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Abstract
Session types are a well-established framework for the specification of interactions between components of a distributed
systems. An important issue is how to determine the type for an open system, i.e., obtained by assembling subcomponents,
some of which could be missing. To this end, we introduce partial sessions and partial (multiparty) session types. Partial
sessions can be composed, and the type of the resulting system is derived from those of its components without knowing any
suitable global type nor the types of missing parts. To deal with this incomplete information, partial session types represent
the subjective views of the interactions from participants’ perspectives; when sessions are composed, different partial views
can be merged if compatible, yielding a unified view of the session. Incompatible types, due to, e.g., miscommunications or
deadlocks, are detected at the merging phase. In fact, in this theory the distinction between global and local types vanishes.
We apply these types to a process calculus for which we prove subject reduction and progress, so that well-typed systems
never violate the prescribed constraints. In particular, we introduce a generalization of the progress property, in order to
accommodate the case when a partial session cannot progress not due to a deadlock, but because some participants are still
missing. Therefore, partial session types support the development of systems by incremental assembling of components.

Keywords Multiparty session types · Process algebras · Open systems

1 Introduction

The design and implementation of distributed applications
is notoriously difficult and error-prone. In order to tame the
complexity of this task, we look for compositional meth-
ods, which allow us to examine processes and subsystems in
isolation and formalize their interactions.Multiparty session
types (MPST) are a well-established theoretical and practical
framework for the specification of the interactions between
components of a distributed systems [11,13,16–18,29]. The
gist of this approach is to first describe the system’s overall
behavior by means of a global type, from which a local spec-
ification (local type) for each component can be derived. The
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system will behave according to the global type if each com-
ponent respects its local type, which can be ensured bymeans
of, e.g., static type checking [19,27]. The global type is given
beforehand by the programmer, and the type system checks
that the local behavior of all the participants, given by local
types conform to it. Therefore, session types support a top-
down style of coding: first the designer specifies the behavior
from a global perspective, then the programmers are given
the specifications for their modules. On the other hand, these
session types do not fit well bottom-up programmingmodels,
where systems are built incrementally by composing existing
reusable components, possiblywith dynamic bindings. Some
examples are (micro)service-oriented and component-based
architectures, and containers [24]. In these situations, com-
ponents could offer “contracts” in the form of, e.g., session
types; then, when these components are connected together,
we would like to derive the contract for the resulting system
from components’ ones. The system becomes a new compo-
nent which can be used in other assemblies, and so on.

To this end, we need to infer the type for an open system
(i.e.,where somepartsmaybe stillmissing) using the types of
the known components, in a compositional way and without
knowing any global type. This is challenging. As an example,
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let us consider a protocol from [29] with three participants:
a server s, an authorization server a and some client c. First,
s sends to c either a request to login, or to cancel. In the first
case, c sends a password to a, and a sends a Boolean to s
(telling whether c is authorized). In the second case, c tells
a to quit. Using the syntax of [29], the two server processes
have the following types:

Ss := c⊕{login.a&auth(Bool), cancel}
Sa := c&{passwd(Str).s⊕auth(Bool), quit}

Let us suppose that we have implementations a and s for
Sa, Ss . To prevent miscommunications, wewould like to ver-
ify that these two processes work well together, e.g., we have
to ensure that a can send the message auth(Bool) to s iff s
is waiting for it. This corresponds to see these two processes
as a single system a|s, and to check that a|s is well-typed
without knowing the behavior of clients; more precisely, we
have to figure out a session type for a|s from Sa and Ss . This
is difficult, because the link that propagates the choice made
by s to a is the missing client c, so we have to “guess” its
role without knowing it.

In this paper, we address this problem by introducing par-
tial sessions and partial (multiparty) session types. Partial
session types generalize global types with the possibility to
type also partial (or open) sessions, i.e., where some par-
ticipant may be missing. The key difference is that while
a global type is a complete, “platonistic” description of the
protocol, partial session types represent the subjective views
from participants’ perspectives. We can merge two sessions
with the same name but from two different “point of views,”
whenever their types are compatible; in this case, we can
compute the new, unified, session type from those of the
components. In this way, we can guarantee important proper-
ties (e.g., absence of deadlocks) about partial session without
knowing all participants beforehand, and without a complete
global type. In fact, the distinction between local and global
types vanishes: local types correspond to partial session types
for sessions with a single participant, and global types cor-
respond to finalized partial session types, i.e., in which no
participant is missing.

Defining “compatibility” and how tomerge partial session
types is technically challenging. Intuitively, the semantics of
a partial session type is the set of all possible execution traces
(which depend on internal and external choices). We provide
a merging algorithm computing a type covering all the possi-
ble synchronizations of these traces. Incompatible types, due
to, e.g., miscommunications or deadlocks, are detected when
no synchronization is possible. Also the notion of progress
has to be revisited, to accommodate the case when a partial
session cannot progress not due to a deadlock, but due to
some missing participant.

Outline. The paper is organized as follows. We review some
related work in Sect. 2. In Sect. 3, we introduce a formal cal-
culus for processes communicating over multiparty sessions.
Our theory of partial session types is presented in Sect. 4, and
the type system for the process calculus is in Sect. 5. Cen-
tral to this type system is the merging algorithm, which we
describe in Sect. 6. A trace semantics of session types is given
in Sect. 7, for which we show that the merging operation is
sound and complete. The results about the semantics of ses-
sion types will be useful also in Sect. 8, where we prove
the crucial properties of subject reduction and progress for
the process calculus under investigation. Finally, conclusions
and directions for further work are in Sect. 9.

2 Related work

The present paper is a revised and significantly extended
version of [30].

The problem of composing session types has been faced
in several related work. Compositional choreographies are
discussed in [26], with the same motivations as ours, but
from a different perspective. The authorsmanage to compose
choreographies using global types, but the global type of
shared channels has to be the same. This is in contrast with
our approach,where the processesmay have different session
types that we merge during the composition. Moreover, their
typing judgments use the sets of all the participants (there
called roles); more precisely, types for channels keep track
of the “active” role, the set of all roles in the global type, and
the roles actually implemented by the choreography under
typing. On the other hand, we do not need to specify neither
the complete set of participants nor the “active” role.

Synthesis of choreography from local types has been stud-
ied also in [22], but with no notion of “partial types” and
no distinction between internal/external choice. Graphical
representations of choreographies (as communicating finite-
state machines) and global types have been used in [23],
where an algorithm for constructing a global graph from
asynchronous interactions is given.

An interesting approach for connecting systems via some
intermediating agent has been investigated in [2–6]. Two
independent global types G1, G2 with different participants
can be composed through participant h in G1 and k in G2

where h and k relay the message they receive to each other.
In particular, in [5] behaviors of systems are represented by
means of Communicating Finite State Machines (CFSMs);
these can be connected along compatible interfaces bymeans
of suitable gateway CFSMs, which can be effectively con-
structed.

Finally, Scalas and Yoshida [29] do not use global types
altogether: behaviors of systems are represented by sets
of local types, over which no consistency conditions are
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required, and behavioral properties can be verified using
model checking techniques. The approach of [29] can model
situations which are not captured by our partial session types,
at least because it supports recursion; on the other hand, our
approach allows for incremental, compositional verification,
whereas [29] checks the correctness of sessions only after all
participants’ specifications are available.

A problem similar to ours is considered in [9], where
the authors introduce a type system for the Conversation
Calculus, a model for service-oriented computing. Conver-
sation types of parallel processes can be merged like in our
approach, but the underlying computational model is quite
different.

Semantics of concurrent processes can be given using
Mazurkiewicz trace languages [28]. Semantics can also be
defined using event structures, as in [12], where they are
used for defining equivalent semantics for processes and
their global types. Interestingly, the semantics for global
types proposed in [12] is similar to the representation of
Mazurkiewicz trace languages as event structures given in
[28]. Mazurkiewicz trace languages have also been used to
characterize testing preorders on multiparty scenarios [14].
A denotational semantics based on Brzozowski derivatives
that corresponds to bisimilarity is given in [21].

Another semantics of processes (but for binary session
types) which records exchanged informations is given in [1].
This semantics is similar to the relation-basedmodel of linear
logic [7] and is not based on traces. It would be interesting
to investigate if this alternative semantics can be extended to
MPST and how the merging operation would be interpreted
in it. The relationship between category theory and session
types has also been investigated in [20,31].

3 A calculus for processes over multiparty
sessions

Our language for processes is inspired by [11], which is in
turn inspired by [32]; as in those works, we consider syn-
chronous communications.
Simple data language Our process algebra is parametrized
by an auxiliary language for simple data, that we will callD.
We supposeD to be a typed language whose types A, B, . . .

are taken from some set B. The set of terms forD are ranged
over byM, N , . . . , and contains variables x, y, . . . andvalues
v1, v2, . . . In particular, we assume there is a type Bool with
two values t t , ff. As usual, a (term typing) environment E is
a map from a finite set of variables to types; then, we assume
to have a (term) typing judgment E �D M : A. We will omit
the subscript D when clear from the context.

We assume also a normalization relation M ↓ v between
terms and values; it can be partial or non-deterministic, but
we assume that D is normalizing for Booleans, i.e., for M

Fig. 1 Syntax of the process calculus for multiparty session

such that ∅ �D M : Bool, then M ↓ t t or M ↓ ff (or both).
This will be important for proving the progress property of
our process calculus.
Syntax of processes Let us note p, q, p1, p′, . . . for par-
ticipant names, taken from some set P, and p̃ for a finite
non-empty set of participants {p1, . . . , pn}. Given a simple
data languageD, the syntax of processes for multiparty ses-
sions is provided in Fig. 1.

We provide a brief description of these constructors.

– The process x pq̃〈M〉.P executes a synchronous send of
term M (belonging toD), as participant p, to all partici-
pants q̃ in session x ; dually, x pq(y : A).P is a participant
p waiting for an input (of type A) from q in session
x , before continuing as P where the term variable y is
replaced by the received term.

– The process x pq̃ � l.P sends label l in session x , as par-
ticipant p, to q̃ , and proceeds as P . For each participant
q ∈ q̃ , this label is received by process of the form
xqp 
 {l1 : P1, . . . , ln : Pn}, which then proceeds as
Pi if l = li .

– The process x pq̃(y).P creates a fresh subsession han-
dler y, sends it to q̃ , and proceeds as P . This handler is
received by processes of the form xqp(y).(Q ‖ R) (for
each q ∈ q̃) which forks a process Q dedicated to the
new session y, in parallel with the continuation R (on the
previous session x).1

– Parallel composition of processes P and Q through
session x is denoted by P

∣
∣
x Q. A participant executes

close(x) to end its communications on session x ; after
close(x) no further actions are possible. Thus, close(x)
is for

∣
∣
x what 0 is for

∣
∣ in CCS and the π -calculus. On the

other hand, wait(x).P waits until all other participants
on session x are gone, then it closes the session x and
continues as P .

– Finally, (νx)P is the usual restriction of session names, à
la π -calculus, and “if M then P else Q” is the standard
branching (i.e., “internal” choice).

1 From a computational point of view, this “parallel input” corresponds
to the programming practice to selectively share sessions between pro-
cesses. This constructor allows us to enforce a discipline on the shared
sessions in order to avoid deadlocks between processes. Moreover, it is
motivated by connections with linear logic [11,32].
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Notice that D-terms are only used as data that is sent or
received, and for if-then-else clauses. The session name y
is bound in processes of the form (νy)P , x pq̃(y).P , and
x pq(y).(P ‖ Q), where it is bound only in P (i.e., Q does
not receive the session y, but can keep communicating on x).
Free names of a process P (noted fn(P)) are the set of free
names of sessions appearing in P .

As for other process calculi, several syntactically different
terms may denote the very same process. To simplify these
alternative presentations, we introduce the usual notions of
contexts and syntactic congruence.

Definition 3.1 (Contexts) The contexts are defined as fol-
lows:

C[ ]:: = ∣
∣(νx)C[ ]∣∣(C[ ]∣∣x P)

∣
∣(P

∣
∣
xC[ ])

Definition 3.2 (Equivalence ≡) The relation ≡ is the small-
est equivalence relation closed under contexts (that is, P ≡
Q ⇒ C[P] ≡ C[Q]) satisfying the following rules (where x ,
y and z are different session names):

P
∣
∣
x Q ≡ Q

∣
∣
x P

(P
∣
∣
x Q)

∣
∣
x R ≡ P

∣
∣
x (Q

∣
∣
x R)

P
∣
∣
xclose(x) ≡ P

((νx)P)
∣
∣
z Q ≡ (νx)(P

∣
∣
z Q) x /∈ fn(Q)

(νx)(νy)P ≡ (νy)(νx)P

(P
∣
∣
x Q)

∣
∣
y R ≡ P

∣
∣
x (Q

∣
∣
y R) x /∈ fn(R), y /∈ fn(P)

Wecan see that processeswith the operation |x have the struc-
ture of a commutative monoid (whose unit is close(x)), thus
we will use Π x

i Pi as a shorthand for P1
∣
∣
x . . .

∣
∣
x Pn , omitting

n for the sake of readability.
Operational SemanticsThe semantics of the process calculus
is given by a labelled reduction system P

α−→ Q, where the
labelα allows to observe the kind of interaction: synchroniza-
tion (with communication), external choice, internal choice,
or internal (unobservable) move.

Definition 3.3 (Reduction for processes) The actions α for
processes are:

α:: = x : p → q̃ : A∣
∣x : p → q̃ : 〈·〉∣∣x : p → q̃ : &l

∣
∣ ⊕ ∣

∣τ

We may write x : γ for either x : p → q̃ : 〈·〉, x : p → q̃ :
&l, or x : p → q̃ : A.

We note P
α−→ Q for a transition from P to Q under the

action α. This relation is defined by the rules in Fig. 2.

Most rules are standard and reflect the intuitive explanation
of constructs given above. In rule (comm), communication
follows a “call-by-name” approach, i.e., M is not evaluated
before sending.2 In reduction (send), we observe that the
fresh session handle y is restricted to R and the Pi ’s, so if y
appears in any Qi , the result would be ill formed. However,
as we will see, the typing rules will ensure y does not appear
in any Qi . Similarly, in reduction (wait), corresponding to
the definitive closing of a (private) session, can happen only
if x /∈ fn(P), but again, the typing rules will ensure x does
not escape its scope when reducing (νx)(wait(x).P) into P .

Example 3.1 As a running example, let us consider three par-
ticipants p, q, r . p chooses whether to send amessage to r or
not; this choice is communicated to r through an intermediate
participant q.

Pp := if M then x pq � t.x pr (y).wait(y).close(x) else x pq � f .close(x)

Pq := xqp 
 {t : xqr � ok.close(x), f : xqr � quit.close(x)}
Pr := xrq 
 {ok : xrp(y)(close(y) ‖ close(x)), quit : close(x)}

Here is an example of execution:

Pp
∣
∣
x Pq

∣
∣
x Pr

⊕−→ x pq � t.x pr (y).wait(y).close(x)
∣
∣
x Pq

∣
∣
x Pr

x :p→q:&t−−−−−−→ x pr (y).wait(y).close(x)
∣
∣
x x

qr � ok.close(x)
∣
∣
x Pr

x :q→r :&ok−−−−−−−→ x pr (y).wait(y).close(x)
∣
∣
x x

rp(y)(close(y) ‖ close(x))
x :p→r :〈·〉−−−−−→ (νy)(close(y)

∣
∣
ywait(y).close(x))

∣
∣
xclose(x)

≡ (νy)(wait(y).close(x))
τ−→ close(x)

There is another possible execution, which is:

Pp
∣
∣
x Pq

∣
∣
x Pr

⊕−→ x pq � f .close(x)
∣
∣
x Pq

∣
∣
x Pr

x :p→q:&f−−−−−−→ xqr � quit.close(x)
∣
∣
x Pr

x :q→r :&quit−−−−−−−→ close(x)

2 It is possible to consider also a “call-by-value” semantics, where M is
evaluated before the communication; but then, for proving the progress
property, evaluation must be normalizing for all types, and not only for
Booleans.
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Fig. 2 Reduction for processes
(where q̃ = {q1, . . . , qn} and i
ranges over 1..n)

Notice that p can start the session with just q and then wait
for input from r :

Pp
∣
∣
x Pq

⊕−→ x pq � f .close(x)
∣
∣
x Pq

x :p→q:&f−−−−−−→ xqr � quit.close(x)

Example 3.2 A second running example is the well-known
two-buyers problem, as in [17]. First Buyer 1 sends a book
title to Seller, then Seller sends back a quote to both Buyer 1
and Buyer 2, then Buyer 1 tells Buyer 2 howmuch she wants
to contribute, and Buyer 2 tells Seller if she accepts the quote
or not. If the deal is drawn, Seller tells Buyer 2 the expected
delivery date at her address.

To formalize this example, we need four base types: bool,
int, string, and date. Buyer 2 knows a value address : string,
and seller knows a value price : string → int and delivery :
string → date (the delivery date). There are also the global
functions ≤: int → int → bool and /,− : int → int →
int. We assume all of these values (local and global) are in
an environment E . Then, the following are the processes
Pb1 , Pb2 , Ps of Buyer 1, Buyer 2 and Seller, respectively:

Pb1 :: =xb1s〈“War and Peace”〉.xb1s(quote : int).xb1b2〈quote/2〉.close(x)
Pb2 :: =xb2s(quote : int).xb2b1(quote′ : int).

if (quote − quote′ ≤ 100)

then xb2s � ok.xb2s〈address〉.xb2s(d : date).close(x)
else xb2s � quit.close(x)

Ps :: =xsb1(t i tle : string).xsb1b2〈price ti tle〉.
xsb2 
 {ok : xsb2(a : string).xsb2〈delivery a〉.close(x),

quit : close(x)}

4 Partial multiparty session types

In this section, we introduce partial multiparty session types
(or just “session types”), which will be used to define the
behavior of a partial session. The syntax of messages m and
session types G is as follows:

m:: = A
∣
∣ & l

∣
∣〈G〉

G:: = p → q̃ : m;G∣
∣G ⊕ G

∣
∣G & G

∣
∣end

∣
∣close

∣
∣0

∣
∣ω

WeposeG the set of session typeswith nooccurrence of 0 and
ω, and Gω the set of all session types. When not differently
stated, we will use types from Gω, while G will be used
in Sect. 5 to type processes. The set of participant names
appearing in G is denoted by fn(G).

Informally, p → q̃ : m;G means that the participant p
sends the messagem to the participants in q̃ , then the session
continues with G. This message can be either a term (from
the language D) of type A, or a label l (noted &l); or a
fresh handler for a session of type G (noted 〈G〉). The type
end means that the session ends and the process survives,
while close means that both the session and the process end.
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G1⊕G2 (resp.G1&G2) denotes an internal (resp. external)
choice. Internal choices are made by local participants of the
session, contrary to external choices; notice that, in contrast
with standard practice, sending or receiving a label &l is
unrelated from the choices done with ⊕ or &. Finally, we
add the empty type 0, which denotes no possible executions
(and it is the unit of ⊕), and the inconsistent type ω, which
denotes an error in the session.

Example 4.1 Continuing our running Example 3.1, the fol-
lowing are the types of session x for each process Pp, Pq , Pr
by the type system we will present in Sect. 5.

Gp := (p → q : &t; p → r : 〈end〉; close) ⊕ (p → q : &f; close)
Gq := (p → q : &t; q → r : &ok; close) & (p → q : &f; q → r : &quit; close)
Gr := (q → r : &ok; p → r : 〈close〉; close) & (q → r : &quit; close)

Wewill also be able to type compositions of these processes,
e.g., the types of x in Pp

∣
∣
x Pq and Pq

∣
∣
x Pr are the following:

Gp,q :=(p → q : &t; q → r : &ok; p → r : 〈end〉; close)
⊕ (p → q : &f; q → r : &quit; close)

Gq,r :=(p → q : &t; q → r : &ok; p → r : 〈close〉; close)
& (p → q : &f; q → r : &close; close)

Notice that Gp,q describes also the behavior of Pp
∣
∣
x Pq

∣
∣
x Pr .

As we will see in the next section, these types can be com-
positionally derived from Gp, Gq , Gr .

Example 4.2 (Two-buyers protocol)ContinuingExample3.2,
we define

G1 :=b2 → s : ok; b2 → s : string; s → b2 : date; close
G2 :=b2 → s : quit; close

We expect that in the environment E , for the three processes
Pb1 , Pb2 , Ps , session x will have the following types, respec-
tively:

Gb1 :=b1 → s : string; s → b1 : int; b1 → b2 : int; close
Gb2 :=s → b2 : int; b1 → b2 : int; (G1 ⊕ G2)

Gs :=b1 → s : string; s → b1, b2 : int; (G1 & G2)

In the end, the whole process Ps
∣
∣
x Pb1

∣
∣
x Pb2 will communi-

cate on a session x following the type b1 → s : string; s →
b1, b2 : int; b1 → b2 : int; (G1 ⊕ G2).

Now, we aim to define when two session types are equiv-
alent from the point of view of a set of participants. The
idea is that a subset of all participants involved in a session
may collect a limited knowledge of the events happening in

the session, thus several possible types can be compatible
with this limited knowledge—which can be already enough
to tell possible incoherences. The events we can observe are
communications C and are defined as follows:

C :: = p → q̃ : m∣
∣end

∣
∣close

∣
∣0

∣
∣ω

∣
∣1

We denote by Cω the set of all communications, and by
C = Cω \ {ω, 0} the set of executable communications. The
communications end, close, 0,ω are called terminal; the only
non-terminal communications are p → q̃ : m and 1, the lat-
ter representing any communication which is not observable

from the current process. Thus, we can see terminal com-
munications as types, and non-terminal communications as
prefixes of types; in particular 1 is a “neutral” prefix for ses-
sion types, i.e., for all G, we define 1;G = G.

In the following, we denote by S, S1, . . . ⊂ P finite sets
of participants, which we call viewpoints.

Definition 4.1 (Independence relation) Let S be a viewpoint.
The independence of communications relative to S is the
smallest symmetric relation IS⊆ Cω × Cω such that C IS 1
for any C , and (p → q̃ : m) IS (p′ → q̃ ′ : m′) whenever
(({p} ∪ q̃) ∩ ({p′} ∪ q̃ ′)) ∩ S = ∅.

Informally, C1 IS C2 means that the common participants
of C1 and C2 are not in S. This independence is relative to
the viewpoint S, because when C1 IS C2, the participants in
S cannot discriminate between C1;C2;G and C2;C1;G. In
fact, we can define an equivalence relation between session
types relative to S.

Definition 4.2 (Equivalence relation) For any set of partici-
pants S, we define the relation �S⊆ Gω × Gω on session
types as the smallest congruence satisfying the axioms in
Fig. 3.

We can see that the operations⊕ and &, together with the
constants 0 and ω, form a unital commutative semiring. We
note

⊕{G1, . . . ,Gn} forG1⊕. . .⊕Gn and
˘{G1, . . . ,Gn}

for G1 & . . . & Gn ; in particular,
⊕

∅ = 0 and
˘

∅ = ω.
The axiom (OOOE) allows an “out of order” execution of
independent communications. Notice that in general G ⊕
ω ��S ω because the behavior of a process of type G ⊕ ω is
not necessarily always inconsistent.3

3 In fact, the equivalence G ⊕ ω �S ω would invalidate the semantic
interpretation of types given in Sect. 7, and in particular Theorem 7.1.
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Fig. 3 Congruence equivalence
for session types

The equation C; 0 �S 0 corresponds to the fact that 0
means “no possible executions,” not even the stuck one (as
wewill see in Sect. 7, the interpretation of 0 is the empty set);
thus, prepending an execution to nothing yields nothing.

The fact that G1 ⊕G2 or G1 &G2 are unrelated from the
action of sending a choice allows us to move these operators
around without changing the meaning of the type. Hence, we
can introduce disjunctive normal forms of session types.

Definition 4.3 (Disjunctive Normal Form) A chain of com-
munications is a session type of the form C1; . . . ;Cn (where
Cn is necessarily terminal).

A session type G is in Disjunctive Normal Form (DNF) if
it is of the formG = ⊕{˘ A1, . . . ,

˘
An}where each Ai is

a set of chains of communications where for every message
〈G ′〉, G ′ is in DNF.

In DNF, a type can be seen as a set of sets of traces (chains of
communications), the intuition being that a trace describes
a single possible interaction of a process. A set of traces
defines a deterministic strategy followed by a single process
P , describinghow P reacts for anypossible choice fromother
processes. A set of sets of traces describes all the possible
strategies that P can followonce it has selected all its possible
internal choices. So, describing a behavior in DNF is like
saying that a process P starts by anticipating all possible
internal choices for all possible interactions during execution.
After that, P becomes deterministic and reacts in a single
possible way to communications of other processes.

The equivalence relation on types allows us to rewrite any
type in a DNF.

Proposition 4.1 For any type G and set of participants S, we
can compute a G ′ in DNF such that G ′ �S G.

Proof Given a type G, we can look at subterms inside G of
the forms G1 & (G2 ⊕ G3), C; (G1 & G2), C; (G1 ⊕ G2).
Eachof themcanbe replacedby the corresponding equivalent
subterm, i.e., (G1 & G2)⊕ (G1 & G3), (C;G1)& (C;G2),
(C;G1)⊕(C;G2). By repeatedly applying these rewritings,
all ⊕ are moved at the top level and the “;” at the leaves of
the type. ��

5 Type system

In this section, we introduce the type system for processes.
A key point of our approach is that types have always to
be considered with respect to a set of participants, i.e., a
viewpoint.

Definition 5.1 (Environment) A typing declaration for ses-
sion x is a triple x : 〈G∣

∣S〉 where G ∈ G and S ⊆ P. S is
the set of local participants of x .

A (session typing) environment Γ is a finite set of typing
declarations

Γ = x1 : 〈G1
∣
∣S1〉, . . . , xn : 〈Gn

∣
∣Sn〉

such that x1, . . . xn are all distinct.

The main differences between our environments and those
in [11,29] are that session types replace local types, and each
session is endowedwith a set of local participants, in addition
to its session type.

We can extend internal choices and type equivalences to
environments.

Definition 5.2 Let Γ = x1 : 〈G1
∣
∣S1〉, . . . , xn : 〈Gn

∣
∣Sn〉 and

Γ ′ = x1 : 〈G ′
1

∣
∣S1〉, . . . , xn : 〈G ′

n

∣
∣Sn〉 be two environments

with the same domain and same sets of local participants. In
this case, we define

Γ ⊕ Γ ′ := x1 : 〈G1 ⊕ G ′
1

∣
∣S1〉, . . . , xn : 〈Gn ⊕ G ′

n

∣
∣Sn〉.

Definition 5.3 (Equivalent environments) We define � on
environments as the smallest equivalence relation satisfying
the following rule:

Γ1 � Γ2 G1 �S G2

Γ1, x : 〈G1
∣
∣S〉 � Γ2, x : 〈G2

∣
∣S〉

We can now introduce the typing judgment for processes
E; P � Γ , where E is a term typing environment and Γ is a
session typing environment. Intuitively, it means “under the
declarations in E , for each x : 〈G∣

∣S〉 in Γ , the participants
of P that interact on x are S and they follow the behavior
G.”
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Fig. 4 Type system for
processes

The typing rules are shown in Fig. 4. Rules (sendvalue),
(recvvalue), (send), (recv), (seli ), and (case) deal with
communication. Differently from most type systems (see,
e.g., [11]), the send and receive actions are typed by the same
global type, and not by dual types: in our approach the duality
is given by the set of participants, i.e., the viewpoint, which
is either the sender or the receiver.

Rule (⊕) types an internal choice between two processes.
This choice is propagated to all sessions where the process
is involved, so the sum is done componentwise between the
types of the two branches, as perDefinition 5.2. If the internal
choice is irrelevant for some session x (i.e.,wehave x : 〈G∣

∣S〉
in both premises) then in the conclusion we would have x :
〈G⊕G

∣
∣S〉, which is equivalent to the former.We can rewrite

types into equivalent ones with rule (�).
Rules (close) and (wait) correspond, respectively, to the

1 and ⊥ rules in linear logic, and they both assume there is
no named participant, therefore the set of participants in the
conclusion is empty.

Rule (ν) allows us to create a local, restricted session. To
correctly type the local session, we need to check that its type
is complete with respect to the current participants, since no
other participants will be able to join that session afterward.

Fig. 5 Rules for the finalized judgment

To this end, we introduce the notion of finalized session type.
Intuitively, a type G is finalized for a viewpoint S, denoted
G ↓ S, if all participants involved in the type are in the
viewpoint, there are no occurrence of ω or close (because we
need to avoid deadlocks and miscommunications), and that
the end of the session is not the end of the process (becausewe
are within a subsession). The rules for the auxiliary judgment
G ↓ S are in Fig. 5.

The (extra) rule allows us to add participants which actu-
ally do not interact with the sessions; this is needed for the
subject reduction.

Finally, rule (
∣
∣) is one of the key novelties of our

type system. This rule allows us to connect two processes
through a shared session x merging their respective types
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and viewpoints (which must be separated). The type G of
the shared session is computed compositionally from G1, S1
and G2, S2, by G1

S1∨S2 G2. The definition of this operator
is quite complex and is postponed to Sect. 6; for the moment
it is enough to know that it is associative and symmetric, and
the resulting type G is a “minimal” type from the viewpoint
S1 � S2 such that it is equivalent to G1 from the viewpoint
S1 and to G2 from the viewpoint S2. Moreover, if G1,G2 are
not compatible (e.g., due to a deadlock or a miscommunica-
tion) the type G1

S1∨S2 G2 will contain some occurrence of
ω, and thus G1

S1∨S2 G2 /∈ G. To guarantee that only valid
types are used for the merged session, rule (

∣
∣) requires to find

G ∈ G such thatG �S1�S2 G1
S1∨S2 G2; hence, the parallel

composition of incompatible processes cannot be typed.

Remark 5.1 It may be interesting to compare our rule for
parallel composition with the cut rule for linear logic [15],
that for binary session types [32], and that for multiparty
session types [11]:

� Γ ,G � Δ,G⊥

� Γ ,Δ
(Cut)

P � Γ , x : G Q � Δ, x : G⊥

(νx : G)(P
∣
∣Q) � Γ ,Δ

(BinPar)

Pi � Γi , x pi : Ai G � {pi : Ai }i
(νx : G)(Π x

i Pi ) � {Γi }i (Multi Par)

Each of these rules corresponds to the applications of two
rules of our system: the rule (

∣
∣) which merges partial

sessions, and the rule (ν) which closes the session. This
correspondence, albeit in a logical setting and for binary
choreographies only, has been previously observed in [10],
where the (Cut) rule is split into two rules (called (Conn)
and (Scope)). For instance, if we assume that A1, A2, and G
are suitable session types, we have the following derivation
of the rule for binary session types (BinPar) (we omit the
environment E for the sake of simplicity):

P�Γ ,x :〈A1

∣
∣S1〉 Q�Δ,x :〈A2

∣
∣S2〉 G�S1�S2 A1

S1∨S2 A2

P
∣
∣
x
Q�Γ ,Δ,x :〈G

∣
∣S1�S2〉 G↓S1�S2

(νx)(P
∣
∣
x Q) � Γ ,Δ

In the case of a multiparty session involving n participants,
we can apply (

∣
∣) n−1 times, and then the (ν) rule to close the

session. Notice that the compatibility check in the premises
of (Multi Par) corresponds to a sequence of n − 1 binary
merges followed by the finalization check. This allows to spot
incompatible processes (e.g., due to a deadlock) as soon as
possible: A1

S1∨S2 A2 would yield a type containing someω,
and hence for noG ∈ G it would beG �S1�S2 A1

S1∨S2 A2.

6 Merging partial session types

The central part of the type system is the merging algorithm
that infers the result of interaction of twopartial session types.
In this section, we will define the merge function G1

S1∨S2

G2, whereG1 andG2 describe the behavior of a session from
the viewpoint of the local participants in the sets S1 and S2,
respectively. G1

S1∨S2 G2 then describes the behavior of
the session from the unified viewpoint S1 ∪ S2. In particular,
if G1 and G2 are incompatible then G1

S1∨S2 G2 contains
some occurrence of ω. 4

To merge two types, we can consider them in DNF; in
this way we can recursively reduce the problem to merg-
ing chains of communications, by means of a function
mcommS1,S2(C1,C2). Informally, we merge two sequences
of communications by considering all possible reorderings
which are compatible with each other. This give us a set
of all possible merged behaviors, which we glue together
using external choices (&). Finally, formerging general types
in DNF, we proceed by recursion until we have to merge
sequences of communications. Thus, two types are compat-
ible if they can agree on at least a pair of merged sequences
of communications, whatever their internal choices; if no
such sequences exist, we get ω as a result. Extra complexity
is given by the fact that when we have to merge two com-
munications of the form p → q̃ : 〈G1〉, p → q̃ : 〈G2〉,
we have to merge also G1 and G2; therefore, the function
mcommS1,S2(C1,C2) and the function G1

S1∨S2 G2 for
merging session types are mutually recursive.

Before diving into the definition of mcommS1,S2 and
S1∨S2 , let us mention that we will also need the following
helper functions and predicates (which we will illustrate in
Example 6.1 later on):

• the continuation partial function contS(G,C), which
takes a chain of communicationsG and a communication
C as input, and returns a type that corresponds (up to�S)
to what remains in G after having executed C ;

• the mergeability predicate C1
S1♥S2 C2 tells us whether

two communicationsC1 andC2 aremergeable, from their
respective viewpoints S1, S2;

• the synchronization total function syncS1,S2( f )(G1,G2)

takes a (partial) function f : C × C⇀C, called merging
function and describing how two communications can be
merged, and two chains of communications G1 and G2;
it returns the set of all possible tuples (C1,G ′

1,C2,G ′)
such that C1;G ′

1 �S1 G1, C2;G ′
2 �S2 G2 and C1 and

C2 are mergeable (according to f );
• finally, the partial function mapS1,S2( f )(G1,G2) takes

a (partial) function f : C× C⇀C and two session types

4 A prototype implementation of the merging algorithm can be found
at https://github.com/cstolze/partial-session-types-prototype.
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in DNF as arguments, and maps f on the pair (G1,G2);
the result is a session type obtained by merging G1 and
G2 according to f (i.e., where possible).

With these functions and predicates, we will be able to define
mcommS1,S2(C1,C2) andG1

S1∨S2 G2. These functions are
non-deterministic, but G1

S1∨S2 G2 is deterministic up to�
(see Theorem 7.2).

In order to prove termination of these functions, we need
to introduce the length l of session types, and the height h of
communications and session types as the maximal number
of nested subsessions. Formally, we have:

l(G1 & G2) := l(G1) + l(G2)

l(G1 ⊕ G2) := l(G1) + l(G2)

l(C;G) := 1+ l(G)

l(G) := 1 otherwise.

h(G1 & G2) := max(h(G1), h(G2))

h(G1 ⊕ G2) := max(h(G1), h(G2))

h(C;G) := max(h(C), h(G))

h(p → q̃ : 〈G〉) := 1+ h(G)

h(C) := 0 otherwise.

6.1 Mappingmerging functions over session types

Definition 6.1 (cont) The partial function contS(G,C) takes
as input a chain of communications G and a communication
C , and returns some G ′ in DNF such that G �S C;G ′. It is
undefined if such G ′ does not exist.

Intuitively, contS(G,C) is a kind of Brzozowski derivative
that tells us what happens in G after the communication C .

Proposition 6.1 The function cont is computable, and more-
over l(C;G ′) = l(G) and h(C;G ′) = h(G).

Note that dom(contS(G, )) is finite, and can be com-
puted using the “out-of-order execution” axiom (OOOE,
Definition 4.2) repeatedly. This domain set represents the
immediate communications that G allows for.

Definition 6.2 (sync) Let G1,G2 be chains of communica-
tions in DNF.

We then define syncS1,S2( f )(G1,G2) as the following set:

{(C1,C2,G
′
1,G

′
2)

∣
∣G ′

1 = contS(G1,C1),

G ′
2 = contS(G2,C2),

(C1,C2) �= (1, 1), f (C1,C2) is defined}.
Intuitively, syncS1,S2( f )(G1,G2) returns a set containing all
possible pairs of immediate communications C1, C2 in G1,
G2, respectively, that can bemerged (according to f ), as well
as their continuations. Recall that 1 represents any commu-
nication which is not observable from the given viewpoint.

Definition 6.3 (Functionmap) Let S1, S2 be two sets of par-
ticipants, G1,G2 ∈ C two types in DNF and f : C× C⇀C

a partial map such that for any C1,C2:

– f (C1,C2) is termina+l if and only if it is defined and
C1,C2 are both terminal

– if f (C1,C2) is defined then either both or none ofC1 and
C2 are terminal.

Then, mapS1,S2( f )(G1,G2) is defined recursively over
G1,G2 as follows:

– First cases:

mapS1,S2 ( f )(G1 ⊕ G2,G3) := mapS1,S2 ( f )(G1,G3) ⊕mapS1,S2 ( f )(G2,G3)

mapS1,S2 ( f )(G1,G2 ⊕ G3) := mapS1,S2 ( f )(G1,G2) ⊕mapS1,S2 ( f )(G1,G3)

mapS1,S2 ( f )(G1 & G2,G3) := mapS1,S2 ( f )(G1,G3) &mapS1,S2 ( f )(G2,G3)

mapS1,S2 ( f )(G1,G2 & G3) := mapS1,S2 ( f )(G1,G2) &mapS1,S2 ( f )(G1,G3)

– If G1, G2 are both chains of communications and at least
one of them is not a terminal communication, we pose
B := syncS1,S2( f )(G1,G2) and we have:

– IfG1 orG2 ends with 0,mapS1,S2( f )(G1,G2) := 0.
– If G1 or G2 ends with ω, or if B = ∅, then
mapS1,S2( f )(G1,G2) := ω.

– Otherwise:

mapS1,S2 ( f )(G1,G2) := ˘{ f (C1,C2);mapS1,S2 ( f )(G
′
1,G

′
2)

∣
∣

(C1,C2,G
′
1,G

′
2) ∈ B}

– If G1 and G2 are both terminal communications, then:

mapS1,S2 ( f )(G1,G2) :=

⎧

⎪⎨

⎪⎩

0 ifG1 orG2 is 0

f (G1,G2) if f (G1,G2) is defined

ω otherwise.

The twoconditions on f guarantee thatmapS1,S2( f )(G1,G2)

is well-defined in the last two cases, when f is applied to
G1,G2 or to the chains C1,C2.

Proposition 6.2 Termination ofmap is ensured by induction
on l(G1) + l(G2).

Note that, when we computingmapS1,S2( f )(G1,G2), every
application of f is of the form fS1,S2(C1,C2), where h(C1)+
h(C2) ≤ h(G1) + h(G2).

6.2 Merging communications and session types

We now define the partial function mcommS1,S2(C1,C2)

which merges compatible communications C1 (from the
viewpoint S1) and C2 (from the viewpoint S2) and returns,
if possible, the new communication from the merged view-
points S1 ∪ S2. We also define by mutual recursion the
merging function for session types, which is just a shorthand
formap applied tomcomm:

G1
S1∨S2 G2 := mapS1,S2(mcommS1,S2)(G1,G2).
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We suppose thatG1 andG2 are inDNFs, but it can be applied
to any session types by rewriting them in DNF thanks to
Theorem 7.2.

The definition ofmcommS1,S2(C1,C2) requires to check
whether C1 (from the viewpoint S1) and a communication
C2 (from the viewpoint S2) are actuallymergeable. Formally,
this notion is defined by the following relation.

Definition 6.4 (Mergeability)We defineC1
S1♥S2 C2 as fol-

lows:

{p} ∪ q̃1 ∪ q̃2 ⊆ S1 ∪ S2 ⇒ (G1
S1∨S2 G2) ↓ S1 ∪ S2

p ∈ S1 ⇒ q̃2 ⊆ q̃1 p ∈ S2 ⇒ q̃1 ⊆ q̃2 S1 ∩ q̃2 ⊆ q̃1 S2 ∩ q̃1 ⊆ q̃2
p → q̃1 : 〈G1〉 S1♥S2 p → q̃2 : 〈G2〉

p ∈ S1 ⇒ q̃2 ⊆ q̃1 p ∈ S2 ⇒ q̃1 ⊆ q̃2 S1 ∩ q̃2 ⊆ q̃1 S2 ∩ q̃1 ⊆ q̃2
p → q̃1 : &l S1♥S2 p → q̃2 : &l

p ∈ S1 ⇒ q̃2 ⊆ q̃1 p ∈ S2 ⇒ q̃1 ⊆ q̃2 S1 ∩ q̃2 ⊆ q̃1 S2 ∩ q̃1 ⊆ q̃2
p → q̃1 : A S1♥S2 p → q̃2 : A

C2
S2♥S1 C1

C1
S1♥S2 C2

({p} ∪ q̃) ∩ S1 = ∅

1 S1♥S2 p → q̃ : m 1 S1♥S2 1

close S1♥S2 close close S1♥S2 end

The first rule deserves some explanations. In the first hypoth-
esis, G1 and G2 describe sessions whose participants can be
only in {p}∪q̃1∪q̃2; if all these participants are in S1∪S2, then
after the merge all the participants are present and therefore
the communicationmust be safe, because no other participant
may join later. This means that, in this case, we have to check
that the merge ofG1 andG2 is finalized. The second hypoth-
esis (and dually the third one) corresponds to the fact that in
the (send) rule of Fig. 4, the sender specifies all receiving
participants, while in (recv) a receiver may not know about
other receivers; therefore, if p → q̃1 : 〈G1〉 describes the
communication from the point of view of the sender (i.e.,
p ∈ S1), then q̃2 is a set of receivers only, and must be
contained in q̃1. The fourth (and dually the fifth) hypothesis
means that if a participant which is known to a process (i.e.,
in S1) appears as receiver for other process (i.e., in q̃2), then
it must appear as a receiver also by the first process.

Notice that S1♥S2 uses G1
S1∨S2 G2, so in the end S1♥S2

is defined by mutual recursion together withmcomm.

Definition 6.5 (Function mcomm) If C1
S1♥S2 C2, then:

mcommS1,S2 (p → q̃ : &l, p → q̃ ′ : &l) := p → (q̃ ∪ q̃ ′) : &l

mcommS1,S2 (p → q̃ : A, p → q̃ ′ : A) := p → (q̃ ∪ q̃ ′) : A
mcommS1,S2 (p → q̃ : 〈G1〉, p → q̃ ′ : 〈G2〉) := p → (q̃ ∪ q̃ ′) :

〈G1
S1∨S2 G2〉

mcommS1,S2 (1,C) := C

mcommS1,S2 (C, 1) := C

mcommS1,S2 (C, close) := C

mcommS1,S2 (close,C) := C

Otherwise, mcommS1,S2(C1,C2) is undefined.

Proposition 6.3 For allC1, C2, S1, S2, we have thatC1
S1♥S2

C2 is decidable, and mcommS1,S2(C1,C2) terminates.

This proposition can be proved by simultaneous induction
on h(C1) + h(C2).

Example 6.1 Continuing Example 4.1, let us recall the types
of participants p, r :

Gp := G ′
p ⊕ G ′′

p Gr := G ′
r & G ′

r

G ′
p := p → q : &t; p → r : 〈end〉; close G ′′

p := p → q : &f; close
G ′

r := q → r : &ok; p → r : 〈close〉; close G ′′
r := q → r : &quit; close

We have that:

dom(cont{p}(G ′
p, )) = {p → q : &t}

dom(cont{p}(G ′′
p, )) = {p → q : &f}

dom(cont{r}(G ′
r , )) = {q → r : &ok}

dom(cont{r}(G ′′
r , )) = {q → r : &quit}

As an example of synchronization set, we have:

sync{p},{q}(mcomm{p},{q})(G ′
p,G

′
r )

= {(p → q : &t, 1,

(p → r : 〈end〉; close),G ′
r ),

(1, q → r : &t,G ′
p,

(p → r : 〈close〉; close))}

We have that:

G ′
p

p∨r G ′
r = (p → q : &t; q → r : ok; p → r : 〈end〉; close)&

(q → r : ok; p → q : &t; p → r : 〈end〉; close)
G ′

p
p∨r G ′′

r = (p → q : &t; q → r : &quit;ω)&

(q → r : &quit; p → q : &t;ω)

G ′′
p

p∨r G ′
r = (p → q : &f; q → r : ok;ω)&

(q → r : ok; p → q : &f;ω)

G ′′
p

p∨r G ′′
r = (p → q : &f; q → r : &quit; close)&

(q → r : &quit; p → q : &f; close)

and finally

Gp
p∨r Gr = ((G ′

p
p∨r G ′

r ) & (G ′
p

p∨r G ′′
r ))⊕

((G ′′
p

p∨r G ′
r ) & (G ′′

p
p∨r G ′′

r ))

�{p,r} (p → q : &t; q → r : ok; p → r : 〈end〉; close)⊕
(p → q : &f; q → r : &quit; close)

Example 6.2 Continuing Example 4.2, we recall the types of
the participants b1, b2, and s:

G1 := b2 → s : ok; b2 → s : string; s → b2 : date; close
G2 := b2 → s : quit; close
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Gb1 := b1 → s : string; s → b1 : int; b1 → b2 : int; close
Gb2 := s → b2 : int; b1 → b2 : int; (G1 ⊕ G2)

Gs := b1 → s : string; s → b1, b2 : int; (G1 & G2)

Also, we pose G := b1 → s : string; s → b1, b2 :
int; b1 → b2 : int; (G1⊕G2). We have the following merg-
ings:

Gb1
b1∨b2 Gb2 = (b1 → s : string; s → b1 : int; s → b2 :

int; b1 → b2 : int; (G1 ⊕ G2)) & G

Gb1
b1∨s Gs = b1 → s : string; s → b1, b2 : int;

b1 → b2 : int; (G1 & G2)

Gb2
b1∨s Gs = G

As we can see, Gb1
b1∨b2 Gb2 considers two different

cases: the case where s decides to send the quote separately,
and the case where s sends the quote to both of them at once.
Things get easier when we know the viewpoint of s. In the
end, we have the following judgment:

∅; Pb1
∣
∣Pb2

∣
∣Ps � x : 〈G∣

∣b1, b2, s〉

Example 6.3 (Philosopher’s dinner) Let us consider three
philosophers p, q, r passing around one stick. Their pro-
cesses can be defined as follows:

Pp := x pr (n : int).x pq〈n〉.close(x)
Pq := xqp(n : int).xqr 〈n〉.close(x)
Pr := xrq(n : int).xrp〈n〉.close(x)

We can check that each process behaves well, according
to the expected types:

∅; Pp � x : 〈r → p : int; p → q : int; close∣∣p〉
∅; Pq � x : 〈p → q : int; q → r : int; close∣∣q〉
∅; Pr � x : 〈q → r : int; r → p : int; close∣∣r〉

Also, every pair of process behaves well, as we can type
them in our typing system:

∅; Pp
∣
∣
x Pq � x : 〈r → p : int; p → q : int; q → r : int; close∣∣p, q〉

∅; Pp
∣
∣
x Pr � x : 〈q → r : int; r → p : int; p → q : int; close∣∣p, r〉

∅; Pq
∣
∣
x Pr � x : 〈p → q : int; q → r : int; r → p : int; close∣∣q, r〉

However, the three processes together can deadlock, as it
is witnessed by the merging operation; in fact

((r → p : int; p → q : int; close)
p∨q (p → q : int; q → r : int; close))
p,q∨r (q → r : int; r → p : int; close) = ω

and hence Pp
∣
∣
x Pq

∣
∣
x Pr cannot be typed.

Example 6.4 Let us see an example of three processes
involved in a multicast communication with a subsession:

Pp := x pqr (y).x pq(z).wait(y).wait(z).close(x)

Pq := xqp(y).(close(y) ‖ xqp(z).(close(z) ‖ close(x)))

Pr := xrp(y).(close(y) ‖ close(x))

We pose the following four types:

G1 := p → qr : 〈end〉; p → q : 〈end〉; close
G ′

1 := p → qr : 〈close〉; p → q : 〈close〉; close
G2 := p → q : 〈close〉; p → qr : 〈close〉; close
G3 := p → q : 〈close〉; p → q : 〈close〉; p → r : 〈close〉;

close

Note that G ′
1 ��{q,r} G2, and that G3 can be reorder under

�{q,r}:

G3 �{q,r} p → r : 〈close〉; p → q : 〈close〉;
p → q : 〈close〉; close

We can prove that the following typing judgments hold:

∅; Pp � x : 〈G1
∣
∣p〉

∅; Pq � x : 〈p → q : 〈close〉; p → q : 〈close〉;
close

∣
∣q〉

∅; Pr � x : 〈p → r : 〈close〉; close∣∣r〉
∅; Pp

∣
∣
x Pq � x : 〈G1

∣
∣p, q〉

∅; Pp
∣
∣
x Pr � x : 〈G1

∣
∣p, r〉

∅; Pq
∣
∣
x Pr � x : 〈G ′

1 & G2 & G3
∣
∣q, r〉

∅; Pp
∣
∣
x Pq

∣
∣
x Pr � x : 〈G1

∣
∣p, q, r〉

As we can see, Pp is the process that imposes some
particular synchronized scheduling for everyone. With the
viewpoint of participants q and r , but without p, we cannot
know if session x should follow G ′

1, G2, or G3, hence the
type G ′

1 & G2 & G3 for Pq
∣
∣
x Pr . If we merge these session

types withG1, we get three possible behaviors, two of which
are not feasible:

G1
p∨q,r G ′

1 �{p,q,r} G1 G1
p∨q,r G2 �{p,q,r} ω

G1
p∨q,r G3 �{p,q,r} ω

As a consequence, G1
p∨q,r (G1 & G2 & G3) �{p,q,r} G1,

which is the typewe get for x when typing Pp
∣
∣
x (Pq

∣
∣
x Pr ).We

would get the same type (modulo equivalence) by combining
these three processes in any different order.
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7 A semantic interpretation of partial
session types and themerge operator

In this section, we provide a semantic interpretation of
session types and their operations, in particular the merge
function defined above. Essentially, the type of a session tells
us what happens in the session from a particular viewpoint,
and merging session types requires us to merge interpreta-
tions fromdifferent viewpoints. To this end,we need to define
suitable categories and constructions taking viewpoints into
account. Let us summarize this section briefly.

First, in Sect. 7.1 we introduce the category of commu-
nication structures, whose objects are sets of events (i.e.,
the basic communication steps) endowed with an indepen-
dence relation; if two events are independent from a given
viewpoint, the observer cannot tell the actual order of their
execution. Maps between communication structures allow to
move from one viewpoint to another.

Given a communication structure, we define schedulable
sets as sets of traces taken up-to the equivalence induced
by the independence relation (Sect. 7.2). Equivalent traces
denote executions with different interleavings which can-
not be distinguished from a given viewpoint. Intuitively, a
chain of communications G = C1; . . . ;Cn is interpreted as
an equivalence class of traces [G]�S , where the equivalence
relation�S depends on the viewpoint S. Similarly, a conjunc-
tion of communication chains is interpreted as a schedulable
set, i.e., a union of these equivalence classes. Thus, a schedu-
lable set can be seen as a deterministic strategy represented by
traces (up-to equivalence) generated by interacting with any
possible scheduler. Finally, we introduce trace sets, which
are collections of schedulable sets; trace sets are used to
interpret the non-deterministic behavior given by internal
choices in the types. Therefore, we anticipate all possible
internal choices by choosing a schedulable set at the begin-
ning, and then following deterministically the traces therein,
depending on specific choices of the scheduler. This intuitive
interpretation of types is formalized in Sect. 7.3. Leveraging
these constructions, in Sect. 7.4 we give the interpretation of
the merge operator as the structure of a lax monoidal functor
from the category of viewpoints to that of communication
structures; this provides important properties of the operator
itself, such as associativity and stability under �S .

7.1 Communication structures

We start with the fundamental elements of session types, i.e.,
communications.

Definition 7.1 (Communication structure)A communication
structure A is a triple A = (EA, IA, 1A) where EA is a set,
1A ∈ EA, IA ⊆ EA × EA is a symmetric relation called the
independence relation such that ∀x, x IA 1A.

Intuitively, 1A denotes a no-operation, or rather, a no-
communication.

Definition 7.2 (Category Comm) We define Comm as a cat-
egory where:

– an object is a communication structure
– a morphism f : (EA, IA, 1A) → (EB, IB , 1B) is a par-
tial function from EA to EB such that f (1A) = 1B , and,
for any x, y ∈ EA such that both f (x) and f (y) are
defined, we have that f (x) IB f (y) iff x IA y;

– composition and identities are standard.

Intuitively, an object in the category can define all possible
communications from someviewpoint, andmorphisms allow
us to change the viewpoint.

Definition 7.3 (Monoidal product) The monoidal product of
(EA, IA, 1A) and (EB, IB , 1B) is (EC , IC , 1C )

= (EA, IA, 1A) ⊗ (EB, IB , 1B) defined as follows:

– EC = EA× EB , with projections πA : EA× EB → EA,
πB : EA × EB → EB ;

– for all xA, yA ∈ EA and xB, yB ∈ EB , (xA, xB) IC
(yA, yB) ⇔ xA IA yA and xB IB yB ;

– 1C = (1A, 1B)

The unit of this product is J := ({1J }, {(1J , 1J )}, 1J ). The
natural isomorphisms αA,B,C : A ⊗ (B ⊗ C) � (A ⊗ B) ⊗
C , λA : J ⊗ A � A, and ρA : A ⊗ J � A are defined
by αA,B,C (x, (y, z)) := ((x, y), z), λA(1J , x) := x , and
ρA(x, 1J ) := x .

Proposition 7.1 (Comm,⊗, J , α, λ, ρ) is a symmetric
monoidal category.

Notice that this product is not cartesian, because projections
are not morphisms.

The viewpoint of a session is the set of local participants
of this session.

Definition 7.4 (Category View) The thin category View is
the partial order (℘ (P),⊆) viewed as a strict symmetrical
monoidal category, i.e.,

– objects are subsets of the set of participants P
– there exists a unique morphism f : A → B iff A ⊆ B
– the tensor A ⊗ B is the union A ∪ B
– the unit is ∅.

A functor fromView toCommwould allow us to consider
communication structures from different viewpoints, and to
merge a pair of compatible communications from different
viewpoints into a communication from a unified viewpoint.
The functor must preserve the monoidal structure, and more-
over, the merge morphism given by this functor is a partial
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function because incompatible communications are impossi-
ble to merge. The right notion for this is that of lax symmetric
monoidal functor, which we recall next.

Definition 7.5 A lax symmetric monoidal functor (L, μ, υ)

from (View,∪, ∅) to (Comm,⊗, J , α, λ, ρ), consists of
a functor L : View → Comm, a natural transformation
μS1,S2 : L(S1) ⊗ L(S2) → L(S1 ∪ S2) and a morphism
υ : J → L(∅), such that the following diagrams commute:

(L(S1) ⊗ L(S2)) ⊗ L(S3) L(S1) ⊗ (L(S2) ⊗ L(S3))

L(S1 ∪ S2) ⊗ L(S3) L(S1) ⊗ L(S2 ∪ S3)

L(S1 ∪ S2 ∪ S3) L(S1 ∪ S2 ∪ S3)

α

μS1,S2⊗id id⊗μS2 ,S3

μS1∪S2 ,S3 μS1,S2∪S3
id

L(S1) ⊗ L(S2) L(S2) ⊗ L(S1)

L(S1 ∪ S2) L(S2 ∪ S1)

γ

μS1,S2 μS2 ,S1

id

L(S) ⊗ J L(S) ⊗ L(∅)

L(S) L(S)

id⊗υ

ρ μA,∅

id

J ⊗ L(S) L(∅) ⊗ L(S)

L(S) L(S)

υ⊗id

λ μ∅,A

id

7.2 Traces

Let A = (EA, IA, 1A) be a communication structure. We
note by E∗

A the set of finite sequences over EA, and Set∗ for
the category of sets and partial functions.

Definition 7.6 (Functor ˆ) We define ˆ : Comm → Set∗ as
follows:

Â := E∗
A

f̂ (ε) := ε f̂ (as) :=
{

f (a) f̂ (s) if f (a) and f̂ (s) are defined

undefined otherwise

A trace (over A) is an element 〈a1 . . . an〉 ∈ E∗
A. We only

consider traces where no error occurs, thus if a morphism f
is undefined at some point in the trace s, there is an error, and
as a consequence f̂ (s) is undefined.

Definition 7.7 (Equivalence relation) For any communica-
tion structure A, we define �A the smallest equivalence
relation on E∗

A such that sabt �A sbat if a IA b, and
s1t �A st .

Definition 7.8 (Schedulable and trace sets)A schedulable set
(over A) is a set C ⊆ E∗

A closed under �A, that is, for all
s, t ∈ E∗

A, if s ∈ C and s �A t then t ∈ C .
A trace set (over A) is a set B of schedulable sets.

Intuitively, a trace set B over A denotes a process which
selects a schedulable setC ∈ B andproposes it to a scheduler.
The scheduler then chooses a trace s ∈ C and s is executed.
C is closed under�A, because the interleaving of the events
is chosen by the scheduler.

Definition 7.9 (Functor T) For any communication structure
A, let us denote T(A) the set of all trace sets over A. For
any communication morphism f : A1 → A2, we define
T( f ) : T(A1) → T(A2) by

T( f )(B) =
{

{ f̂ (w)
∣
∣w ∈ C, f̂ (w) is defined}∣∣C ∈ B

}

This defines a functor T : Comm → Set, which we call the
trace set functor.

Definition 7.10 (Product of trace sets) If B1 ∈ T(A1) and
B2 ∈ T(A2), we define B1 ⊗ B2 ∈ T(A1 ⊗ A2) as the fol-
lowing set of sets:

{{〈(a1, b1) . . . (an, bn)〉
∣
∣〈a1 . . . an〉 ∈ C1, 〈b1 . . . bn〉 ∈ C2

}

∣
∣C1 ∈ B1,C2 ∈ B2

}

Note that, if ∅ ∈ B1 or ∅ ∈ B2, then ∅ ∈ B1 ⊗ B2.
Informally, B1 ⊗ B2 corresponds to the synchronized

threading of two processes, where a communication (ai , bi )
should be a pair containing the same communication from
two different viewpoints. If it is not the case, then the trace
containing (ai , bi ) is an incorrect synchronization, therefore
a merger morphism should not be defined over it.

Definition 7.11 We define the following operations:

– We note [w]A for the equivalence class ofw modulo�A.
We note [w] if A is clear from the context

– We define the commutative and associative operator on
trace sets B1 � B2 := {C1 ∪ C2

∣
∣C1 ∈ B1,C2 ∈ B2}. In

particular, B � ∅ = ∅

– We also define �{B1, . . . , Bn} := B1 � . . . � Bn , with
the special case �∅ := {∅}, because {∅} is the neutral
element for �

– We define a ·A B := {⋃s∈C [as]A
∣
∣C ∈ B}.

Example 7.1 Let us see an example of the tensor product ⊗.
Let A1 = ({a, b}, IA1 , 1), A2 = ({a, c}, IA2 , 1)with IA1 and
IA2 being the smallest independence relations possible; e.g.,
IA1 = {(a, 1), (b, 1), (1, a), (1, b), (1, 1)}. Then

{[ab]A1 } ⊗ {[ac]A2 } ={[(a, 1)(b, 1)(1, a)(1, c)]} � {[(a, 1)(b, a)(1, c)]}
� {[(a, 1)(1, a)(b, c)]} � {[(a, a)(b, 1)(1, c)]}
� {[(a, a)(b, c)]} � {[(1, a)(a, c)(b, 1)]}

The elements of these equivalence classes are all possible
linearizations of six “happens-before” orders, which can be
represented graphically as follows:
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(a, 1) (1, a)

(b, 1) (1, c)

(a, 1)

(b, a)

(1, c)

(a, 1) (1, a)

(b, c)

(a, a)

(b, 1) (1, c)

(a, a)

(b, c)

(1, a)

(a, c)

(b, 1)

Let A3 = ({a, b, c}, IA3 , 1), with IA3 being the smallest
independence relation such that b IA3 c. Let us choose a
merge function f : A1 ⊗ A2 → A3 defined as f (a, a) = a,
f (1, c) = c and f (b, 1) = b; undefined otherwise. Then,
we have that

T( f )({[ab]A1} ⊗ {[ac]A2}) = {[abc]A3}

which corresponds to

a

b c

since only in the fourth equivalence class the function f is
defined for all communications.

We conclude this section with some useful results about
trace sets.

Lemma 7.1 Wehave the following properties about the prod-
uct of trace sets:

(B1 ∪ B ′
1) ⊗ B2 = (B1 ⊗ B2) ∪ (B ′

1 ⊗ B2)

{C1 ∪ C ′
1} ⊗ {C2} = ({C1} ⊗ {C2}) � ({C ′

1} ⊗ {C2})
{[ε]A1 } ⊗ {[ε]A2 } = {[ε]A1⊗A2 }

(a ·A1 {[s]A1 }) ⊗ {[ε]A2 } = (a, 1A2 ) ·A1⊗A2 ({[s]A1 } ⊗ {[ε]A2 })
{[ε]A1 } ⊗ (a ·A2 {[s]A2 }) = (1A1 , a) ·A1⊗A2 ({[ε]A1 } ⊗ {[s]A2 })

and, if {[ε]A1} � C1 and {[ε]A2} � C2:

{C1} ⊗ {C2} = �{(a, b) ·A1⊗A2 ({[s]A1} ⊗ {[t]A2})
∣
∣as

∈ C1, bt ∈ C2, (a, b) �= (1A1 , 1A2)}

Proof By double inclusion. ��
Lemma 7.2 If f : A1 → A2, and B, B ′ ∈ T(A1) then we
have the following:

– T( f )(B ∪ B ′) = T( f )(B) ∪ T( f )(B ′)
– T( f )(B � B ′) = T( f )(B) � T( f )(B ′)
– T( f )({[ε]A1}) = {[ε]A1}
– if f (a) is defined, thenT( f )(a ·A1 B) = f (a)·A2T( f )(B)

– T( f )(a ·A1 ∅) = ∅

– if B �= ∅ and f (a) is not defined, then T( f )(a ·A1 B) =
{∅}.

Proof By double inclusion. ��

Lemma 7.3 Let A1, A2, A3 ∈ Comm, f : A1 ⊗ A2 → A3,
and a1 ∈ A1 such that for any a2 ∈ A2, f (a1, a2) is defined
iff a2 = 1. Then, for any B1 ∈ T(A1), B2 ∈ T(A2), we have
thatT( f )((a1·A1B1)⊗B2) = f (a1, 1)·A1⊗A2T( f )(B1⊗B2).

Proof Using Lemmas 7.1 and 7.2, we proceed by Noetherian
induction on the sum of the size of B1 and B2. The base case
is when B1 = {C1} and B2 = {C2}, then we proceed by
Noetherian induction on the sum of the size of C1 and C2.
The base case is when C1 = [w1]A1 and C2 = [w2]A2 , then
we proceed by Noetherian induction on the sum of the length
of w1 and w2. ��
Lemma 7.4 Let A1, A2, A3 ∈ Comm, f : A1 ⊗ A2 → A3,
a1 ∈ A1, and a2 ∈ A2 such that f (a1, a2) is defined and:

∀a ∈ A2, a IA2 a2 ⇒ f (a1, a) is undefined

∀a ∈ A1, a IA1 a1 ⇒ f (a, a2) is undefined

Then, for any B1 ∈ T(A1), B2 ∈ T(A2), we have that:

T( f )((a1 ·A1 B1) ⊗ (a2 ·A2 B2)) = f (a1, a2) ·A1⊗A2 T( f )

(B1 ⊗ B2)

Proof The proof is done the same way as in Lemma 7.3. ��

7.3 Interpreting session types as trace sets

Before defining the interpretation of session types, we need
to consider types where every communication involves at
least one participant of a given viewpoint, because those are
the communications we can observe from the behavior of
internal participants of a session. Also, the special case of a
process with no participant will be seen as neutral for com-
position, so it can only close.

Definition 7.12 (Engaged communication and session type)
A communication C ∈ C is engaged on S if C is terminal,
or if C = 1, or if C = p′ → q̃ : m and S ∩ ({p′} ∪ q̃) �= ∅.
If S = ∅, we require also that C is either close or 1.

A session type is engaged on S when every communica-
tion it contains is engaged on S.

We denote by CS andGS the sets of communications and
types engaged on S, respectively.

For a viewpoint S, we can consider the structure of all
communications which are visible (i.e., engaged) from that
viewpoint.

Definition 7.13 We define a functor L : View → Comm as
follows. If S = ∅, then L(S) := J . Otherwise, L(S) :=
((CS−{close})/�S, IS, 1), where the quotient over commu-
nications is given by the equivalence �S defined as

p → q̃ : 〈G1〉 �S p → q̃ : 〈G2〉 ⇐⇒ G1 �S G2.
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Definition 7.14 (Interpretation of session types) Let S be a
viewpoint. We define an interpretation function � �S : GS →
T(L(S)) for session types engaged on S, as follows:

�0�S := ∅ �ω�S := {∅}
�G1 & G2�S := �G1�S � �G2�S �G1 ⊕ G2�S := �G1�S ∪ �G2�S

�C;G�S := C ·L(S) �G�S �close�S := {[ε]L(S)}
�C�S := {[C]L(S)} otherwise.

Lemma 7.5 If G1 �S G2, then �G1�S = �G2�S.

Proof By induction on G1 �S G2. ��
Lemma 7.6 If G is a chain C1; . . . ;Cn, then �G�S =
{[C1; . . . ;Cn]L(S)}.
Proof By induction on n. ��
Lemma 7.7 For any session type G = ˘{G1, . . . ,Gn},
where all the Gi are chains of communications, we have
that:

�G�S = {
n

⋃

i=1

[Gi ]L(S)}

Proof By induction on n. ��
Lemma 7.8 For any session type in DNF G = ⊕

{˘ A1, . . . ,
˘

An}, we have

�G�S =
n

⋃

i=1

�
¯

Ai �S

Proof By induction on n. ��
Lemma 7.9 If �G1�S = �G2�S, then G1 �S G2.

Proof Thanks to Lemma 7.5, we can suppose that G1 and
G2 are in DNF.

– If both G1 and G2 are chains of communications, then,
using Lemma 7.6, we have that [G1]L(S) = [G2]L(S),
therefore G1 �S G2.

– If bothG1 (respectively,G2) is of the form
˘

A1 (respec-
tively,

˘
A2), where A1 and A2 are finite sets of chains

of communications, then, using Lemma 7.7, we have that
{⋃G ′∈A1

[G ′]L(S)} = {⋃G ′′∈A2
[G ′′]L(S)}. We can con-

clude by noting that equivalence classes are distinct and
using point 1.

– If both G1 (respectively, G2) is of the form
⊕{˘ A1,

. . . ,
˘

An} (respectively,⊕{˘ A′
1, . . . ,

˘
A′
n}), where

the Ai and A′
i are finite sets of chains of communications,

then, using Lemma 7.8, we have that
⋃n

i=1�
˘

Ai �S =
⋃n

i=1�
˘

A′
i �S . We can conclude by noting that each

�
˘

Ai �S and each �
˘

A′
i �S are singletons, and using

point 2. ��

Wenowcan state that our semantics is sound and complete
with respect to the relation �S .

Theorem 7.1 G1 �S G2 iff �G1�S = �G2�S.

Proof By Lemmas 7.5 and 7.9. ��

7.4 Interpretation of themerge operator

We conclude this section with some useful properties about
merge functions and in particular the merge operator S1∨S2 .

Lemma 7.10 Let f : L(S1) ⊗ L(S2) → L(S1 ∪ S2) be a
morphism inComm. IfmapS1,S2( f )(G1,G2) is defined, then
we have:

�mapS1,S2( f )(G1,G2)�S1∪S2 = T( f )(�G1�S1 ⊗ �G2�S2)

Proof By syntactic induction on (G1,G2), using Lem-
mas 7.1 and 7.2. ��
Lemma 7.11 (L,mcomm, idJ ) is a lax symmetric monoidal
functor.

Proof Properties for the unitors are trivial. Associativity
for C1,C2,C3 is done by strong recursion on the measure
h(C1) + h(C2) + h(C3). Commutativity for C1,C2 is done
by induction on the measure h(C1) + h(C2). The recursive
case happens when we need to prove associativity, i.e.,

mapS1,S2∪S3 (mcommS1,S2∪S3 )(G1,mapS2,S3 (mcommS2,S3 )(G2,G3))

�S1∪S2∪S3
mapS1∪S2,S3 (mcommS1∪S2,S3 )(mapS1,S2 (mcommS1,S2 )(G1,G2),G3)

and symmetry, i.e.,

mapS1,S2 (mcommS1,S2 )(G1,G2) �S1∪S2 mapS2,S1 (mcommS2,S1 )(G2,G1)

By recursion, we know that mcomm is associative and
commutative for communications with a strictly smaller
height, therefore we can conclude. ��

Now we can state several important properties of the
merge function.

Theorem 7.2 All the possible values of G1
S1∨S2 G2 are

�S1∪S2 -equivalent. Moreover, if G ′
1�S1G1 and G ′

2�S2G2,
then G1

S1∨S2 G2 �S1∪S2 G ′
1
S1∨S2 G ′

2.

Proof By Lemmas 7.10 and 7.11, we have that mapS1,S2
(mcommS1,S2) corresponds to amorphism inSet(T(L(S1)⊗
L(S2)), T(L(S1 ∪ S2))), hence we can conclude using The-
orem 7.1. ��

Thanks to the previous theorem, we can consider that
G1

S1∨S2 G2 is defined for any G1 and G2 by choosing
any DNF of G1 and G2.
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Theorem 7.3 We have that:

G1
S1∨S2 G2 �S1∪S2 G2

S2∨S1 G1

G1
S1∨S2∪S3 (G2

S2∨S3 G3) �S1∪S2∪S3 (G1
S1∨S2 G2)

S1∪S2∨S3 G3

We concludewith two technical lemmas thatwill be useful
in the following.

Lemma 7.12 If {p}∪q̃ ⊆ S1, S1∩S2 = ∅, andG2 is engaged
on S2, then (p → q̃ : m;G1)

S1∨S2 G2 �S1�S2 p → q̃ :
m; (G1

S1∨S2 G2).

Proof Easy, using Lemma 7.3. ��
Lemma 7.13 If p ∈ S1, p �= q, q̃ ′ ⊆ q̃ , and G is engaged on
{q}, then:

p → q̃ : 〈G ′
1〉;G1

S1∨{q} p → q̃ ′ : 〈G ′
2〉;G2 �S1∪{q}

p → q̃ : 〈G ′
1

S1∨{q} G ′
2〉;

(G1
S1∨{q} G2)

p → q̃ : &l;G1
S1∨{q} p → q̃ ′ : &l;

G2 �S1∪{q} p → q̃ : &l; (G1
S1∨{q} G2)

p → q̃ : A;G1
S1∨{q} p → q̃ ′ : A;

G2 �S1∪{q} p → q̃ : A; (G1
S1∨{q} G2)

Proof Easy, using Lemma 7.4. ��

8 Subject reduction and progress

In this section, we state two main properties of session types,
subject reduction and progress, which guarantee that “well-
typed systems cannot go wrong.” To this end, we first define
a reduction semantics for partial session types.

Definition 8.1 (Reductions for session types) Actions γ for
session types are defined as

γ :: = ⊕∣
∣p → q̃ : 〈·〉∣∣p → q̃ : &l

∣
∣p → q̃ : A

We write G1
γ−→S G2 for a transition from G1 to G2 from

the viewpoint of S under the action γ . This relation is defined
as follows:

G1 ⊕ G2
⊕−→S Gi p → q̃ : 〈G1〉;G2

p→q̃:〈·〉−−−−→S G2

p → q̃ : &l;G p→q̃:&l−−−−−→S G p → q̃ : A;G p→q̃:A−−−−→S G
G1

γ−→SG ′ G1�SG2

G2
γ−→SG ′

Note that transitions are not deterministic, in particular

G �S G ⊕ G, therefore we always have G
⊕−→S G, which

is useful in case we are reducing an internal choice which is
irrelevant for G.

Definition 8.2 (Reduction for environments) The reduction
relation for process typing environments is Γ1

α−→ Γ2,
labelled by actions for processes α (see Definition 3.3), and
it is defined as follows:

· α−→ · Γ
τ−→ Γ

G1
⊕−→S G2 Γ1

⊕−→ Γ2

x : 〈G1
∣
∣S〉, Γ1

⊕−→ x : 〈G2
∣
∣S〉, Γ2

G1
γ−→S G2

x : 〈G1
∣
∣S〉, Γ x :γ−−→ x : 〈G2

∣
∣S〉, Γ

Then, the type system enjoys the following important
properties.

Lemma 8.1 (Inversion lemma) We have the following prop-
erties:

– If E; x pq̃〈M〉.P � Γ , thenΓ � Γ ′, x : 〈G∣
∣{p}∪S〉, with

G = p → q̃ : A;G ′ engaged on {p}, S ∩ fn(G) = ∅,
E �D M : A, and E; P � Γ ′, x : 〈G ′∣∣p〉

– If E; x pq(y : A).P � Γ , then Γ � Γ ′, x : 〈G∣
∣{p} ∪ S〉,

with G = q → p̃ : A;G ′ engaged on {p}, S ∩ fn(G) =
∅, E, y : A; P � Γ ′, x : 〈G ′∣∣p〉, and p ∈ p̃

– If E; x pq̃(y).P � Γ , then Γ � Γ ′, x : 〈G∣
∣{p}∪ S〉, with

G = p → q̃ : 〈G1〉;G2 engaged on {p}, S∩fn(G) = ∅,
and E; P � Γ ′, y : 〈G1

∣
∣p〉, x : 〈G2

∣
∣p〉

– If E; x pq(y).(P ‖ Q) � Γ , then Γ � Γ1, Γ2, x :
〈G∣

∣{p} ∪ S〉, with G = q → p̃ : 〈G1〉;G2 engaged
on {p}, S ∩ fn(G) = ∅, E; P � Γ1, y : 〈G1

∣
∣p〉,

E; Q � Γ2, x : 〈G2
∣
∣p〉, and p ∈ p̃

– If E; x pq̃ �l.P � Γ , then Γ � Γ ′, x : 〈G ′∣∣{p}∪ S〉, with
G ′ = p → q̃ : &l;G engaged on {p}, S ∩ fn(G ′) = ∅,
and E; P � Γ ′, x : 〈G∣

∣p〉
– If E; x pq 
 {l1 : P1, . . . , ln : Pn} � Γ , then Γ � Γ ′, x :
〈G∣

∣{p}∪S〉, with p ∈ p̃, G = (q → p̃ : &l1;G1)&. . .&
(q → p̃ : &ln;Gn) engaged on {p}, S ∩ fn(G) = ∅,
E; P1 � Γ ′, x : 〈G1

∣
∣p〉, …, E; Pn � Γ ′, x : 〈Gn

∣
∣p〉.

– If E; close(x) � Γ , then Γ � Γ ′, x : 〈close∣∣S〉
– If E;wait(x).P � Γ , then Γ � Γ ′, x : 〈end∣∣S〉, S �= ∅,
and E; P � Γ ′

– If E; (P∣
∣
x Q) � Γ , then Γ � Γ1, Γ2, x : 〈G3

∣
∣S1 � S2〉,

and E; P � Γ1, x : 〈G1
∣
∣S1〉, E; Q � Γ2, x : 〈G2

∣
∣S2〉,

G1 engaged on S1, G2 engaged on S2, and G3 �S1�S2
G1

S1∨S2 G2

– If E; (νx)P � Γ , then E; P � Γ , x : 〈G∣
∣S〉, and G ↓ S

– If E; if M then P else Q � Γ , then E �D M : Bool
and, for some Γ1 and Γ2, we have Γ � Γ1⊕Γ2, E; P �
Γ1, and E; Q � Γ2

Proof By induction on E; P � Γ , using Theorem 7.1 to
avoid impossible cases. ��
Theorem 8.1 (Subject equivalence) If E; P � Γ and P≡Q
then E; Q � Γ .
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Proof By induction on P ≡ Q, and using Lemmas 8.1 and
7.3. ��
Thanks to this result, fromnowon,we can consider processes
equal modulo ≡.

Lemma 8.2 If x ∈ fn(P) and E; P � Γ then for some G, S:
x : 〈G∣

∣S〉 ∈ Γ .

Proof By induction on E; P � Γ . ��
Lemma 8.3 If E; P[x/y, z] � Γ , x : 〈G∣

∣∅〉, then G �S

close, and E; P � Γ , y : 〈close∣∣∅〉, z : 〈close∣∣∅〉.
Proof By induction on E; P[x/y, z] � Γ , x : 〈G∣

∣∅〉. ��
We can now prove the important result of subject reduc-

tion.

Theorem 8.2 (subject reduction) If E; P1 � Γ1 and P1
α−→

P2, then for some Γ2, we have E; P2 � Γ2 and Γ1
α−→ Γ2.

Proof By induction on P1
α−→ P2, using Lemma 8.1.

(send) Wehave E; x pq̃(y).R
∣
∣
xΠ

x
i (xqi p(y).(Pi ‖ Qi )) �

Γ , andbyLemma8.1,wehave that E; x pq̃(y).R �
Γ ′, x : 〈p → q̃ : 〈G〉;G ′∣∣p〉, E; R � Γ ′, x :
〈p → q̃ : 〈G〉;G ′∣∣p〉, E; xqi p(y).(Pi ‖ Qi ) �
Γi , Γ

′
i , x : 〈p → qi : 〈Gi 〉;G ′

i

∣
∣qi 〉, E; Pi �

Γi , y : 〈Gi
∣
∣qi 〉, E; Qi � Γ ′

i , x : 〈G ′
i

∣
∣qi 〉, and

Γ � Γ ′, #Γi ,
#Γ ′
i , x : 〈p → q̃ : 〈G ′′〉;G ′′′∣∣S〉.

We can show that p and all the qi belong to
S, and, using Lemma 7.13, we can show that
G ′′ is the merging of G and all the Gi , while
G ′′′ is the merging of G ′ and all of the G ′′

i .
Moreover, G ′′ ↓ S. Therefore, we have that
E; (νy)(R∣

∣
yΠ

y
i Pi )

∣
∣
xΠ

x
i Qi � Γ ′, #Γi ,

#Γ ′
i , x :

〈G ′′′∣∣S〉.
(case) similarly;

(comm) similarly;
(wait) easy, using Lemma 8.1;

(choice1), easy, using Lemma 8.1;
(choice2) Contextual closure by ((νx) ): by inductionhypoth-

esis, and on case analysis whether the action has
the form x : γ ;
Contextual closure by (

∣
∣
x R): by inductionhypoth-

esis and on case analysis whether the action has
the form x : γ . In this case, the action is on the ses-
sion shared with R, and hence using Lemma 7.12
we have to move the action on top of the merged
type. Otherwise, the process R is not involved in
the communication andwe can conclude by induc-
tion hypothesis.

��

Remark 8.1 In earlierwork aboutMPST (see, e.g., [29]), sub-
ject reduction usually requires some consistency condition
over the typing environment Γ . In our development, this
condition is not explicitly needed because the typing rules
for processes ensure that environments are consistent, i.e.,
the derivability of E; P1 � Γ1 implies that no session in Γ1

has the type ω.

Progress In usual session types, the progress property means
that well-typed systems can always proceed, and in particular
they are deadlock-free. In our case, well-typed systems can
still contain processes which cannot proceed, not due to a
deadlock or miscommunication, but due to some missing
participant.

Example 8.1 Let us consider P = x pq � &l.close(x). This
process is typable (∅; P � x : 〈p → q : &l; close∣∣p〉),
yet it is stuck. It can be completed into a redex P

∣
∣
x Q, with

Q = xqp 
 {l : Q′}. In fact, P can be seen as the restriction
of P

∣
∣
x Q on session x with participants in {p}. Hence, P is

preempted by x and so it can be considered a correct process,
waiting for the missing participant.

Therefore, in order to define the progress property for our
system, we need to define the restriction of a process to a
given set of local participants.

Definition 8.3 (Restriction) We define the restriction of a
term P on session x with participants in S (noted P �S x) as
follows:

x pq̃〈M〉.P �S x = close(x) if p /∈ S

x pq(y : A).P �S x = close(x) if p /∈ S

x pq̃(y).P �S x = close(x) if p /∈ S

x pq(y).(P ‖ Q) �S x = close(x) if p /∈ S

x pq̃ � l.P �S x = close(x) if p /∈ S

x pq 
 {l1 : P1, . . . , ln : Pn} �S x = close(x) if p /∈ S

P
∣
∣
x Q �S x = (P �S x)

∣
∣
x (Q �S x)

P �S x = P otherwise.

Definition 8.4 (Preemption) We say that a session x with
type G ∈ G and local participants S preempts P (noted
x : 〈G∣

∣S〉 $g P) when one of these condition occurs:

– x : 〈p → q̃ : A;G2
∣
∣S〉 $g ((x pq̃(M).R

∣
∣
xΠ

x
i (xqi p(y :

A).Pi ))) �S x)
∣
∣
x P if G2 �S C where C is terminal, or

x : 〈G2
∣
∣S − {p, q̃}〉 $g P

– x : 〈p → q̃ : 〈G1〉;G2
∣
∣S〉 $g ((x pq̃(y).R

∣
∣
xΠ

x
i (xqi p(y).(Pi ‖

Qi ))) �S x)
∣
∣
x P if G2 �S C where C is terminal, or

x : 〈G2
∣
∣S − {p, q̃}〉 $g P

– x : 〈p → q̃ : &l;G∣
∣S〉 $g (x pq̃ � l.R

∣
∣
xΠ

x
j x

q j p 

{. . . , l : Pi , . . .} �S x)

∣
∣
x P if G2 �S C where C is termi-

nal, or x : 〈G∣
∣S − {p, q̃}〉 $g P
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– x : 〈close∣∣S〉 $g close(x)
– x : 〈end∣∣S〉 $g wait(x).P
– x : 〈G1 ⊕ G2

∣
∣S〉 $g P if x : 〈G1

∣
∣S〉 $g P or x :

〈G2
∣
∣S〉 $g P

– x : 〈G1 & G2
∣
∣S〉 $g P if x : 〈G1

∣
∣S〉 $g P and x :

〈G2
∣
∣S〉 $g P

– x : 〈G∣
∣S〉 $g P if x : 〈G∣

∣S〉 $g P ′ and P ≡ P ′

Definition 8.5 (Contextual preemption)Wedefine x : 〈G∣
∣S〉 $c

P if for some C[ ], P ′, we have that P ≡ C[P ′], x /∈ fn(C[ ]),
and x : 〈G∣

∣S〉 $g P ′.

Intuitively, x : 〈G∣
∣S〉 $c P means that every local par-

ticipant in S is ready to trigger its respective communication
described inG. As a consequence, there is no deadlock for x :
if all the concerned participants are present there is a redex,
otherwise we are blocked due to the absence of some sender
or receiver.

Lemma 8.4 1. If x : 〈G∣
∣S1〉 $g P and S2 ∩ fn(G) = ∅,

then x : 〈G∣
∣S1∪S2〉 $g P

2. If x : 〈G∣
∣S1〉 $c P and S2 ∩ fn(G) = ∅, then x :

〈G∣
∣S1 ∪ S2〉 $c P.

Proof 1. By induction on x : 〈G∣
∣S1〉 $g P . 2. Trivial, using

point 1. ��
Lemma 8.5 1. if G1 �S G2 and x : 〈G1

∣
∣S〉 $g P, then

x : 〈G2
∣
∣S〉 $g P.

2. if G1 �S G2 and x : 〈G1
∣
∣S〉 $c P, then x : 〈G2

∣
∣S〉 $c

P

Proof 1. By induction on G1 �S G2. Some cases cannot
happen, because G1,G2 ∈ G, and therefore G1 ��S ω

2. Trivial, using point 1. ��
Lemma 8.6 1. if x : 〈G1

∣
∣S1〉 $g P, x : 〈G2

∣
∣S2〉 $g Q

and G1
S1∨S2 G2 �S1�S2 G3, then x : 〈G3

∣
∣S1 � S2〉 $g

P
∣
∣
x Q

2. if x : 〈G1
∣
∣S1〉 $c P, x : 〈G2

∣
∣S2〉 $c Q and G1

S1∨S2

G2 �S1�S2 G3, then x : 〈G3
∣
∣S1 � S2〉 $c P

∣
∣
x Q

Proof 1. Using Lemma 8.5, we can reason by induction on
a DNF of G1, G2.

2. We know that P ≡ C1[P ′] and that Q ≡ C2[Q′],
such that x /∈ fn(C1[ ], C2[ ]), x : 〈G1

∣
∣S1〉 $g P ′

and x : 〈G2
∣
∣S2〉 $g Q′. We can show by induction

on C1[ ] and C2[ ] that there is some C3[ ] such that
P

∣
∣
x Q ≡ C3[P ′∣∣

x Q
′], and we can conclude using point

1. ��
The following lemma states that if a session is finalized

and preempted, then the process (with the session restricted)
contains a redex.

Lemma 8.7 1. If G ↓ S and x : 〈G∣
∣S〉 $g P, then (νx)P

has a redex.

2. If G ↓ S and x : 〈G∣
∣S〉 $c P, then (νx)P has a redex.

Proof 1. By induction on x : 〈G∣
∣S〉 $g P , using the

hypothesis G ↓ S to show we have a full redex.
2. We have that P ≡ C[P ′] where x : 〈G∣

∣S〉 $g P ′ and
x /∈ fn(C[ ]). We can show that (νx)P ≡ C[(νx)P ′], and
we can conclude using point 1. ��
We now can prove progress.

Theorem 8.3 (Progress) If E; P � Γ , then there is a redex
in P, or for some x : 〈G∣

∣S〉 ∈ Γ we have x : 〈G∣
∣S〉 $c P.

Proof The proof is done by induction on the typing derivation
E; P � Γ .

– Rules (sendvalue), (recvvalue), (send), (recv), (seli ),
(case), (close), (wait): we have immediately the pre-
emption of a channel.

– Rules (weaken), (contract): we can easily apply the
induction hypothesis.

– Rule (extra): by Lemma 8.4.
– Rule (�): by Lemma 8.5.
– Rule (

∣
∣): in this case the last rule of the typing derivation

is as follows:

E; P � Γ1, x : 〈G1
∣
∣S1〉 E; Q � Γ2, x : 〈G2

∣
∣S2〉 G3 �S1�S2 G1

S1∨S2 G2

E; P∣
∣
x Q � Γ1, Γ2, x : 〈G3

∣
∣S1 � S2〉

If x : 〈G1
∣
∣S1〉 $c P and x : 〈G2

∣
∣S2〉 $c Q, then, using

Lemma 8.6, we have that x : 〈G3
∣
∣S1 � S2〉 $c P

∣
∣
x Q.

Otherwise, we conclude by induction.
– Rule (ν): let’s consider

E; P � Γ , x : 〈G∣
∣S〉 G ↓ S

E; (νx)P � Γ
(ν)

If x : 〈G∣
∣S〉 $g P , then, using Lemma 8.7, we have

that that (νx)P has a redex. Otherwise, we conclude by
induction.

– Rule (⊕): we immediately have a redex. ��

Example 8.2 Continuing Example 6.3, we can see that there
is no redex in Pp

∣
∣Pq , but there is a preemption:

x : 〈r → p : int; p → q : int; q → r : int;
close

∣
∣p, q〉 $c Pp

∣
∣Pq

That is, thefirst action that Pp
∣
∣Pq is ready to doon session x is

x : r → p : int, but this is not possible because participant
r for session x is not present. We can see that Pr is also
preempted, but in an incompatible way :

x : 〈q → r : int; r → p : int; close∣∣r〉 $c Pr
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That is, the first action that Pr is ready to do is x : q → r : int,
and this means that Pp

∣
∣Pq

∣
∣Pr cannot progress, and in fact it

is not typable.

Example 8.3 Continuing Example 6.4, we have that Pq
∣
∣
x Pr

is preempted:

x : 〈G ′
1 & G2 & G3

∣
∣q, r〉 $c Pq

∣
∣
x Pr

We recall the definition of G ′
1, G2, and G3:

G ′
1 := p → qr : 〈close〉; p → q : 〈close〉; close

G2 := p → q : 〈close〉; p → qr : 〈close〉; close
G3 := p → q : 〈close〉; p → q : 〈close〉; p → r : 〈close〉;

close

The first communication given by G ′
1 is p → qr : 〈close〉,

the first communication given by G2 is p → q : 〈close〉,
and the first communication given by G3 is either p →
q : 〈close〉 or p → r : 〈close〉, because both of these
communications are independent relatively to {q, r}. As a
consequence, the preemption of Pq

∣
∣
x Pr means that it is

ready to the action x : p → qr : 〈close〉, and it is also
ready to do the action x : p → q : 〈close〉, and also the
action x : p → r : 〈close〉. The action that will really be
done is chosen externally. Of course, it does not mean that
these three actions will be executed; in this example, partic-
ipant r only expects one message from p, so if the action
x : p → qr : 〈close〉 is executed, then x : p → r : 〈close〉
cannot be executed afterwards.

9 Conclusions

In this paper, we have introduced partial sessions and par-
tial (multiparty) session types, extending global session types
with the possibility to type also open systems, i.e., sessions
with missing participants. Sessions with the same name but
observed by different participants can bemerged if their types
are compatible; in this case, the type for the unified session
can be derived compositionally from the types of compo-
nents. To this end, we have provided a merging algorithm,
which allows us to detect incompatible types, due tomiscom-
munications or deadlocks, as early as possible; this differs
from usual session type systems which delay all the checks
to when the system is completed (i.e., at the restriction rule).
Therefore, in this theory the distinction between local and
global types vanishes: local types correspond to partial ses-
sion types for sessions with a single participant, and global
types correspond to finalized partial session types, i.e., in
which no participant is missing. We have also generalized
the notion of progress to accommodate the case when a par-

tial session cannot progress not due to a deadlock, but to
some missing participant.
Future work. An interesting application of partial session
types would be in the verification of composition of com-
ponents, like, e.g., containers à la Docker; to this end, we
can think of defining a typing discipline similar to the one
presented in this paper, but tailored for a formal models of
containers, like that in [8].

We conjecture that, for the type system presented in this
paper, both type checking and type inference are decidable.
The idea is that, in order to be typable, the structure of a
process has to match the structure of the type(s), up-to type
equivalence; hence, the typing derivation is bounded by the
complexity of process terms. At worst, this bound is expo-
nential, as in the application of type equivalence rule we have
to explore a possibly exponential space of equivalent types;
however, this limit could be improved by some algorithmic
machinery concerning the normal form of types, which we
leave to future work.

The currentmerging algorithm returns types thatmay con-
tain many equivalent subterms; a future work could be to
define shorter and more efficient representations. Another
interesting aspect of this algorithm is that it is defined by two
functions (map and mcomm), which can be updated sep-
arately in future variations; in particular, adding recursion
only requires to update the functionmap, while adding new
kinds of communication, or changing how communications
are merged, only requires to update the functionmcomm.

In this paper, we have considered a calculus with syn-
chronous multicast, along the lines of [11,32] and others.
However, it would be interesting to extend the definitions
and results of this paper to an asynchronous version of the
calculus, or a calculus where sessions can merge at runtime,
akin the names in the Fusion calculus [25]. This is not imme-
diate, as it requires non-trivial changes in the typing systems
and especially in the (already quite complex) merging oper-
ation.

Following the Liskov substitution principle, we could
define a subtyping relation by seeing& and⊕ as themeet and
join operator of a lattice, respectively. However, a semantical
understanding of this subtyping relation is not clear yet.

One intriguing possible extension would be to add some
form of encapsulation. For instance, if we have the type
p → q : m1; q → r : m2; p → r : m3; close from the
viewpoint of {q, r}, then we could be tempted to “erase”
the communication q → r : m2, since this communication
is purely internal, but this erasure would not be compatible
with equivalence:

p → q : m1; q → r : m2; p → r : m3; close ��{q,r}
p → q : m3; q → r : m2;
p → r : m1; close
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but p → q : m1; p → r : m3; close �{q,r} p → q :
m3; p → r : m1; close. How to add a form of encapsulation
to our type system is an open question.

Finally, to guarantee the correctness of most complex
proofs and definitions of this paper, it would be useful to
formalize them in a proof assistant, like Coq.
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