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Abstract. In this paper, we wish to present some simplified cases of discrete Bak-
Sneppen models in which explicit computations via Markov chains are possible, hence
reaching a better understanding of some rather hidden phenomena of the general case:
in particular ”avalanches” can be read in terms of mean waiting times and in terms of
transitions between structures. The simple models allow us to introduce new frames
that do not seem to have been considered in the previous literature, namely the case of
partitioned Bak-Sneppen frames, that appear more realistic from the point of view of
speed of evolution and do not present a unique criticality level, but a staircase tending
towards a final equilibrium level, cadenced by an increasing sequence of footholds. The
introduction summarizes Bak-Sneppen models, starting from the central model due to
Bak and Sneppen, and recalls their use in applied sciences. The first section gives the ge-
neral frame of models where locality and globality coexist, the second section shows the
simplest case of a matching between locality and globality, that will become exemplar
in the most complex frames of Bak-Sneppen processes. The main quantitative theorems
are stated and proved in the third section and finally the fourth section presents exam-
ples that illustrate the more sophisticated points of our paper and the use (and limits)
of experimental results, while the fifth section considers real world situations where Bak
Sneppen partitioned schemes can be tailored to represent the core of their evolution.
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Introduction

Bak-Sneppen ([1], [2]) original model (BS) can be defined as follows. There are
n species arranged on a circle, each of which has been assigned a random fitness.
The fitness values are independent and uniformly distributed on (0; 1). At each
discrete time step the system is updated by locating the lowest fitness and repla-
cing this fitness, and those of its two neighbors, by independent and uniform (0; 1)
random variables. This model is the result of a powerful synthesis of non equili-
brium systems displaying self organized criticality, a concept introduced by P. Bak,
C. Tang and K. Wiesenfeld [3]. One of the most fundamental characteristics of
a system in a self-organized critical state is to exhibit a stationary state with a
long-range power law decay of both spatial and temporal correlations.

Usually, the self organized state is attained only after a very long period
of transient, a minor change in the system can cause colossal instabilities called
avalanches. Intermittent burst of activity separating long periods of quiescence is
called punctuated equilibrium.

An f0-avalanche is defined as the event when all fitness initially above a
threshold f0 are perturbed such that for a certain time there are some below f0.
The event ends as soon as all fitness are again above f0. For a certain value of
f0, namely f0 = fc one obtains scale free avalanches, i.e. their distribution in size
and duration follows a power law. The exponent of this power law is not easy
to measure and still debated ([12], [23]). The distribution above fc seems to be
uniform, and asymptotically one expects a step function for the distribution of
fitness. The value of fc is given in ([33], [23]) as fc = 0, 66702 (a simulation value).

BS models can be defined on a wide range of graphs using the same update
rule as above. What the BS model illustrates is that even random processes can
result in self-organization to a critical state, see [31] for a discussion. We cannot
describe the many studies that have arisen in physics, probability, econophysic
following the first paper; we just recall some developments that are connected
with the present paper. There is anyhow a strong believing in the power of
these methods for constructing economic models that should suggest what actually
happens in many-agent phaenomena. Though the provisional validity is small,
these models can be richer than many econometric sophisticated simulations.

The authors in particular think that a sound basis for applying BS model
of contact with neighbors is given by Duesenberry demonstration effect. Its first
presentation can be found in Duesenberry’s [17], while many application in con-
sumer’s economy and sociology can be found for example in Cavalli [6]. We may
also recall Cuniberti et al. [11] and Rotundo–Scozzari [38], Rotundo–Ausloos [37].

It has been debated if changing the microscopic dynamical rules in BS model
does or does not change the self organized universality class of the system [34],
[15]. It is therefore interesting to study the robustness of BS-type models when
the interaction rules are changed. A number of variants of Bak and Sneppen
original model have been introduced which evolve according to different criteria.
One variant is the anisotropic Bak Sneppen model [26], [30], [22], in which, in
addition to the least fit species, only its right-hand nearest neighbor is replaced.
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This model also gives rise to a threshold value fc = 0.724 [22]. Another variant
on the BS model which eliminates topology is the mean-field version analysed in
[21], [13], [29], in which one replaces the smallest fitness and a fixed number of
randomly chosen other ones.

In [22] the authors perform a detailed investigation of the effect of symmetry
on the scaling behavior of the BS model. In their generalized model, the site with
the minimum fitness plus a neighbors on the left side and b neighbors on the right
are replaced with independent random numbers. If a = b = 1 it is recovered the
original model; if a = 0 and b = 1 the anisotropic BS model; if a 6= b is obtained
the modified BS models with asymmetric dynamics. They conjectured that all
dynamics which preserve the reflection symmetry of the original BS model possess
the same critical exponents as the original model, while asymmetric dynamics lead
to the exponents of the anisotropic BS model, reinforcing the evidence for two
symmetry-based universality classes [26]. We suppose that, apart segmentation,
that obviously perturbs also the symmetric class, the asymmetric models do not
belong to a unique class, but rather to a certain number of slightly differentiated
classes as it is shown in the examples of 19 and 24 nodes (see Example 3).

Motivated by the difficulty of analyzing rigorously even the one-dimensional
version of the BS model, J. Barbay and C. Kenyon [5] proposed a still simpler
model with discrete fitness values.1 In their model, each species has fitness 0 or
1, and each new fitness is drawn from the Bernoulli distribution with parameter
p. Since there are typically several least fit species, the process then repeatedly
chooses a species at random for mutation among the least fit species. They proved
bounds on the average numbers of ones in the stationary distribution and pre-
sented experimental results. Parameter p can substitute up to a certain level
a plurality of values, but it cannot explain the staircase phenomenon of Exam-
ple 1 in Section 5. Hence binary structure, though simple and appealing, is not
sufficient for a thorough description of what may happen.2

In the first section we give a frame for studying local and global evolution.
Section 2 discusses a basic model of teleological local-global evolution, that

will be used to clarify the content of Sections 3 and 4 (the first example, where
overtaking and footholds arise).

Partitioned BS frames are the object of Section 3, while Section 4 shows how
this model clearly explains the overtaking of competitors with respect to species
that seem to be well assessed and recalls some of our experimental data.

Finally, Section 5 considers real world situations where Bak Sneppen parti-
tioned schemes can be tailored to represent the core of their evolution.

1Also this case is by no means trivial, as it was shown by Meester and Znamenski (see [32]).
2A further case is dealt by C. Bandt in [4], who shows that the discrete BS model behaves

exactly like the contact process, on an arbitrary graph, thus all results which have been shown
for Contact process will immediately extend to discrete BS model.
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1. A frame for studying local and global evolution

The idea of BS model is to glue globality with locality. For this reason in this
section it is pointed out the way how locality and globality coexist in the same
system and how they interact. For sake of simplicity the present paper will deal
with finite graphs and with discrete time evolution systems.

Let us consider a finite set of nodes

X = {K1, K2, ..., Kn}

To each node it is appended a unique cell that contains the node itself and
in general some other nodes. This will be called locality cell of the node:

Lk = {Kk, K(k1), ..., K(kh)}

The node that labels the locality cell is called the kernel. Remark that unlike
in a partition the cells usually overlap, so that a node could belong to different
locality cells, but in particular it belongs to its own cell, in which it is the kernel.
The two trivial cases are the atomistic locality system, where h = 0 for all k, so
that each cell is built only by its kernel and the cells form a partition of the set
X, and the totally global system where all cells coincide with the whole set X.
To each node Kk, a vector of features is associated. The dimension of the vector
does not need to be the same at all nodes, and it can reduce to 1. In many cases,
the features are expressed by values taken from some ordered set, or even from
numeric sets, discrete or continuous. In order to apply the scheme to numerical
calculus, it is useful to associate a duplicate of the vector that registers the next
step of the evolution.

The meaning of the cell is that all evolutions in the cell depend only on the
data contained in the cell, and affect only elements of the cell. Generally the
evolution affects only the features of the kernel of the cell, but sometimes it can
affect also other elements, as it happens in BS processes. Usually more than one
type of evolution can affect a cell, or a parametric evolution, so when the cell is
chosen for evolution it must receive also the information of the action that it must
perform.

Globality is controlled by the Global Controller (GC). He has at least some
counters and can access all data stored in the kernels and using these data he
can perform global operations, if it is required. According to the counters and
the result of operations he will define the next cell that will evolve, the choice of
the type of evolution and its parameters, if any. For example the approximate
solution of a differential equation (using for example fourth order Runge Kutta
method) has at least one more parameter, namely the length of the step. More
sophisticated controls arise when there is a guess of the error by dividing the step
and comparing the solutions. The choice of the step may thus become adaptive.

A case in which globality performs a fundamental task is when the choice of
the evolving cell is no longer sequential, but is connected to some global evalua-
tion of all the cells. This happens for example in DNA analysis, where longest
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matching is chosen for improvement. The simplest case is the random maximiza-
tion, that is performed on atomistic local system: a cell is chosen randomly and
then to its kernel is assigned a random number. After a transitory phase in which
some memory of the original values still survives, it is obtained a purely random
distribution of values, that coincides in probability with a casual extraction with
replacement. The process becomes much more interesting if some rule for the
choice of the evolution cell is added. Till now, no local relation is at hand. The
idea of Bak and Sneppen is to join each kernel with two adjacent nodes, getting
three-node local cells. The cell that evolves is the one whose kernel is minimum,
but all the three nodes, not only the kernel, will receive a new value. In this case,
very interesting connection structures tend to become more likely than purely
casual distributions, usually long chains of high values, alternated with shorter
chains of lower values is obtained.

An interesting process can arise also without ordered structures of values.
It is enough to choose a cell where the value is not modal, and replace it at
random. The structure will converge anyhow to a mode involving all kernels but
one; in particular if, at the starting time, more than half of the kernels have the
same value, this will also be the final mode, otherwise we have some function
of membership depending on the original distribution of features. A somewhat
opposite process arises when it is chosen one of the modal cells; in this case the
evolution tends to a division into groups that have all the same mode, or a mode
differing by one. Both schemes arise in political analysis (band-wagon in one case,
segmentation in the other case, see [36])

2. Binary Bak Sneppen linear models

Let us introduce a modified discrete BS process denoted by (l1, l2)−BS. Let
X = {0, 1, ..., n− 1} be the set of nodes in the global system. The nodes will be
arranged on a circle (the operation are mod n), each of which has been assigned a
random fitness. The fitness values are independent and uniformly distributed on
the set {0, 1, ..., s−1}. Sometimes it will be useful to think the set {0, 1, ..., s−1}
as a partition of the unitary interval [0, 1] so that the element i ∈ {0, 1, ..., s− 1}
will be identified with the central value

i

s
+

1

2s
. Let l1 and l2 be natural numbers

(l1 < l2).

(l1, l2)−BS is a process such that at each discrete time step, the node
i ∈ X with the lowest fitness (in the case of more then one element the
choice will be made randomly between all the candidates) is chosen.
Then the fitness of i, i + l1 and i + l2, (so the locality cell of i is
Li = {i, i + l1, i + l2}) will be replaced by independent and uniform
{0, 1, ..., s− 1} random variables.

Since the states may be described by a number of n digits in base s, the total
number of states is sn and the evolution of the system beginning from an initial
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state chosen randomly to the successive one, according to the law just described,
can be modeled by an irreducible Markov chain with transition matrix, say M
(to simplify the reading we will consider the transposed matrix of the usual one).
Let us recall, for the convenience of the reader, some important definitions about
Markov chains.

Definition 1 Two states x and y communicate each other, and we write x ↔ y,
if they are equal or if it is possible (with positive probability) to get from either
one to the other in a finite amount of time. This is an equivalence relation and
the equivalence classes are called communication classes.

There are two types of communication classes: recurrent and transient.

Definition 2 A communication class Z is called transient if, starting from any
x ∈ Z, it is possible to return to x only a finite number of times with probability
one, otherwise it is called recurrent or persistent.

It is also useful to remaind the following result.

Theorem 1 Given an irriducible Markov chain with transition matrix M , there
is a unique probability distribution π on the state space such that

(1) Mπ = π

π is called the stationary distribution of the Markov chain.

It is easy to see that every stochastic matrix has the all-1 vector as a left
eigenvector corresponding to the eigenvalue 1. The above theorem says that the
corresponding right eigenvector is also non-negative, and that there is only one
eigenvector corresponding to eigenvalue 1 if the matrix corresponds to an irre-
ducible Markov chain.

The mean waiting time from state x to state y is the expected number of
iterations for reaching state y for the first time starting from state x.

Definition 3 Let Z be a communication class, a state e ∈ Z will be called an
exchange state of Z if it is the unique state such that Z\{e} is not a communication
class.

From a theoretical point of view, it is possible to construct the transition ma-
trix M of the process for any finite dimension, but dimension grows as sn. Hence
the most critical factor is the number of sections, and this explains the importance
of two section frame, where critical information are left to the probability of the
digits as in [5]. The authors have developed a computer program that draws the
transition matrix. From this matrix many information can be derived: the most
important parameter associated to the process is its average:

(2) As(n; l1, l2) =
sn−1∑
i=0

π(i)w(i)
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where w(i) is the value of the state, in particular, in the standard case of sections
on the unitary interval, denoting by Cs(i, j) the number of j-digits present in the
representation of i in base s, it amounts to

(3) w(i) =
1

s

s−1∑
j=0

Cs(i, j)j +
1

2s

When the number of states is greater than 2 an important value is also the fre-
quency of the sections (associated to the digit j ranging from 0 to s− 1):

(4) Fs(j; n; l1, l2) =
1

n

sn−1∑
i=0

π(i)Cs(i, j)

2.1. Example

As an example of non trivial discrete (l1, l2)−BS model we choose what seems
to be the simplest meaningful case: 6 nodes and 2 values. In this case, when
we identify the states apart the rotation, the 64 states can be reduced to the
following 14:

0=000000 1=000001 3=000011 5=000101 7=000111 9=001001
11=001011 13=001101 15=001111 21=010101 23=010111 27=011011
31=011111 63=111111

The transition matrix depends on the probability of each digit and on the
system of locality cells. Since many minima may arise, we suppose that the
locality cell is chosen at random among the candidates (different rules give rise to
different transition matrix and may even be not consistent with a representation
of states reduced by rotation, these evolutions will be discussed in another paper).

For sake of simplicity, we consider only the case of constant probability. For
the couples (l1, l2) there are the following cases:

• (1, 5) (that is equal to the classical BS model)

• (1, 2) (that a posteriori coincides with the results of (1,3) and of (2,3))

• (1, 4) (that a posteriori coincides with the results of (2,5))

• (2, 4) (that as shown later allows also a more suitable state representation)

Next table will summarize the results, the first part shows the frequencies of
each state, the second one shows the averages. We have added also a non BS case,
namely the random one, where the locality cell coincides with the whole space for
each kernel, and the two neighbors are chosen at random (compare [21], [13], [29]).



468 l.c. piccinini, m.a. lepellere, t.f.m. chang, l. iseppi

Confi- Structure Structures Structures Structure Structure
guration (1,5) (1,2),(1,3),(2,3) (1,4),(2,5) (2,4) Random

0 0,002643 0,0033320 0,004112 0,000000 0,003662
1 0,024136 0,0304099 0,035908 0,000000 0,032801
3 0,049081 0,0446415 0,050715 0,000000 0,050041
5 0,035378 0,0446415 0,050715 0,000000 0,050041
7 0,108473 0,0626871 0,069095 0,000000 0,079790
9 0,016208 0,0280814 0,028844 0,000000 0,025020

11 0,060323 0,1002903 0,076068 0,000000 0,079790
13 0,060323 0,0742085 0,098396 0,000000 0,079790
15 0,167864 0,1221499 0,120348 0,000000 0,128153
21 0,016527 0,0208957 0,023032 0,125000 0,026597
23 0,122677 0,1221499 0,120348 0,375000 0,128153
27 0,044115 0,0798766 0,074824 0,000000 0,064076
31 0,230218 0,2115085 0,197502 0,375000 0,201231
63 0,062034 0,0551272 0,050093 0,125000 0,050854

l1 l2 A2(6; l1, l2)
1 5 0,568695
1 2 0,560366
1 4 0,553865
2 4 0,625
random random 0,556145

Table 1. Binary BS model on a frame of 6 nodes:
frequencies and averages

The most striking value is the case of (2,4) and will be discussed in detail
below. Usually it is expected that in BS processes (self organizing criticality) the
average is higher than in a random process, since BS lets arise chains of adjoining
high values and chains are in some sense stable. Table 1 shows that, in a structured
process, it is possible to get an average lower than in a random process, namely the
strongly asymmetric case (1,4) in which the two operating cells are just opposite,
hence tend to break long chains of maximums wherever they could be located.

In the case (2,4), the set of nodes is split in two subsets: even E = {0, 2, 4}
and odd O = {1, 3, 5}. For each even kernel its locality cell is given by E, while
for odd kernels their locality cell is given by O. There is no overlapping between
the two sets of locality cells. Hence the system operates as if it was built by two
subsystems of three nodes each. Until both in E and in O there exist 0’s, the
change may happen in any of the two sets, and the probability is given according
to the frequency of 0’s (in a set of three elements BS is trivial since it coincides
with random process). When the state 111 is reached in one of the subsets, only
the other one may be changed, until the exchange state 111, 111 is reached. From
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this state the process will go on in one of the two subsets, but the other one will
maintain the values of 111, so that 0’s can appear at most in one of two subsets.
This means that the original set of 14 states reduces to a persistent class formed
only by states 21, 23, 31, 63, that is one set with three 0’s, one set with two 0’s,
one set with one 0 and the exchange state of all 1’s. This reduced system does
not give a complete information since it identifies the two subsets O and E, that
up to a rotation are coincident.

An equivalent (but more expressive) transition matrix could be derived from
the 14-element matrix taking into account only the couples of numbers of 1’s in
the two sets. We get the following 10 states

00 10 11 20 21 22 30 31 32 33

where ij means i ones in one set and j ones in the other. The correspondences are
obtained by direct check: 00={0}; 10={1}; 11={3, 9}; 20={5}; 21={7,11,13};
22={15,27}; 30={21}; 31={23}; 32={31}; 33={63}.

Gluing together the rows and columns in the 14 nodes transition matrix
actually we get the reduced transition matrix M , given by:

00 10 11 20 21 22 30 31 32 33
00 1/8 2/40 0 1/32 0 0 0 0 0 0
10 3/8 9/40 1/8 3/32 1/24 0 0 0 0 0
11 0 9/40 3/8 0 3/24 0 0 0 0 0
20 3/8 6/40 0 6/32 2/24 1/8 0 0 0 0
21 0 9/40 3/8 9/32 9/24 3/8 0 0 0 0
22 0 0 0 9/32 6/24 3/8 0 0 0 0
30 1/8 2/40 0 1/32 0 0 1/8 1/8 1/8 1/8
31 0 3/40 1/8 0 1/24 0 3/8 3/8 3/8 3/8
32 0 0 0 3/32 2/24 1/8 3/8 3/8 3/8 3/8
33 0 0 0 0 0 0 1/8 1/8 1/8 1/8

Table 2. Transition matrix of the reduced representation
for the (2, 4)-BS process of 6 nodes.

Let us remark that from all the six non persistent states (00, 10, 11, 20, 21, 22)
the total probability of reaching a persistent state (30, 31, 32, 33) is 1/8, but it is
not possible to reach directly the exchange state 33, that can be attained only
starting from a persistent state.

In the next section we shall review this example in the context of a general
theory of partitioned structures. This section ends with some remarks about
equivalence of different (l1, l2)-BS like processes. In fact a condition of equivalence
is the possibility of rearrangement of rows and columns of the transition matrix.
A trivial condition of equivalence is symmetry: in a non symmetric BS process
such as (1,2), this is equivalent to (n − 1, n − 2). A more sophisticate condition
can be achieved when a Hamiltonian permutation of the nodes is available. In
order to avoid complication due to partitioned frames, consider a prime number of
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nodes n. Then, for any given couple (l1, l2), all the couples ([(k l1) mod n],[(k l2)
mod n]) are obtained by a Hamiltonian permutation that allows to rearrange the
transition matrix so that it coincides with the original matrix associated to (l1, l2).
Let us remark that this result does not require the actual construction of the
transition matrix, and it holds for any dimension of nodes and sections. Consider,
for example, the case of 5 nodes: the couples are (1,2); (1,3); (1,4) (equivalent
to standard BS); (2,3); (2,4); (3,4). The couple (3,4) is the symmetric of (1,2)
and (2,4) is the symmetric of (1,3). We get (1, 2) ≡ (2, 4), hence (1, 2) ≡ (1, 3).
Finally, (1, 4) ≡ (2, 3); the latter equivalence is usually read as (1,−1) ≡ (2,−2)
(that is a formal extension of symmetric BS, compare [22]).

A somewhat more complex model is obtained for a higher prime number
of nodes. For example, in the case of 19 nodes there are at most 9 possible
equivalent structures. We list them according to decreasing (statistical) average.
There is statistical evidence that the two couples (1,2), (1,17) and (1,3), (1,16) are
actually different even if it is not proved that the two components of the couple
are different. On the contrary, there is no statistical evidence that the last four
cases have really different averages.

For reader’s information, next table gets the statistical average values for 19
nodes. Even if this section is dealing with binary processes, it is added also infor-
mation about the division in 4 sections. The frequencies in the case of 2 sections
are immediately recovered from the average subtracting 0.25 and multiplying by
2. The first five structures are kept distinct, while the remaining 4 are merged
into the class ”other”.

Name Av. 2 sect. Av. 4 sect. Fs(0) Fs(1) Fs(2) Fs(3)
(1,18) 0.67826 0.70015 0.045065 0.090301 0.383608 0.481026
(1,2) 0.653533 0.66260 0.049383 0.156482 0.387682 0.406453
(1,17) 0.640368 0.661908 0.050324 0.157052 0.388094 0.40453
(1,3) 0.62702 0.64451 0.052896 0.195466 0.373361 0.378277
(1,16) 0.62455 0.64583 0.053179 0.191047 0.37481 0.380964
other 0.621289 0.64137 0.05363 0.20193 0.36977 0.37468

Table 3. Statistical results for a frame of 19 nodes,
2 (respectively 4) sections.

The reader can make many remarks. The most obvious is that passing from 2
sections to 4 sections the average is increased; this fact depends from the central
value that is assigned to each section. Recall that the limit distribution in Bak
and Sneppen infinite dimensional model is a step function of 0 value up to the
critical value, and then it is constant. In general, it is a monotone function that
becomes asymptotically constant. Giving the central value to each interval it is
obtained a good estimate for the asymptotical section of the distribution, but we
underestimate the lower sections, the more the less is the number of sections.
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3. Partitioned frames

In this section we will analyze a much more interesting phenomenon, that may
arise only in the case of a non prime number of nodes (hence the reason for
choosing 6 nodes for the simplest case). In Table 1 the average of the last case
(2,4) is much greater than all the remaining averages. In the transition matrix of
the associated Markov chain there exists a persistent class that is smaller than the
whole set of 14 structures. Namely it contains only 4 structures (apart rotation):
01 01 01, 01 01 11, 01 11 11, 11 11 11, while the remaining 10 form a transient class:
this means that there exist sets of transformations that allow to pass from any of
them to any other, but there is the possibility of falling outside into the persistent
class without the possibility of returning back. In this simple case the analysis is
straightforward: nodes 2 and 4, together with the minimum conventionally placed
at 0, form a subset that has no interference with nodes 1-3-5, that, on the contrary,
are activated when the minimum is attained in one of those nodes. Whenever an
operation is performed, one 3-element subset is left unchanged, while the other
one is totally changed at random. The trick is that in this case the two subsets
do not change between different operations, what on the contrary happens in all
the remaining cases. The process cannot anyhow be divided into two independent
subprocesses, since the minimum must be looked for among the elements of both
subsets (for example a subset containing 011 enters in this search, while a subset
111 enters in the search only if also the other one is a 111 subset, in which case
there are 6 minima of value 1). During the transient phase a further interaction
is given by the number of minima; for example in the case 000 011 the first subset
has probability 3/4 of being chosen, while the other one only 1/4. When one set
reaches the configuration 111 (probability 1/8) the transient phase is terminated
and the process becomes stable, in the sense that it can be changed only if the
global minimum is 1, that is the configuration 111 111. This is the exchange state.
In this case at least one of the two subsets will save the configuration 111, that
can no longer be destroyed. The four structures above in fact can be read, using
the reduced state description of the last section, as 03= 000 111, 13 = 001 111,
23 = 011 111, 33 = 111 111. In the particular case of 6 nodes the transition
matrix becomes trivial since there is no longer a BS structure.

In particular the mean waiting time for reaching the persistent class starting
from any configuration of the transient class is 8, and does not depend on the
initial structure. The mean waiting time for reaching the top (and exchange)
configuration 111 111 starting from 000 000 (or any other transient) is 16. Remark
that in the standard BS process this last mean waiting time is 23.07572. The
increase in time is due to the impossibility of protecting the structure 111 from
decay once it is achieved for the first time.

A richer, but similar situation, arises in the binary case of 8 nodes. The
subsets are formed by four elements and the different structures are 0000, 0001,
0011, 0101, 0111, 1111; the persistent class is thus formed by a subset 1111 coupled
with any of these six structures. The estimations become less trivial because the
structure with four elements is already BS non trivial, inasmuch one element
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is not changed at random and preserves memory of the past. The average is
therefore somewhat increased, up to 0.63785. Using the transition matrix, one
can compute the mean waiting time. In particular, in this case it depends on the
starting configuration, in particular from 0000 0000 it is 14.79873, while it attains
a minimum from 0011 0011 or 0111 0111 where anyhow the 1 is saved. In this
case the mean waiting time is 10.98887.

We wish now to state formally the theorems that describe the main factors
of partitioned frames. In the first theorem there is no need to define explicitly
what a partitioned frame is, since it is simply built by the distinct cosets of the
cyclic group of n elements when n is not prime. In the general case of the second
theorem some definition will be needed, and also more information about the
substructures will be required.

Theorem 2 Let n be a non prime number of nodes. Let m = MCD(n, l1, l2)
3 be

the greatest common divisor, and denote by Max = (s− 1/2)/s the central value
of the upmost section, then the average is

(5) As(n; l1, l2) =
m− 1

m
Max +

1

m
As

(
n

m
;
l1
m

,
l2
m

)

and the frequencies of the single sections are

(6) Fs(j; n; l1, l2) =
1

m
Fs

(
j;

n

m
;
l1
m

,
l2
m

)

for j < s− 1, and

(7) Fs(s− 1; n; l1, l2) =
m− 1

m
+

1

m
Fs

(
s− 1;

n

m
;
l1
m

,
l2
m

)

Proof. The theorem is a particular case of Theorem 2. Symmetry considerations
would allow a straightforward proof, but we prefer to use the proof of the much
more powerful Theorem 2. As for the numerical aspect see the comment after the
proof of theorem 2.

We give now a formal definition of partitioned scheme.

Definition 4 Let X be the space of nodes on which a locality cell system Li is
given; X is said to be partitioned into a subsystem (X1, X2, ..., Xk) if for any cell
Lh it holds

#{i : Xi ∩ Lh 6= } = 1 4

3Of course, if m = 1, the formulas still hold, but are not meaningful.
4That is, each locality cell is contained exactly in one subset of the partition.
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With ni we will denote the cardinality of set Xi and so n =
k∑

i=1

ni.
5

In a partitioned scheme, the configurations may be rearranged in order to be
consistent with the partition in subsets. To a set Xk we associate a set Sk formed
by the configurations that involve the nodes of the component Xk. A set of confi-
gurations suitable for the construction of the transition matrix is thus represented
by the Cartesian product

S = S1S2...Sk
6

The use of a reduced transition space is allowed by the fact that changes
can happen only inside one subspace at each time. When the maximum is the
same for the whole system (as it usually happens) the exchange configuration is
E = m1m2...mh, where mi denotes the state in which all nodes in the subset
Xi attain the maximum value. If in the punctuated k-dimensional structure we
associate the state mi with the plane xi = 0, then the persistent class is formed by
the coordinate axes and the exchange configuration is the origin. In the partitioned
BS scheme the transition matrix thus assumes the form given in the following
table.

E C1 C2 ... Ch Z
E ∗ ∗ ∗ ∗ ∗ 0
C1 ∗ ∗ 0 0 0 ∗
C2 ∗ 0 ∗ 0 0 ∗
... ∗ 0 0 ∗ 0 ∗
Ch ∗ 0 0 0 ∗ ∗
Z 0 0 0 0 0 T

Table 4. Transition matrix in a partitioned BS scheme.

Let us remark that Ci denotes the set of states derived from the exchange
state E changing only the i-th component of the Cartesian product, and leaving
all the remaining components at the value ms.

7 For passing from one state to
another it is compulsory to pass through the exchange state E. Here ∗ denotes
the elements that can be non zero, while 0 indicates the components that are
necessarily 0. T is the transition matrix of the transient class Z in itself, and
also can be built up by a recursive matrix of partitioned frames. This happens
in particular whenever the sections are more than 2, as it will be shown in the
examples of the next section.

5Very often it may be convenient to look for the finest partition available, but our results do
not require minimality conditions.

6An example was given for the case of 6 nodes when we passed from the 14 state full repre-
sentation to the 10 state reduced representation.

7Hence it must not be confounded with Si since it is a proper subset of the whole Cartesian
product.
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The restrictions of the process to each subset Xi can be described using a
transition matrix Mi defined on the system of configurations Si. Thus we get the
usual information such as frequencies of each configuration yi that we shall denote
by Fi (yi), in particular we shall be particularly interested to Fi (Ei), where Ei

denotes the projection of E on the space Xi. Another important information is
of course the average value Ai. When we pass from the partitioned matrixes Mi

to the global matrix M , we require one more information, namely the probability
pi of going from the exchange state E to each state of the subsystems Ci. Let
us remark that in BS processes this is given by the ratio between the number of
maximum elements in each set (i.e ni/n). In particular if all the sets Xi have the
same number of nodes, pi is constant. We describe the persistent matrix, dropping
the transitions described by the last column and the last row. All data outside
the first column of the transition matrix of Table 4 are the same as in the single
transition matrixes Mh, and a formal change is the addition of the full description
of the other subsets that remain unchanged. The only change happens in the first
column, where the terms outside the first row are the corresponding terms of the
first rows of matrixes Mi multiplied by pi, and M(E, E) is the complement to 1 of
the column. Different schemes of course could be foreseen, provided the exchange
rule is maintained.

The most interesting results allow to calculate global frequencies and averages
from the frequencies and averages of the single subsystems, taking obviously into
account the cardinality of the subsets, the value of the exchange state (usually
the maximum) and the probability of different exits from the exchange state. For
sake of generality we denote by Vi the value of each component of the exchange
state, hence its value is given by the sum of these items.

Theorem 3 Let M be the transition matrix of a partitioned frame generated by
matrixes Mi. Let E be the exchange state, pi the probability of different exits from
the exchange state, Fi the family of frequencies for each subsystem. Then the av-
erage A is a weighted sum of the single averages according to the formula

(8) A =
1

N

k∑
i=1

pi

Fi(Ei))

( ∑

j 6=i

nj

n
Vj +

ni

n
Ai

)

where the normalization factor satisfies the relation

(9) N =
k∑

i=1

pi

Fi(Ei)

The frequency of the global configurations is 0 for the transient configurations. As
for the persistent configurations, we denote by Bi the configuration

(E1, ..., Ei−1, bi, Ei+1, ..., Ek)
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and we get

(10) F (Bi) =
1

N

pi

F (Ei)
Fi(bi)

for Bi 6= E, and

(11) F (E) =
1

N
·

Proof. For sake of simplicity, we can consider the case of two subsets, since the
general case may be proved by induction. We represent the transition matrixes
M1 and M2 by the following notations

Ma Ea a1 ... ar

Ea ea0 a01 ... a0r

a1 ea1 a11 ... a1r

... ... ... ... ...
ar ear ar1 ... arr

Mb Eb b1 ... bs

Eb eb0 b01 ... b0s

b1 eb1 b11 ... b1s

... ... ... ... ...
bs ebs bs1 ... bss

Let v0 = F (Ea), v1 = F (a1),..., vr = F (ar), and w0 = F (Eb), w1 = F (b1), ...,
ws = F (bs), and denote by A the submatrix of Ma without the first row and the
first column, and similarly by B the submatrix of Mb without the first row and
the first column, by ea the column vector (ea1, ..., ear)*, by eb the column vector
(eb1, ..., ebs)*, an eigenvector associated to eigenvalue 1 is given by (x0, x1, ..., xr)
where x0 = 1 and x1, ..., xn satisfy the system

(12) (A− I)x = −ea

Normalizing, the frequency vector is given by v ≡ (v0, x1v0, ..., xrv0) or
x = v/F (Ea). Respectively, let y1, y2, ..., ys satisfy the system

(13) (B − I)y = −eb

Normalizing, we get w ≡ (w0, y1w0, ...ysw0), or y = w/F (Eb)
In the complete system, we are interested only to the part that corresponds

to the persistent class. The matrix is thus

M E A1 ... Ar B1 ... Bs

E paea0 + pbeb0 a01 ... a0r b01 ... b0s

A1 paea1 a11 ... a1r 0 ... 0
... ... ... ... ... ... ...
Ar paear ar1 ... arr 0 ... 0
B1 pbeb1 0 ... 0 b11 ... b1s

... ... ... ... ... ... ...
Bs pbebs 0 ... 0 bs1 ... bss

Table 5: Joint transition matrix of a partitioned process
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In order to obtain the eigenvectors we solve thus the system

{
(A− I)x′ + 0y′ = −paea

0x′ + (B − I)y′ = −pbeb

obtaining

x′ = pax = pa/F (Ea)v, y′ = pby = pb/F (Eb)w.

The normalization of the vector leads to the normalizing factor N given in equation
(9) that appears in the statement of the theorem.

1 +
r∑

i=1

x′i +
s∑

j=1

y′i = 1 +
pa

Fa(Ea)

r∑
i=1

vi +
pb

Fb(Eb)

s∑
i=1

wi

= 1 +
pa

Fa(Ea)
(1− Fa(Ea)) +

pb

Fb(Eb)
(1− Fb(Eb))

= 1 +
pa

Fa(Ea)
+

pb

Fb(Eb)
− pa − pb

=
pa

Fa(Ea)
+

pb

Fb(Eb)
= N

(14)

Once formulas (10) and (11) are proved, the main formula (8) is easily derived
keeping in mind that the average value of the configuration is the weighted sum
of the averages of the single cartesian components, and the weight is just given
by the proportion of configurations that belong to each Si.

We wish to remark that there is an essential difference between the two theo-
rems: in fact in Theorem 1 in order to get the average it is not required to know
the frequencies Fi(Ei). From a numerical point of view these frequencies, very
near to 0, are difficult to be experimentally determinated, while on the contrary
the averages in non partitioned schemes can be easily experimentally estimated.
Let us remark that this is not true for the case of partitioned schemes, where
transitory phase may be very long. A computational trick is thus to start directly
from the exchange configuration or anyhow from the interior of the persistent
class, so that transitory period is skipped away.

4. Examples and staircase of critical configurations with overtaking

In this section, we give some examples for the theorems of the previous section,
but before we highlight the main features of the partitions that do not allow to
study these processes simply using binary representations joint to a change in the
probability system.
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4.1. Example 1

We come to a more general case of partition of the BS process. The simplest case
that shows the main features requires 2 subsets of 3 nodes each, and we consider a
ternary set of values, say 0,1,2 8. This corresponds to 6 nodes and displacements
of 2-4. A simplified analysis is the following: we attach label 0 to any subset
in which the minimum is 0 (not regarding their number), label 1 to any subset
in which the minimum is 1 (not regarding their number), and label 2 to the set
{2, 2, 2}.

Next table shows the transition matrix.

00 01 10 11 02 20 12 21 22
00 38/54
01 7/54 38/54 19/54
10 7/54 38/54 19/54
11 14/54 14/54 14/54
02 1/54 38/54 38/54 19/54
20 1/54 38/54 38/54 19/54
12 2/54 1/54 14/54 14/54 7/54
21 2/54 1/54 14/54 14/54 7/54
22 2/54 2/54 2/54 2/54 2/54

Tab le 6. Transitions in a 6 node bipartite Bak Sneppen set with 3 values.

There is one transient class (01, 11, 10) with exchange state 11 and one
persistent class (20, 02, 22, 21, 12) with exchange state 22. The asymptotic
average, normalized to the scale [0, 1] is thus 0.667, since one subset has the
form {2, 2, 2}, that corresponds to 0.8333 and the second one is random on the
three values 012 and corresponds to 0.5. A more complex frame with a ternary
partition, but in reduced form, was introduced in [35] and [36]. From states 00,
01, 10, 11 the mean waiting time to the persistent class is 27. Let us remark
that the topological structure of our representation is the same as what would
be achieved in section 3 when dealing with random optimization for the case of
three values on three nodes, and becomes exactly the same if we set p(0) = 19/27,
p(1) = 7/27, p(2) = 1/27.

Unlike the ternary partition there exists a path that touches all states even
if mean waiting time between non persistent states still remains infinity. This
remark a peculiar ”overtaking law”, that namely concerns the transition from 10
to 12 and from 01 to 21. The subset that is changed into the optimal label 2 is
not one labeled with 1, but one that is labeled with 0, since its minimum must
be lower than that of the best subset. For example, in a situation A = {1, 2, 2},
B = {0, 1, 1}, it is impossible that A is transformed into {2, 2, 2}, while this is
possible, even if unlikely, for B.

8The example was first presented during the AMASES meeting of 2011 [35], see also [36]
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4.2. Example 2

We go back now to the examples that illustrate theorems 1 and 2. We give an
example of a non symmetric partitioned frame in which BS processes happen. We
suppose that the total number of nodes is n = 8, and that we have a subset Xa

of na = 5 nodes and a subset Xb of nb = 3 nodes. The number of sections is 2.
On both subsets the locality cells are whose of the standard BS process, namely
each cell contains the kernel and the right and left neighbor; obviously in the case
of three nodes (random case) the locality cell is the same for all the kernels and
coincides with the subset.

We write down separately the two evolution matrixes and we make the usual
computations of frequency and of average. The representation is minimal, hence
Sa contains 8 items instead of 32 and Sb contains 4 items instead of 8. In the case
of Sa we get the transition matrix of Table 7, while the trivial transition matrix
of Sb in presented in Table 8.

31 0 1 3 5 7 11 15 F ]1′s
31 0 0 0 0.0416667 0 0.125 0 0.125 0.071267 5
0 0 0.125 0.0625 0 0.0416667 0 0 0 0.0098982 0
1 0.125 0.375 0.25 0.0833333 0.2083333 0 0.125 0 0.0735294 1
3 0 0.25 0.1875 0.125 0.1666667 0.125 0.125 0.125 0.1348982 2
5 0.25 0.125 0.1875 0.1666667 0.2083333 0 0.25 0 0.0975679 2
7 0.125 0.125 0.125 0.1666667 0.125 0.25 0.125 0.25 0.196267 3

11 0.375 0 0.125 0.2083333 0.1666667 0.125 0.25 0.125 0.1589367 3
15 0.125 0 0.0625 0.2083333 0.0833333 0.375 0.125 0.375 0.2576357 4

Average 0.549095

Table 7. Transition matrix for Bak Sneppen binary process on five nodes.

7 0 1 3 F ]1′s
7 0.125 0.125 0.125 0.125 0.125 3
0 0.125 0.125 0.125 0.125 0.125 0
1 0.375 0.375 0.375 0.375 0.375 1
3 0.375 0.375 0.375 0.375 0.375 2

Average 0.5

Table 8. Trivial transition matrix of binary BS process on three nodes.

The exchange state is (31, 7), that corresponds to section 1 in all the 8 nodes.
The probability of changing state Sa (resp. Sb) is proportional to the number
of nodes, so we have pa = 0.625, pb = 0.325, na = 5, nb = 3. The remaining
coefficients are already known from the elaboration of the transition matrixes,
we have namely F (Ea) = 0.071267, F (Eb) = 0, 125, ma = 0.5491 and mb = 0.5
(obviously, since it is a random process). We get thus the coefficients pa/F (Ea) =
8.76984, pb/F (Eb) = 3, N = 11.7698. We recall that, in view of our convention
about the middle of the sections, Va = Vb = 0.75. Finally we get from theorem
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2, formula (8), the final value A = 0.632544. The case is simple enough that
it can be handled directly by constructing the transition matrix. We obtain the
following table:

31-7 0-7 1-7 3-7 5-7 7-7 11-7 15-7 31-0 31-1 31-3 F 1′s
31-7 0.125 0 0 0.041 0 0.125 0 0.125 0.125 0.125 0.125 0.084 8
0-7 0 0.125 0.062 0 0.041 0 0 0 0 0 0 0.007 3
1-7 0 0.375 0.25 0.083 0.208 0 0.125 0 0 0 0 0.055 4
3-7 0.078 0.25 0.187 0.125 0.166 0.125 0.125 0.125 0 0 0 0.100 5
5-7 0 0.125 0.187 0.166 0.208 0 0.25 0 0 0 0 0.072 5
7-7 0.156 0.125 0.125 0.166 0.125 0.25 0.125 0.25 0 0 0 0.146 6

11-7 0.078 0 0.125 0.208 0.166 0.125 0.25 0.125 0 0 0 0.118 6
15-7 0.234 0 0.062 0.208 0.083 0.375 0.125 0.375 0 0 0 0.191 7
31-0 0.046 0 0 0 0 0 0 0 0.125 0.125 0.125 0.031 5
31-1 0.140 0 0 0 0 0 0 0 0.125 0.125 0.125 0.095 6
31-3 0.140 0 0 0 0 0 0 0 0.375 0.375 0.375 0.095 7

Average 0.632

Table 9. The transition matrix of an asymmetrically partitioned Bak Sneppen frame

A further comparison of the frequencies is consistent with formulas (10)
and (11).

We end this example comparing the result with the symmetrical partition
of the 8 nodes system as given by formula (5) in Theorem 1. We need to know
A2(4; 1, 3).

The transition matrix is given below and the average is 0.525735.

15 0 1 3 5 7 F ]1′s
15 0.125 0 0.041667 0.125 0 0.125 0.088235 4
0 0 0.125 0.083333 0 0.125 0 0.036765 0
1 0.125 0.375 0.291667 0.125 0.375 0.125 0.198529 1
3 0.25 0.25 0.25 0.25 0.25 0.25 0.25 2
5 0.125 0.125 0.125 0.125 0.125 0.125 0.125 2
7 0.375 0.125 0.208333 0.375 0.125 0.375 0.301471 3

average 0.525735

Table 10. Transition matrix for BS binary process on four nodes

By this computation we also know F (15), but we do not require it 9. We
remark that, as usual, V (Ea) = V (Eb) = 0.75. Hence we get

A4(8; 2, 6) = [0.75 + A2(4; 1, 3)]/2 = 0.637868.

The symmetrical partition gives an average slightly greater than the un-
balanced partition, according to the general conjecture of [26] and to some ex-
perimental results we recall now in the end of this section.

9The advantage of not requiring the knowledge of F (E) will become evident in the next
example.
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4.3. Example 3

This example shows a partitioned frame in a case particularly rich, namely 24
nodes. Here also some of the partitions may still be decomposed. The results of
Theorem 2 do not depend on the number of sections, but the numerical simulation
can become heavily unstable, since it can take a very long transient period before
the exchange state is reached for the first time. If the numerical simulations
are needed for analyzing the persistent state, the best strategy is to start the
simulation from the exchange state or anyhow from the inside of the persistent
class. Since in Theorem 1 all the partitions are equal, there is no problem if it
takes a great number of iterations to rejoin the exchange state in order to pass to
another partition.

The problem would arise in the case of Theorem 3, where the single partitions
must necessarily be simulated separately, and the further estimate of the frequency
of exchange state for each partition would be needed.

We describe now the structure of the 24 node system. The experimental data
(*) are referred to 4 sections, where in particular M = 0.875. In the next table
we report only the reduced classical BS of each partition.
8 subsets of 3 elements, 6 subsets of 4 elements, 4 subsets of 6 elements, 3 subsets
of 8 elements, 2 subsets of 12 elements:

As(24, 8, 16) = 7/8M + 1/8As(3, 1, 2) A4(24, 8, 16)* = 0.828166
As(24, 6, 18) = 5/6M + 1/6As(4, 1, 3) A4(24, 6, 18)* = 0.817772
As(24, 4, 20) = 3/4M + 1/4As(6, 1, 5) A4(24, 4, 20)* = 0.802184
As(24, 3, 21) = 2/3M + 1/3As(8, 1, 7) A4(24, 3, 21)* = 0.789492
As(24, 2, 22) = 1/2M + 1/2As(12, 1, 11) A4(24, 2, 22)* = 0.768288
A4(24, 1, 23) = 0.715446

For reader’s convenience we add also

A4(24, 1, 2)∗ = A4(24, 5, 10)∗ = A4(24, 7, 14)∗ = A4(24, 11, 22)∗ = 0.676339

The remaining non reducible structures have averages ranging between 0.649575
and 0.663925.

The 19 (prime number) case is non decomposable and its range should be
compared only with non decomposable cases of 24; but the whole range reaches,
as shown before, 0.8281, hence much greater than the case of 19 nodes. These
results are to be compared with the case of a prime number of nodes, where the
dependence on the structure has much smaller effects. In the case of 19 nodes
the total range is between 0.640 and 0.700, while here the average ranges between
0.660 and 0.828. While the non decomposable frames show only small differences
due to the increase in the number of nodes, the main differences arise as the
dimension of the subsets diminishes down to the elementary case of 3 elements.
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5. Examples from the socio-economic world

As mentioned in the introduction, the BS model is suitable to analyze multi-agent
economic and social phenomena. Many variations are obtained by structuring the
network of connections differently, giving different laws of transition, establishing
different criteria for choosing the item that has to undergo the change. In the
case of partitioned schemes the basic element is the segmentation of the system
of nodes, which may possibly accompany the other structural changes. The si-
tuation presented in the theoretical sections and in the section of mathematical
examples is clearly an extreme situation, but it summarizes trends that can be
found in the external reality: the links that join subsets can become very weak
at the level of connection between different sets, while can remain strong within
the subsets. An analysis of the fundamental components then leads to an ap-
proximation of the model that ends up consisting of separate components as it
happens in Hsu technique of generalized cell-mapping ([27]), used by the authors
in territorial analysis ([9]). Example 3 of the previous section shows that there are
large differences in mean values as the division into subsets becomes finer, while
in the absence of splitting the average values are much lower. Actually the process
of approximation is more articulated, because the transition takes place progres-
sively changing the laws of proximity between nodes. In the examples there was
a pure dichotomy, with the node connected or not connected without gradients,
while it could be supposed that the transition to the partitioned cases occurs by a
progressive change of the probability of proximity. So the model provides a useful
partitioned limit-schema for understanding (but not for quantitative prediction).

An aspect of particular interest was highlighted in Example 1 where the
phenomenon of overtaking is presented. It is typically characterized by a low
probability, but becomes gradually higher as the set shrinks. The phenomenon
of overtaking can occur along a scale of discrete values more complex than the
ternary system (and as it is obvious it cannot be recognized in the binary system),
and as the steps go up it becomes more and more unlikely, but instead acquires
great stability. A first discussion of the phenomenon was given in [36].

The territorial systems are those which because of their nature are more sub-
jected to segmentation, both for the influence of metric distance, and for the effect
of border barriers, that may be physical but also regulatory, economic, social. In
urbanism the various districts are subject to town plans that generally do not in-
terface with their neighbors (even if it seems absurd), and thus to a BS evolution
model that is subject to segmentation. This encourages overtaking, which often
is found in the restoration of old urban centers or deteriorated areas of the city, as
has often occurred in the case of the old port areas (Liverpool, Valencia, the East
End of London.) The drag effects fall in the broader study of spontaneous syn-
chronization phenomena that characterize complex systems. A regional system
of central places (as proposed by Christaller and perfected by many geographers)
can enter in the pattern of BS models provided the local districts are normalized
to make them balanced in dimensions (combinations of secondary sites or sub-
divisions of the central place) or in connections (asymmetrical links). However,
when the system is substantially changed, becoming a lattice, it is necessary to
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pass to a partitioned model, where the restricted set of nodes in the network is
separate from the system of central places (which is rated lower). All the same,
if in this system subsystems of small size are created, it is possible that in turn
some of them can perform overtaking. That is the case for many small coun-
tries that were not originally nodes in the network system, such as Luxembourg,
San Marino, Monaco, United Arab Emirates, where the ability to get out of law
restrictions allows the creation of nuclei inserted in a strong economic system
both because of the connections with the rich system and for the possibility of
tax havens. Singapore has not been added to this list, as it, like other strategic
ports, has always represented an exceptional situation, so it would be improper
to speak of overtaking, while it is more correct to see a continuity in its position
of privilege.

Partitioned models typically represent abnormal situations, as the evolution
of the individual subsets may differ significantly. At the global level between the
US and Europe there are sensitive differences in terms of the law even where
there are international rules. An interesting case concerning different rules for the
production of compost was discussed in [20], particularly about the rights on the
green waste, where a standard obedience was expected. Even at the local level BS
models of evolution bring to unexpected gradients as soon as region borders are
overcome ([28]) and it seems that these gradients may not be statistically included
in a simple random fluctuation.

Economic interdependence is a field that suggests various applications. There
is a horizontal network of relationships between companies operating in the same
industry and a network of vertical relations of sale and purchase between the
different branches. This is assessed at national level through various types of
input-output matrices based on Leontiev Model. The input-output matrices cor-
respond to an oriented network connecting the various nodes (branches) of the
economy and allow to study how internal relations influence economic evolution.
There are several ways to reorder the matrix and then to analyze the interrela-
tionships between the subsystems of the network. This leads to the possibility
of comparisons between different countries, as was done in section 3 of [10]. You
may recall that in theory the French model emphasizes the Hamiltonian circuit, so
aims to an economy in which the structure should recall the basic circular model
of BS. However, the partitioned models can lead to higher average returns even if
the imbalances between single subsets may be higher.

The segmentation is due to different skills and different technologies but also
to the entry barriers that individual subsystems seek to set up for their own de-
fense. On the other side they evaluate the possibility of overcoming thus becoming
aggressive and the effects of this unstable equilibrium can be evaluated by means
of dedicated indicators (see for example [7]). At the horizontal level the slight
initial segmentation due to natural aggregations disappears along the trend to-
wards oligopoly, which creates a smaller number of subsets, moreover strongly
segmented between them. The vertical expansion of these oligopolistic subsets is
not very strong but it is an important phenomenon in terms of the BS model,
as it enhances concentration and promotes the tendency to a network system of
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oligopolists that crosses the widespread system of small agents. The problem has
been studied in particular in two fields where the concentrated system coexists
with the distributed system, namely in the field of hotels and restaurants by [16]
and in the agrifood chain by [8].

In a socio-cultural context, interesting cases occur in the evolution of science
when overtaking happens in those areas where large investments of capital are
not required. Mathematics is one of these areas. Countries with good basic
skills but no former tradition of innovative research may suddenly succeed since
there is the possibility to bypass the plethora of detailed information by directly
accessing the nodal points of the evolution of the search. According to some
scholars, in particular Guerraggio (see [25]), that is what happened in the golden
age of Italian mathematics in the years 1880 to 1910, when the new state saw
active almost simultaneously U. Dini, V. Volterra, G. Peano, F. Enriques, Severi
F.G. Castelnuovo, just to remember some of the famous names who were honored
by the greatest international appraisal. The importance of Italy was confirmed
by the allocation of the third International Congress (Rome 1908) and by the
astonishing development of Mathematical Circle of Palermo. In its acts (e.g. [24])
the formidable team of world-famous associates at the beginning of the century
can still be read: among them Poincaré considered Palermo Circle as the most
important mathematical organization in the world. It is worth to mention the
sudden overtaking in regularity theorems performed by De Giorgi in the 50’s of last
century (De Giorgi-Nash theorem). The very De Giorgi in a private conversation
said he had profited of his restricted knowledge of the relevant literature, so that he
did not follow the paths already beaten. In fact he pointed strongly on the know-
ledge of Caccioppoli inequality and on the isoperimetric refinement of Sobolev
inequality, adding the construction and the solution of an ingenious system of
finite difference equations that allowed him to close the chain of inequalities.

In the world economic development, the examples of sudden overtaking are
very common. Starting two centuries ago from Germany industry, when England
compelled German production to advertise that it was ”made in Germany”, and
not in England, passing through Japan and, again, Germany after the Second
World War, and arriving at the emerging economic and industrial powers of China,
India, Brazil, South Africa. Self defense of the leading countries creates the seg-
mentation that can lead to the overtaking, that will be discovered only when it is
actually too late. A counterpart can be found in protectionism, that encourages
the first phases of development, defending from the risks of global, and mostly
unfair, competition, but according to Example 1 bears the risk of stopping a long
time on one of the lower steps of the development staircase, without the incen-
tive to new (and perhaps risky) steps in connection with global evolution. Bak
and Sneppen partitioned schemes are sensitive to these real world situations. In
these models, as sometimes in the real life, the principle is quieta non movere (Let
quiet things stay). The idea is that movement requires material or intellectual
dissatisfaction, while further movements are caused by some form of nested neigh-
borhood, with unsatisfied people that can in turn generate new dissatisfaction.
To this purpose we can remind the happiness paradox of Easterlin ([18], [19]).
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6. Conclusions

In this paper, the authors have shown that discrete models of local-global pro-
cesses may give relevant information on systems where self organizing criticalities
arise. They have shown that a relevant feature is the existence of sequences
of footholds that allow also long time persistency, but are subjected to pheno-
mena of overtaking (what has also a very important economical and behavioural
meaning). From a technical point of view the authors have shown that among the
many generalizations of BS processes, there exist a lot of cases where some form
of decomposition is possible, allowing optimization at higher levels. Random opti-
mization, that seems to represent the simplest form of local-global process, allows
a comparison with BS processes on partitioned frames, even if it does not allow
sharp estimates on the average time required to ascend all the scale of increasing
footholds. The definition of partitioned frames is somewhat more general than
the pure definition that arises from BS models. The main theorems give a sharp
information about the average and the frequencies of the states of the global pro-
cesses when the single processes that are glued together are known, thus allowing
in particular a reduction of the numerical instabilities that conflict with a good
knowledge of self organizing criticalities.

This scheme could be used in very general partitioned processes; in some
cases two processes could coexist independently from each other, if the transition
matrix of the system Sk does not depend from the remaining Si’s, but this case
would have little interest. In general the evolution depends also on what is the
actual global state of the system even if it perturbs only one subset at a time.
The single transition matrix might even not depend explicitly on the rest of the
system, but it is enough that some selection rules are given from the GC that
allow or forbid some subsystems to evolve, according to a suitable law of choice,
deterministic or probabilistic. Actually when dealing with BS processes, much
harder bounds are put on partitioned schemes. In fact a subset can be changed
only if it has at least one node that attains the minimum. When in a configuration
all the nodes of a subset attain the maximum, they cannot be changed until some
lower term exists in the system. This means that in this terminal (persistent) class
the only admissible configurations are those in which all the subsets but one get
the maximum value. In particular should it happen that some subset can attain
values greater than the rest of the system, then when it attains this ”exceptional”
maximum it will never change any longer. The socioeconomic examples of Section
5 suggest the use of these generalizations.

In our numerical simulations we experimented mainly the case of four va-
lues since for lower number of values the standard BS distribution is anyhow
too concentrated on the top value, hence the different steps are confounded with
the casual fluctuation. As soon as the dimension of the subsets is increased it
becomes more and more difficult to reach the stable steps; for example already
subsets of 18 nodes very often require more than 100,000 iterations in order to
reach the persistent class. Let us remark that the transition, when it happens, is
very similar to an ”avalanche” and average suddenly increase. In some cases the
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process is not complete, hence it can be reverted, but finally it happens that the
threshold is reached. Increasing the number of values, multiple thresholds arise;
the lower levels can be easily overcome, while the top levels can prove to be almost
unreachable. This is for example the case of ten values and forty nodes, in which
the top level has never been reached in ten simulations of 1,000,000 iterations.

A further remark is that in complex cases (more than two subsets, more than
two levels) the evolution staircase can change between simulations, since each step
is not reversible, but different steps have different compatibility, so that different
development paths can arise starting from similar original situations.

The experienced reader can remark that the Global Controller is not a new
concept, since such a figure was introduced in full detail already in the Middle
Ages by Dante’s poetry, and was called Fortuna (Fortune):

”He made earth’s splendors by a like decree
and posted as their minister this high Dame,
The Lady of Permutations. All earth’s gear
she changes from nation to nation, from house to house,
in changeless change through every turning year.”

Dante, Inferno, 7, 77-81 translation J. Ciardi
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