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Abstract. In this paper, we wish to present some simplified cases of discrete Bak-
Sneppen models in which explicit computations via Markov chains are possible, hence
reaching a better understanding of some rather hidden phenomena of the general case:
in particular ”avalanches” can be read in terms of mean waiting times and in terms of
transitions between structures. The simple models allow us to introduce new frames
that do not seem to have been considered in the previous literature, namely the case of
partitioned Bak-Sneppen frames, that appear more realistic from the point of view of
speed of evolution and do not present a unique criticality level, but a staircase tending
towards a final equilibrium level, cadenced by an increasing sequence of footholds. The
introduction summarizes Bak-Sneppen models, starting from the central model due to
Bak and Sneppen, and recalls their use in applied sciences. The first section gives the ge-
neral frame of models where locality and globality coexist, the second section shows the
simplest case of a matching between locality and globality, that will become exemplar
in the most complex frames of Bak-Sneppen processes. The main quantitative theorems
are stated and proved in the third section and finally the fourth section presents exam-
ples that illustrate the more sophisticated points of our paper and the use (and limits)
of experimental results, while the fifth section considers real world situations where Bak
Sneppen partitioned schemes can be tailored to represent the core of their evolution.

Keywords: Self organizing criticalities, Markov Chains, Bak Sneppen processes, Econo-
physics, Socio-economic evolution staircase.

AMS Mathematics Subject Classification: 34C28, 37TH99, 60J10, 60J22, 91BS&0.



462 L.C. PICCININI, M.A. LEPELLERE, T.F.M. CHANG, L. ISEPPI

Introduction

Bak-Sneppen ([1], [2]) original model (BS) can be defined as follows. There are
n species arranged on a circle, each of which has been assigned a random fitness.
The fitness values are independent and uniformly distributed on (0;1). At each
discrete time step the system is updated by locating the lowest fitness and repla-
cing this fitness, and those of its two neighbors, by independent and uniform (0; 1)
random variables. This model is the result of a powerful synthesis of non equili-
brium systems displaying self organized criticality, a concept introduced by P. Bak,
C. Tang and K. Wiesenfeld [3]. One of the most fundamental characteristics of
a system in a self-organized critical state is to exhibit a stationary state with a
long-range power law decay of both spatial and temporal correlations.

Usually, the self organized state is attained only after a very long period
of transient, a minor change in the system can cause colossal instabilities called
avalanches. Intermittent burst of activity separating long periods of quiescence is
called punctuated equilibrium.

An fy-avalanche is defined as the event when all fitness initially above a
threshold fy are perturbed such that for a certain time there are some below fj.
The event ends as soon as all fitness are again above fy. For a certain value of
fo, namely fy = f. one obtains scale free avalanches, i.e. their distribution in size
and duration follows a power law. The exponent of this power law is not easy
to measure and still debated ([12], [23]). The distribution above f. seems to be
uniform, and asymptotically one expects a step function for the distribution of
fitness. The value of f. is given in ([33], [23]) as f. = 0,66702 (a simulation value).

BS models can be defined on a wide range of graphs using the same update
rule as above. What the BS model illustrates is that even random processes can
result in self-organization to a critical state, see [31] for a discussion. We cannot
describe the many studies that have arisen in physics, probability, econophysic
following the first paper; we just recall some developments that are connected
with the present paper. There is anyhow a strong believing in the power of
these methods for constructing economic models that should suggest what actually
happens in many-agent phaenomena. Though the provisional validity is small,
these models can be richer than many econometric sophisticated simulations.

The authors in particular think that a sound basis for applying BS model
of contact with neighbors is given by Duesenberry demonstration effect. Its first
presentation can be found in Duesenberry’s [17], while many application in con-
sumer’s economy and sociology can be found for example in Cavalli [6]. We may
also recall Cuniberti et al. [11] and Rotundo—Scozzari [38], Rotundo—Ausloos [37].

It has been debated if changing the microscopic dynamical rules in BS model
does or does not change the self organized universality class of the system [34],
[15]. It is therefore interesting to study the robustness of BS-type models when
the interaction rules are changed. A number of variants of Bak and Sneppen
original model have been introduced which evolve according to different criteria.
One variant is the anisotropic Bak Sneppen model [26], [30], [22], in which, in
addition to the least fit species, only its right-hand nearest neighbor is replaced.



PARTITIONED FRAMES IN DISCRETE BAK SNEPPEN MODELS 463

This model also gives rise to a threshold value f. = 0.724 [22]. Another variant
on the BS model which eliminates topology is the mean-field version analysed in
[21], [13], [29], in which one replaces the smallest fitness and a fixed number of
randomly chosen other ones.

In [22] the authors perform a detailed investigation of the effect of symmetry
on the scaling behavior of the BS model. In their generalized model, the site with
the minimum fitness plus a neighbors on the left side and b neighbors on the right
are replaced with independent random numbers. If @ = b = 1 it is recovered the
original model; if @ = 0 and b = 1 the anisotropic BS model; if a # b is obtained
the modified BS models with asymmetric dynamics. They conjectured that all
dynamics which preserve the reflection symmetry of the original BS model possess
the same critical exponents as the original model, while asymmetric dynamics lead
to the exponents of the anisotropic BS model, reinforcing the evidence for two
symmetry-based universality classes [26]. We suppose that, apart segmentation,
that obviously perturbs also the symmetric class, the asymmetric models do not
belong to a unique class, but rather to a certain number of slightly differentiated
classes as it is shown in the examples of 19 and 24 nodes (see Example 3).

Motivated by the difficulty of analyzing rigorously even the one-dimensional
version of the BS model, J. Barbay and C. Kenyon [5] proposed a still simpler
model with discrete fitness values.! In their model, each species has fitness 0 or
1, and each new fitness is drawn from the Bernoulli distribution with parameter
p. Since there are typically several least fit species, the process then repeatedly
chooses a species at random for mutation among the least fit species. They proved
bounds on the average numbers of ones in the stationary distribution and pre-
sented experimental results. Parameter p can substitute up to a certain level
a plurality of values, but it cannot explain the staircase phenomenon of Exam-
ple 1 in Section 5. Hence binary structure, though simple and appealing, is not
sufficient for a thorough description of what may happen.?

In the first section we give a frame for studying local and global evolution.

Section 2 discusses a basic model of teleological local-global evolution, that
will be used to clarify the content of Sections 3 and 4 (the first example, where
overtaking and footholds arise).

Partitioned BS frames are the object of Section 3, while Section 4 shows how
this model clearly explains the overtaking of competitors with respect to species
that seem to be well assessed and recalls some of our experimental data.

Finally, Section 5 considers real world situations where Bak Sneppen parti-
tioned schemes can be tailored to represent the core of their evolution.

1 Also this case is by no means trivial, as it was shown by Meester and Znamenski (see [32]).

2A further case is dealt by C. Bandt in [4], who shows that the discrete BS model behaves
exactly like the contact process, on an arbitrary graph, thus all results which have been shown
for Contact process will immediately extend to discrete BS model.
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1. A frame for studying local and global evolution

The idea of BS model is to glue globality with locality. For this reason in this
section it is pointed out the way how locality and globality coexist in the same
system and how they interact. For sake of simplicity the present paper will deal
with finite graphs and with discrete time evolution systems.

Let us consider a finite set of nodes

X ={K,K,,...K,}

To each node it is appended a unique cell that contains the node itself and
in general some other nodes. This will be called locality cell of the node:

Lk = {KkyK(k1)7 7K(kh)}

The node that labels the locality cell is called the kernel. Remark that unlike
in a partition the cells usually overlap, so that a node could belong to different
locality cells, but in particular it belongs to its own cell, in which it is the kernel.
The two trivial cases are the atomistic locality system, where h = 0 for all k, so
that each cell is built only by its kernel and the cells form a partition of the set
X, and the totally global system where all cells coincide with the whole set X.
To each node K}, a vector of features is associated. The dimension of the vector
does not need to be the same at all nodes, and it can reduce to 1. In many cases,
the features are expressed by values taken from some ordered set, or even from
numeric sets, discrete or continuous. In order to apply the scheme to numerical
calculus, it is useful to associate a duplicate of the vector that registers the next
step of the evolution.

The meaning of the cell is that all evolutions in the cell depend only on the
data contained in the cell, and affect only elements of the cell. Generally the
evolution affects only the features of the kernel of the cell, but sometimes it can
affect also other elements, as it happens in BS processes. Usually more than one
type of evolution can affect a cell, or a parametric evolution, so when the cell is
chosen for evolution it must receive also the information of the action that it must
perform.

Globality is controlled by the Global Controller (GC). He has at least some
counters and can access all data stored in the kernels and using these data he
can perform global operations, if it is required. According to the counters and
the result of operations he will define the next cell that will evolve, the choice of
the type of evolution and its parameters, if any. For example the approximate
solution of a differential equation (using for example fourth order Runge Kutta
method) has at least one more parameter, namely the length of the step. More
sophisticated controls arise when there is a guess of the error by dividing the step
and comparing the solutions. The choice of the step may thus become adaptive.

A case in which globality performs a fundamental task is when the choice of
the evolving cell is no longer sequential, but is connected to some global evalua-
tion of all the cells. This happens for example in DNA analysis, where longest
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matching is chosen for improvement. The simplest case is the random maximiza-
tion, that is performed on atomistic local system: a cell is chosen randomly and
then to its kernel is assigned a random number. After a transitory phase in which
some memory of the original values still survives, it is obtained a purely random
distribution of values, that coincides in probability with a casual extraction with
replacement. The process becomes much more interesting if some rule for the
choice of the evolution cell is added. Till now, no local relation is at hand. The
idea of Bak and Sneppen is to join each kernel with two adjacent nodes, getting
three-node local cells. The cell that evolves is the one whose kernel is minimum,
but all the three nodes, not only the kernel, will receive a new value. In this case,
very interesting connection structures tend to become more likely than purely
casual distributions, usually long chains of high values, alternated with shorter
chains of lower values is obtained.

An interesting process can arise also without ordered structures of values.
It is enough to choose a cell where the value is not modal, and replace it at
random. The structure will converge anyhow to a mode involving all kernels but
one; in particular if, at the starting time, more than half of the kernels have the
same value, this will also be the final mode, otherwise we have some function
of membership depending on the original distribution of features. A somewhat
opposite process arises when it is chosen one of the modal cells; in this case the
evolution tends to a division into groups that have all the same mode, or a mode
differing by one. Both schemes arise in political analysis (band-wagon in one case,
segmentation in the other case, see [36])

2. Binary Bak Sneppen linear models

Let us introduce a modified discrete BS process denoted by (ly,l2)—BS. Let
X ={0,1,...,n — 1} be the set of nodes in the global system. The nodes will be
arranged on a circle (the operation are mod n), each of which has been assigned a
random fitness. The fitness values are independent and uniformly distributed on
the set {0,1,...,s — 1}. Sometimes it will be useful to think the set {0,1,...,s—1}
as a partition of the unitary interval [0, 1] so that the element i € {0,1,...,s — 1}

1
will be identified with the central value ! + 25" Let {; and [; be natural numbers
s S
(ll < l2>

(l1,19)—BS is a process such that at each discrete time step, the node
i € X with the lowest fitness (in the case of more then one element the
choice will be made randomly between all the candidates) is chosen.
Then the fitness of i, i + 1 and i + ly, (so the locality cell of i is
L; = {iyi+ l1,i + [o}) will be replaced by independent and uniform
{0,1, ..., s — 1} random variables.

Since the states may be described by a number of n digits in base s, the total
number of states is s” and the evolution of the system beginning from an initial
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state chosen randomly to the successive one, according to the law just described,
can be modeled by an irreducible Markov chain with transition matrix, say M
(to simplify the reading we will consider the transposed matrix of the usual one).
Let us recall, for the convenience of the reader, some important definitions about
Markov chains.

Definition 1 Two states x and y communicate each other, and we write z < y,
if they are equal or if it is possible (with positive probability) to get from either
one to the other in a finite amount of time. This is an equivalence relation and
the equivalence classes are called communication classes.

There are two types of communication classes: recurrent and transient.

Definition 2 A communication class Z is called transient if, starting from any
x € Z, it is possible to return to x only a finite number of times with probability
one, otherwise it is called recurrent or persistent.

It is also useful to remaind the following result.

Theorem 1 Given an irriducible Markov chain with transition matriz M, there
1 a unique probability distribution m on the state space such that

(1) Mnm=m
7 15 called the stationary distribution of the Markov chain.

It is easy to see that every stochastic matrix has the all-1 vector as a left
eigenvector corresponding to the eigenvalue 1. The above theorem says that the
corresponding right eigenvector is also non-negative, and that there is only one
eigenvector corresponding to eigenvalue 1 if the matrix corresponds to an irre-
ducible Markov chain.

The mean waiting time from state x to state y is the expected number of
iterations for reaching state y for the first time starting from state x.

Definition 3 Let Z be a communication class, a state e € Z will be called an
exchange state of Z if it is the unique state such that Z\{e} is not a communication
class.

From a theoretical point of view, it is possible to construct the transition ma-
trix M of the process for any finite dimension, but dimension grows as s". Hence
the most critical factor is the number of sections, and this explains the importance
of two section frame, where critical information are left to the probability of the
digits as in [5]. The authors have developed a computer program that draws the
transition matrix. From this matrix many information can be derived: the most
important parameter associated to the process is its average:

s™—1

(2) As(nsly, ) = > w()w(i)

1=0
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where w(7) is the value of the state, in particular, in the standard case of sections
on the unitary interval, denoting by Cs(i, j) the number of j-digits present in the
representation of 7 in base s, it amounts to

) w(i) = -3 Culi )i + 5

J=0

When the number of states is greater than 2 an important value is also the fre-
quency of the sections (associated to the digit j ranging from 0 to s — 1):

s™—1

) FyGimi ) = = 3 w(i)Cli )

=0

2.1. Example

As an example of non trivial discrete (Iy,l2)—BS model we choose what seems
to be the simplest meaningful case: 6 nodes and 2 values. In this case, when
we identify the states apart the rotation, the 64 states can be reduced to the
following 14:

0=000000  1=000001  3=000011 5=000101  7=000111  9=001001
11=001011 13=001101 15=001111 21=010101 23=010111 27=011011
31=011111 63=111111

The transition matrix depends on the probability of each digit and on the
system of locality cells. Since many minima may arise, we suppose that the
locality cell is chosen at random among the candidates (different rules give rise to
different transition matrix and may even be not consistent with a representation
of states reduced by rotation, these evolutions will be discussed in another paper).

For sake of simplicity, we consider only the case of constant probability. For
the couples (I1,(3) there are the following cases:

) (that is equal to the classical BS model)
1,2)  (that a posteriori coincides with the results of (1,3) and of (2,3))
) (that a posteriori coincides with the results of (2,5))

)

(that as shown later allows also a more suitable state representation)

Next table will summarize the results, the first part shows the frequencies of
each state, the second one shows the averages. We have added also a non BS case,
namely the random one, where the locality cell coincides with the whole space for
each kernel, and the two neighbors are chosen at random (compare [21], [13], [29]).
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Confi- | Structure Structures Structures Structure Structure
guration (1,5) (1,2),(1,3),(2,3) (1,4),(2,5) (2,4) Random
0] 0,002643 0,0033320 0,004112  0,000000  0,003662
1| 0,024136 0,0304099 0,035908  0,000000  0,032801
3| 0,049081 0,0446415 0,050715  0,000000  0,050041
51 0,035378 0,0446415 0,050715  0,000000  0,050041
71 0,108473 0,0626871 0,069095  0,000000  0,079790
9| 0,016208 0,0280814  0,028844  0,000000  0,025020
11 | 0,060323 0,1002903 0,076068  0,000000  0,079790
13| 0,060323 0,0742085 0,098396  0,000000 0,079790
15| 0,167864 0,1221499 0,120348  0,000000  0,128153
21 | 0,016527 0,0208957  0,023032  0,125000 0,026597
23 | 0,122677 0,1221499 0,120348 0,375000  0,128153
27 | 0,044115 0,0798766 0,074824  0,000000 0,064076
31| 0,230218 0,2115085 0,197502  0,375000 0,201231
63 | 0,062034 0,0551272 0,050093  0,125000  0,050854
b l A2(6§ [, l2)
1 5 0,568695
1 2 0,560366
1 4 0,553865
2 4 0,625
random | random | 0,556145
Table 1.  Binary BS model on a frame of 6 nodes:

frequencies and averages

The most striking value is the case of (2,4) and will be discussed in detail
below. Usually it is expected that in BS processes (self organizing criticality) the
average is higher than in a random process, since BS lets arise chains of adjoining
high values and chains are in some sense stable. Table 1 shows that, in a structured
process, it is possible to get an average lower than in a random process, namely the
strongly asymmetric case (1,4) in which the two operating cells are just opposite,
hence tend to break long chains of maximums wherever they could be located.

In the case (2,4), the set of nodes is split in two subsets: even E = {0,2,4}
and odd O = {1,3,5}. For each even kernel its locality cell is given by E, while
for odd kernels their locality cell is given by O. There is no overlapping between
the two sets of locality cells. Hence the system operates as if it was built by two
subsystems of three nodes each. Until both in F and in O there exist 0’s, the
change may happen in any of the two sets, and the probability is given according
to the frequency of 0’s (in a set of three elements BS is trivial since it coincides
with random process). When the state 111 is reached in one of the subsets, only
the other one may be changed, until the exchange state 111, 111 is reached. From
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this state the process will go on in one of the two subsets, but the other one will
maintain the values of 111, so that 0’s can appear at most in one of two subsets.
This means that the original set of 14 states reduces to a persistent class formed
only by states 21, 23, 31, 63, that is one set with three 0’s, one set with two 0’s,
one set with one 0 and the exchange state of all 1’s. This reduced system does
not give a complete information since it identifies the two subsets O and F, that
up to a rotation are coincident.

An equivalent (but more expressive) transition matrix could be derived from
the 14-element matrix taking into account only the couples of numbers of 1’s in
the two sets. We get the following 10 states

| 00 10 11 20 21 22 30 31 32 33

where 77 means 7 ones in one set and j ones in the other. The correspondences are
obtained by direct check: 00={0}; 10={1}; 11={3, 9}; 20={5}; 21={7,11,13};
22={15,27}; 30={21}; 31={23}; 32={31}; 33={63}.

Gluing together the rows and columns in the 14 nodes transition matrix
actually we get the reduced transition matrix M, given by:

00 [10 |11 [20 |21 |22 [30 |31 |32 |33
00 1/8[2/40|0 [1/32][0 |0 |0 |0 |0 |0
10 3/819/40 [ 1/8[3/32[1/24|0 |0 |0 |0 |0
11]0 |9/40[3/8[0 [3/24]0 |0 |0 |0 |0
20 [3/36/40 |0 |6/32]2/24[1/8]0 |0 |0 |0
2110 |9/40|3/89/3219/24 [3/8]0 |0 |0 |0
2210 [0 |0 |9/32[6/24(3/8[0 |0 |0 |0
30 [1/8[2/40 |0 |1/32]0 |0 |1/8[1/8]1/8[1/8
3110 |3/40]1/8]0 1/2410 |3/8]3/8]3/3]3/3
32(0 |0 |0 |3/32[2/24]1/8]3/83/8|3/8]3/8
33/0 |0 |0 |0 |0 |0 |1/8|1/8[1/8[1/8

Table 2. Transition matriz of the reduced representation
for the (2,4)-BS process of 6 nodes.

Let us remark that from all the six non persistent states (00, 10, 11, 20, 21, 22)
the total probability of reaching a persistent state (30,31,32,33) is 1/8, but it is
not possible to reach directly the exchange state 33, that can be attained only
starting from a persistent state.

In the next section we shall review this example in the context of a general
theory of partitioned structures. This section ends with some remarks about
equivalence of different (11, l5)-BS like processes. In fact a condition of equivalence
is the possibility of rearrangement of rows and columns of the transition matrix.
A trivial condition of equivalence is symmetry: in a non symmetric BS process
such as (1,2), this is equivalent to (n — 1,n — 2). A more sophisticate condition
can be achieved when a Hamiltonian permutation of the nodes is available. In
order to avoid complication due to partitioned frames, consider a prime number of
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nodes n. Then, for any given couple (Iy,[3), all the couples ([(k I;) mod n],[(k ls)
mod nl) are obtained by a Hamiltonian permutation that allows to rearrange the
transition matrix so that it coincides with the original matrix associated to (i1, l3).
Let us remark that this result does not require the actual construction of the
transition matrix, and it holds for any dimension of nodes and sections. Consider,
for example, the case of 5 nodes: the couples are (1,2); (1,3); (1,4) (equivalent
to standard BS); (2,3); (2,4); (3,4). The couple (3,4) is the symmetric of (1,2)
and (2,4) is the symmetric of (1,3). We get (1,2) = (2,4), hence (1,2) = (1,3).
Finally, (1,4) = (2,3); the latter equivalence is usually read as (1,—1) = (2, —2)
(that is a formal extension of symmetric BS, compare [22]).

A somewhat more complex model is obtained for a higher prime number
of nodes. For example, in the case of 19 nodes there are at most 9 possible
equivalent structures. We list them according to decreasing (statistical) average.
There is statistical evidence that the two couples (1,2), (1,17) and (1,3), (1,16) are
actually different even if it is not proved that the two components of the couple
are different. On the contrary, there is no statistical evidence that the last four
cases have really different averages.

For reader’s information, next table gets the statistical average values for 19
nodes. Even if this section is dealing with binary processes, it is added also infor-
mation about the division in 4 sections. The frequencies in the case of 2 sections
are immediately recovered from the average subtracting 0.25 and multiplying by
2. The first five structures are kept distinct, while the remaining 4 are merged
into the class "other”.

Name | Av. 2 sect. | Av. 4 sect. | F5(0) F(1) Fy(2) Fy(3)
(1,18) | 0.67826 0.70015 0.045065 | 0.090301 | 0.383608 | 0.481026
(1,2) | 0.653533 0.66260 0.049383 | 0.156482 | 0.387682 | 0.406453
(1,17) | 0.640368 0.661908 0.050324 | 0.157052 | 0.388094 | 0.40453
(1,3) | 0.62702 0.64451 0.052896 | 0.195466 | 0.373361 | 0.378277
(1,16) | 0.62455 0.64583 0.053179 | 0.191047 | 0.37481 | 0.380964
other | 0.621289 0.64137 0.05363 | 0.20193 | 0.36977 | 0.37468
Table 3.  Statistical results for a frame of 19 nodes,

2 (respectively 4) sections.

The reader can make many remarks. The most obvious is that passing from 2
sections to 4 sections the average is increased; this fact depends from the central
value that is assigned to each section. Recall that the limit distribution in Bak
and Sneppen infinite dimensional model is a step function of 0 value up to the
critical value, and then it is constant. In general, it is a monotone function that
becomes asymptotically constant. Giving the central value to each interval it is
obtained a good estimate for the asymptotical section of the distribution, but we
underestimate the lower sections, the more the less is the number of sections.



PARTITIONED FRAMES IN DISCRETE BAK SNEPPEN MODELS 471

3. Partitioned frames

In this section we will analyze a much more interesting phenomenon, that may
arise only in the case of a non prime number of nodes (hence the reason for
choosing 6 nodes for the simplest case). In Table 1 the average of the last case
(2,4) is much greater than all the remaining averages. In the transition matrix of
the associated Markov chain there exists a persistent class that is smaller than the
whole set of 14 structures. Namely it contains only 4 structures (apart rotation):
010101,010111,011111,1111 11, while the remaining 10 form a transient class:
this means that there exist sets of transformations that allow to pass from any of
them to any other, but there is the possibility of falling outside into the persistent
class without the possibility of returning back. In this simple case the analysis is
straightforward: nodes 2 and 4, together with the minimum conventionally placed
at 0, form a subset that has no interference with nodes 1-3-5, that, on the contrary,
are activated when the minimum is attained in one of those nodes. Whenever an
operation is performed, one 3-element subset is left unchanged, while the other
one is totally changed at random. The trick is that in this case the two subsets
do not change between different operations, what on the contrary happens in all
the remaining cases. The process cannot anyhow be divided into two independent
subprocesses, since the minimum must be looked for among the elements of both
subsets (for example a subset containing 011 enters in this search, while a subset
111 enters in the search only if also the other one is a 111 subset, in which case
there are 6 minima of value 1). During the transient phase a further interaction
is given by the number of minima; for example in the case 000 011 the first subset
has probability 3/4 of being chosen, while the other one only 1/4. When one set
reaches the configuration 111 (probability 1/8) the transient phase is terminated
and the process becomes stable, in the sense that it can be changed only if the
global minimum is 1, that is the configuration 111 111. This is the exchange state.
In this case at least one of the two subsets will save the configuration 111, that
can no longer be destroyed. The four structures above in fact can be read, using
the reduced state description of the last section, as 03= 000 111, 13 = 001 111,
23 = 011 111, 33 = 111 111. In the particular case of 6 nodes the transition
matrix becomes trivial since there is no longer a BS structure.

In particular the mean waiting time for reaching the persistent class starting
from any configuration of the transient class is 8, and does not depend on the
initial structure. The mean waiting time for reaching the top (and exchange)
configuration 111 111 starting from 000 000 (or any other transient) is 16. Remark
that in the standard BS process this last mean waiting time is 23.07572. The
increase in time is due to the impossibility of protecting the structure 111 from
decay once it is achieved for the first time.

A richer, but similar situation, arises in the binary case of 8 nodes. The
subsets are formed by four elements and the different structures are 0000, 0001,
0011, 0101, 0111, 1111; the persistent class is thus formed by a subset 1111 coupled
with any of these six structures. The estimations become less trivial because the
structure with four elements is already BS non trivial, inasmuch one element
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is not changed at random and preserves memory of the past. The average is
therefore somewhat increased, up to 0.63785. Using the transition matrix, one
can compute the mean waiting time. In particular, in this case it depends on the
starting configuration, in particular from 0000 0000 it is 14.79873, while it attains
a minimum from 0011 0011 or 0111 0111 where anyhow the 1 is saved. In this
case the mean waiting time is 10.98887.

We wish now to state formally the theorems that describe the main factors
of partitioned frames. In the first theorem there is no need to define explicitly
what a partitioned frame is, since it is simply built by the distinct cosets of the
cyclic group of n elements when n is not prime. In the general case of the second
theorem some definition will be needed, and also more information about the
substructures will be required.

Theorem 2 Let n be a non prime number of nodes. Let m = MCD(n,ly,1y)  be
the greatest common divisor, and denote by Max = (s — 1/2)/s the central value
of the upmost section, then the average is

m’ ' m’' m

m

and the frequencies of the single sections are

mmm

1
(6) F(jin; by, by) = F (y,ﬁ,—l —2)

forj<s—1, and
7 Fs —1, 7[,[ = — —Fs —1,_7_7_
(7) (s n;ly,lo) - —i—m (s )

Proof. The theorem is a particular case of Theorem 2. Symmetry considerations
would allow a straightforward proof, but we prefer to use the proof of the much
more powerful Theorem 2. As for the numerical aspect see the comment after the
proof of theorem 2. .

We give now a formal definition of partitioned scheme.
Definition 4 Let X be the space of nodes on which a locality cell system L; is

given; X is said to be partitioned into a subsystem (X, X, ..., Xj) if for any cell
Ly, it holds

#{lXZﬂLh%}:14

30f course, if m = 1, the formulas still hold, but are not meaningful.
4That is, each locality cell is contained exactly in one subset of the partition.



PARTITIONED FRAMES IN DISCRETE BAK SNEPPEN MODELS 473

k
With n; we will denote the cardinality of set X; and so n = Z n;.>
In a partitioned scheme, the configurations may be rearrangezd 1in order to be
consistent with the partition in subsets. To a set X}, we associate a set Sy formed
by the configurations that involve the nodes of the component X;. A set of confi-
gurations suitable for the construction of the transition matrix is thus represented
by the Cartesian product

S =5155...5; ©

The use of a reduced transition space is allowed by the fact that changes
can happen only inside one subspace at each time. When the maximum is the
same for the whole system (as it usually happens) the exchange configuration is
E = myms...my, where m; denotes the state in which all nodes in the subset
X, attain the maximum value. If in the punctuated k-dimensional structure we
associate the state m; with the plane x; = 0, then the persistent class is formed by
the coordinate axes and the exchange configuration is the origin. In the partitioned
BS scheme the transition matrix thus assumes the form given in the following
table.

E|C|Cy| ... |Cy| Z
E | x| * * | x| x |0
Cyl*x| %] 0/[0] 0|
Co | x| 0 * | 0] 0 | %
.| x] 0 O [ x| 0 | %
Ch 11 0] 0[]0 = | =%
Z 10,0000 |T

Table 4.  Transition matriz in a partitioned BS scheme.

Let us remark that C; denotes the set of states derived from the exchange
state E changing only the i-th component of the Cartesian product, and leaving
all the remaining components at the value m,.” For passing from one state to
another it is compulsory to pass through the exchange state E. Here * denotes
the elements that can be non zero, while 0 indicates the components that are
necessarily 0. T is the transition matrix of the transient class Z in itself, and
also can be built up by a recursive matrix of partitioned frames. This happens
in particular whenever the sections are more than 2, as it will be shown in the
examples of the next section.

SVery often it may be convenient to look for the finest partition available, but our results do
not require minimality conditions.

6An example was given for the case of 6 nodes when we passed from the 14 state full repre-
sentation to the 10 state reduced representation.

"Hence it must not be confounded with S; since it is a proper subset of the whole Cartesian
product.
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The restrictions of the process to each subset X; can be described using a
transition matrix M; defined on the system of configurations .S;. Thus we get the
usual information such as frequencies of each configuration y; that we shall denote
by F; (y;), in particular we shall be particularly interested to F; (E;), where F;
denotes the projection of E on the space X;. Another important information is
of course the average value A;. When we pass from the partitioned matrixes M;
to the global matrix M, we require one more information, namely the probability
p; of going from the exchange state E to each state of the subsystems C;. Let
us remark that in BS processes this is given by the ratio between the number of
maximum elements in each set (i.e n;/n). In particular if all the sets X; have the
same number of nodes, p; is constant. We describe the persistent matrix, dropping
the transitions described by the last column and the last row. All data outside
the first column of the transition matrix of Table 4 are the same as in the single
transition matrixes M), and a formal change is the addition of the full description
of the other subsets that remain unchanged. The only change happens in the first
column, where the terms outside the first row are the corresponding terms of the
first rows of matrixes M; multiplied by p;, and M (E, F) is the complement to 1 of
the column. Different schemes of course could be foreseen, provided the exchange
rule is maintained.

The most interesting results allow to calculate global frequencies and averages
from the frequencies and averages of the single subsystems, taking obviously into
account the cardinality of the subsets, the value of the exchange state (usually
the maximum) and the probability of different exits from the exchange state. For
sake of generality we denote by V; the value of each component of the exchange
state, hence its value is given by the sum of these items.

Theorem 3 Let M be the transition matriz of a partitioned frame generated by
matrizes M;. Let E be the exchange state, p; the probability of different exits from
the exchange state, F; the family of frequencies for each subsystem. Then the av-
erage A is a weighted sum of the single averages according to the formula

(pime2)
n n

1 Di
(8) A= ; FEI\ 2

where the normalization factor satisfies the relation

®) N =3 hE)

i=1

The frequency of the global configurations is 0 for the transient configurations. As
for the persistent configurations, we denote by B; the configuration

(Ela EEE) Ei—l) bia Ei-i—la ) Ek)
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and we get
o I p e
for B; # E, and
1
(11) F(E) = N

Proof. For sake of simplicity, we can consider the case of two subsets, since the
general case may be proved by induction. We represent the transition matrixes
M; and M, by the following notations

M, | E, a1 .. a, M, | E, b .. b,

Eq | e ao1 ... aor || By | €0 bor ... bos
aj €1 Q11 ... Qi || Dy et b ... by
Ay €ar Qr1 ... Qpp bs €bs bsl oee bss

Let vg = F(E,), v1 = F(a1),..., v, = F(a,), and wg = F(Ey), wy = F(by), ...,
ws = F(bs), and denote by A the submatrix of M, without the first row and the
first column, and similarly by B the submatrix of M, without the first row and
the first column, by e, the column vector (e, ..., €)™, by €, the column vector
(€1, .-, €s)™, an eigenvector associated to eigenvalue 1 is given by (xg, z1, ..., 7;)
where o = 1 and x4, ..., x,, satisfy the system

(12) (A—IDx = —e,

Normalizing, the frequency vector is given by v = (v, z10y, ..., T,09) Or
x = v/F(E,). Respectively, let yi1,ya, ..., ys satisfy the system

(13) (B—=1)y=—e

Normalizing, we get w = (wy, y1wo, ...Yswp), or y = w/F(E})
In the complete system, we are interested only to the part that corresponds
to the persistent class. The matrix is thus

M | E A ... A B .. B,
E | pa€ao + pvero  aor ... aogr bor ... Dbos
A1 | paat ay ... a0 .. 0
A, | PeCar arl ... Gpp O ... 0
Bl PvEnp1 0 .. 0 b11 bls
BS Pv€os 0 .. 0 bsl bss

Table 5:  Joint transition matriz of a partitioned process
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In order to obtain the eigenvectors we solve thus the system
(A= I)x'+ 0y = —pacq
0x’' + (B — I)y, = —Dp€p

obtaining

X' = poXx = po/F(E,)v, ¥ =y = po/F(Ep)W.

The normalization of the vector leads to the normalizing factor N given in equation
(9) that appears in the statement of the theorem.

T S pa T pb S
L+ o+ o= 1+ v; + w;
Z Z / Fu(EL) Z Fy(Ey) Z
Pa Do
= 1+ (1 — Fu(Ea)) + (1= Fy(Ep))
(14) Fo(Eq) Fy(Ep)
Pa Do
= 1 + + — Do —
Fu(E))  Fy(By) Do
_ Pa + Py - N

Fo(E.)  Fy(Ey)

Once formulas (10) and (11) are proved, the main formula (8) is easily derived
keeping in mind that the average value of the configuration is the weighted sum
of the averages of the single cartesian components, and the weight is just given
by the proportion of configurations that belong to each .S;. .

We wish to remark that there is an essential difference between the two theo-
rems: in fact in Theorem 1 in order to get the average it is not required to know
the frequencies F;(F;). From a numerical point of view these frequencies, very
near to 0, are difficult to be experimentally determinated, while on the contrary
the averages in non partitioned schemes can be easily experimentally estimated.
Let us remark that this is not true for the case of partitioned schemes, where
transitory phase may be very long. A computational trick is thus to start directly
from the exchange configuration or anyhow from the interior of the persistent
class, so that transitory period is skipped away.

4. Examples and staircase of critical configurations with overtaking

In this section, we give some examples for the theorems of the previous section,
but before we highlight the main features of the partitions that do not allow to
study these processes simply using binary representations joint to a change in the
probability system.
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4.1. Example 1

We come to a more general case of partition of the BS process. The simplest case
that shows the main features requires 2 subsets of 3 nodes each, and we consider a
ternary set of values, say 0,1,2 8. This corresponds to 6 nodes and displacements
of 2-4. A simplified analysis is the following: we attach label 0 to any subset
in which the minimum is 0 (not regarding their number), label 1 to any subset
in which the minimum is 1 (not regarding their number), and label 2 to the set
{2,2,2}.
Next table shows the transition matrix.

00 |01 10 11 02 |20 12 21 22

00 | 38/54

01 | 7/54 | 38/54 19/54

10 | 7/54 38,/54 | 19/54

11 14/54 | 14/54 | 14/54

02 | 1/54 38,/54 38,54 19/54
20 | 1/54 38,54 38/54 | 19/54
12 2/54 | 1/54 | 14/54 14/54 7/54
21 2/54 1/54 14/54 14/54 | 7/54
22 2/54 | 2/54 | 2/54 | 2/54 | 2/54

Tab le 6.  Transitions in a 6 node bipartite Bak Sneppen set with 3 values.

There is one transient class (01, 11, 10) with exchange state 11 and one
persistent class (20, 02, 22, 21, 12) with exchange state 22. The asymptotic
average, normalized to the scale [0, 1] is thus 0.667, since one subset has the
form {2,2,2}, that corresponds to 0.8333 and the second one is random on the
three values 012 and corresponds to 0.5. A more complex frame with a ternary
partition, but in reduced form, was introduced in [35] and [36]. From states 00,
01, 10, 11 the mean waiting time to the persistent class is 27. Let us remark
that the topological structure of our representation is the same as what would
be achieved in section 3 when dealing with random optimization for the case of
three values on three nodes, and becomes exactly the same if we set p(0) = 19/27,
p(1) =7/27, p(2) = 1/27.

Unlike the ternary partition there exists a path that touches all states even
if mean waiting time between non persistent states still remains infinity. This
remark a peculiar ”overtaking law”, that namely concerns the transition from 10
to 12 and from 01 to 21. The subset that is changed into the optimal label 2 is
not one labeled with 1, but one that is labeled with 0, since its minimum must
be lower than that of the best subset. For example, in a situation A = {1, 2,2},
B = {0,1,1}, it is impossible that A is transformed into {2,2,2}, while this is
possible, even if unlikely, for B.

8The example was first presented during the AMASES meeting of 2011 [35], see also [36]
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4.2. Example 2

We go back now to the examples that illustrate theorems 1 and 2. We give an
example of a non symmetric partitioned frame in which BS processes happen. We
suppose that the total number of nodes is n = 8, and that we have a subset X,
of n, = 5 nodes and a subset X}, of n, = 3 nodes. The number of sections is 2.
On both subsets the locality cells are whose of the standard BS process, namely
each cell contains the kernel and the right and left neighbor; obviously in the case
of three nodes (random case) the locality cell is the same for all the kernels and
coincides with the subset.

We write down separately the two evolution matrixes and we make the usual
computations of frequency and of average. The representation is minimal, hence
S, contains & items instead of 32 and Sj, contains 4 items instead of 8. In the case
of S, we get the transition matrix of Table 7, while the trivial transition matrix
of Sy in presented in Table 8.

31 0 1 3 5 7 11 15 F | fl’s

31 0 0 0 0.0416667 0 0.125 0 0.125 0.071267 5
0 0 0.125 0.0625 0 0.0416667 0 0 0 | 0.0098982 0
1| 0.125 0.375 0.25 0.0833333  0.2083333 0 0.125 0 | 0.0735294 1
3 0 0.25 0.1875 0.125 0.1666667 0.125  0.125 0.125 | 0.1348982 2
5 0.25 0.125 0.1875 0.1666667  0.2083333 0 0.25 0 | 0.0975679 2
7 | 0125 0.125 0.125 0.1666667 0.125 0.25 0.125 0.25 0.196267 3
11 | 0.375 0 0.125 0.2083333  0.1666667  0.125 0.25 0.125 | 0.1589367 3
15 | 0.125 0 0.0625 0.2083333  0.0833333 0.375 0.125 0.375 | 0.2576357 4

Average 0.549095

Table 7.  Transition matriz for Bak Sneppen binary process on five nodes.

7 0 1 3 F |4l
0.125 0.125 0.125 0.125 | 0.125
0.125 0.125 0.125 0.125 | 0.125
0.375 0.375 0.375 0.375 | 0.375
0.375 0.375 0.375 0.375 | 0.375

Average 0.5

W = O
N = O W w»

Table 8. Trivial transition matrix of binary BS process on three nodes.

The exchange state is (31,7), that corresponds to section 1 in all the 8 nodes.
The probability of changing state S, (resp. Sp) is proportional to the number
of nodes, so we have p, = 0.625, p, = 0.325, n, = 5, n, = 3. The remaining
coefficients are already known from th