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Abstract: Dietary isoflavones have been associated with a lower risk of gastric cancer (GC), but
the evidence for this association is still limited. We investigated the association between isoflavone
intake and GC risk using data from a case–control study including 230 incident, histologically
confirmed GC cases and 547 controls with acute, non-neoplastic conditions. Dietary information
was collected through a validated food frequency questionnaire (FFQ) and isoflavone intake was
estimated using ad hoc databases. We estimated the odds ratios (OR) and the corresponding 95%
confidence intervals (CI) of GC using logistic regression models, including terms for total energy
intake and other major confounders. The OR for the highest versus the lowest tertile of intake was 0.65
(95%CI = 0.44–0.97, p for trend = 0.04) for daidzein, 0.75 (95%CI = 0.54–1.11, p for trend = 0.15) for
genistein, and 0.66 (95%CI = 0.45–0.99, p for trend = 0.05) for total isoflavones. Stratified analyses by
sex, age, education, and smoking showed no heterogeneity. These findings indicate a favorable effect
of dietary isoflavones on GC.
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1. Introduction

Gastric cancer (GC) is the fifth cause of death from cancer globally and also re-
mains a frequent. cancer in Italy [1]. Although GC mostly affects countries with low
or middle-income economies, particularly in Asia, this malignancy caused approximately
50,000 deaths in Europe in 2022 and will cause over 8200 deaths in Italy in 2024 [1–3].
Infection with Helicobacter pylori, tobacco smoking, heavy alcohol consumption and selected
dietary habits are strongly associated with the risk of GC. In particular, high consumption
of red meats and salt-preserved foods, and low consumption of fruit have been associated
with excess GC risk [4–6].

Flavonoids are chemical compounds found in plant food and are among the candidates
explaining the favorable effect of plant-based food on GC risk [4,7]. Isoflavones, represented
by genistein and daidzein, are a class of flavonoids characterized by a peculiar estrogen-like
structure, and are mainly, but not exclusively, found in legumes [8]. Various biological
mechanisms mediate the effect of isoflavones on GC, including their antioxidant and growth
inhibitor activities [9]. Genistein lowered GC cell stem-like properties by downregulating
Gli1 and CD44 expression [10], as well as other stem cell markers including OCT-4, Sox2
and Nanog [11]. Additionally, by suppressing COX-2 [12] and upregulating the tumor
suppressor PTEN [13], it inhibited proliferation of GC cells. In nude mice, genistein
decreased the Bcl-2/Bax ratio, inducing apoptosis in transplanted human GC cells [14],
and, by inhibiting the same pathway, daidzein caused the apoptosis of human GC cells [15].
Daidzein, genistein and isoflavones’ aglycones induced cytostasis in transplanted human
GC cells and a reduction in cachexia in mice [16]. Among them, aglycones exerted the
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most effective antitumoral action. Moreover, in human gastric cells, equol inhibits growth
and proliferation and induces apoptosis [17,18] by enhancing the ERK1/2 pathway and
dephosphorylating PAkt at Thr450. Daidzein also undergoes a two-step transformation by
gut microbiota, resulting in dihydrodaidzein (DHD), O-desmethylangolensin (O-DMA)
and then equol [19–21], which are bioactive compounds with a strong radical-scavenger
activity [19,22].

A meta-analysis reported a pooled relative risk of 0.89 (95%CI = 0.77–1.03) for the
highest versus the lowest levels of isoflavone intake from cohort studies, as well as an OR
of 0.99 (95%CI = 0.72–1.36) from case–control studies [23].

We estimated the content of isoflavones from the European database “Vegetal Estro-
gens in Nutrition and the Skeleton” (VENUS) [24] on data from an Italian case–control
study in order to investigate the relationship between dietary isoflavones and GC risk.

2. Materials and Methods

We used data from a case–control study on GC conducted in the greater Milan area,
Italy, between 1997 and 2007. The cases featured 230 individuals, 143 males and 87 females,
aged 22–80 years (median age 63 years) with incident, histologically confirmed GC who
were admitted to general and major teaching hospitals. The controls were 547 individuals,
286 males and 261 females, aged 22–80 years (median age 63 years) with no history of cancer.
They were enrolled in the same hospitals as cases for non-neoplastic acute conditions that
were unrelated to risk factors for GC or to long-term modification of diet. Controls were
matched to cases by sex and age with a ratio of 2:1 for males and 3:1 for females. Twenty
percent of controls were admitted for traumatic disorders, sprains and fractures; 23% were
admitted for other orthopedic conditions; 22% were admitted for acute surgical conditions,
and 35% were admitted for other miscellaneous illnesses. Less than 5% of the contacted
subjects refused to participate.

The participants were interviewed during their hospital stay by trained interviewers
using a structured questionnaire, which included questions about personal and socio-
demographic characteristics and lifestyle habits, such as tobacco and alcohol consumption,
personal medical history and family history of GC in first degree relatives. Individuals who
had quit smoking for at least one year were considered to be former smokers.

Dietary habits were assessed through a food frequency questionnaire (FFQ) which was
satisfactorily tested for reproducibility [25] and validity [26]. The FFQ included questions
on the weekly consumption of 78 foods items, recipes, or food groups, including beverages,
in the 2 years preceding the diagnosis (for cases) or the hospital admission (for controls).
Intakes lower than once a week but equal or higher than once per month were coded as 0.5.
In each section, open questions were used to assess the frequency of consumption and the
portions of food items that were not included in the FFQ (one open question each for milk
and hot beverages, cereal products, meat and other first courses and desserts; two open
questions each for side dishes and fruit).

Daily energy intake was estimated using an Italian food composition database [27,28],
and data on isoflavone intake were derived from the VENUS database [24] (accessed on 8
May 2008) and other sources when needed [29–31].

We derived the odds ratios (ORs) of GC and the corresponding 95% confidence
intervals (CIs) according to tertiles (on the distribution of controls) of isoflavone intake
using logistic regression models. The models included terms for sex, age (quinquennia),
years of education (<7, 7–11, ≥12), year of interview, tobacco smoking status (never, former,
current <15 and ≥15 cigarettes per day), and total energy intake (tertiles). We also adjusted
for vegetable and fruit consumption. In addition, we analyzed the ORs of GC by the strata
of sex, age, education and smoking, and we evaluated the heterogeneity by the likelihood
ratio test.

We performed all analyses with SAS software version 9.4 (SAS Institute, Inc., Cary,
NC, USA).
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3. Results

Table 1 shows the distribution of 230 cases of GC and 547 controls according to selected
factors. Cases tended to be less educated, were more frequently current or former smokers,
and had a higher GC family history than controls.

Table 1. Distribution of 230 cases of gastric cancer and 547 controls according to sex, age, education,
smoking status and family history of gastric cancer. Italy, 1997–2007.

Characteristics Cases Controls

No. (%) No. (%)

Sex
Males 143 62.2 286 52.3

Females 87 37.8 261 47.7

Age
<50 39 17 97 17.7

50–60 58 25.2 137 25.1
60–70 86 37.4 202 36.9
≥70 47 20.4 111 20.3

Education (years)
<7 95 41.8 236 43.5

7–11 86 37.9 174 32
≥12 46 20.3 133 24.5

Smoking status
Never smokers 96 41.9 261 47.8

Former smokers 75 32.8 167 30.6
Current smokers

<15 cigarettes/day 25 10.9 49 9
≥15 cigarettes/day 33 14.4 69 12.6

Family history of gastric cancer
No 200 87.0 516 94.3
Yes 30 13.0 31 5.7

Table 2 gives the mean daily intake of daidzein, genistein and total isoflavones among
cases and controls, as well as the ORs of GC according to tertiles of intake. The mean
intake was 21.8 µg/day for daidzein, 24.4 µg/day for genistein and 46.2 µg/day for total
isoflavones. Comparing the third versus the first tertile, the OR was 0.65 (95%CI = 0.44–0.97,
p for trend = 0.04) for daidzein, 0.75 (95%CI = 0.54–1.11, p for trend = 0.15) for genistein
and 0.66 (95%CI = 0.45–0.99, p for trend = 0.05) for total isoflavones.

Table 2. Odds ratios a (OR) and 95% confidence intervals (C) of gastric cancer for daidzein, genistein
and total isoflavone tertiles of intake among 230 cases and 547 controls. Italy, 1997–2007.

Mean (SD) b Tertiles p for Trend

I II III

Daidzein
(µg/day)
Cut-off 21.8 (12.8) - 15.7 24.4

Controls:cases 182:88 182:72 183:70

OR (95%CI) 1 0.71
(0.48–1.05)

0.65
(0.44–0.97) 0.04
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Table 2. Cont.

Mean (SD) b Tertiles p for Trend

Genistein
(µg/day)
Cut-off 24.4 (14.2) - 17.5 26.6

Controls:cases 183:83 181:73 183:74

OR (95%CI) 1 0.81
(0.55–1.20)

0.75
(0.54–1.11) 0.15

Total isoflavones
(µg/day)
Cut-off 46.2 (23.2) - 35.3 51.5

Controls:cases 182:87 183:73 182:70

OR (95%CI) 1 0.74
(0.50–1.09)

0.66
(0.45–0.99) 0.05

a Derived from logistic regression model adjusting for sex, age, education, year of interview, smoking, and total
energy intake. b Defined among controls.

Figure 1 shows the ORs and the corresponding 95%CI of GC for the highest versus
the lowest tertile of total isoflavone intake in the strata of sex, age, education, and smoking
status. No heterogeneity trends was observed across strata.

Figure 1. Odds ratios a (OR) of gastric cancer and corresponding 95% confidence intervals (C) for
the highest versus the lowest tertile of isoflavone intake in the strata of selected characteristics. Italy
1997–2007. a Derived from the logistic regression model adjusting for sex, age, education, year of
interview, smoking status, and total energy intake.

4. Discussion

Our study indicates an inverse association between dietary isoflavones and GC risk.
The OR estimates were consistent across strata of major covariates.

The anticarcinogenic effect of isoflavones has been assessed in vitro and
in vivo [10–19,22]. Besides the radical-scavenging and antiproliferative mechanisms [9],
the favorable effect on GC can be linked to the interplay between isoflavones and gut micro-
biota. In GC patients, the short chain fatty acid (SCFA) production is decreased [32]. In vivo
models and in the Simulator of the Human Intestinal Microbial Ecosystem, isoflavones
enhanced the SCFA production [33,34]. Equol levels also have been related to the presence
of the two SCFAs butyrate and propionate [35]. This indicates that dietary isoflavones
might influence GC risk through a favorable effect on SCFA production, with their effects
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potentially being enhanced by a healthy gut microbiota. Moreover, in vitro, genistein
inhibited the proliferation of H. pylori, a major GC risk factor [36].

Isoflavone intakes have been inversely related to GC risk, but the association is still
controversial [23,37]. Various studies on this subject were conducted in Asia [23], where the
average dietary isoflavones intake is about 10 times greater compared to Europe [38,39] due
to their high soy product consumption, and other studies came from European countries [38,40],
where food sources of isoflavones are more varied [41,42]. In our population, the isoflavones
are mainly derived from non-soy legumes, cooked vegetables, and fruits, allowing us to
evaluate the effect of non-soy dietary isoflavones on GC.

Our results were favorable despite a modest mean isoflavone intake in our population.
This can be related to various aspects influencing isoflavone bioavailability. Firstly, it can be
affected by the interaction with the intake of other dietary factors, such as fermentable fiber,
which are positively related to a greater equol production [43] and to an improved bioavail-
ability [44,45]. Increased equol production is also directly related to a high PUFA–SFA ratio
and a vitamin A-rich diet [46]. Secondly, bioavailability may be influenced by cooking meth-
ods and food characteristics [46,47]. High processing temperatures have been demonstrated
to enhance isoflavones bioavailability [47,48], and isoflavone aglycones, which are more
bioavailable than glycosides [49], are often found in thermally processed foods [47,50,51].
Moreover, in our population, consuming boiled or canned non-soy legumes may have
provided beneficial amounts of aglycones. The bioavailability of isoflavones may also vary
according to sex, age, ethnicity (e.g., equol producers are lower in Caucasian than in Asian
populations), dietary habits and health status [52,53]. However, we adjusted for some
of these covariates. Isoflavones may be also considered a proxy for fruit and vegetable
consumption [54] and other favorable aspects (e.g., Mediterranean diet [55]), but when we
adjusted for vegetable and fruits, our estimates changed only marginally.

In our study, the inverse association tended to be more pronounced for daidzein than
genistein. The mechanisms by which daidzein and genistein may act on GC are diverse,
but there is no clear explanation for this. The isoflavones’ estrogenic-like activity should
be considered in GC risk modulation, as exposure to estrogens has been associated with a
lower GC risk in both males [56] and females [57], and the outcome may be related to the
magnitude of the estrogenic effect [58]. Exposure to tobacco may also affect the isoflavones’
effect on GC risk. Lower levels of miR-218 have been associated with the activation of the
cancer-promoting transcription factor NF-kB and have been observed in GC cells and the
bronchial epithelium of smokers [59]. The inhibitory effect of genistein on NF-kB [12] may
vary between smokers and non-smokers, though the issue remains unsettled.

A limitation of this study was the unavailability of data about H. pylori infection.
However, case–control studies have limited ability to test for H. pylori, as the markers of
infection fall after the onset of GC [60,61]. Regarding selection bias, cases and controls
were recruited in comparable hospital settings, and the response rate was nearly complete.
All controls admitted for conditions linked to long-term dietary changes, or with chronic
pathologies, were excluded. To minimize information bias, cases and controls were inter-
viewed by the same trained interviewers in similar settings using a satisfactorily validated
and reproducible FFQ [25,26], although this was not specifically designed to evaluate
isoflavone intake. As a strength, the use of a European food composition database [24]
allowed us to improve the estimate of isoflavone intake in our Italian population. Addition-
ally, we were able to account for many potential confounding variables, including energy
intake. A major strength of this analysis was to provide findings from an Italian population,
where isoflavone intake derives from multiple food sources and information on the role of
isoflavones in regard to GC risk is still scant.

5. Conclusions

Isoflavones, mainly derived from non-soy legumes, appear to exert a favourable
impact on gastric cancer risk in an Italian population. The trends in risk were significant
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for total isoflavones and daidzein. This supports the message that a diet rich in legumes
has a protective effect on gastric carcinogenesis.
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