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Abstract
We study conformal metrics with prescribed Gaussian curvature on surfaces with coni‑
cal singularities and geodesic boundary in supercritical regimes. Exploiting a variational 
argument, we derive a general existence result for surfaces with at least two boundary com‑
ponents. This seems to be the first result in this setting. Moreover, we allow to have coni‑
cal singularities with both positive and negative orders, that is cone angles both less and 
greater than 2�.
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1 Introduction

The prescribed Gaussian curvature problem on a compact surface M under a confor‑
mal change of the metric is a classical problem in geometry dating back to Berger [10], 
Kazdan‑Warner [29] and Chang‑Yang [13, 14]. Its singular analog on surfaces with coni‑
cal singularities has been already considered by Picard [42] and it was later systematically 
studied by Troyanov [43]. This problem has been studied for several decades and there is 
by now a huge literature on it, see for example [15–17, 32, 39] and the more recent results 
by Malchiodi and his collaborators using PDE methods [3, 4, 6, 12, 35] or by Eremenko, 
Mondello and Panov using a geometric argument [23, 40, 41]. See also Mazzeo‑Zhu [38] 
for a different approach.

If M has a boundary, it is then natural to prescribe also the geodesic curvature on �M . 
For this problem we still do not have a complete picture and there are fewer results mainly 
concerning the regular case, see [2, 11, 14, 18, 26, 28] and the recent results by Malchiodi, 
Ruiz and their group [9, 19, 27, 30].

The higher dimensional analogue is the well‑known problem of prescribing the scalar 
curvature on a manifold and mean curvature on the boundary. In particular, the scalar flat 
case with constant mean curvature takes the name of Escobar problem which has a deep 
relation with the classical Yamabe problem, see for example [1, 24, 25, 37] and the refer‑
ences therein.

We are interested here in the singular flat geodesic case, namely we study conformal 
metrics with prescribed Gaussian curvature on surfaces with conical singularities and geo‑
desic boundary. It seems that the only result in this direction is the one by Troyanov [43] 
asserting the existence of such metrics in the subcritical case, see the discussion in the 
sequel. The goal of this paper is to give a first existence result in the supercritical regime, 
which holds for a large class of singular surfaces. To state it, we need to introduce some 
notation.

Let g be a metric on M. A point p ∈ M is a conical singularity of order � ∈ (−1,+∞) , 
or angle �

�
= 2�(1 + �) , for the metric g if

for some continuous positive function � . We collect the set of conical singularities pj of 
orders �j in the formal sum

and denote by (M,�) the surface with that set of conical singularities. An important quan‑
tity in this study is played by the singular Euler characteristic

Here �(M) is the Euler characteristic of M, that is �(M) = 2 − � − � , where � is the genus 
and � is the number of boundary components of M. The critical regime of a singular sur‑
face is related to the Moser‑Trudinger inequality. Following Troyanov [43] and recalling 
that we have non‑empty boundary, we denote the Trudinger constant of (M,�) by

g(z) = �(z)|z|2�|dz|2 locally around p,

� =

N∑
j=1

�jpj

�(M,�) = �(M) +

N∑
j=1

�j.
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and give the following definition.

Definition 1.1 The singular surface (M,�) is:

Observe that in the supercritical case we always have 𝜒(M,�) > 0 . The existence of 
conformal metrics with prescribed Gaussian curvature on surfaces with conical singulari‑
ties and geodesic boundary (possibly with corners) in the subcritical regime has been set‑
tled down by Troyanov [43]. Indeed, in this case one is reduced to a minimization problem 
of a coercive functional. On the contrary, we are not aware of any result concerning the 
critical/supercritical case. Our main contribution is the following general existence result 
in the supercritical regime. We will refer to

as the set of critical values. Then, the following holds.

Theorem 1.1 Let (M,�) be a supercritical singular surface with �j ≥ −
1

2
 for j = 1,… ,N 

and with at least two boundary components. Let K be a positive Lipschitz function on M. 
If 4��(M,�) ∉ Γ

�
 , then there exists a conformal metric with Gaussian curvature K on 

(M,�) and geodesic boundary.

Remark 1.2 It is not difficult to see from the proof that we can allow to have geodesic 
boundary with corners. More precisely, if 𝜕M = B1 ⊔⋯ ⊔ Bm we can treat the case where 
the boundary components Bl , l > 1 , have corners at the points qj ∈ Bl of angles 

�
�j
= 2�

(
1

2
+ �j

)
 with 𝛽j > 0 , see Lemma 3.7.

Remark 1.3 We stress that we allow to have conical singularities with both positive and 
negative orders, that is cone angles both less and greater than 2� , provided that �j ≥ −

1

2
 , 

see the discussion below.

The argument is based on Morse theory in the spirit of [3], where the closed surface 
(empty boundary) case is considered, by studying the Liouville PDE (1) and its associ‑
ated functional J

�
 given in (4). More precisely, the desired conformal metric will be real‑

ised as a min‑max solution of (1), which in turn is produced by the topological changes in 
the structure of sublevels of J

�
 . Indeed, high sublevels have trivial topology while we will 

show that low sublevels are non‑contractible.
By means of improved Moser‑Trudinger inequalities, the low sublevels can be described 

by some formal barycenters of M, that is family of unit measures supported in a finite number 
of points of M . Compared to the classical Liouville equation, the difficulties are due both to 
the presence of conical singularities and the boundary �M . Indeed, the unit measures may be 
supported around a conical singularity or on the boundary, which makes the analysis highly 

�(M,�) = 1 +min
j

{
�j, 0

}

subcritical if 𝜒(M,�) < 𝜏(M,�)

critical if 𝜒(M,�) = 𝜏(M,�)

supercritical if 𝜒(M,�) > 𝜏(M,�).

Γ
�
=

{
4𝜋n + 8𝜋

∑
j∈J

(1 + 𝛼j) ∶ n ∈ ℕ ∪ {0}, J ⊆ {1,… ,N}

}
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non‑trivial. We tackle this problem with the following rough idea: we define the weight of a 
point p ∈ M according to a local Moser‑Trudinger inequality around that point, which gives 
a local volume control in terms of the Dirichlet energy, see Lemma 3.4. We get an amount of 
8� near regular points, 8�

(
1 +min{�j, 0}

)
 around a singular point and 4� for points lying 

on the boundary �M (this is natural since the volume around a point on the boundary is half 
the volume of a point in the interior of the surface). The idea is then to retract the barycenters 
of M onto those of a boundary component of M, where the points have the smallest weight. 
Here, we use the assumptions �j ≥ −

1

2
 and the fact that the surface has at least two boundary 

components. Indeed, we can prove that the barycenters of a boundary component embed non‑
trivially into arbitrarily low sublevels of J

�
 yielding non‑trivial topology of the latter.

We stress once more that this idea allows us to consider conical singularities with both 
positive and negative orders with a simple unified approach. Up to now, positive and nega‑
tive singularities have been studied separately with different arguments, see for example [3, 
4, 35] for the positive case and [12] for the negative one. We mention here that arbitrarily 
signed singularities have been considered in the sign‑changing prescribed curvature prob‑
lem in [20] (see also [21]) and for Toda systems in [8] with different methods.

The paper is organized as follows. In Sect. 2, we introduce the Liouville PDE and in 
Sect. 3 we prove the main result.

2  The Liouville equation

In this section, we set up the PDE approach. Let g0 be a smooth metric representing any 
given conformal structure on M and consider a new metric g = eug0 with conical singulari‑
ties at the points pj . The curvatures then transform according to the following law:

where Δ = Δg0
 stands for the Laplace‑Beltrami operator associated to the metric g0 and � is 

the outward normal vector to �M . Here, K0 , K are the Gaussian curvatures and h0 , h are the 
geodesic curvature of the boundary with respect to metrics g0 and g, respectively. The coni‑
cal singularities are encoded by the behavior

First, we desingularize the behavior of u around the conical points by writing

where Gpj
 is the fundamental solution of the Laplace equation on M with pole at pj , i.e. the 

unique solution to

(1)

⎧⎪⎨⎪⎩

−Δu + 2K0 = 2Keu in M ⧵ {p1,… , pN},

�u

��

+ 2h0 = 2he
u

2 on �M,

u(z) = 2�j log |z| + O(1) locally around pj.

v = u + 4�

N∑
j=1

�jGpj
,
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with ∫
M
Gpj

= 0 , where �pj is the Dirac delta with pole pj and |M| is the area of M. Here, and 
in the rest of the paper the volume form is induced by the metric g0 . Next, we can always 
assume that our initial metric has constant Gaussian curvature and that �M is geodesic, see 
for example Proposition 3.1 in [30]. Since we are interested in target metrics inducing geo‑
desic boundary, we are led to consider the following problem:

where K0 ≡ const. and K
�
= 2Ke

−4�
∑N

j=1
�jGpj . Observe that we have the singular behavior

Now, by the Gauss‑Bonnet formula (recall that we have flat geodesic) one necessarily has

We can thus rewrite the problem (2) as

with � = 4��(M,�) . Therefore, the main existence result in Theorem 1.1 will follow once 
we prove the following result.

Theorem 2.1 Let M be a surface with at least two boundary components. Let �j ≥ −
1

2
 for 

j = 1,… ,N and let K be a positive Lipschitz function on M. If � ∉ Γ
�
 , then there exists a 

solution to (3).

The proof will be presented in the next section and is based on the variational structure 
of the problem. Since the equations in (3) are invariant up to an additive constant, we shall 
restrict ourselves to the subspace of functions with zero average

and look for critical points of the Euler‑Lagrange functional

⎧
⎪⎨⎪⎩

−ΔGpj
= �pj

−
1

�M� in M,

�Gpj

��

= 0 on �M,

(2)

⎧⎪⎪⎨⎪⎪⎩

−Δv + 2K0 +
4�

�M�
N�
j=1

�j = K
�
ev inM,

�v

��

= 0 on �M,

K
�
(z) = C|z|2�j (1 + O(1)) locally around pj.

∫M

K
�
ev = ∫M

2K0 + 4�

N∑
j=1

�j = 4��(M) + 4�

N∑
j=1

�j = 4��(M,�).

(3)

⎧⎪⎪⎨⎪⎪⎩

−Δv + 2K0 +
4�

�M�
N�
j=1

�j = �

K
�
ev

∫
M
K
�
ev

inM,

�v

��

= 0 on �M,

H
1
(M) =

{
v ∈ H1(M) ∶ ∫M

v = 0

}
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3  The proof of the main result

By the discussion in the previous section, the existence of a conformal metric as 
described in Theorem  1.1 will follow by solving (3). Therefore, we prove here Theo‑
rem 2.1 by looking at the functional J

�
 given in (4). We are inspired here by the argu‑

ment proposed in [3], where the closed surface case is considered. The aim will be to 
detect a change of topology between its sublevels

We start with the following general blow‑up picture, referring to [6] for what concerns the 
case of positive singularities, to [5] for negative singularities and to [7, 44] for boundary 
blow‑up.

Proposition 3.1 ([5–7, 44]) Let (vn)n be a sequence of solutions to (3) with �n → � . Then, 
up to a subsequence, one of the following alternatives holds: 

1. (Compactness): vn are uniformly bounded.
2. (Blow-up): max

M
vn → +∞ and there exists a finite blow‑up set S = {q1,… , qm} such 

that 

 in the sense of measures, where 

In particular, if � ∉ Γ
�
 then vn are uniformly bounded.

The latter compactness property is needed to bypass the Palais‑Smale condition, as it 
was shown in [31], where a deformation lemma is used to derive the following crucial 
result.

Lemma 3.2 Suppose � ∉ Γ
�
 and that J

�
 has no critical levels inside [a, b]. Then, Ja

�
 is a 

deformation retract of Jb
�
.

Next, by Proposition  3.1, J
�
 has no critical points above some high level b ≫ 0 . 

Therefore, the deformation Lemma 3.2 can be applied to obtain the following topologi‑
cal property (see also Corollary 2.8 in [33]).

(4)J
�
(v) =

1

2 ∫M

|∇v|2 − � log∫M

K
�
ev, v ∈ H

1
(M).

Ja
�
=
{
v ∈ H

1
(M) ∶ J

�
(v) ≤ a

}
.

�n

K
�
evn

∫
M
K
�
evn

⇀

m∑
j=1

�j�qj

⎧⎪⎨⎪⎩

�j = 8�(1 + �j) if qj = pj,

�j = 8� if qj ∈ M ⧵ {p1,… , pN},

�j = 4� if qj ∈ �M.
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Proposition 3.3 Suppose � ∉ Γ
�
 . Then, there exists b ≫ 0 such that Jb

�
 is a deformation 

retract of H
1
(M) and it is thus contractible.

We are left with showing that the low sublevels of J
�
 are non‑contractible. To this 

end we will need improved versions of the Moser–Trudinger (Troyanov) inequality. 
This is done by means of a localized version of the Moser–Trudinger inequality, which 
is based on cut‑off functions and spectral decomposition, see for example the approach 
in Proposition 2.3 in [36], where the Toda system is considered. This idea has its ori‑
gin in [15] and has been then adapted by many authors, see for example [12] and [22] 
for the singular and regular case, respectively. Observe that the inequality depends on 
whether we are localizing it around a regular point, a conical point or at the boundary.

Lemma 3.4 [12, 15, 22] Let 𝛿 > 0 and let Ω ⊂
�Ω ⊂ M be such that d

(
Ω, 𝜕�Ω

)
> 𝛿 . 

1. (Regular case): if d
(
�Ω, pj

)
> 𝛿 for all j’s and d

(
�Ω, 𝜕M

)
> 𝛿 , then there exists C

�,𝛿 > 0 

such that for all v ∈ H
1
(M)

2. (Singular case): if pj ∈ Ω for some j, d
(
�Ω, pl

)
> 𝛿 for all l ≠ j and d(Ω, 𝜕M) > 𝛿 , then 

there exists C
�,𝛿 > 0 such that for all v ∈ H

1
(M)

3. (Boundary case): if d
(
�Ω, pj

)
> 𝛿 for all j’s, then there exists C

�,𝛿 > 0 such that for all 

v ∈ H
1
(M)

The above different scenarios make the Morse approach for Liouville equations in 
supercritical regimes quite challenging, especially in the case where both positive and 
negative singularities are present. Here, we avoid such complexity by using the follow‑
ing idea: we define the weight of a point p ∈ M according to the constant in the above 
local Moser–Trudinger inequalities around that point, which indicates the local volume 
control in terms of the Dirichlet energy. Therefore, regular points have weight 8� , sin‑
gular points 8�

(
1 +min{�j, 0}

)
 and boundary points 4� . The idea is to focus on points 

with the smallest weight, that is points on the boundary (recall �j ≥ −
1

2
 ), through a suit‑

able retraction, see the discussion later on. Roughly speaking, we will prove that the 
boundary generates non‑trivial homology of the low sublevels of J

�
 . This is done by 

describing the functions in the low sublevels by means of configurations supported on 
the boundary and by showing that the non‑trivial homology groups of the boundary 
inject into the homology groups of the low sublevels, see (9) for more details.

8� log�Ω

K
�
ev ≤ 1

2 �̃Ω

|∇v|2 + ��M

|∇v|2 + C.

8�
(
1 +min{�j, 0}

)
log�Ω

K
�
ev ≤ 1

2 �̃Ω

|∇v|2 + ��M

|∇v|2 + C.

4� log�Ω

K
�
ev ≤ 1

2 �̃Ω

|∇v|2 + ��M

|∇v|2 + C.
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To this end, we start by observing that, in Lemma 3.4, a concentration of the confor‑
mal volume K

�
ev in Ω , in the sense

would give a global volume control in terms of the Dirichlet energy. We conclude that 
whenever K

�
ev is concentrated in different regions of M an improved Moser–Trudinger 

inequality holds just by summing up the local inequalities. Improved inequalities in turn 
give improved lower bounds on the functional J

�
 . Therefore, in the low sublevels, K

�
ev 

cannot be concentrated in too many different regions, i.e. we have the following property. 
Here, we have just to observe that, since �j ≥ −

1

2
 , any local Moser–Trudinger inequality in 

Lemma 3.4 gives a volume control of at least 4�.

Lemma 3.5 Suppose 𝜆 < 4(k + 1)𝜋 . Then, for any 𝜀, r > 0 , there exists L = L(𝜀, r) > 0 
such that for any v ∈ J−L

�
 there exist k points {q1,… , qk} ⊂ M such that

Proof Assume (5) does not hold. Then, by a standard covering lemma (see for instance 
[33], Lemma 3.3), there exists 𝛿 > 0 and Ω1,… ,Ωk+1 ⊂ M such that

For any j = 1,… , k + 1 we apply Lemma 3.4 with Ω = Ωj,
̃Ω = B

�
(Ωj) . In the boundary 

case, we get

In the regular case, since Jensen’s inequality gives log ∫
M
K
�
ev ≥ −C , then

The same computation holds true in the singular case, since 8�
(
1 +min{�j, 0}

) ≥ 4� ; 
therefore, summing on all j’s and taking account that B

�
(Ωi) ∩ B

�
(Ωj) = � for i ≠ j , we get

�Ω

K
�
ev

∫
M
K
�
ev

≥ 𝛾 , for some 𝛾 > 0,

(5)�⋃k

i=1
Br(qi)

K
�
ev

∫
M
K
�
ev

≥ 1 − �.

d(Ωi,Ωj) ≥ 2�, ∀i ≠ j �Ωj

K
�
ev

∫
M
K
�
ev

≥ �.

4� log�M

K
�
ev ≤ 4� log�Ωj

K
�
ev + 4� log

1

�

≤ 1

2 �B
�
(Ωj)

|∇v|2 + ��M

|∇v|2 + C.

4� log�M

K
�
ev ≤ 8� log�M

K
�
ev + C

≤ 8� log�Ωj

K
�
ev + C

≤ 1

2 �B
�
(Ωj)

|∇v|2 + ��M

|∇v|2 + C.

4(k + 1)� log�M

K
�
ev ≤ (

1

2
+ k�

)
�M

|∇v|2 + C.
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It follows that

Since 𝜆 < 4(k + 1)𝜋 , we can choose 𝜀 > 0 such that 4(k + 1)� = �(1 + 2k�) and we get 
J
�
(v) ≥ −L for some L > 0 , which concludes the proof.   ◻

This naturally leads us to describe the low sublevels by unit measures supported in (at 
most) k points of M , known as the formal barycenters of M of order k:

Indeed, one can project the measure K
�
ev

∫
M
K
�
ev

 on the closest element in Mk , see Lemma 4.9 in 
[22].

Proposition 3.6 Suppose 𝜆 < 4(k + 1)𝜋 . Then, there exists a projection Ψ ∶ J−L
�

→ Mk , for 
some L ≫ 0.

Now, to restrict our target on barycenters supported only on the boundary, we need the 
following result. We recall that M is assumed to have at least two boundary components 
and we write

with m > 1 , where Bi ≃ �
1.

Lemma 3.7 Suppose 𝜆 < 4(k + 1)𝜋 . Then, there exists a map ΨΠ ∶ J−L
�

→ (B1)k , for some 
L ≫ 0.

Proof We start by defining a global retraction Π ∶ M → B1 . To this end, consider the space 
ℝ

3 ∋ (x, y, z) and the projection P ∶ ℝ
3
→ {z = 0} . We point out that any two compact sur‑

faces with the same genus and same number of boundary components are homeomorphic. 
Therefore, we can assume without loss of generality that M is embedded in ℝ3 such that 
in the holes B1 and B2 passes the same line parallel to the z‑axis such that P(M) is a disk 

J
�
(v) ≥ 1

2

(
1 −

�

4(k + 1)�
(1 + 2k�)

)
�M

|∇v|2 − C.

(6)Mk =

{
k∑

i=1

ti�qi ∶

k∑
i=1

ti = 1, ti ≥ 0, qi ∈ M,∀ i = 1,… , k

}
.

𝜕M = B1 ⊔⋯ ⊔ Bm,

Fig. 1  The construction of the 
retraction Π ∶ M → B

1
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with at least one hole H with �H = P(B1) , see Fig. 1. Therefore, there exists a retraction 
R ∶ P(M) → P(B1) which induces a retraction Π ∶ M → B1.

Now, by Proposition 3.6 there exists a projection Ψ ∶ J−L
�

→ Mk , for some L ≫ 0 . The 
desired map ΨΠ ∶ J−L

�
→ (B1)k is then defined through the composition

where Π∗ denotes here the push‑forward of measures induced by the above retraction.  
 ◻

To gain some topological properties of the low sublevels we construct now a reverse 
map Φ ∶ (B1)k → J−L

�
 . To this end, we consider a family of regular bubbles centered at 

the boundary component B1 and we set, for Λ > 0 , Φ ∶ (B1)k → H
1
(M) as

where

and �Λ,� is the average of �Λ,� . Then, the following estimates hold true.

Lemma 3.8 Let �Λ,� , � ∈ (B1)k be the functions defined above. Then, for Λ → +∞ we have

Moreover,

in the sense of measures.

The latter estimates are by now standard and we refer for example to Proposition 4.2 
in [34] where the regular closed surface case is considered. The presence of the bound‑
ary can be handled with obvious modifications. Indeed, the only difference is that the 
main contribution of the Dirichlet energy (8) comes from half‑balls around the centers 
of the bubbles and it is thus divided by a factor 2. Observe that we can neglect the effect 
of the singularities since we are considering bubbles centered on the boundary compo‑
nent B1 which does not have conical points.

By plugging the above estimates into the functional J
�
 it is then easy to conclude the 

following.

J−L
�

Ψ
⟶Mk

Π∗

⟶(B1)k,

(7)Φ ∶ � =

k∑
i=1

ti�qi ↦ �Λ,� − �Λ,� ,

�Λ,�(y) = log

k∑
i=1

ti

(
Λ

1 + Λ2d(y, qi)
2

)2

,

1

2 �M

|∇�Λ,�|2 ≤ 8k�(1 + o(1)) logΛ,

log�M

K
�
e�Λ,�−�Λ,� = 2(1 + o(1)) logΛ.

(8)
K
�
e�Λ,�

∫
M
K
�
e�Λ,�

⇀ � ∈ (B1)k,



Prescribing Gaussian curvature on surfaces with conical…

1 3

Proposition 3.9 Suppose 𝜆 > 4k𝜋 and let Φ be given as in (7). Then, for any L > 0 there 
exists Λ ≫ 0 such that Φ ∶ (B1)k → J−L

�
.

Proof Indeed, we have

and since 𝜆 > 4k𝜋 the thesis follows by choosing suitably Λ ≫ 0 .   ◻

We can now prove the main result.

Proof of Theorem  2.1 Take � ∈ (4k�, 4(k + 1)�) ⧵ Γ
�
 . By Lemma  3.7 there exists a map 

ΨΠ ∶ J−L
�

→ (B1)k , for some L ≫ 0 . On the other hand, by Proposition 3.9 we have a map 
Φ ∶ (B1)k → J−L

�
 . Such maps are natural in the sense that the composition

is homotopic to the identity on (B1)k . Here we recall (8) holds true. We refer to Proposition 
4.4 in [34] for more details on this point. Passing to the induced maps Φ∗,Ψ∗

Π
 between 

homological groups H∗ we derive Ψ∗
Π
◦Φ∗ = Id∗

(B1)k
 . In particular,

injectively. Since (B1)k ≃
(
�
1
)
k
≃ �

2k−1 , see for example Proposition 3.2 in [4], we deduce 
that J−L

�
 is not contractible. But Jb

�
 is contractible for b ≫ 0 by Proposition 3.3. The exist‑

ence of a solution to (3) follows by Lemma 3.2.   ◻
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