorded using a wrist sensor. Future work
will also consider gathering data during real-world driving, including in complex urban
scenarios and other situations.
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Abbreviations

The following abbreviations are used in this manuscript:

HR Heart Rate
HRV Heart Rate Variability
ECG Electrocardiogram
PPG Photoplethysmography
BPM Beats Per Minute
MM Mountaineer’s Method
SDFT Sliding Discrete Fourier Transform
PCB Printed Circuit Board
PTT Pulse Transit Time
LSB Least Significant Bit
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