
Expert Systems With Applications 255 (2024) 124484

0

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Multi-Neighborhood Simulated Annealing for the Capacitated Dispersion
Problem
Roberto Maria Rosati ∗, Andrea Schaerf
DPIA, University of Udine, via delle Scienze 206, I-33100, Udine, Italy

A R T I C L E I N F O

Keywords:
Simulated Annealing
Metaheuristics
Multi-Neighborhood Search
Capacitated Dispersion
Diversity maximization

A B S T R A C T

We propose a novel Multi-Neighborhood Simulated Annealing approach to address the Capacitated Dispersion
Problem. It makes use of three neighborhoods, adapted from similar proposals from the literature. Our search
method, properly engineered and tuned, is able to consistently improve the state-of-the-art methods on almost
all instances from public benchmarks.

In addition, we highlight the limitations of the current datasets and we propose a new, more challenging
one, obtained by sampling data from real maps and population density.

Finally, we propose two compact mathematical models that obtain good bounds on small/medium size
instances as well as, with long runs, on large ones.
1. Introduction

In this work, we consider the Capacitated Dispersion Problem, which
is a classic formulation within the family of diversity problems on
graphs that underlies many real-world problems, such as facility loca-
tion and network analysis.

The problem consists in finding a set of nodes in an undirected
complete weighted graph that maximizes the minimum distance among
selected nodes, subject to a capacity constraint on the selection.

This problem has been tackled in several recent works (Lu et al.,
2023; Martíet al., 2021; Mladenović et al., 2022b; Peiró et al., 2021),
mainly using metaheuristic approaches. The problem comes along with
a public testbed, collected by Peiró et al. (2021), that has been used as
a benchmark in all mentioned papers.

We propose a local search approach that uses a portfolio of neigh-
borhoods and a Simulated Annealing metaheuristic to guide the search.
The distinctive feature of our approach is the use of the union of differ-
ent neighborhoods at each iteration. This idea blends with the random
draw mechanism of Simulated Annealing, which does not require an
exhaustive exploration of the neighborhood, as in other metaheuristics,
which would be computationally expensive in this multi-neighborhood
setting. The other key feature is the statistically-principled tuning of
the rates of the atomic neighborhoods, instead of using predefined ones
(typically uniform).

This approach has already proven quite successful on a variety of
several discrete optimization problems, consistently obtaining results
in line with the state-of-the-art (see Bellio et al., 2021; Ceschia et al.,
2022; Rosati et al., 2022).

∗ Corresponding author.
E-mail addresses: robertomaria.rosati@uniud.it (R.M. Rosati), andrea.schaerf@uniud.it (A. Schaerf).

The neighborhoods that we use are gathered from the literature,
though suitably modified and adapted for our context. Furthermore, we
make use of a lexicographic objective function that facilitates navigation
of the plateaus of the original objective function, and of a randomized
greedy procedure adapted from Rosenkrantz et al. (2000) to generate
the initial solution.

The experimental analysis shows that our multi-neighborhood
method, properly engineered and tuned, is able to outperform the
aforementioned previous techniques on the available benchmark.

In addition, we highlight severe limitations on the benchmark itself
and we propose a novel, more diverse and challenging dataset that
aims to overcome these limitations, and could become an additional
benchmark for this problem for the future.

For this new dataset, properly split into test and validation in-
stances, we provide the results of both our method and of the method
by Lu et al. (2023) and by Mladenović et al. (2022b) obtained by
running their code. The results confirm that our method is able to
obtain better results on this dataset as well.

Finally, we adapt two models for the p-dispersion problem to the
CDP, and we implement them using CPLEX. These models, inspired
by the works by Kuby (1987) and Sayah and Irnich (2017), use less
variables and less constraints than the existing models in the literature
for the CDP, proposed by Peiró et al. (2021) and Martíet al. (2021).
These models have been able to provide good bounds and optimal
results for small and medium size instances. In addition, using very long
runs, they also obtain good results on large instances.
957-4174/© 2024 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.eswa.2024.124484
Received 2 November 2023; Received in revised form 20 May 2024; Accepted 9 Ju
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
ne 2024

https://www.elsevier.com/locate/eswa
https://www.elsevier.com/locate/eswa
mailto:robertomaria.rosati@uniud.it
mailto:andrea.schaerf@uniud.it
https://doi.org/10.1016/j.eswa.2024.124484
https://doi.org/10.1016/j.eswa.2024.124484
http://creativecommons.org/licenses/by/4.0/

Expert Systems With Applications 255 (2024) 124484R.M. Rosati and A. Schaerf

a
i

3

{
t
t
w
m
i

𝑑

𝑥

𝑑

t
b
a
d

3

a
t
𝐸

𝑥
f

The new dataset and all our best solutions are available at https:
//github.com/iolab-uniud/cdp for inspection and future comparisons.

The rest of the paper is organized as follows. Section 2 discusses
the related work. Section 3 provides the problem definition and its
mathematical model. Our search method is described in Section 4.
In Section 5, we discuss the current and new datasets. Section 6 is
dedicated to the experimental analysis. Finally, conclusions and future
work are discussed in Section 7.

2. Related work

Diversity and dispersion problems have been studied intensively
starting from the 70s (see, e.g., Shier, 1977). We refer to the recent
survey by Martíet al. (2022) for an overview of the various formulations
and the search methods used to solve them.

The specific version considered in this paper, called Capacitated
Dispersion Problem (CDP), has been introduced by Rosenkrantz et al.
(2000), who proposed a greedy algorithm and an approximation scheme
for both CDP and other versions of the problem. In particular, they
prove an approximation factor of 2 when the distances satisfy the
triangular inequality. This result is of theoretical interest, but with
limited practical use.

The CDP has been recently addressed by using metaheuristic ap-
proaches. Peiró et al. (2021) propose a technique based on Greedy
Randomized Adaptive Search Procedure (GRASP), Variable Neighbor-
hood Search, and Strategic Oscillation, as well as a mathematical
model. They adapted the datasets from other problems, then they
compared their method with the CPLEX implementation of the math-
ematical model, and with the greedy algorithm of Rosenkrantz et al.
(2000).

Subsequently, Martíet al. (2021) proposed a metaheuristic method
based on Scatter Search and also developed a new mathematical model.
They compared their search method and their model with the ones
by Peiró et al. (2021).

Lu et al. (2023) apply a solution-based Tabu Search using three
distinct neighborhoods: insert, remove and swap. In order to speed
up the check of equality of the current solution with tabu ones, they
employ hash functions that identify eligible candidate solutions. They
improved over all previous results, suggesting that local search methods
are suitable for the CDP.

The current state-of-the-art results for the CDP are provided by
Mladenović et al. (2022b), that developed various versions of Variable
Neighborhood Search, namely Basic VNS, General VNS and General
Skewed VNS. In addition to the neighborhoods used by Lu et al. (2023),
they also use the neighborhoods 2-out-1-in and 1-out-2-in, that insert
or remove two nodes at a time.

Given the substantial gap existing between the results from Lu et al.
(2023), Mladenović et al. (2022b) and the previous ones, we only
consider the former two for comparison in this paper.

Even though local search methods have been successful in solving
the CDP, we are not aware, to the best of our knowledge, of any work
that uses a stochastic sampling approach, as all the above-mentioned
methods employ exhaustive exploration of the neighborhood. We be-
lieve, however, that it is computationally expensive in a problem like
the CDP, that presents wide plateaus characterized by many equiv-
alent solutions, and might be a limiting factor in the use of larger
neighborhoods.

3. Problem definition

We are given an undirected graph 𝐺 = (𝑉 ,𝐸), where 𝑉 is a set
of nodes, and 𝐸 is a set of edges between nodes in 𝑉 . Each node 𝑖 is
assigned a capacity 𝑐𝑖 and each edge is assigned a value 𝑑𝑖𝑗 representing
the distance between nodes 𝑖 and 𝑗. We are also given a single value 𝐵
representing the total minimum capacity requested for the solution. All
2

values are real.
The graph is assumed complete and all distances are non-negative,
but they are not assumed Euclidean, and they do not need to satisfy the
triangular inequality.

The problem consists in selecting a set of nodes 𝑆 ⊆ 𝑉 such that the
sum of the capacities of the nodes in 𝑆 is at least equal to 𝐵 and the
minimum distance between nodes in 𝑆 is maximized.

Furthermore, we propose two mathematical models, both adapted
to the CDP from works in the literature on the p-dispersion prob-
lem. The first one was proposed by Kuby (1987) and later on also
studied by Erkut and Neuman (1991), who considered different ob-
jectives. The second one is adapted from Sayah and Irnich (2017),
who proposed a compact formulation for the p-dispersion problem. The
adaptation of a model to the CDP is straightforward, as the only differ-
ence is the replacement of the p-dispersion constraint with the capacity
constraint.

Both models are significantly more compact than the one by Peiró
et al. (2021), that uses an additional variable 𝑦𝑖𝑗 for each pair (𝑖, 𝑗), that
takes value 1 if both 𝑥𝑖 and 𝑥𝑗 have value 1. They also use less variables
nd less constraints than the one by Martíet al. (2021), which however
s based on a completely different paradigm.

.1. Model 1: adapted from Kuby (1987)

The first mathematical model is based on binary variables 𝑥𝑖 ∈
0, 1}, with 𝑖 ∈ 𝑉 , that take the value 1 if the node 𝑖 is selected in
he solution, 0 otherwise. In order to express the objective to maximize
he minimum distance between the selected nodes in the linear model,
e introduce a new, real-valued variable 𝑑 ∈ R that represents the
inimum distance between the selected nodes. The objective function

s then max 𝑑 and the model is the following one.

max 𝑑 (1)
∑

𝑖∈𝑉
𝑐𝑖𝑥𝑖 ≥ 𝐵 (2)

̄ ≤ 𝑑𝑖𝑗 +𝑀(1 − 𝑥𝑖) +𝑀(1 − 𝑥𝑗) ∀𝑖, 𝑗, 𝑖 < 𝑗 ∈ 𝑉 , 𝑖 ≠ 𝑗 (3)

𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝑉 (4)
̄ ≥ 0 (5)

The first constraint (2) simply imposes that the sum of the capacities
𝑐𝑖 of the selected nodes is at least the minimum capacity 𝐵. The second
set of constraints (3) imposes that, for every pair of nodes (𝑖, 𝑗), the
minimum distance 𝑑 is at most equal to the distance 𝑑𝑖𝑗 , but only if
both nodes are selected.

To express this condition, we use the BigM technique, with the
constant 𝑀 that takes a suitably high value, which is multiplied by
(1 − 𝑥𝑖) and (1 − 𝑥𝑗). In this expression, if one of the two nodes is not
selected, that is, either (1 − 𝑥𝑖) or (1 − 𝑥𝑗) is 1, then the constraint says
that 𝑑 is free to take any value below 𝑀+𝑑𝑖𝑗 , or below 2𝑀+𝑑𝑖𝑗 if both
nodes are unselected. If, on the other hand, 𝑥𝑖 and 𝑥𝑗 are selected, both
erms that multiply 𝑀 take value 0 and 𝑑 is constrained by the distance
etween the two nodes 𝑑𝑖𝑗 . Given that the constraint is repeated for
ll pairs of nodes (𝑖, 𝑗), the distance 𝑑 is constrained by the minimum
istance between the selected nodes.

.2. Model 2: adapted from Sayah and Irnich (2017)

Let 𝐷0 < 𝐷1 < ⋯ < 𝐷𝑘𝑚𝑎𝑥 be the set of all distinct distances 𝑑𝑖𝑗 ,
nd let 𝐸(𝐷𝑘) be the set of edges (𝑖, 𝑗) with distance 𝑑𝑖𝑗 ≤ 𝐷𝑘. Based on
his definition, the set of edges with distance 𝑑𝑖𝑗 = 𝐷𝑘 is identified as
(𝐷𝑘) ⧵ 𝐸(𝐷𝑘−1).

Our second mathematical model is based on two binary variables
𝑖 ∈ {0, 1} with 𝑖 ∈ 𝑉 and 𝑧𝑘 ∈ {0, 1} with 𝑘 ∈ 𝐾 = {1, 2,… , 𝑘𝑚𝑎𝑥}. The
irst one, similarly to the first model, is the location selection, while

https://github.com/iolab-uniud/cdp
https://github.com/iolab-uniud/cdp
https://github.com/iolab-uniud/cdp

Expert Systems With Applications 255 (2024) 124484R.M. Rosati and A. Schaerf

t
r
𝑆
s
e
t
a
f

m
c

i
l
b
n
t
𝐶
r

(
r
n
e
e
s
e
m
i

v
i
s
r

the second one takes value 1 when the location selection is such that
the minimum distance is at least 𝐷𝑘. The binary model is the following
one.

max 𝐷0 +
∑

𝑘∈𝐾
(𝐷𝑘 −𝐷𝑘−1)𝑧𝑘 (6)

∑

𝑖∈𝑉
𝑐𝑖𝑥𝑖 ≥ 𝐵 (7)

𝑧𝑘 ≤ 𝑧𝑘−1 ∀𝑘 ∈ 𝐾, 𝑘 > 1 (8)

𝑥𝑖 + 𝑥𝑗 + 𝑧𝑘 ≤ 2 ∀𝑘 ∈ 𝐾, (𝑖, 𝑗) ∈ 𝐸(𝐷𝑘) ⧵ 𝐸(𝐷𝑘 − 1) (9)

𝑥𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝑉
(10)

𝑧𝑘 ∈ {0, 1} ∀𝑘 ∈ 𝐾
(11)

Constraint (7) ensures that the capacity of the chosen nodes is at
least 𝐵. It is the same as in the first model. Constraint (8) imposes that
the 𝑧𝑘 variables are non-increasing in 𝑘. Constraint (9) ensures that, if
the minimum distance is 𝐷𝑘, then at most one node is selected from
any pair (𝑖, 𝑗) at distance 𝑑𝑖𝑗 < 𝐷𝑘.

4. Solution method

We propose a Multi-Neighborhood local search approach for the
CDP. In the following sections, we will outline the fundamental com-
ponents of the local search paradigm, which include the search space,
the initial solution strategy, the neighborhood relations, the cost function
and the metaheuristic that drives the search.

4.1. Search space

Our search space is characterized by two disjoint sets. The first is
𝑆, that coincides with the solution, that we name the selection list, and
that includes the nodes that are currently selected. We also store the
complementary set 𝐶 = 𝑉 ⧵𝑆, named candidate list because it is the set
of nodes that are candidates for insertion in the current solution.

We assume that |𝑆| ≥ 2, that is, a solution always contains at least
two nodes and one edge. While in theory a solution with only one node
that alone satisfies the capacity requirement (or even a empty solution,
if 𝐵 = 0) might exist, in the current datasets this never happens,
therefore we can safely prevent the case of having a solution with one
single node, which would have an undefined value of the objective
function.

With regard to the capacity constraint, we do not impose its satisfac-
tion and thus we let the search explore both the feasible and infeasible
regions. As explained in Section 4.5, capacity violations are included in
the cost function with a high value, in order to direct the search toward
the feasible region.

To speed up the computation and evaluation of moves, we define
several redundant data structures that complement the two sets 𝑆 and
𝐶. For every node, regardless of whether or not it is in the selection list,
we store the value of the minimum distance edge that connects the node
to the selection list into a variable 𝑑𝑆 (𝑣) and we compute it as 𝑑𝑆 (𝑣) =
min𝑢∈𝑆 𝑑𝑢𝑣. We also keep the counter |𝑑𝑆 (𝑣)|, telling how many edges
with such distance there are, for every node. Finally, recalling that the
objective function of the problem is defined as 𝑓 (𝑆) ∶= min𝑢,𝑣∈𝑆 𝑑𝑢𝑣, we
define the set 𝐸𝑅 ⊂ 𝐸 as the set of edges between nodes in 𝑆 with a
distance exactly equal to 𝑓 (𝑆). We call these edges the bottleneck edges,
given that they determine the value of the objective function. Rather
than keeping track of the full set 𝐸𝑅, we only store and update the
3

value |𝐸𝑅|. 𝑖
4.2. Initial solution strategy

We generate the initial solution for the local search through a
randomized greedy algorithm. Instead of designing a completely novel
procedure, we adapted the greedy from Rosenkrantz et al. (2000). The
original algorithm is fully deterministic, so we have modified it1 in
order to perform random tie-breaks in the initial sorting of nodes by
non-increasing capacity. Indeed, with many nodes having the same
capacity, random tie-breaks can lead to different solutions.

An alternative possibility to the greedy start is to employ a com-
pletely random approach. We explore this possibility in Section 6.3.

4.3. Neighborhood relations

We propose a Multi-Neighborhood approach that makes use of three
neighborhoods:

• Insert: the move Insert⟨𝑣⟩ inserts a node 𝑣 from the candidate list
into the selection list 𝑆.
Preconditions: 𝑣 ∈ 𝐶.

• Remove: the move Remove⟨𝑣⟩ removes a node 𝑣 from the selec-
tion list 𝑆 and returns it to the candidate list.
Preconditions: 𝑣 ∈ 𝑆, |𝑆| > 2.

• Swap: the move Swap⟨𝑣, 𝑢⟩ inserts a node 𝑣 from the candidate
list into the selection list 𝑆, and removes a node 𝑢 from the
selection list, returning it to the candidate list.
Preconditions: 𝑣 ∈ 𝐶, 𝑢 ∈ 𝑆.

We also consider three restricted versions of the Swap neighborhood,
that we call 𝖲𝗐𝖺𝗉𝖱+, 𝖲𝗐𝖺𝗉𝖱− and 𝖲𝗐𝖺𝗉𝖱±. To describe them, we in-
roduce two additional sets, the restricted selection list 𝑆𝑅 and the
estricted candidate list 𝐶𝑅. The restricted selection list is defined as
𝑅 ∶= {𝑣 ∈ 𝑆|𝑑𝑆 (𝑣) = 𝑓 (𝑆)}. Set 𝑆𝑅 contains all the nodes in the
olution with an edge to another node in the solution with distance
qual to the current minimum distance among selected nodes, that is
he value of the objective function. We also denote the nodes in 𝑆𝑅
s the bottleneck nodes, because they bound the value of the objective
unction 𝑓 (𝑆). The restricted candidate list is defined as 𝐶𝑅 ∶= {𝑣 ∈
𝐶|𝑑𝑆 (𝑣) > 𝑓 (𝑆)}, that is, all the nodes in the candidate sets with

inimum distance to the nodes in the selection list greater than the
urrent objective function value.

𝖲𝗐𝖺𝗉𝖱+ restricts the Swap neighborhood with regards to the node
nserted in the solution, which is chosen within the restricted candidate
ist 𝐶𝑅, but allows removal from the whole selection list 𝑆. The neigh-
orhood 𝖲𝗐𝖺𝗉𝖱− restricts the Swap neighborhood with regards to the
ode that is removed from the solution list, that is chosen only among
he nodes in 𝑆𝑅, but allows any insertion from the whole candidate list
. Finally, 𝖲𝗐𝖺𝗉𝖱± restricts both the insertion and the removal to the

estricted lists.
We point out that both Lu et al. (2023) and Mladenović et al.

2022b) use restricted versions of their Swap neighborhood, but with
elevant differences compared to us. First of all, we employ all four
eighborhood variants Swap, 𝖲𝗐𝖺𝗉𝖱+, 𝖲𝗐𝖺𝗉𝖱− and 𝖲𝗐𝖺𝗉𝖱±, while Lu
t al. (2023) only employ 𝖲𝗐𝖺𝗉𝖱± and Mladenović et al. (2022b) only
mploy 𝖲𝗐𝖺𝗉𝖱−. Additionally, our definition of the restricted candidate
et 𝐶𝑅 is different from the one provided by Lu et al. (2023), as we
mploy a larger set, that embraces all nodes 𝑣 ∈ 𝐶 with min𝑢∈𝑆 𝑑𝑢𝑣 >
in𝑢∈𝑆 𝑑𝑆 (𝑢) = 𝑓 (𝑆). The restricted selection list, on the other hand,

s identical in all the algorithms. Thanks to these differences, our

1 The original pseudo-code (Heuristic: T1:Max-Dist/Cap) contains a typo:
ector 𝐷[1… 𝑡] (step 2) should be instead sorted increasingly, and not decreas-
ngly, otherwise the binary search at step 3 (find the 𝑖th element of the array
uch that GreedyTry(𝐷[𝑖], 𝐵) returns success and GreedyTry(𝐷[𝑖 + 1], 𝐵)
eturns failure) cannot work. The same can be obtained by replacing 𝑖+1 with

− 1 in step 3.

Expert Systems With Applications 255 (2024) 124484R.M. Rosati and A. Schaerf

u
t
s

4

(
e
e
w

a
p
T
e
t
a
a
c
(

w
b
s
t
i
i
a
p
t

i
a
w

T

neighborhood variants are larger than the Swap that Lu et al. (2023)
and Mladenović et al. (2022b) have proposed.

The main reason why we can afford to use larger neighborhoods is
that the metaheuristic that guides the search in our method is Simulated
Annealing, which employs stochastic move selection, and therefore the
computational cost of the evaluation of a move does not depend on the
size of the neighborhood. Specifically, in our method, the cost of both
evaluating and executing moves is either constant or linear with respect
to the size of the solution, except for some rare situations in which the
cost is quadratic. In particular, this only happens when there is exactly
one bottleneck edge, and the move removes one of its end points.

Conversely, Lu et al. (2023) and Mladenović et al. (2022b) employ
Tabu Search and VNS, which perform a complete exploration of the
neighborhood at every move selection and therefore might foresee its
performances reduced by the use of larger neighborhoods.

4.4. Move selection

We now describe how we select a random move from our Multi-
Neighborhood Insert ∪ Remove ∪ Swap. We define three real-valued
parameters 𝜎𝐼 , 𝜎𝑅, and 𝜎𝑆 , with 𝜎𝐼 + 𝜎𝑅 + 𝜎𝑆 = 1. They represent the
probability of selecting the Insert, Remove, and Swap neighborhoods,
respectively.

Given that, however, we have four versions of the Swap neighbor-
hood, we define two internal biases: 𝑏+ ∈ [0, 1] and 𝑏− ∈ [0, 1]. If the
Swap neighborhood is selected, then with probability 𝑏+ we use the
restricted candidate list 𝐶𝑅 to select the candidate node for insertion,
and with probability 𝑏− we use the restricted selection list 𝑆𝑅 to choose
the node that is removed. Therefore, we can derive that the probability
of performing a regular Swap is 𝜎𝑆 (1 − 𝑏+)(1 − 𝑏−), the probability of
selecting 𝖲𝗐𝖺𝗉𝖱+ is 𝜎𝑆𝑏+(1 − 𝑏−), the probability of selecting 𝖲𝗐𝖺𝗉𝖱− is
𝜎𝑆 (1 − 𝑏+)𝑏− and, finally, 𝖲𝗐𝖺𝗉𝖱± is selected with probability 𝜎𝑆𝑏+𝑏−.

Now that every neighborhood is assigned a probability, we can per-
form a random selection of a move in two steps (three steps for Swap).
First, we select the neighborhood, with a biased random selection that
depends on the fixed probabilities 𝜎𝐼 , 𝜎𝑅, and 𝜎𝑆 . If Swap is chosen,
with another biased random selection we choose whether to use the
restricted or the full candidate and solution lists, with probabilities 𝑏+
and 𝑏−, respectively. Finally, we draw the specific move, with a uniform
selection inside the chosen neighborhood.

4.5. Cost function

One issue with the max-min objective function is that very large
plateaus might be encountered. In fact, its value is determined by the
edges in 𝐸𝑅. If |𝐸𝑅| = 1, then the value is given by a single pair of nodes
and removing one of the two nodes (provided that the move does not
violate the capacity constraint) is sufficient to improve the objective
function.

When |𝐸𝑅| > 1, however, unless there is a node 𝑣 ∈ 𝑆𝑅 with
|𝑑𝑆 (𝑣)| = |𝐸𝑅|, all three neighborhoods are on a plateau with regard
to 𝑓 (𝑆), given that all possible moves are sideways or worsening. This
situation makes the search blind about what are the best moves to
perform, which might be stuck roaming for a long time on the plateau.
However, we know that to improve the objective function we first have
to reduce the number of edges in 𝐸𝑅, until we have one single edge that
is binding 𝑓 (𝑆), that we can finally remove and jump to a new objective
function value.

Therefore, in order to deal with this situation, we introduce an
auxiliary cost component that guides the search on the plateaus toward
solutions with smaller |𝐸𝑅|. Given that this is less important than the
actual objective, we define a lexicographic objective function as fol-
lows: given two solutions 𝑆1 and 𝑆2, we say that 𝑆1 is lexicographically
better than 𝑆2 if

𝑓 (𝑆) > 𝑓 (𝑆) ∨
(

𝑓 (𝑆) = 𝑓 (𝑆) ∧ |𝐸 | < |𝐸 |

)

(12)
4

1 2 1 2 𝑅1 𝑅2
e

In order to use this lexicographic function inside our metaheuristic, we
linearize it as follows:

𝑓 𝑙𝑒𝑥(𝑆) = 𝑤𝑜𝑓𝑓 (𝑆) − |𝐸𝑅| (13)

with 𝑤𝑜𝑓 a constant weight, assigned with a suitably high value to
ensure that the second component is only relevant if two solutions have
the same objective function value. The new term is subtracted and not
added because the objective of the problem is to maximize the objective
function, while we want to minimize |𝐸𝑅|.

Our lexicographic objective function provides a trajectory for ex-
ecuting a successful sequence of moves on plateaus, so that the need
for more complex neighborhoods, such as the 2-out-1-in and 1-out-2-in
neighborhoods proposed by Mladenović et al. (2022b), is counterbal-
anced.

Finally, as we mentioned in Section 4.1, we also allow the explo-
ration of the infeasible region of the search space. Therefore, we also
add a penalty term for capacity violations, and we weight it with a
constant 𝑤𝑐 . Again, given that the problem is a maximization one,
we subtract the penalty term. We obtain the following expression to
determine the cost function 𝐹 used in the metaheuristic:

𝐹 (𝑆) = 𝑤𝑐 min
{

0,
∑

𝑣∈𝑆
𝑐𝑣 − 𝐵

}

+𝑤𝑜𝑓𝑓 (𝑆) − |𝐸(𝑆)| (14)

The redundant data structures that we introduced in Section 4.1 are
sed to speed up the evaluation of the differential cost 𝛥𝐹 between
wo solutions 𝑆1 and 𝑆2, without computing 𝐹 (𝑆1) and 𝐹 (𝑆2) from
cratch.

.6. Simulated annealing

The metaheuristic that guides the search is Simulated Annealing
SA). We use the classic version, as originally proposed by Kirkpatrick
t al. (1983), with the inclusion of a cut-off mechanism to speed up the
arly stages of the search. The pseudo-code is shown in Algorithm 1,
here 𝑛 is the number of atomic neighborhoods.

The key features of SA are the random nature of the move selection
t each iteration and the acceptance criterion that depends on a tem-
erature 𝑇 , which decreases from an initial value 𝑇0 to a final one 𝑇𝑓 .
he move selection, that in this context is performed in two stages as
xplained in Section 4.4, is illustrated in lines 9 and 10. According to
he Metropolis acceptance criterion, improving and sideways moves are
lways accepted as new states (lines 12-18), whereas worsening ones
re accepted with probability 𝑒−𝛥𝐹∕𝑇 . The temperature is decreased ac-
ording to the geometric cooling scheme in every 𝑁𝑠 sampled iterations
line 26), where 𝛼 (with 0 < 𝛼 < 1) is the cooling rate.

The aforementioned cut-off mechanism decreases the temperature
hen a fixed number of moves 𝑁𝑎 < 𝑁𝑠 has been accepted. The idea
ehind the cut-off is that the temperature is too high if too many
olutions are accepted, and we should decrease it more aggressively. If
he cut-off takes place, the number of sampled moves that are not used
n the current iteration is redistributed among the future temperatures,
ncreasing 𝑁𝑠 accordingly. Instead of using as parameter 𝑁𝑎, we define
parameter 𝜌 ∈ (0, 1], used to determine the number of initial iterations
er temperature 𝑁𝑠 that have to be accepted to apply the cut-off, such
hat 𝑁𝑎 = 𝜌𝑁𝑠.

To determine the length of the SA run, we use a fixed number of
terations , which corresponds to the number of moves that are drawn
nd evaluated, regardless of whether they are accepted or not. From ,
e compute the parameter 𝑁𝑠 using the formula:

𝑁𝑠 = 

/

log𝛼

(𝑇𝑓
𝑇0

)

(15)

his simplifies the determination of the duration of the algorithm
xecution and makes it independent from the parameters.

Expert Systems With Applications 255 (2024) 124484R.M. Rosati and A. Schaerf

1

1

1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3

A
b
b
p

c
n
F
t
a
a
r
w

b
o
T
𝐵
m
r
o
i
𝑟
o

Algorithm 1 Multi-Neighborhood Simulated Annealing With Cutoff
1: procedureMNSA With Cutoff(SearchSpace 𝛴, Multi-Neighborhood

∪ =
⋃𝑛

𝑘=1 𝑘, CostFunction 𝐹 , Parameters 𝑇0, 𝑇𝑓 , 𝛼, 𝑁𝑠, 𝑁𝑎,
{𝜎1 … 𝜎𝑛})

2: 𝑇 ← 𝑇0
3: 𝑆 ← GreedyState(𝛴)
4: 𝑆𝑏𝑒𝑠𝑡 ← 𝑆
5: while 𝑇 ≥ 𝑇𝑓 do
6: 𝑛𝑠 ← 0
7: 𝑛𝑎 ← 0
8: while 𝑛𝑠 < 𝑁𝑠 and 𝑛𝑎 < 𝑁𝑎 do
9: 𝑘 ← RandomNH(∪, {𝜎1 … 𝜎𝑛})
0: 𝑚 ← RandomMove(𝑆,𝑘)

11: 𝛥𝐹 ← 𝐹 (𝑆 ⊕ 𝑚) − 𝐹 (𝑆)
12: if 𝛥𝐹 ≥ 0 then
3: 𝑆 ← 𝑆 ⊕ 𝑚

14: 𝑛𝑎 ← 𝑛𝑎 + 1
5: if 𝐹 (𝑆) > 𝐹 (𝑆𝑏𝑒𝑠𝑡) then
6: 𝑆𝑏𝑒𝑠𝑡 ← 𝑆
7: end if
8: else
9: if RandomReal(0, 1) < 𝑒−𝛥𝐹∕𝑇 then
0: 𝑆 ← 𝑆 ⊕ 𝑚
1: 𝑛𝑎 ← 𝑛𝑎 + 1
2: end if
3: end if
4: 𝑛𝑠 ← 𝑛𝑠 + 1
5: end while
6: 𝑇 ← 𝑇 ⋅ 𝛼
7: 𝑁𝑠 ← 𝑁𝑠 +

(

𝑁𝑠 − 𝑛𝑠
)

∕ log𝛼
(

𝑇𝑓∕𝑇
)

8: end while
9: return 𝑆𝑏𝑒𝑠𝑡
0: end procedure

5. Datasets and generators

Recent papers in the literature on CDP have used four datasets,
called GKD-b, GKD-c, SOM-a, and MDG-b, composed by 20, 10, 10,
and 10 instances, respectively. The number of nodes is fixed, equal to
50/150 (10 each), 500, 50, 500, for all instances of the four datasets.

These datasets2 were initially proposed in various works and then
collected by Martíet al. (2010). They were originally defined for prob-
lems without the capacity constraints, therefore they have been com-
pleted by Peiró et al. (2021) by adding both the node capacities and
the capacity threshold. In this process, each dataset has been duplicated
into two groups by considering a threshold equal to either 0.2 or 0.3
of the sum of the capacities of the nodes. Therefore, we eventually
have eight groups of instances named by adding the suffix 2 or 3 to
the original name: GKD-b2, GKD-b3, GKD-c2, . . .

All datasets are artificial. In detail, the datasets GKD-b and GKD-c
are created by sampling points on a square and getting the Euclidean
distance among all pairs of nodes. Conversely, for SOM-a and MDG-
b distances are integers uniformly sampled in the range [0,9] and
[0,1000], respectively.

For all instances of datasets GKD-b, GKD-c, and SOM-a, the MILP
model by Martíet al. (2021) finds the optimal solutions in a few
seconds. In addition, all metaheuristic methods (including ours) find
the optimal value quite consistently. The comparison on these datasets
could therefore be based only on the number of times that the optimal
value is obtained and the time to reach it.

2 Available at https://www.uv.es/rmarti/paper/mdp.html.
5

t

For the above reasons, these instances are easy and we believe
that they do not represent a good benchmark anymore. We decided
to discard them and to focus on the 20 instances of dataset MDG-b (10
of the MDG-b2 group and 10 of the MDG-b3 group). We use the others
solely for validating the implementation of the mathematical models.

The dataset MDG-b is instead quite challenging, and therefore it
is a good benchmark for the comparison of optimization techniques.
Nonetheless, in our opinion, it has some severe limitations:

• It is too small. Indeed, 20 instances are not enough for an exten-
sive comparison.

• It is too homogeneous, as all instances have the same size and
they are duplicated with only the capacity modified.

• Distance values are too random. In fact, they do not even satisfy
the triangular inequality.

• The presence of various zeros in the distance matrix is also rather
strange, given that they should represent physical distances.

For these reasons, we believe that it is necessary to introduce a new
dataset so as to enrich and diversify the current benchmark. Therefore,
we design a generator, based on real geographical data, that aims
at creating instances that are challenging, realistic, and diverse. Our
generator, written in R language, employs the JRC-GEOSTAT 2018
population grid, that covers 38 European countries, including all the
European Union member States plus a few neighboring countries.
We use the shapefile under the coordinate system EPSG:3035 with a
resolution of 1 km2, which means that it is divided in squared cells
with side 1 km. Every cell contains the coordinates and the data of the
population living in the cell, updated to the year 2018, which is the
most recent validated version of the grid.

The first step consists in cutting a portion of the grid based on a
center (𝑥, 𝑦) and a radius 𝑟, which implies an area of 𝜋𝑟2, minus the
potential portion that lies on the sea. To generate an instance with
size |𝑉 |, on this area, we select |𝑉 | cells at random, through a biased
random selection, with the probability proportional to the population
of the cell.

Said 𝐴 the set of the cells in the area, and 𝑝𝑛 the population of the
𝑛th cell, the probability of selecting cell 𝑛 is

𝑃 (𝑛) =
𝑝𝑛

∑

𝑚∈𝐴 𝑝𝑚
(16)

fter every cell selection, we sample, with a uniform random distri-
ution, the exact coordinates of a point (𝑥𝑖, 𝑦𝑖) within the 1𝑘𝑚2 cell
oundaries. Therefore, every node in the instance corresponds to a
recise point in the map.

After we have sampled the |𝑉 | points in the space, the procedure
omputes the distance matrix |𝑉 | × |𝑉 |. We set as distance the time
eeded to cover the path between points by car, expressed in minutes.
or this, we employ the Open Source Routing Machine, which returns
he most time-effective route between two nodes. We point out that

real road distance matrix is not symmetric because of factors such
s one-way directions or steepness. However, given that the problem
equires a symmetric matrix, we only compute 𝑑𝑖𝑗 for 𝑖 < 𝑗, and then
e assign 𝑑𝑗𝑖 = 𝑑𝑖𝑗 .

In our generation procedure, the cell population is used not only to
ias the sampling of the points, but it is also assigned as the capacity
f the node: if the node 𝑖 was extracted from cell 𝑛, then 𝑐𝑖 = 𝑝𝑛.
he minimum capacity requirement is computed as a random value
∈ (𝐵𝑚𝑖𝑛, 𝐵𝑚𝑎𝑥]. Hereby, we set 𝐵𝑚𝑖𝑛 = 𝑚𝑎𝑥𝑖∈𝑉 (𝑐𝑖) and 𝐵𝑚𝑎𝑥 =

in{0.3
∑

𝑖∈𝑉 𝑐𝑖, 0.9
∑

𝑚∈𝐴 𝑝𝑚}. These values ensure that the capacity
equirement 𝐵 is always less than 30% of the total capacity, or 90%
f the population if this is less than the total capacity. The radius 𝑟
s chosen at random in the interval [𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥], with 𝑟𝑚𝑖𝑛 = 5 km and
𝑚𝑎𝑥 = 90 km. Finally, the possible centers (𝑥, 𝑦) are taken from a pool
f various cities and rural areas across Europe.

As a possible real-world interpretation of this construction, consider

hat we want to decide where to place drugstores. The capacity of

https://www.uv.es/rmarti/paper/mdp.html

Expert Systems With Applications 255 (2024) 124484R.M. Rosati and A. Schaerf

t
c
s
t
d
w
z

i
t
r
t
p
t
b
c

r
t

(
f
m
n
o
i

6

r
a

Table 1
Features of the validation instances.

GeoData Size Distances

city r A pop |𝑉 | B(%) B avg min 1st med 3rd max

1 Bilbao 28 2197 1 131 415 627 0.11 918 402 22.2 1 13 20 30 74
2 Bremen 51 8161 1 735 993 1335 0.20 693 367 41.7 1 27 41 54 136
3 Cagliari 50 6318 678 220 565 0.19 421 770 39.7 1 19 38 57 159
4 Catania 51 5468 1 390 504 714 0.24 870 107 40.4 1 20 39 58 149
5 Cuneo-Fossano 34 3613 549 625 479 0.29 196 562 42.7 1 30 43 56 104
6 Exeter 77 12 464 1 912 208 1259 0.18 552 502 73.4 1 46 69 96 229
7 Foggia 36 4021 409 910 701 0.04 177 467 36.4 1 24 37 49 118
8 Fontenay-Niort 86 21 804 1 822 107 974 0.16 180 151 85.2 1 59 87 111 215
9 Gottingen 29 2617 415 321 1206 0.08 164 395 29.9 1 20 30 39 81

10 Gottingen 88 24 309 3 803 418 1358 0.05 129 498 90.0 1 60 90 118 211
11 Jena 8 193 114 691 757 0.01 40 680 11.6 1 8 11 15 45
12 Lublin 44 6073 869 345 1042 0.03 97 965 38.9 1 22 39 53 125
13 Milan 32 3205 4 992 261 568 0.24 909 420 31.1 1 21 30 40 84
14 Milan 53 8797 7 612 631 692 0.27 906 640 44.6 1 30 43 57 131
15 Munich 7 145 988 689 1343 0.05 697 453 12.6 1 9 12 16 33
16 Munich 90 25 433 6 024 374 798 0.16 463 017 60.8 1 40 59 79 179
17 Naples 57 7158 5 222 684 1346 0.23 2 124 227 45.8 1 25 40 58 292
18 Nowe Miasto 89 24 833 2 104 112 1487 0.03 122 757 104.8 1 68 104 141 247
19 Palermo 88 12 199 2 159 507 1186 0.06 369 869 81.7 1 40 83 117 222
20 Pamplona 23 1649 379 770 512 0.05 251 664 11.1 1 7 10 13 76
21 Rome 15 697 2 607 377 700 0.19 1 344 222 19.9 1 14 20 26 49
22 Sofia 47 6917 1 608 481 1034 0.18 1 237 857 28.7 1 13 21 39 200
23 Split 41 4412 390 868 614 0.04 134 182 40.0 1 11 28 48 264
24 Suzzara 68 14 493 3 822 210 1447 0.27 947 949 71.9 1 49 73 95 170
25 Tampere 19 1125 344 110 664 0.16 278 974 18.7 1 13 18 24 68
26 Ulm 54 9141 1 903 978 1241 0.19 411 900 53.7 1 37 54 70 133
27 Ulm 8 193 191 864 845 0.04 124 649 10.9 1 8 11 14 31
28 Vienna 53 8797 3 083 512 1469 0.10 1 207 533 32.1 1 17 29 45 121
29 Wroclav 48 7209 1 302 256 1256 0.02 107 873 39.5 1 22 39 55 129
30 Zagreb 53 8797 1 528 544 980 0.15 600 667 39.1 1 20 38 55 141
the node, which is the population living in the 1 km2 where it is
situated, is an approximation of the number of people placed at walking
distance within the facility, which we want to satisfy by at least 𝐵. On
he other hand, we want to avoid that two drugstores are placed too
lose, therefore we desire to maximize the minimum distance between
tores. The same reasoning can be applied to other contexts, such as
he placement of schools or public offices, that is convenient to build in
ense areas to reduce commuting times and the use of private vehicles,
hile avoiding placing them too close to each other to ensure that their

ones of influence do not overlap.
Using our generator, we have created a dataset composed of 200

nstances with size |𝑉 | between 300 and 1500, that we call GIS (given
hat they come from geographical data). We use 30 instances (chosen at
andom, with no specific choice criterion) as validation instances and
he rest as training ones. We also tested all of them with our models
resented in Section 3. We verified that no GIS instance could be solved
o optimality within the one hour time limit, for which they appear to
e rather challenging. All GIS instances are available at https://github.
om/iolab-uniud/cdp, divided into training and validation ones.

Table 1 shows the features of the validation instances. The table
eports, from left to right, the number of the instance, the name of
he city, the radius 𝑟 in km, the size 𝐴 in km2, the population, the

number of vertices in the instance (|𝑉 |), the capacity requirement 𝐵
both percentage of total capacity available and absolute value), and
inally some information on the distribution of the distances (average,
inimum, first quartile, median, third quartile, and maximum). The
ame of the city simply indicates the city or town chosen as center
f the area. Sometimes, if the radius is large, other cities might be
ncluded.

. Experimental analysis

In this section we present our experimental methodology and our
esults, and we provide graphics and insights on the behavior of our
6

lgorithm as well as on the characteristics of the new GIS instances
in relation to the algorithm performances. Our code is implemented in
C++ and compiled using g++ (v. 11.4.0) in -O3 mode. The experi-
ments were run on a AMD Ryzen Threadripper PRO 3975WX 32-Cores
(3.50 GHz) with Ubuntu Linux 22.04.3. The MILP models are also
implemented in C++, through the CONCERT interface for CPLEX (v.
22.1).

In order to ensure a fair comparison of the performance of the
models, the time limit is set to 2880 s, corresponding approximately
to one hour on the CPU used by Martíet al. (2021). The Simulated
Annealing does not run on a fixed runtime but on a fixed number of
iterations. We fixed to 50 millions the number of iterations in the tuning
phase and, in the validation one, to 100 millions for MDG-b instances
and to 300 millions for GIS instances. We highlight that, while it does
not provide certainty on the running time, using a fixed number of
iterations always allow to replicate a specific single experiment using
the same random seed, which is not possible using a time cut-off, not
even on the same machine. Except when explicitly stated, one single
core was dedicated to each experiment.

6.1. Tuning

We tuned our solver using irace, which is a tool for automatic
algorithm configuration based on iterated racing (López-Ibáñez et al.,
2016). Given that the datasets MDG-b and GIS have different features,
we performed two separate tuning procedures.

Specifically, the tuning was only done in the training instances
for the GIS dataset, whereas it has been done on all instances for
MDG-b, because there are no dedicated instances available for training
purposes.

The tuning was carried out in two stages. In the first stage, we tuned
the parameters of Simulated Annealing and the weight 𝑤𝑜𝑓 . In the
second stage, we tuned the neighborhood rates and biases. The value
𝑤𝑐 is preventively fixed to 10000. Regarding the neighborhood rates,
we only tune 𝜎𝐼 and 𝜎𝑅, because 𝜎𝑆 is computed as 1−𝜎𝐼 −𝜎𝑅. Table 2
shows the results of the tuning procedure, separately for MDG-b and
GIS dataset.

https://github.com/iolab-uniud/cdp
https://github.com/iolab-uniud/cdp
https://github.com/iolab-uniud/cdp

Expert Systems With Applications 255 (2024) 124484R.M. Rosati and A. Schaerf

m
2
c

Table 2
Parameter tuning for the Multi-Neighborhood Simulated Annealing.

Name Description Initial value

Range MDG-b GIS

𝑇0 Start temperature [2, 2000] 194.49 123.58
𝑇𝑓 Final temperature [0.001,1.000] 0.3758 0.0046
𝛼 Cooling rate [0.980,0.995] 0.988 0.981
𝜌 Cut-off [0.02, 0.30] 0.160 0.113
𝑤𝑠 Weight of 𝑓 (𝑆) in cost function 𝐹 [1,400] 11 234
𝜎𝐼 Rate of Insert neighborhood [0.00,0.25] 0.131 0.177
𝜎𝑅 Rate of Remove neighborhood [0.00,0.25] 0.129 0.012
𝑏+ Bias toward 𝐶𝑅 [0.00,1.00] 0.449 0.576
𝑏− Bias toward 𝑆𝑅 [0.00,1.00] 0.359 0.954

Table 3
Results of the MILP models aggregated by dataset.

B Dataset |𝑉 | Martíet al. (2021) Peiró et al. (2021)

LB UB time LB UB time

GKD-b 50 112.3 112.3 0.1 112.3 112.3 2.0
GKD-b 150 118.7 118.7 0.6 118.7 118.7 669.9

0.2 GKD-c 500 9.4 9.4 5.7 6.8 20.5 3600.2
SOM-a 50 4.1 4.1 0.0 4.1 4.1 1.3
MDG-b 500 0.0 125.0 3643.5 11.5 973.8 3600.2
GKD-b 50 97.8 97.8 0.0 97.8 97.8 2.5
GKD-b 150 108.1 108.1 0.3 108.1 108.2 1519.5

0.3 GKD-c 500 8.4 8.4 1.4 4.9 22.8 3600.1
SOM-a 50 2.1 2.1 0.0 2.1 2.1 1.0
MDG-b 500 3.1 60.2 3650.9 0.9 992.0 3600.1

B Dataset |𝑉 | Model 1 Model 2

LB UB time LB UB time

GKD-b 50 112.33 112.33 3.7 112.33 112.33 18.1
GKD-b 150 118.73 118.73 203.7 118.73 127.93 1908

0.2 GKD-c 500 7.73 22.92 3600 8.98 22.92 3600
SOM-a 50 4.10 4.10 5.1 4.10 4.10 2.6
MDG-b 500 33.28 1000.00 3600 29.29 1000.00 3600
GKD-b 50 97.79 97.79 8.6 97.79 97.79 24.9
GKD-b 150 108.11 108.11 287.6 108.11 116.75 2930

0.3 GKD-c 500 6.09 22.92 3600 7.00 22.92 3600
SOM-a 50 2.10 2.10 8.3 2.10 2.10 2.2
MDG-b 500 13.24 1000.00 3600 2.07 1000.00 3600

6.2. Results

Table 3 shows the results obtained by our models. We report the
average solution found, the upper bound, and the running time,3 which
might be less than the time limit in case the optimal solution is found.
We observe that all models find the optimal solutions on all instances
with up to 150 nodes, even though our Model 2 fails at proving
optimality on all instances. The model by Martíet al. (2021) solves to
optimality in a few seconds the instances from the class GKD-c. On
MDG-B instances, our Model 1 shows better performances than the
other models, but, differently from Martíet al. (2021), it is not capable
of finding good bounds. Instead, the performance of our Model 2 is only
good when 𝐵 = 0.2.

In Table 4 we report the detailed results obtained by both our
models on MDG-b instances. Furthermore, we show the results obtained
by the models running on 16 cores, in parallel, for 12 h, for a total of
196 CPU hours per run. The reason for this test was to understand if
MDG-b instances are out of reach or if the model could find optimal
solutions within a longer time limit. The results tell that both models
obtain good results with longer runs, but never proven optimal. In some
cases, which are marked in boldface, they get solutions that are as

3 As explained at the beginning of the current section, to compare the
odels on the same computational resources the time limit for Models 1 and
is set to 2280𝑠. In the table we have rescaled the times to 3600𝑠 to ease the

omparison.
7

good as or better than the best metaheuristic solution. In particular,
on longer runs Model 2 is the one which shows the best performances,
especially on the instances with 𝐵 = 0.2, coherently with what we have
observed on short runs. Only on instances MDG-b_01_n500_b02_m50
and MDG-b_10_n500_b02_m50, however, both models are capable of
finding solutions that are as good as the metaheuristic ones. In all cases,
the upper bounds are very far from the lower bounds.

Even though the very long runs are performed with no practical
applicability in mind, they are useful to confirm that MDG-b is the only
challenging dataset and that we are still far from knowing the optimal
solutions.

For what concerns metaheuristics, Table 5 shows the results ob-
tained by 40 repetitions per instance of our solver on the MDG in-
stances. We compare our results with those from Lu et al. (2023)
and Mladenović et al. (2022b), obtained respectively on 40 and 20 rep-
etitions per instance. We do not report other results from the literature,
because they lag quite behind.

Following the line set by both Lu et al. (2023) and Mladenović et al.
(2022b), beside the average we also report the best and worst solution
found for each instance in the batch of 40 runs. Furthermore, we report
the average running time, because our solution method works on a
fixed number of iterations, which cause the running time to change
from run to run. Lu et al. (2023) and Mladenović et al. (2022b) used a
fixed time limit of 300 s and 60 s, respectively, so we do not report it
in the table. Lu et al. (2023) also solve the instances on a shorter time
limit of 10 s, but they get worse results, that we do not report.

The outcome is that our solver finds the best average solution on 19
out of 20 instances, and only on the instance MDG-b_10_n500_b03_m50
it performs worse than Mladenović et al. (2022b), by just 0.01. For
all the other instances we improve the previous results, with an av-
erage gap that goes from as little as 0.11 on the instance MDG-b_08
_n500_b02_m50 to as much as 3.01 on the instance MDG-b_08_n500
_b03_m50. Regarding the best solution, we always improve or match
the one found by the others, and regarding the worst solution found on
the batch of forty runs, we are below Mladenović et al. (2022b) on one
instance. Overall, we can say that our solver performs better than the
previous ones from the literature, and that Mladenović et al. (2022b)
is the closest competitor.

In Table 6 we report the results obtained on the GIS dataset by
our solution method and by the solvers by Mladenović et al. (2022b)
and Lu et al. (2023) on 40 runs per instance. Additionally, we also
report the results obtained by our MILP models and by our adaptation
of the greedy algorithm by Rosenkrantz et al. (2000), because its
performances are surprisingly good on certain GIS instances.

Adopting the baseline of 300𝑠 used by Lu et al. (2023), we run both
the code by Lu et al. (2023) and Mladenović et al. (2022b) within a
time limit of 300 s, while the running time of our method, that uses a
fixed number of iterations, spans from 90 to 347 s. The models had a
time limit of one hour. The running time of the greedy is not reported
because it is always less than 1 s. For the solver by Mladenović et al.
(2022b), we tested the possible values of {0.05, 0.10, 0.20, 0.30}4 for the
skewing parameter, and we finally chose 0.30, which got the best results
on the GIS instances.

The models perform fairly well on certain instances, and the results
where the performance of the model is at least as good as the best
metaheuristic are marked in italic. However, both models struggle to
find good bounds. Actually, they did not find better bounds than the
longest distance between two nodes in any of the instances (see column
‘‘distances - max’’ in Table 1), which is a trivial one to determine
and it is likely to be very far from the optimal solution. Much more
surprising are the results obtained by the greedy algorithm proposed
by Rosenkrantz et al. (2000) Even though in general its results lag
behind the local search solvers, it is capable to be very competitive

4 Upon recommendation from the authors of the solver.

Expert Systems With Applications 255 (2024) 124484R.M. Rosati and A. Schaerf
Table 4
Model results on the MDG-b dataset.

Instance Model 1 Model 2

1 h 12 h ×16vCPU 1 h 1 2h × 16vCPU

LB UB LB UB LB UB LB UB

MDG-b_01_n500_b02_m50 33.6 1000.0 64.6 861.2 61.7 1000.0 64.6 1000.0
MDG-b_02_n500_b02_m50 25.6 1000.0 58.5 919.1 41.6 1000.0 63.0 1000.0
MDG-b_03_n500_b02_m50 20.1 1000.0 58.8 918.1 6.4 1000.0 60.9 1000.0
MDG-b_04_n500_b02_m50 32.8 1000.0 54.7 914.8 2.1 1000.0 57.4 1000.0
MDG-b_05_n500_b02_m50 47.7 1000.0 54.2 912.8 36.0 1000.0 58.9 1000.0
MDG-b_06_n500_b02_m50 37.5 1000.0 57.5 917.2 12.2 1000.0 60.6 1000.0
MDG-b_07_n500_b02_m50 32.9 1000.0 52.5 922.5 42.4 1000.0 57.4 1000.0
MDG-b_08_n500_b02_m50 31.4 1000.0 57.2 882.2 25.4 1000.0 61.1 1000.0
MDG-b_09_n500_b02_m50 41.9 1000.0 59.2 919.6 20.1 1000.0 59.9 1000.0
MDG-b_10_n500_b02_m50 29.3 1000.0 63.0 906.9 45.0 1000.0 63.0 1000.0

MDG-b_01_n500_b03_m50 13.2 1000.0 27.5 829.7 3.2 1000.0 29.0 985.9
MDG-b_02_n500_b03_m50 11.4 1000.0 27.4 844.2 1.1 1000.0 29.0 1000.0
MDG-b_03_n500_b03_m50 10.4 1000.0 28.7 843.9 2.0 1000.0 30.0 984.7
MDG-b_04_n500_b03_m50 9.5 1000.0 29.9 843.2 3.2 1000.0 29.9 911.5
MDG-b_05_n500_b03_m50 12.9 1000.0 29.2 847.5 1.7 1000.0 29.5 984.2
MDG-b_06_n500_b03_m50 14.9 1000.0 28.9 856.8 2.1 1000.0 28.8 704.5
MDG-b_07_n500_b03_m50 14.5 1000.0 29.6 831.5 2.9 1000.0 29.4 509.7
MDG-b_08_n500_b03_m50 17.5 1000.0 31.6 844.2 1.6 1000.0 32.3 455.7
MDG-b_09_n500_b03_m50 15.2 1000.0 28.7 835.1 1.8 1000.0 29.7 709.4
MDG-b_10_n500_b03_m50 12.9 1000.0 30.4 824.1 1.1 1000.0 30.4 692.5
Table 5
Results comparison between us and benchmark.

Inst. Lu et al. (2023) Mladenović
et al. (2022b)

MNSA

B # best avg worst best avg worst time best avg worst

0.2 1 64.6 61.5 50.8 64.60 63.04 62.10 48.17 64.60 63.16 62.10
0.2 2 60.8 56.3 51.6 60.40 59.42 58.70 46.81 61.40 60.21 58.70
0.2 3 60.9 59.8 54.8 60.90 60.59 59.90 54.82 60.90 60.75 58.20
0.2 4 56.6 54.4 48.8 56.90 55.75 54.80 49.94 57.40 56.63 55.50
0.2 5 58.2 54.0 51.0 58.20 57.23 57.10 64.72 58.90 58.66 56.90
0.2 6 60.6 55.7 49.4 60.60 58.38 56.60 56.05 60.60 59.62 56.80
0.2 7 59.3 54.0 47.9 58.00 55.40 53.40 59.12 59.30 58.41 54.60
0.2 8 60.4 56.2 48.5 60.10 59.46 58.60 56.09 60.60 59.90 59.30
0.2 9 60.2 57.5 52.6 59.70 58.10 57.00 52.54 60.90 60.08 58.90
0.2 10 63.0 61.3 52.7 63.00 62.48 62.00 50.12 63.00 62.47 62.00

0.3 1 27.2 24.2 19.6 28.70 27.73 27.30 56.55 29.00 28.40 27.70
0.3 2 27.6 25.5 21.5 28.20 27.73 27.30 54.31 29.10 28.67 28.00
0.3 3 30.0 28.0 24.9 29.40 28.61 28.10 57.66 30.10 29.95 29.10
0.3 4 28.0 25.3 23.2 29.70 29.07 28.90 54.22 30.00 29.85 29.60
0.3 5 27.9 25.3 23.0 29.70 28.69 28.30 55.25 30.00 29.48 28.50
0.3 6 28.2 26.0 22.8 28.90 28.28 28.00 52.81 29.00 28.90 28.60
0.3 7 28.4 26.0 20.3 29.40 28.54 28.00 57.15 30.50 30.08 29.30
0.3 8 31.1 28.3 24.2 31.90 31.73 31.10 51.12 31.90 31.84 31.70
0.3 9 29.7 25.9 20.8 29.70 28.88 28.20 61.54 29.80 29.76 29.30
0.3 10 29.1 26.7 21.7 30.40 29.55 29.40 59.60 30.50 30.02 29.70
a
s
c

o
o
i
a
c
p

on a few instances. The reason might be that the GIS instances use
realistic distances, which are effectively exploited by the greedy algo-
rithm, while this was not possible on the MDG-b dataset. The results
obtained by our method are presented in the columns MNSA. Our solver
outperforms or matches the average performance of the others on the
whole dataset (in 13 cases as sole best performer and in 17 cases as ties
with other methods). Additionally, in 4 instances (GIS-6, 19, 23 and
25), our method finds a best solution that is unmatched by all others.
The VNS method proposed by Mladenović et al. (2022b) also obtains a
fair share of good solutions, while the solver by Lu et al. (2023) does
not seem to be competitive on the GIS dataset.

6.3. Ablation analysis

Our solution method contains several adaptations from pre-existing
local search algorithms in the literature as well as novel additions.
While in Section 6.2 we have already shown the overall effectiveness
of our solution approach, we are now interested in understanding the
8

contribution of individual components of our solution method. We 𝑏
study hereafter the contribution of the randomized greedy start, of
the lexicographic cost function and of the larger Swap neighborhood,
in the form of an ablation analysis. Therefore, we selectively remove
from our solution method these components and we evaluate the new
performance of the method.

In order to ablate the randomized greedy start, we replace it with
a random initial solution strategy. The random initial solution is gen-
erated starting from 𝑆 equal to the empty set. Then, until the capacity
requirement 𝐵 is satisfied, and in any case while |𝑆| < 2, we iteratively
dd a random node 𝑣 ∈ 𝐶 and insert it in 𝑆. Therefore, the initial
olution is generated completely at random, only ensuring that the
apacity requirement is satisfied.

As per the lexicographic cost function, we replace it with the natural
bjective function of the problem. For the GIS instances, a new tuning
f the neighborhood rates was necessary, as the configuration in Table 2
s very unbalanced against the Remove neighborhood, and we suffer
dramatic drop in the performance of the method if the lexicographic

ost function is removed without performing any corrections. The new
robabilities and biases used are 𝜎𝐼 = 0.026, 𝜎𝑅 = 0.018, 𝑏+ = 0.546,
= 0.985.
−

Expert Systems With Applications 255 (2024) 124484R.M. Rosati and A. Schaerf
Table 6
Results on GIS dataset.

Model 1 (1 h) Model 2 (1 h) Rosenkrantz et al. Lu et al. Mladenović et al. MNSA

LB UB LB UB max avg min max avg min max avg min time (s) max avg min

1 6 74 6 74 6 5.40 5 6 6.00 6 6 6.00 6 184.98 6 6.00 6
2 2 136 4 136 5 5.00 5 5 5.00 5 5 5.00 5 304.06 5 5.00 5
3 4 159 4 159 4 3.90 3 4 3.05 3 4 4.00 4 170.17 4 4.00 4
4 3 149 3 149 4 3.70 3 3 3.00 3 4 4.00 4 202.59 4 4.00 4
5 5 104 5 104 5 4.30 4 4 3.92 3 5 5.00 5 157.19 5 5.00 5
6 5 229 5 229 6 6.00 6 6 5.10 5 6 6.00 6 282.28 7 7.00 7
7 7 118 8 118 7 6.50 6 7 6.97 6 8 7.05 7 181.47 8 8.00 8
8 9 215 7 215 11 11.00 11 9 7.85 7 10 10.00 10 347.17 11 11.00 11
9 6 81 6 81 7 6.50 6 7 6.10 6 7 7.00 7 286.77 7 7.00 7

10 28 211 11 211 34 32.40 32 31 28.57 26 34 34.00 34 95.57 34 34.00 34
11 11 45 11 45 10 9.00 8 11 11.00 11 11 11.00 11 182.52 11 11.00 11
12 14 125 16 125 16 15.90 15 15 13.35 12 16 15.95 15 141.15 16 16.00 16
13 6 84 7 84 7 6.10 6 6 6.00 6 7 7.00 7 170.53 7 7.00 7
14 7 131 7 131 8 8.00 8 7 6.67 6 8 8.00 8 187.33 8 8.00 8
15 5 33 5 33 5 5.00 5 5 4.94 4 6 5.18 5 320.46 6 5.92 5
16 10 179 10 179 12 11.30 11 10 9.40 9 12 11.10 11 218.46 12 11.93 11
17 2 292 4 292 5 4.90 4 5 4.02 4 5 5.00 5 300.81 5 5.00 5
18 40 247 33 247 42 41.20 40 40 32.02 11 43 43.00 43 90.52 43 43.00 43
19 13 222 13 222 15 14.90 14 14 12.47 10 15 14.00 13 95.73 16 16.00 16
20 6 76 6 76 6 5.60 5 6 6.00 6 7 6.18 6 160.02 7 7.00 7
21 5 49 5 49 5 4.40 4 5 4.85 4 5 5.00 5 197.35 5 5.00 5
22 4 200 4 200 4 4.00 4 4 3.90 3 4 4.00 4 246.52 4 4.00 4
23 6 264 7 264 7 6.50 6 7 6.52 6 7 7.00 7 204.61 8 7.15 7
24 3 170 5 170 6 5.80 5 5 5.00 5 6 5.07 5 315.18 6 6.00 6
25 4 68 4 68 4 4.00 4 4 4.00 4 4 4.00 4 189.27 5 4.97 4
26 7 133 4 133 7 7.00 7 6 6.00 6 8 8.00 8 276.75 8 8.00 8
27 6 31 7 31 6 6.00 6 7 6.60 6 7 7.00 7 200.72 7 7.00 7
28 4 121 4 121 5 5.00 5 5 5.00 5 6 5.05 5 333.48 6 6.00 6
29 15 129 19 129 22 21.10 21 20 16.65 14 22 21.15 20 96.19 22 22.00 22
30 4 141 4 141 5 4.10 4 4 4.00 4 5 4.11 4 238.89 5 5.00 5
Table 7
Ablation analysis.
Instance MNSA no lex no large swap random start

1 6.00 6.00 6.00 6.00
2 5.00 5.00 5.00 5.00
3 4.00 3.88 4.00 4.00
4 4.00 3.50 4.00 4.00
5 5.00 5.00 5.00 5.00
6 7.00 6.00 7.00 7.00
7 8.00 7.10 7.53 8.00
8 11.00 11.00 11.00 10.32
9 7.00 7.00 7.00 7.00
10 34.00 34.00 32.98 33.90
11 11.00 11.00 11.00 11.00
12 16.00 15.85 15.70 16.00
13 7.00 6.55 7.00 7.00
14 8.00 8.00 8.00 8.00
15 5.92 5.00 5.35 5.88
16 11.93 11.43 11.40 11.90
17 5.00 5.00 5.00 5.00
18 43.00 43.00 41.33 43.00
19 16.00 16.00 15.15 16.00
20 7.00 6.00 6.08 7.00
21 5.00 4.75 5.00 5.00
22 4.00 4.00 4.00 4.00
23 7.15 7.00 7.00 7.18
24 6.00 6.00 6.00 6.00
25 4.97 4.00 4.80 4.97
26 8.00 8.00 8.00 8.00
27 7.00 7.00 7.00 7.00
28 6.00 5.00 6.00 6.00
29 22.00 21.50 20.88 21.98
30 5.00 4.03 5.00 5.00

sum(GIS) 29 15 17 26

Instance MNSA no lex no large swap random start

0.2 - 1 63.16 63.07 61.73 62.99
0.2 - 2 60.21 60.25 56.97 60.22
0.2 - 3 60.75 60.83 58.31 60.80
0.2 - 4 56.63 56.57 54.97 56.52
0.2 - 5 58.66 58.71 54.69 58.63
0.2 - 6 59.62 59.51 54.64 59.77
0.2 - 7 58.41 57.75 53.77 58.17
0.2 - 8 59.90 60.04 57.88 60.09
0.2 - 9 60.08 60.01 57.12 60.10
0.2 - 0 62.47 62.56 61.84 62.50
0.3 - 1 28.40 28.49 26.71 28.53
0.3 - 2 28.67 28.75 26.87 28.78
0.3 - 3 29.95 29.96 28.88 29.96
0.3 - 4 29.85 29.87 28.39 29.86
0.3 - 5 29.48 29.57 28.05 29.64
0.3 - 6 28.90 28.91 27.42 28.89
0.3 - 7 30.08 30.02 29.10 30.20
0.3 - 8 31.84 31.82 31.09 31.84
0.3 - 9 29.76 29.75 27.15 29.75
0.3 - 0 30.02 30.04 28.54 29.96

sum(MDG) 5 8 0 9

sum 34 23 17 35
Finally, to test the method without the larger Swap neighborhood,
we avoid to sample it by setting 𝑏+ = 1.000 and 𝑏− = 1.000, so that only
𝖲𝗐𝖺𝗉𝖱± is chosen by the algorithm.

Table 7 provides the results of the ablation analysis for MDG-b
9

and GIS instances, carried over 40 runs per instance. The first column
(MNSA) simply contains the results in Tables 5 and 6. For each instance,
we mark in bold the configuration that obtains the best results. We also
show a counter (sum) of the number of times each configuration is the
best, separately for instance type as well as for the both datasets. The

analysis of these results yield many interesting considerations. First of

Expert Systems With Applications 255 (2024) 124484R.M. Rosati and A. Schaerf
Fig. 1. Search patterns on MDG-b and generated instances.
all, we observe that the behavior is not uniform on the two datasets.
In the GIS instances, the table confirms that the configuration that
uses all the components is the most effective in general. The decrease
in the performance is greater if we remove either the lexicographic
cost function or the larger Swap neighborhood, while starting the
search from a random solution has a more limited effect, except for
instance GIS-8. On the MDG-b instances, the situation is different.
First of all, we observe a dramatic drop in the performance if we
do not use the larger Swap neighborhood. On the other hand, if we
remove the lexicographic cost function or if we start the search from a
random solution, there is a little increase in the number of times these
methods are the best. The differences, however, are small, and the only
consideration that we can draw is that the larger Swap neighborhood
is an essential components on MDG-b instances, while the others are
less critical. Considering the sum on both dataset, we observe that the
best configurations are the ones that use both the lexicographic cost
function and the larger Swap, regardless of whether we start the search
from a Random or from a Greedy solution. This might be explained
by the fact that Multi-Neighborhood Search is provided with strong
mechanisms against being trapped in local optima, therefore the choice
of the initial solution is not critical. These observations are in line with
results obtained in previous studies (see, e.g. Rosati et al., 2022).

6.4. Algorithmic insights

Fig. 1 illustrates the evolution in the cost and objective function
value over short executions (1 million iterations) of our solver on
a MDG-b instance and on a GIS instance. The 𝑦-axis represents the
lexicographic function, respectively objective function, and the 𝑥-axis
shows the iteration count. For both the MDG-b and the GIS instance we
show on the left (Figs. 1(a) and 1(c)) the evolution of the lexicographic
function (described in Section 4.5), with the configuration displayed
in Table 2. The lexicographic cost function is divided by 𝑤𝑜𝑓 , so that
we can show the distance in its natural scale. On the right (Figs. 1(b)
and 1(d)) we show the evolution of the algorithm that only uses the
objective function, in the parameter configuration discussed in Sec-
tion 6.3. In the case of the MDG-b instance, we observe that there is not
a remarkable difference with or without the lexicographic objective,
which is in accordance with the results of the ablation analysis. This
is different from what we observe in the case of the GIS instance in
Figs. 1(c) and 1(d). First of all, in Fig. 1(c) we see that the lexicographic
objective is actively driving the metaheuristic in the exploration of the
10
large plateaus, that can only be escaped thanks to the gradient offered
by the auxiliary cost component. This is especially noticeable for the
plateau found at distance 𝑓 (𝑆) = 11, that is eventually climbed to
reach the final solution of cost 𝑓 (𝑆) = 12. We can also appreciate
that the smaller scale of the bottleneck edge component prevents it
from interfering with the main objective. In the case of not using the
lexicographic objective we see instead that the algorithm performs
many jumps in the value of 𝑓 (𝑆) in the beginning of the search, but
it gets stuck in the plateau with cost 𝑓 (𝑆) = 11 and it is not able to find
a better solution of cost 𝑓 (𝑆) = 12.

Fig. 2 is aimed at illustrating the geographical dimension of the new
instances. It shows two maps of the solutions obtained by our method
on two different generated instances. We can observe that in the area
on the left (Sofia, Bulgaria, GIS-22) the population concentration in the
city together with a rather high capacity requirement (18%) makes it
hard to sparsify the points. On the other hand, the instance on the right
(Perugia, Italy, from the training set) has a lower capacity requirement
and the more sprawled population distribution makes it easier to
distribute the points over the map, even though a certain degree of
concentration in denser portions of the area remains unavoidable.

Finally, Fig. 3 shows the pairwise distribution of different instance
features for the 30 validation instances of dataset GIS. Besides the size
of the graph |𝑉 |, we consider the relative capacity requirement 𝐵,
the radius 𝑟, the ratio between the average distance and the radius
𝜇(𝑑)∕𝑟, the interquartile range of the distances 𝐼𝑄𝑅(𝑑), the population
in the area 𝑝𝑜𝑝, and the ratio between the required capacity and the
population 𝐵∕𝑝𝑜𝑝.

We can appreciate how all the selected features distribute evenly
along their domains, that was one of the goals of our generator. The
color of the points indicates the average relative difference between
the performance of the three solvers. There are some instances that
present higher variability in the performance of the solvers, but no clear
correlation on the features emerges.

7. Conclusions and future work

We proposed a multi-neighborhood approach guided by Simulated
Annealing for the capacitated dispersion problem. The outcome has
been that our approach, properly engineered and tuned, is able to
outperform the current best results in the literature on almost all
instances.

Expert Systems With Applications 255 (2024) 124484R.M. Rosati and A. Schaerf
Fig. 2. Example of solutions on different urban areas. Left: Sofia, Bulgaria, |𝑉 | = 1034, 𝑟 = 47 km, 𝐵 = 18%; Right: Perugia, Italy, |𝑉 | = 597, 𝑟 = 43 km, 𝐵 = 4%; Maps are
courtesy of ESRI.
Fig. 3. Instance features and the corresponding average difference solution between solvers (color).
We assessed the contribution of individual components as well, and
we showed that both the novel lexicographic cost function and the large
Swap neighborhood are essential to the performance of the method,
and are needed to tackle different types of instances.

We also proposed a new dataset that in our opinion has all the
features it takes to become a new benchmark for this problem. At
the same time, we propose to dismiss four out of five of the current
datasets, as they are not challenging anymore, and their perpetuation
brings a waste of work and computational time.

Finally, we developed and implemented two new compact math-
ematical models adapted to the CDP from pre-existing models in the
literature for similar problems. We show that they are able to provide
11
competitive results, especially on the MDG instances and on certain GIS
instances.

For the future, we plan to extend and refine our neighborhoods, also
including the ones proposed by Mladenović et al. (2022b), in order to
understand if this would improve our results.

In addition, we plan to investigate the possibility of performing a
feature-based tuning (Bellio et al., 2016), also including some reinforce-
ment learning mechanisms, in order to reduce the computational cost
of the tuning procedure and to make the algorithm more adaptive to
the heterogeneous instance space (see, e.g. Ceschia et al., 2024).

Another possible research direction consists in strengthening the
mathematical models by valid inequalities, like the ones proposed
by Sayah and Irnich (2017), or adapting the procedure designed

Expert Systems With Applications 255 (2024) 124484R.M. Rosati and A. Schaerf

P

R

R

by Pisinger (2006) for the computation of upper bounds for the p-
dispersion problem to the CDP.

Furthermore, we would like to adapt our method to other versions
of the dispersion problem, for example the generalized dispersion prob-
lem (see, e.g., Martinez-Gavara et al., 2021; Mladenović et al., 2022a),
in order to see if it remains competitive, and which modifications are
necessary to reach good results.

Finally, we plan to perform an instance space analysis (see, e.g.,
Smith-Miles & Muñoz, 2023) to identify the features of an instance that
make it harder or easier for one specific search method.

CRediT authorship contribution statement

Roberto Maria Rosati: Conceptualization, Data curation, Inves-
tigation, Methodology, Software, Validation, Visualization, Writing –
original draft, Writing – review & editing. Andrea Schaerf: Conceptu-
alization, Investigation, Methodology, Supervision, Writing – original
draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

We have shared the link to our data in the article.

Acknowledgments

This research has been funded by the Italian Ministry of University
and Research under the action PRIN 2020 (Prot. 2020LNEZYC), project
‘‘Models and algorithms for the optimization of integrated healthcare
management’’.

The authors acknowledge the European Commission (Eurostat, Joint
Research Centre and DG Regional Policy - REGIO-GIS) for providing the
GEOSTAT 1 km2 population grid.

We thank Anna Martínez-Gavara, Giri Kumar Tayi, and S. S. Ravi
for answering our questions on their work, and Raca Todosijević and
Dragan Urošević for providing us the executable of their solver.

References

Bellio, R., Ceschia, S., Di Gaspero, L., & Schaerf, A. (2021). Two-stage multi-
neighborhood simulated annealing for uncapacitated examination timetabling.
Computers & Operations Research, 132, Article 105300.
12
Bellio, R., Ceschia, S., Di Gaspero, L., Schaerf, A., & Urli, T. (2016). Feature-based
tuning of simulated annealing applied to the curriculum-based course timetabling
problem. Computers & Operations Research, 65, 83–92.

Ceschia, S., Di Gaspero, L., Rosati, R. M., & Schaerf, A. (2022). Multi-neighborhood
simulated annealing for the minimum interference frequency assignment problem.
EURO Journal on Computational Optimization, 10, Article 100024.

Ceschia, S., Di Gaspero, L., Rosati, R. M., & Schaerf, A. (2024). Reinforcement learning
for multi-neighborhood local search in combinatorial optimization. In Machine
learning, optimization, and data science (pp. 206–221). Cham: Springer Nature
Switzerland.

Erkut, E., & Neuman, S. (1991). Comparison of four models for dispersing facilities.
INFOR: Information Systems and Operational Research, 29(2), 68–86.

Kirkpatrick, S., Gelatt, D., & Vecchi, M. (1983). Optimization by simulated annealing.
Science, 220, 671–680.

Kuby, M. J. (1987). Programming models for facility dispersion: The p-dispersion and
maxisum dispersion problems. Geographical Analysis, 19(4), 315–329.

López-Ibáñez, M., Dubois-Lacoste, J., Cáceres, L. P., Birattari, M., & Stützle, T. (2016).
The irace package: Iterated racing for automatic algorithm configuration. Operations
Research Perspectives, 3, 43–58.

Lu, Z., Martínez-Gavara, A., Hao, J. K., & Lai, X. (2023). Solution-based tabu search
for the capacitated dispersion problem. Expert Systems with Applications, 223, Article
119856.

Martí, R., Gallego, M., & Duarte, A. (2010). A branch and bound algorithm for the
maximum diversity problem. European Journal of Operational Research, 200(1),
36–44.

Martí, R., Martínez-Gavara, A., Pérez-Peló, S., & Sánchez-Oro, J. (2022). A review on
discrete diversity and dispersion maximization from an OR perspective. European
Journal of Operational Research, 299(3), 795–813.

Martí, R., Martínez-Gavara, A., & Sánchez-Oro, J. (2021). The capacitated dispersion
problem: An optimization model and a memetic algorithm. Memetic Computing, 13,
131–146.

Martinez-Gavara, A., Corberan, T., & Martí, R. (2021). GRASP and tabu search for
the generalized dispersion problem. Expert Systems with Applications, 173, Article
114703.

Mladenović, N., Todosijević, R., & Urošević, D. (2022). Dispersion problem under
capacity and cost constraints: Multiple neighborhood tabu search. In International
conference on mathematical optimization theory and operations research (pp. 108–122).
Springer.

Mladenović, N., Todosijević, R., Urošević, D., & Ratli, M. (2022). Solving the Capac-
itated Dispersion Problem with variable neighborhood search approaches: From
basic to skewed VNS. Computers & Operations Research, 139, Article 105622.

Peiró, J., Jiménez, I., Laguardia, J., & Martí, R. (2021). Heuristics for the capaci-
tated dispersion problem. International Transactions in Operational Research, 28(1),
119–141.

isinger, D. (2006). Upper bounds and exact algorithms for p-dispersion problems.
Computers & Operations Research, 33(5), 1380–1398.

osati, R. M., Petris, M., Di Gaspero, L., & Schaerf, A. (2022). Multi-neighborhood
simulated annealing for the sports timetabling competition ITC2021. Journal of
Scheduling, 25(3), 301–319.

osenkrantz, D. J., Tayi, G. K., & Ravi, S. (2000). Facility dispersion problems under
capacity and cost constraints. Journal of Combinatorial Optimization, 4, 7–33.

Sayah, D., & Irnich, S. (2017). A new compact formulation for the discrete p-dispersion
problem. European Journal of Operational Research, 256(1), 62–67.

Shier, D. R. (1977). A min-max theorem for p-center problems on a tree. Transportation
Science, 11(3), 243–252.

Smith-Miles, K., & Muñoz, M. A. (2023). Instance space analysis for algorithm testing:
Methodology and software tools. ACM Computing Surveys, 55(12), 1–31.

http://refhub.elsevier.com/S0957-4174(24)01351-4/sb1
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb1
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb1
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb1
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb1
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb2
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb2
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb2
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb2
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb2
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb3
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb3
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb3
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb3
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb3
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb4
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb4
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb4
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb4
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb4
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb4
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb4
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb5
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb5
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb5
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb6
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb6
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb6
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb7
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb7
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb7
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb8
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb8
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb8
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb8
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb8
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb9
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb9
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb9
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb9
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb9
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb10
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb10
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb10
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb10
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb10
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb11
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb11
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb11
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb11
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb11
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb12
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb12
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb12
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb12
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb12
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb13
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb13
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb13
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb13
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb13
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb14
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb14
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb14
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb14
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb14
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb14
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb14
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb15
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb15
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb15
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb15
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb15
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb16
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb16
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb16
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb16
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb16
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb17
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb17
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb17
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb18
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb18
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb18
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb18
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb18
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb19
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb19
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb19
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb20
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb20
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb20
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb21
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb21
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb21
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb22
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb22
http://refhub.elsevier.com/S0957-4174(24)01351-4/sb22

	Multi-Neighborhood Simulated Annealing for the Capacitated Dispersion Problem
	Introduction
	Related Work
	Problem Definition
	Model 1: adapted from Kuby (1987)
	Model 2: adapted from Sayah and Irnich (2017)

	Solution Method
	Search space
	Initial solution strategy
	Neighborhood relations
	Move selection
	Cost function
	Simulated Annealing

	Datasets and Generators
	Experimental Analysis
	Tuning
	Results
	Ablation analysis
	Algorithmic insights

	Conclusions and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

