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Abstract. T-resolution is a binary rule, proposed by Policriti and Schwartz in 1995 for theorem
proving in first-order theoriesI{-theorem proving) that can be seen — at least at the ground level — as

a variant of Stickel'dheoryresolution. In this paper we consider refinements of this rule as well as
the model elimination variant of it. After a general discussion concerning our viewpoint on theorem
proving in first-order theories and a brief comparison wligoryresolution, the power and generality

of T-resolution are emphasized by introducing suitable linear and ordered refinements, uniformly
and in strict analogy with the standard resolution approach. Then a model elimination varfant of
resolution is introduced and proved to be sound and complete; some experimental results are also
reported. In the last part of the paper we present two applicatiofsre$olution: to constraint logic
programming and to modal logic.
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Introduction

In order to perform automated deduction in the context of a given finitely ax-
iomatizable first-order theor¥, the deduction theorem guarantees that one can
use a first-order theorem prover applied to sentences that are implications whose
antecedent is the conjunction of the axioms/'ofThis technique has two obvious
disadvantages:

1. in general, very large sentences must be manipulated to prove even simple
theorems: the conjunction of the axiomsfis always part of the sentence to
be proved; and

2. no specific knowledge relative fois used in the process.

In order to overcome these disadvantagesthiery resolutiorrule was proposed

in [28]. This rule permits one to eliminate the axioms7from the theorem to

be tested, and exploitsZ-decider at each step of the inference process. Stickel's
proposal has been followed by many studies seeking to cut down the search space
generated by the use of theory resolution.
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434 ANDREA FORMISANO AND ALBERTO POLICRITI

More recently another ruld;-resolution, was proposed in [24], and theoretical
results were presented that enable one to express in a natural manner, for a specified
underlying theoryr’, conditions under which it can be mechanized.

In this paper we discuss theorem proving in the general context of a first-
order theory, and, in particular, we consider linear and ordered refinements of
T-resolution as well as its model elimination variant.

T-resolution is a binary rule that can be seen — at least at the ground level — as a
variant of Stickel's theory resolution. The rule is introduced and briefly discussed
in the first part of the paper; and the fact that it ibinary rule whose behavior
is very similar to that of (standard) resolution will be extensively used in what
follows. All of the proposed refinements allow us to avoid the explicit introduction
of the axioms ofT" in proving a theorem of". Moreover, they make systematic
use of specific knowledge ofi that takes the form of decision procedures for
sublanguages df.

Our main result involves a technique that corresponds to model elimination in
the context ofT-resolution, but before introducing it, we consider the standard
refinement strategies: linearity, ordering, and set of support.

T-resolution is a powerful rule, and this fact makes the problem of defining
suitable {"-)analogues of the refinements considered nontrivial. As we will see, for
example, under a straightforward definition of lingaresolution,any deduction
can be viewed as being linear. In addition, we will show that an analogous situation
arises for Stickel’s rule, where trivial linearizations are also allowed. For each of the
refinements considered, a suitable version for the context in which we are interested
(namely, when a background first-order theory is present) is discussed and defined.
Then correctness and completeness results for the ground case are obtained.

As far as the proofs of completeness are concerned, the basic technique em-
ployed is the same in all the cases, but the complexity increases as we proceed.
Model elimination, the final case considered, is the most intricate; all the work
preceding its treatment can be seen as a preparation for it.

As we said before, variants and refinements of Stickel’s theory resolution have
been studied in depth by many researchers. For example, Baumgartner [1] con-
siders linear theory-resolution dealing with the case of model elimination, while
in [2] ordered theory-resolution is introduced and shown to be complete. Another
approach to theory reasoning, based on the connection method, is given in [22]
and [23]. Baumgartner et al. [3] offer a unified view of these approaches.

The main (obvious) difference between these approaches and ours is the fact
that we are working with a different rule. The fact that we begin with a binary
rule allows us to obtain a closer similarity between our results and the correspond-
ing results for standard resolution [9, 19]. A less obvious difference is the fact
that the nature of th&-resolution rule allows a complete separation between the
background level (th@-decider) of ar-theorem prover and its foreground rea-
soner, giving rise to further investigations of refinements, strategies, and heuristics
expressly designed fdr-resolution such as validity freeness (see Definition 2.1).
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T-RESOLUTION: REFINEMENTS AND MODEL ELIMINATION 435

The paper is organized as follows. In the first section we briefly introduce the
basic definitions and a general discussion concerning theorem proving within the
context of a first-order theory. The rule ofT-resolution is then introduced, and
correctness and completeness results are stated.

In the second section we consider the problem of defining a suitable version of
linear T-resolution. Next, T-)generalizations o&-linear resolution [19] as well
as ordered resolution are introduced and shown to be complete. In the third sec-
tion, the model elimination variant @f-resolution is introduced and proved to be
complete; some experimental results are also presented.

Finally, two applications of -resolution are briefly described. In the first place,
T-resolution is seen as providing a general and powerful deduction scheme frame-
work generalizing the approach of constraint logic programming. Then, the basic
structure of a modal theorem prover basedieresolution is outlined.

1. T-Theorem Proving: A Brief Introduction
1.1. BASICS

In this section we briefly discuss our viewpoint on theorem proving in first-order
theories. What we consider most important is to establish criteria for classifying
first-order theories with respect to their suitability for automated theorem proving.
Missing proofs and details can be found in [24] and [25].

Let T be a universal theory, that is, a (consistent) recursively enumerable set of
sentences in purely universal form, closed under logical entailmEtearly, any
such theory is trivially axiomatized by the entire set of its sentences. Those theo-
ries that are axiomatizable by a proper subset of their theorems form a significant
special case. LeL(T) be the smallest language in which all these sentences can
be written. An important feature of our approach is the fact that we assume neither
thatT is finitely axiomatizable nor that (T) is finite.

By anextensiorof a given languaget, we mean a languagé* 2 £ such that
L*\ £ contains new symbols. Unless otherwise specified, we always deal with
extensions£* obtained adding teC only new function or constant symbols.

Given a ground formula, written in an extensiont* of .£(T), we will con-
sider theT -satisfiability problem fokp, that is, the satisfiability problem @f with
respect to the theory.

In what follows, unless otherwise specified, letters such aB, C, D will de-
note atoms, whereal, L, N, M will usually be used for literals. IL is a literal,
thenL¢ denotes its complement. A clause is the universal closure of a disjunction
of literals; it is convenient to view a clause as a set 011 literals. given a formula
the existential (resp. universal) closuregois denoted byg (resp.Ve).

* In this paper we treat only the case of universal theories.
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436 ANDREA FORMISANO AND ALBERTO POLICRITI

DEFINITION 1.1. A theoryT is said to beGROUND-DECIDABLE if, given an
unquantified formula of £L(T), it is decidable whether or not there exists a model
of T"in which 3¢ is satisfied.

RemarkNote that ground-decidability for conjunctions of literals is a sufficient
condition for the ground-decidability of the entire theory.

As we will see, ground-decidability represents a minimal (albeit sufficient) re-
quirement onT" to carry out some form of theorem proving withas underlying
theory. We will always deal with ground-decidable theories. Moreover, without
loss of generality, we will assume th&{T) contains at least one constant symbol.

DEFINITION 1.2. LetT be a theory an@ be a formula of an extensiog* of
the language of . A T-MODEL is a model of the theory’; ¢ is T-SATISFIABLE if
there exists an interpretation gf that is ar’-model and a model faiyp; otherwise
@ is T-UNSATISFIABLE. Two formulasy andy are T-EQUISATISFIABLE if we
have thaty is T-satisfiable if and only iff is T-satisfiableg is said to bel"’-vALID
if it is true in everyT-model.

The following result is a simple consequence of the Compactness theorem and
the Herbrand theorem [19].

THEOREM 1.1 (Herbrand theorem fdr). Given a universal theory" and a
quantifier-free formulay of L*, the universal closur&g of ¢ is T-unsatisfiable if
and only if for some integer there existc ground instance®b;, ..., ¢b; of ¢, in
the languagec£*, such thatp6; A - - - A @6, is T-unsatisfiable.

Proof.(=>) Let T be expressed as a set of clausesd letS be the set of clauses
obtained from the conjunctive normal form 8p. Vo is T-satisfiable if and only
if T A S is satisfiable. Thus, by the Herbrand theorem there exist a finitE’ s#t
groundT-valid clauses and a finite st = {«, ..., o} of ground instances of
clauses ofS such thatl” A S’ is unsatisfiable. Let (for all = 1, ..., k) S/ be a set
of ground clauses such that € S/ = S6;, whereg; is a ground substitution. We
have thatl’ A S A --- A S, is unsatisfiable as well as

T A{@OLA -+ A @by} (1)

It follows that ¢6; A --- A @6, has noT-model, since otherwise (1) would be
satisfiable. _

(<) Let g1 A --- A @b be T-unsatisfiable. Suppose thép is T-satisfiable.
Then there exists @-model M of Vo. For each = 1,...,k, M is aT-model of
@6;; this yields a contradiction. Hend& must beT -unsatisfiable. O

* This is no restriction, sincé is a set of purely universal sentences; hence, for any of them, we
can consider the corresponding clausal form.
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T-RESOLUTION: REFINEMENTS AND MODEL ELIMINATION 437

The previous theorem suggests a general instantiate/check (i/c from now on)
method for testing a given sentere for T -satisfiability. Clearly, such a method
would be computationally unsuitable for properly facing thaatisfiability prob-
lem for the non-ground case; nevertheless it offers a good theoretical starting point.
The instantiation phase is easily designed provided we have an enumeration of
all terms in the Herbrand univerge ;.. The subsequent check phase turns out to
depend critically on the underlying theoFy

Supposing thaf" is ground-decidable, the Substitution lemma below ensures
that there exists a suitable algorithm for performing the check phase, independently
of the particular extensiog* of L£(T) used.

Following [24] we introduce aubstitution functiors,, (written simply S if the
given formulag is clear from the context) that maps (substitutésjterms ofyp
into L(T)-terms. This mapping acts likepaojectionof L*-terms onto (generally
open)L(T)-terms: intuitively speaking, the syntactical structure of@&mterm is
recursively scanned substituting subterms with leading functor ngt(ify) with
previously unused variables ¢f(7). More formally:

F(Sp(t), ..., Sp(ty)) iftis f(tr, ..., t,) andf e L(T),

S, (1) = t if ¢ is a constant € .£(T) or a variable,
o) X otherwise §; being a newly introduced
variable).

The subscript ing, above means that the choice of such variable is not com-
pletely independent of the termthat is, the mapping, substitutes equal terms
with the same variable (see [24] for technical details).

Given an unquantified formula (ternX), let S,(X) be the formula (term) ob-
tained fromX by replacing each termoccurring inX by S, (¢).

As mentioned, the following result links tHE-satisfiability problem for un-
qguantified formulas of£* to the corresponding problem (7). Observe that
Lemma 1.1 emphasizes the case of (ground-decidable) theories which include the
equality.

LEMMA 1.1 (Substitution lemma)Given an unquantified formula,

(1) if the theoryT does not contain the equality symbol, therand S,(¢) are
T-equisatisfiable;
(2) if T is a theory including equality, then létbe the conjunction of the clauses
Sp(t1) = Sp(s1) A=+ = A Sy (f) = Sy (s1) —

Se(f (11, 1)) = Sp(f (51, -+, 5%)),

where one of these clauses is formed for each éir, . .., t), f(s1, ..., S)
of terms occurring ing, whose leading functorf is not a symbol of the
languageL(T).

Then the formulag and S, (¢) A & are T-equisatisfiable.
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438 ANDREA FORMISANO AND ALBERTO POLICRITI

As a consequence, we have the following.

LEMMA 1.2. Given any ground-decidable theofy, we can determine algorith-
mically whether or not a given ground formula, written in an extensfémof £(T),
is T-satisfiable.

Lemma 1.2 guarantees the existence of a checking algorithm for our i/c method.

It is possible to insert, between the instantiate and the check phases, a trans-
formation step yielding the conjunctive normal form of the ground formula to be
checked.

The reader can easily check that, for example, the method presented in [15] can
be straightforwardly adapted to our context. This transformation has polynomial
time complexity but, in general, involves an extension of the language(ahd
hence ofT") that may introduce new predicate symbols. To deal with such kind of
extensions, Policriti and Tetali [25] proposed a generalization of the Substitution
lemma able to treat new uninterpreted predicate symbols. On this basis, it is easy
to prove the following generalization of Lemma 1.2.

COROLLARY 1.1. If T is ground-decidable, then it is algorithmically decidable
if any ground formula written in any extension6f7) is or is not7T-satisfiable.

An alternative approach works by converting uninterpreted predicate symbols
to new function symbols. For instance, assuming that the domain of discourse
contains at least two elements, we can extend the language with two new constants
— sayt andf — and a new function symbaofp for each uninterpreted predicate
symbol P. Then, the generic literaP(z4, ..., #) can be replaced by the literal
fp(t1, ..., 1) = t. This approach allow us to employ directly Lemma 1.2, but it
forces us to consider equality predicate as part of the theory; this is not the case for
the approach presented in [25].

Given a quantifier-free formula, our i/c procedure could work by repeating
the following steps:

— generate the ground instange
— obtain the CNF-form o§’: cnf(¢’); and
— checkenf(g”) for T-satisfiability.

Methods for performing the final step of this loop will be treated in detail in the
following sections, where we will see how the results just stated can be employed
in theorem proving (mainly at the ground level) in ground-decidable first-order
theories. This application will be done in a very natural manner, showing how most
of the techniques developed for the standard case (e.g., Davis—Putnam procedure,
resolution procedure, refinements) can be propefhgeneralized”.
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T-RESOLUTION: REFINEMENTS AND MODEL ELIMINATION 439

1.2. GENERALIZED DAVIS—PUTNAM PROCEDURE

At this point a generalization of the Davis—Putnam procedure suitable for treating
the ground case of first-order theories can be proposed. The aim is to tgst the
satisfiability of a finite sef of ground clauses written in an extensign of L(T).
Supposing, as usudl, to be ground-decidable, the above corollary guarantees that
the procedure defined below can be completed to obtain an algorithm for testing
T -satisfiability of conjunctions of ground clauses.

Let S be a set of ground clauses anehj be a conjunction of literals. The
Boolean functionT-Sat (-) tests forT-satisfiability a conjunction of literals (see
below).

procedure T-DP P(S, conj);
if T-Sat(conj) then
if S = ¢ then returrsatisfiable

elseifd € S then returnunsatisfiable
else letL be an arbitrary literal occurring ifi

S1:={a\L°|aeSandL ¢ «}

conj, := conj A L; (L is set to TRUE)
S, :={a\L|aeSandL® & «}
conjp := conj A LS (L is set to FALSE)

if T-DP P(S1, conji) = unsatisfiableand
T-DP P(S,, conjp) = unsatisfiable

then returrunsatisfiable
else returrsatisfiable

endif;

endif;
else returrunsatisfiable
endif;
endT-DPP;

The procedure should be initially called with the starting $eind an empty
conjunction as parameters.

T-DP P is obtained from the classical Davis—Putnam procedure by adding an
initial call to T-Sat(-) and eliminating the single-literal and the pure-literal rules
(as in propositional logic these rules can be viewed as instances of the splitting
rule). While the former rule could be actually added, the latter can be incorrect in
our context as the following example shows.

EXAMPLE. Let S = {{A}, {B}} andT = {{—A, —B}}. S is T-unsatisfiable, but
the setS’ = {{ B}} obtained fromS by applying the pure-literal rule iB-satisfiable.

Assuming the polynomial time complexity @f-Saz(-), the average case com-
plexity of T-D P P is shown to be polynomial (see [25]).
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440 ANDREA FORMISANO AND ALBERTO POLICRITI

Because of the generality of the extensigh the conjunctiorconj (which is
a CNF formula) tested fof -satisfiability may contain conjuncts not belonging
to L(T). In this case, Corollary 1.1 ensures that ground-decidability” o a
sufficient requirement to guarantee the existence of a suitaisler (-).

1.3. RESOLUTIONT-THEOREM PROVING

In this section we briefly revieW -resolution, a generalization of standard resolu-
tion, which turns out to be a refutationally sound and complete method suitable for
treating theT -satisfiability problem. The following is the grourfttresolution rule

as defined in [24].

DEFINITION 1.3 (GroundT-resolution). Letx = a; Uay andp = B1 U B, be
two ground clauses such that

e 3, =(Y ) A

pEa2 qg€p2

Then the clause; U 8, is said to be & -RESOLVENTOf @ andg (writtena; U B €
Resr(a, B)), anda andp are calledPARENT CLAUSESOf a1 U B;.

The above expression could be written in a compact, perhaps more readable,
form, identifying clauses with disjunctions of literals

TEawmAB— a1V pi. )

RemarklIf « andj contain a pair of complementary literals,and L¢ respec-
tively, then(a\{LHU(B\{L}) is alegall -resolvent ofx andp, since in any theory
T itis always the case that = L v L. ThusT-resolution properly generalizes
standard resolution.

RemarkWe note that Definition 1.3 includes the case where= o« andg; =
{L}. This T-resolution step, from now on referred tolaading produces a sub-
sumed clause. We will show that loading is actually needed to ensure completeness
of T-resolution.

Note that our assumption of ground-decidability fguarantees that condi-
tion (2) in Definition 1.3 is always decidable, by Corollary 1.1.

DEFINITION 1.4. Given a sef of ground clauses, a (ground)}DERIVATION
D of « from S is a finite sequence of clausgs ..., 8., such that

- ﬁr+n =,
- pBi,..., B are clauses i;
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T-RESOLUTION: REFINEMENTS AND MODEL ELIMINATION 441

— foralli,r+1<i <r+n,p; isaT-resolvent of; andp; for somej, k < i,

B1, ..., B, constitute theeREFIX of the T-derivationD (denoted aprefix(D)). A
T-REFUTATION of S is aT -derivation of al'-unsatisfiable clause fromi

The prefix of a derivation, as introduced in [19], allows us to gather all needed
information (reackknowledggregarding the given set of clauses, in a restricted zone
of the deduction, simplifying the subsequent exposition, and guarantees a uniform
treatment.

THEOREM 1.2 (Soundness of grouridresolution).If a T-unsatisfiable clause
is T-derivable from a given a se&t of ground clauses, thefiis T-unsatisfiable.

Proof.Leta = a1 Uap andB = B1U B, be two clauses i§, and lety = a1 U B,
be aT -resolvent otx and 8. From

TEaAB2—> a1V p

it follows that if M is aT-model ofS (and therefore of andg), then it is also a
T-model fory = a1 U B1. a

Given a sefS of ground clauses, the set
S, =SU{{L, L} | Lis aliteral occurring inS}

is called thaautological extensionf S. Evidently, S is T-unsatisfiable if and only
if S, is T-unsatisfiable.
The next theorem states the completenesB-ofsolution [24].

THEOREM 1.3. Given a sef§ of ground clauses, i is T -unsatisfiable, then there
exists ar-refutation ofs,.

The example below shows that it is necessary to introduce the tautological ex-
tension of the given set of clauses and that loading is actually needed to ensure
completeness df -resolution.

The point is that loading can be exploited only on literals actually appearing
in the given set of clauses, rather than on arbitrary literals of the theory. This
restriction may seem unnatural, but, as we will see, it enables an advantageous
separation between the theorem provers based o #fesolution rule and the
specific theorieg/-deciders employed.

EXAMPLE. Let T = {{—A1, A5, —A3}} and S = {{A1}, {A2}, {A3}}. Sis T-
unsatisfiable; but, following Definition 1.3, no useful clause is derivable from it
by T-resolution, since we cannot use claused otn fact, the only new clauses
obtainable from{ A} and{A,} would be{A, A,} andd, but the former is obtained
by loading whereas the latter is notTaresolvent of{A;} and{A5}, sinceT (-

Al N Ay — O
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442 ANDREA FORMISANO AND ALBERTO POLICRITI

Nevertheless, the following isB-refutation ofS,. Notice that anyr'-refutation
of S, must employ loading:

1) {A1,—Aq}

2) {A2,—Az}

3) {Ai}

4) {Az}

5) {As}

6) {Az, A5} loading of—A, (from 2) in 5

7) {As, —Ay —Aq} loading of—A; (from 1) in 6

8) {—A, —A} T-resolvent of 7 and any other clause
9) {—Aq} resolvent of 8 and 4
10) O resolvent of 9 and 3

where deriving clause at line 8 is justified as follows:
From

T ': —A1V —Ay VvV —As.
Choosing an arbitrary clause we have
T ':O[/\Ag—) —A1 VA

and henCQ—'Az, —'A]_} € REST({A3, —Aj, —'A]_}, o).

To avoid dealing with tautological extensions of sets of clauses, we reformu-
late the definition off-resolution rule, giving more emphasis to the necessity of
loading.

DEFINITION 1.5. Leta = a1 Uay andg = B1 U B> be ground clauses: is a
T-RESOLVENT of the tWOPARENT CLAUSESw andpg (writteny € Resr(a, B)) if
and only if

-y =0[1U,31andT = oo A B — ag Vv By OF
— y =a U{L}, where eithei. € g or L € 8 (loading).

Remarklnstead of defining loading as a binary rule, it could have been defined
as a unary rule that derivesU {L} from « and any literal. such thatZ (or L¢)
occurs in a given set of clauses.

Remark.Several restrictions could be applied to loading. For example, we can
avoid consideringl -resolvents of two parent clauses both obtained by loading
steps. Other such restrictions and some open problems relative to this issue are
discussed in Section 2.4.
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T-RESOLUTION: REFINEMENTS AND MODEL ELIMINATION 443

From now on we adopt Definition 1.5 as the actual definition of grofind
resolvent. We can then easily reformulate the definitiong -aferivation andr -
refutation, as well as our soundness and completeness results in a simpler manner.

THEOREM 1.4. A given setS of ground clauses i -unsatisfiable if and only if
there is aT -refutation ofS.

Proof. The soundness of the rule is essentially proved as was done in Theo-
rem 1.2. The completeness follows from the completeness of a linear refinement of
the T-resolution rule given by Corollary 2.1 in Section 2.2.2. O

Although our exposition is focused on the ground case, we will give just a brief
description of the treatment of the general case. Definition 1.6 exfemdsolution
to the non-ground case, following the approach outlined above (see also [24],
whereT -resolution was first introduced).

DEFINITION 1.6 (Non-ground’-resolution). Given two clauses= «;Ua; and
B = B1U Bo, y is said to be & -RESOLVENTOf ¢ and (writteny € Resy(a, B))
if there exists a substitutiof such that one of the following conditions holds:
— y has the form(a; U 81)0 andT = V(az A Bo — a1 V B1)0; or
—y = (e U{L}), where eithe. € B or L € 8.

It is easily shown that non-grourit-resolution properly generalizes both stan-
dard non-ground resolution and factoring.

RemarkNotice that in Definition 1.6, there is no restriction on the choice of the
substitutiord. Considering the mechanizability issue for non-gro@hoesolution,
it will be necessary to restrict such choice to a suitable set of substitutions, de-
pending on the properties @f. In [24] an approach involving the concept £f-
covering (strictly related to the notion of complete sefefefuters, as introduced,
for example, in [3]) is proposed.

DEFINITION 1.7. Given a sef of clauses, a (non-ground)-DERIVATION D
of o from § is a finite sequence of clausgs ..., 8., such that

- ,Br—&-n =,

- pBi,..., B are clauses i;

— foralli,r +1 <i <r+n, B is a(non-ground) -resolvent ofg; and g
with j, k < i.

As before 8., ..., B, constitute theREFIX (prefix(D)) of H. A T-REFUTATION
of S is aT -derivation of ar' -unsatisfiable clause from
Soundness in the general case follows from Theorem 1.5.

THEOREM 1.5 (Soundness of non-grouddresolution).If a clausey whose
universal closuré/y is T-unsatisfiable is derivable b§-resolution froms, thens$
is T-unsatisfiable.
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444 ANDREA FORMISANO AND ALBERTO POLICRITI

As happens with standard resolution, a completeness result is obtained from
ground completeness by using a lifting technique. We need a generalization of the
standard Lifting lemma; the following holds.

LEMMA 1.3 (Lifting lemma for T'). Leto’ and 8’ be ground instances of and
B, respectively, and ley’ be a ground clause derivable #-resolution frome’
andg’. Theny’ is derivable byr-resolution fromo and g.

On this basis, using the Herbrand theoremZfome can prove the following.

THEOREM 1.6 (Completeness of non-groufieresolution).If S is a T-unsati-
sfiable set of clauses, then a clause admittiri-ansatisfiable ground instance is
derivable fromS by T-resolution.

The treatment outlined above of the non-ground case is very natural but some-
how unsatisfactory because the condition to automatize non-grfemedolution
places very strong conditions dh. Moreover, the above-mentioned condition
allowing the mechanizability of non-grounfl-resolution is the existence of an
algorithm to determine the&*-covering for a givenc*-formula¢. In fact, such a
condition may depend on the particular extended langu&gend hence cannot be
considered as a (uniform) condition on the underlying théary

1.4. T-RESOLUTION AND THEORY RESOLUTION

We will briefly recall Stickel's theory resolution rule [28] and outline a comparison
of the two approaches.

DEFINITION 1.8. Letay, ..., a, (m > 1) bem non-empty clauses such that, for
eachi, o; = ;1 U2 With o 2 # 0. Let{M4}, ..., {M,} ben > 0 unit clauses
such thaf{os o, . .., a2, {M1}, ..., {M,}} is aT-unsatisfiable set. Then the clause
a1 1U---Ua, 1 U{M;{, ..., MS}is called aTHEORY RESOLVENTOf a1, . . ., atjp.

Itis a TOTAL THEORY RESOLVENTIf and only if n = 0 and aPARTIAL THE-
ORY RESOLVENT otherwise. The sefvy o, ..., ay.2} IS the key set of the theory
resolution operation. The disjunctidd; v - - - v M¢ is theRESIDUE of the theory
resolution operation. The theory resolvent iISARROW THEORY RESOLVENTIf
eachw; » is a unit, or awIDE THEORY RESOLVENTOtherwise.

At the ground level, the fact that Stickel's rulerisary can be seen as an advan-
tage, being more general th@kresolution, but it has an undesired side effect: it
forces dealing with minimality, requiring stronger properties of the decision pro-
cedure. Moreover, the generality of the rule has to be controlled by introducing
suitable tools, like criteria for key selections [28]. In our approach these phenom-
ena can be considered to have a counterpart in the loading operation. Restrictions
directly controlling loading are discussed in Section 2.4.
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As indicated, the main difference between our approach and Stickel’s is in the
background decidability property assumed. Ground-decidability permits the real-
ization of an inference system where the deduction activity is focused on the given
theorem to be proved, never explicitly dealing with entities extraneous to it. With
theory resolution this may not be the case, because the background reasoner may
have to explicitly introduce language entities not strictly related to the specific the-
orem being tested. This happens essentially because the theory decider employed
in theory resolution plays an “active” role in the deduction process: it provides
suitable conditions (in the form of a residue to be added to the resolvent) enabling
the theory resolution step. What the decider knows about the problem to be solved
is just the suppliedkeyof the theory resolution operation; hence it does not know
which part of the theory is strictly related to that problem.

In T-resolution there is no mechanism producing the entire residue in a single
step; the residue has to be constructed by using loading operations (which are
always restricted to literals taken from the given set of clauses).

Since in theorem provers based Drresolution, the task of controlling load-
ing operations (i.e., residue generation) is performed at the foreground level, the
theory reasoner can be designed independently of the particular inferences, search
strategies, or heuristics employed by the theorem prover, considering only the char-
acteristics of the theory. The following example shows how, even at the ground
level, the introduction of symbols extraneous to the given set of input clauses
currently processed could generate undesired effects.

EXAMPLE. Suppose we are looking for linear refutation by binary theory resolu-
tion of the set

S ={{g(@)}, {gd)}. {g(c)}}

with respect to the theory

T = {{—q(a), ~q (D), —q(c)}, {—q(a), ~q(b), —~p(d)},
{p(x), =p(f(x)), ~gq(c)}}.

To resolveq(a) and g(b) there are (at least) two residues that the background
T-decider could return to the foreground reasoref(c) and—p(d) (while with
T-resolution only—g(c) can be built by using loading operations). If the former
is used, ther$ is refuted with a further step (usifg(c)} € S). Otherwise, using
—p(d) (which does not occur iff) as residue could lead the prover into an infinite
branch of the search space consisting of the claysesd)}, {(—p(f ()}, {(—=p(f

(f@nh ...

The decider used in theory resolution may not be compatible with all derivation
strategies because of its “active” nature. In other words, it is not the case that for
each restriction imposed on the kind of inferences allowed at the foreground level,
the decider is able to produce suitable residues. As we willBgesolution seems
to be better suited to refinements using standard or ad hoc techniques. Essentially,

JARSMD10.tex; 5/03/1999; 13:23; p.13



446 ANDREA FORMISANO AND ALBERTO POLICRITI

the reason is that the rule is binary and the decision algorithm it employs remains
the same in any of the cases considered.

2. Refinements ofr -Resolution

In this section we generalize ®-resolution the linear and ordered refinements
employed with resolution in pure predicate calculus (see, for example, [9, 19]).

2.1. BASICS

Let T be a theory ang be a ground formula of£*. From Definition 1.2 we have
that ¢ is said to beT-vaLID (or simply valid) if it is true in everyT'-model.
T-validity generalizes, to the theory case, the concept of tautological formula.
The interesting case is wheh £ @; otherwise tautologies are the orily+valid
formulas.

Some other simple concepts are given below.

DEFINITION 2.1. A set of clauses i8AUTOLOGY FREE (resp.VALIDITY FREE)
if it does not contain any tautological (regp-valid) clause. A derivatiodD is TAU-
TOLOGY FREE (resp.VALIDITY FREE) if any tautological (resp7-valid) clause
occurs only in the prefix.

Since we will treat only the ground case Bfresolution, we adopt the fol-
lowing conventions:T, as usual, will be a ground-decidable first-order theory;
T’ will denote a set of non-tautological grouttvalid clauses such that each
predicate symbol occurring i is in £L(T); S will be a set of ground clauses
in L£* and D (possibly subscripted or primed) will denote a derivation (unless
otherwise specified) by -resolution. From now on, the prefix- (of 7T-satisfiable,
T-derivation, ...) will often be oiitted; ambiguities will be resolvable from the
context or explicitly clarified. Given a derivatio® and a clauser, D o o will
denote the derivation obtained addimgt the end ofD, assuming thaD o « is a
legal derivation, that is, that can be derived from clauses &f.

Below are two immediate results that will be frequently employed in what
follows.

PROPOSITION 2.1.Leta = a1Uas andpB = B,UB, be two valid ground clauses.
If y = a1 U By € Resr(a, B), theny is valid.

Proof.Let M be aT-model ofa and8 (M &= T A {a1 U as, B1 U B2}). Suppose
M is not a model ofx; U B, (i.e., bothay and 8, are false inM). SinceM is a
model forT, from theT -resolution rule (Definition 1.3) it follows that at least one
of a, and 8, must be false inv. Hence, at least one of and 8 must be false in
M. This yields a contradiction. Therefor#, is aT-model ofy. a
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We will never consider valid clauses containiexfraneouditerals, that is, lit-
erals whose atoms do not occur in a given set of clauses; in fact, the following
holds.

PROPOSITION 2.2.Given aT -unsatisfiable set of ground clausgsthere exists
a tautology-free set of valid claus@&s such thatS U 7" is unsatisfiable, and every
atom of literals occurring inT" also occurs(possibly in a literal with different
polarity) in S. Moreover, each predicate symbol occurring i is a symbol of
L(T).

Proof. Without loss of generality, we can assume tlas finite andT is ex-
pressed in clausal form. Sincgis T-unsatisfiable it follows that U T is an
unsatisfiable set of clauses. By the Herbrand theorem there exists a finfté set
of ground instances of clauses Bfsuch thatS U T’ is unsatisfiable. Obviously,
each literal inT’ has a predicate symbol i(7T") (note that this might not be the
case for the constant and the function symbols).

LetA,, ..., A, be all the atoms occurring if. Let 7 be a binary semantic tree
[24, 27] such that all the edges of tité level are labeled by the literdl; or —A;,
fori =1,...,n. Given a noden, let Contextm) be the conjunction of the literals

labeling the edges in the path from the rooto

Since S U T’ is unsatisfiable, each branéhof 7 contains a failure node,
belonging to a levek, of 7. Eachm, is a failure node either because it falsifies
a clause ofS (i.e., Contextm,) contains the complement of each literal occurring
in that clause) or becauggontextm,) is a T-unsatisfiable conjunction of literals
(i.e., it falsifies a clause df’). Let us say tham, is aC-failure node in the former
case, and & -failure node in the latter. We can assume tfiais such that each
atom occurring in7’ also occurs inS. To verify this claim, observe that each
failure node must belong to a levgl< n; therefore, if there are two sibling nodes
m, andm, belonging to a level > n, then such nodes must Fefailure nodes.
Let o1 anda; be the two clauses ifi’ falsified by Contextmy) and Contextm,)
respectively. An anceston’ of m; can be made &-failure node by simply adding
to T' the standard resolvent af anda, obtained resolving on the literals labeling
the edges of level.

Since no atom occurs twice in any branclygfno clause irf”’ is tautological O

2.2. LINEARITY AND T-RESOLUTION

In the context of standard resolution, linear derivations have a very natural and
readable format, and the restriction of the search space to such derivations produces
a significant saving.

Imposing some form of linearity surely guarantees some advantages in the con-
text of T-resolution as well, since, after all, standard resolution is a special case of
T -resolution. However, we will show below that simple attempts to extend linear
restrictions tar'-resolution encounter some pitfalls.
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Figure 1. Trivial linearization.

We will first discuss the sort of linearity that it is reasonable to imposé& on
resolution; then, from the completenessSdt-T-resolution (a generalization of
s-linear resolution), we will obtain the completeness of linBaresolution as well
as the compatibility of"-resolution with the set-of-support strategy.

Definition 1.5 ofT-resolution is too general and is not suitable to be employed,
for example, together with linear refinements. This situation is easily seen because,
for every pair of clausea andg, puttinga = a1, oo = 1 = ¥ andp = B, «
turns out to be a legd-resolvent ofx ands. Hence, we can systematically map
every T-derivation into a “linear” one in the following manner: suppaBeis a
derivation ofy; let « and 8 be its parent clauses having two “linear” derivations
D, and D, of o and B, respectively. We could combine them to obtain a “linear”
derivation ofy simply deriving the top claus® of D, from « ands, (see Figure 1
where, for simplicity, prefixes are not displayed).

Remark:To see that an analogous situation arises in theory resolution, consider
the following two clauses (see Definition 1.8): = a1 1Uag 2 anda, = a2 1Uaz 2;
supposer = 1, w11 = ¥ anday, = {L} (for L € ay # ). ChooseM; = L¢; then
{a12, 022, {M1}} 2 {{L}, {L}} is T-unsatisfiable. Hence, we hawg = o3, U
a1 U {M7} as theory resolvent af; andas.

To avoid these trivially linear derivations, which are not in the spirit of what
is the primary purpose of linear refinements (i.e., to always proasidjthe last
derived clause), we need to restrict the kind of inferences allowed.

A very natural way to avoid the above problem seems to be the introduction of
the following restriction: for « = a; U ax andB = B1 U Bo, consider only those
y = a1 U By such that

* Actually, this is the restriction imposed by definition in Stickel’s rule.

JARSMD10.tex; 5/03/1999; 13:23; p.l6



T-RESOLUTION: REFINEMENTS AND MODEL ELIMINATION 449
TEwAB — a1V B andaz?é@ and,BZ;zé@.

Unfortunately, this restriction does not solve the problem, since the same unde-
sired effect can be reached in a more subtle way by using the loading operation,
which, on the other hand, cannot be omitted (see the example in Section 1.3). The
critical situation is exhibited in the following fragment of a derivation:

81
1Dy
o
loading of the literals 08, in «
al 52
82 because, € Resr(a U 85, 82) even with the above restriction.
1 Dy
B
Y T-resolvent olx and

In Definition 2.2, below, an inference rule is proposed that is strong enough to
avoid this phenomenon while still ensuring completeness,

DEFINITION 2.2 (Ground StricT-resolvent).y is aSTRICT T-RESOLVENT of
« andg if and only if

R1 y € Resr(a, B) and neithew nor 8 subsumey (that is, in the ground case:

aZyandB £ y);or
R2 y = o U {L}, where eithel. € g or L € 8.

Rule R1 is still a generalization of standard ground resolution. From now on we
will consider Definition 2.2 as the actual definition Bfresolvents.

In the trivial linearization just displayed, the linear derivation is constructed
by connecting®; and D, with a sequence of loading steps of the literalssof
followed by a single (nonstricty-resolution step that uség as parent clause. The
next example clarifies how the new definition avoids situations of this kind.

EXAMPLE. LetT = ¢ andS = {{A, B, C}, {—A, B, D}, {—B}}. Consider the
derivation depicted in Figure 2 whese= {A, C}, B = {—A, D}, 8; = {A, B, C},
8, = {—A, B, D}, andy = {C, D}. If only strict T -resolvents are allowed, itis im-
possible to linearizeD’ in the manner described above (i.e., deriviptd, B, D}
from {A, C}, by first loading literals fron$, and then performing & -resolution
step withs, as parent clause).

2.2.1. Linear T-Resolution

After introducing the concept of linedt-derivation, we present aresult (Lemma 2.1)
essential for the following exposition and representing a basic connection point
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{A, B, C} (=B} {—A,B,D} {—B}

NSNS

{A, C} {—A, D}

{C, D}
Figure 2. D'.

between resolution angl-resolution. In complete analogy with the standard case
we have the following.

DEFINITION 2.3. ALINEAR DERIVATION (by T-resolution) of « from S is a

finite sequences, ..., 8,4, Of clauses such that
- ﬁr+n =,
— PBi,..., B areclauses if;

— foralli,r+1<i <r+n,p is astrictT-resolvent ofg;_1 and g; with
J < i, the clauseg;_; is called theNEAR PARENT andg; is called theFAR
PARENT.

B, is called thetoP cLAUSE of D. prefix (D) is defined as usual. The clauses
Br+1, - -+ Brin (DERIVED CLAUSES constitute thesuFFiIX (suffix D)) of the deriva-
tion. ALINEAR REFUTATION of S is a linear derivation of & -unsatisfiable clause.

The derivation shown in Section 1.3 is a lindaderivation.

To prove the completeness of linéresolution, we will transform a (classical)
linear derivation fron7’ U S (whereT"’ is the set of ground instances of clauses of
T) into a linear derivation frons by T -resolution. The following lemma is relative
to the basic step of such a transformation.

LEMMA 2.1. Given a clauser = o’ U {L} in a tautology-free derivatioD from
S, and a valid clause8s = g’ U {L}, such thaty = o’ U B’ is non-tautological,
there exists a tautology-free derivatiagd’ of y from S.

Moreover,

o if Dis alinear derivation ofy, then’ is a linear derivation of/;
e if y is notvalid, andD is validity-free, then so iD’".

Proof. SinceT | B8, we havel = 8’ v L¢ v o'. Choosing an arbitrary clause
8 occurring indD, we also havd” = L A § — o v g/, from which it follows that
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y = a’UB’ isaT-resolvent otr’UB'U{L} ands. The clause/’'UB'U{L} is derivable
froma =o' U {L}with | (8" \ «) | steps, loading every literal if8’ \ «) (this can
be done because, as mentioned in the preceding section, we assume all litgrals in
to have an atom occurring ). Sincey does not contain complementary pairs of
literals, D’ is tautology-free. Clearly, ifD is a linear derivation o, thenD’ is a
linear derivation ofy.

Let D be validity free, and lety = o’ U g’ be not valid. Sincel' = 8,
if « U B’ were valid, so should bg (as the resolvent of two valid clauses, cf.
Proposition 2.1), which is a contradiction. Henee, 8’ is not valid. Since, for all
B C B,aUB” CaUPp,Iitfollows that no clause in the derivation @fU 8’ from
« is valid. HenceD’ is validity free. O

Remarklf g contains only literals having predicate symboldqT) (in general,
this does not follow from the validity oB), then in the proof of Lemma 2.1 we
always load literals having interpreted predicate symbol (i.e., a symhgl1r);
cf. Proposition 2.2).

2.2.2. SL-T-Resolution

Following [19], we briefly recall the basic notions regarding grogdihear res-
olution and generalize them to our case (notice that we are treating ground linear
refinements).

DEFINITION 2.4. A (ground)s-RESOLVENT (“S” stands for subsumption) of the
near paren& and the far parem, is a resolveny of « andg such thaty C «. An
S-LINEAR DERIVATION of a (ground) clause from the set of (ground) clauses
is a tautology-free derivation ef from § such that each clause not$nhas a far
parent inS or is ans-resolvent.

DEFINITION 2.5. Given two ground clauses,andg, o« T-sSUBSUMESS if and
onlyif T =a — B. A T-S-RESOLVENT of the near parent and the far pareng,

is aT-resolventy of « and g such thaty T-subsumes:. A SL-T-DERIVATION

of a clausex from S is a linear and tautology-freg€-derivation ofa from S such
that each clause not $ihas a far parent if§ or is aT-s-resolvent.

Given two ground clauses and g, if « subsumes, thena T-subsumess.
Hence, anys-linear derivation is ar$ L-T-derivation.
Using Lemma 2.1, we can prove the following.

LEMMA 2.2. Given ans-linear derivation of y from S U T’ with top clause in
S, there exists ar$ L-T-derivation D’ of y from S such that each clause derived
in O occurs inD’.

Proof. By induction on the length of suffixD).

Base casen = 0. There is nothing to prove because= S is the top clause a.
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Inductive step. Assume the lemma holds for each derivation with suffix shorter
thann > 0. LetD = D; o y, with D, Slinear derivation ofx, and let
y =a’ U B be the resolventaf = o’ U {L}andp = 8’ U {L°}.

By the induction hypothesis ofd; there exists ary L-T-derivationD; of «
from S. There are two possible cases:

1. If B € SUsuUffixXD1), thend’ = D; o y is anSL-T-derivation.

2. Otherwise,8 € T’ \ suffixd;). By hypothesisg is non-tautological,
and therefore, sincg is valid, the derivationD is obtained fromD; by
Lemma 2.1.

Using Lemma 2.1 is correct because, without loss of generality, we can sup-
pose that in eactr-resolution step it introduces, it is always possible to choose
an appropriate far parent clause from the givenSséhis is because each literal
introduced with loading operations has an atom occurrirfy in each loading step
the clause containing that atom will be chosen as far parent). Hence, the derivation
obtained fulfills the requirements of Definition 2.5. O

As a consequence, Theorem 2.1 below gives the completendés Bfresolu-
tion.

THEOREM 2.1 (Completeness Sf.-T-resolution).Let there be given a sétof
ground clauses. I§ is T-unsatisfiable, then there exist &.- T -refutation ofS.

Proof. Immediate ifS contains a'-unsatisfiable clause.

Otherwise, there exist a finite subs®tof S and a finite sef”’ of ground valid
clauses such that U 7’ is minimally unsatisfiable.

From the completeness sflinear resolution [9, 19], it follows that there exists
an s-linear refutation ofS’ U 7’ for each top clause i’ U 77, and then for each
top clause ins” (which must be nonempty, sin@g is satisfiable).

By Lemma 2.2 we can conclude the proof. O

From Theorem 2.1 the completeness of linEaresolution follows.

COROLLARY 2.1 (Completeness of line@rresolution) Let there be given a set
S of ground clauses. If is T-unsatisfiable, then there exists a linear and tautology-
free T -refutation ofS.

Proof. From Theorem 2.1, observing that eath-T -refutation ofS is a linear
and tautology-fred -refutation ofs. O

RemarkThe refutations whose existence is ensured by Theorem 2.1 and Corol-
lary 2.1 exist for each top clausein S, provideda belongs to & -unsatisfiable
subset ofS.
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An immediate consequence of Corollary 2.1 is the completeness of the set of
support strategy applied @-resolution, as the following theorem indicates.

THEOREM 2.2 (Completeness dtresolution with set of supportletS be aT-
unsatisfiable set of ground clauses, andrRet S be such thaf\ R is T-satisfiable.
Then there exists &-refutation ofS with set of supporR.

Proof. There must exist a clausee R belonging to a minimally” -unsatisfiable
subset ofS. By Corollary 2.1 (see also the remark following it) there exists a linear
T -refutation ofS with top clausex € R. Such aT-refutation has set of support
{a}, and hence it has set of supp®t a

2.3. ORDEREDT-RESOLUTION

As with linearity, theT-resolution rule can be combined with standard ordering
techniques, properly generalizir@,-resolution in a very natural manner. More-
over, the completeness of the new calculus is proved following the same approach
adopted for the linear refinements.

In this section we apply to grounti-resolution a simple technique based on
a fixed ordering of predicate symbols (see, for example [18], or [19] for a more
exhaustive treatment of ordered refinements of standard resolution). A different
approach, based on ordering rules that require that the ordering of literals in parent
clauses be inherited in resolvents, will be adopted in Section 3.

Let us identify the kind of orderings we are interested in.

DEFINITION 2.6. LetS be a set of ground clauses. M¥ORDERING <, over
S is a (partial) ordering over the set of atoms occurring in clauses bf L, and
L, are two literals inS and /; and [, are the corresponding atoms, then we extend
the A-ordering to the literals assuming that <, L, if and only if I1<l5.

An O4-clauseis an ordered sequence of distinct literdls ..., L, such that
Vi,j=1...,n, i # j, Li<aL; — i < j. An A-ordering rule O, is a rule
which assigns to each clause at least oneclause.

Given a clausey, max(y) is the set of maximal literals ig. If « is an O4-
clause, therl(«) denotes the corresponding clause.

Some preliminary concepts related to the ordered refinement of standard reso-
lution (O 4-resolution) follow.

DEFINITION 2.7. Given two groundD,-clauses and g8, with L € « and
L¢ € B, theirRESOLVENT is defined as the conventional resolvent, provided that
L and L€ are rightmost literals ix and 8, respectively.

DEFINITION 2.8. LetS be a set of ground clauses agd an A-ordering over
S. An O4-DERIVATION of o from S, is a sequence of non-tautologiaa),-clauses
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B1, ..., Brin SUCh that

- ﬂr+n =,

— PBi,..., B are04-clauses of clauses it

— foralli,r +1 <i <r+n, p; isan0,-clause of the resolvent ¢ and gy
for j,k <i.

An O 4-REFUTATION is an O 4-derivation of the empty clause.

The completeness of the ordered refinement of resolution can be shown (see,
for example, [18]).
Let us introduce ourZ(-)generalization oD 4-resolution.

DEFINITION 2.9. Given twoO -clausesp = a1 U as andpB = B1 U B,, their
T-RESOLVENT a1 U 81 is defined as the convention@lresolvent, provided that
either

— «a(B)isLy,...,L,andas (resp.Bo) is Ly, ..., L,, for a suitable 1< s < n;
or
— the step is a loading operation.

DEFINITION 2.10. LetS be a set of ground clauses agd an A-ordering over
S.An 0,-T-DERIVATION of « from §, is a finite sequence of nonval@, -clauses
B1, ..., Brin SUch that

- ﬂr+n =a;

— PBi,..., B are04-clauses of clauses it

— foralli,r +1<i <r+n,p;is anO4-clause of & -resolvent of8; and g
for j, k <i.

The prefix and suffix of theD4-T-derivation are defined as before. Ay -T -
REFUTATION is an O4-T -derivation of ar -unsatisfiable clause.

By Definition 2.10, anO 4-T -derivation is always validity free and hence tau-
tology free.
EXAMPLE. LetT = {{=P,—Q, R}, (=P, Q,—R}, (P, R}} and
S={0, R}, {—-L, =R}, {L, P},{L,—~P—0}}.
Let us choose the following ordering for atomls<, P<,0<4R (notice thatL
does not belong ta&(T)).

The following is an04-T-refutation of S; the prefix lists theO ,-clauses of
clauses ofS.

1) R Q
2) —-R,-L
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3) P,L
4) —-Q,—-P,L
5 —=R,P 0 4-clause of the resolvent of 3
6) —R,—Q,—P O 4-clause of the resolvent of 24
7) —R,—-Q 0 4-clause of the resolvent of %
8 —R,Q0,P by loading ofQ in 5
9) —=R,0 from 8 and an auxilianO ,-clause
becausd’ = —-Rv Qv =P
10) =R 0 4-clause of the resolvent of ®
11) R from 1 and an auxilianO ,-clause becausg = —-Q v R
12) O 0 4-clause of the resolvent of 1A.1

Using Lemma 2.1, we can prove the following.

LEMMA 2.3. Given anO,-derivation £ of a nonvalid clauses from S U T’,
there exists ar0,-T-derivation D’ of y from §, such that every nonvalid derived
clause inD also occurs inD’.

Proof. By induction on the length of suffixD).

Base casen = 0. There is nothing to prove because, by hypothesig, < S.

Inductive step. Assume the lemma holds for all ;-derivations with suffix shorter
thann > 0. Itis easy to see that there must be a nonvalidclause preceding
y in D. Let§ be the last nonvalid) 4-clause inD, different fromy, and let
D, be the initial part ofD ending withs.

By the induction hypothesis of; (whose suffix is shorter that) there exists
an 04-T-derivationd; of § from S. Letcl(y) be the resolvent af = o' U{L}
andp = B’ U {L°}, wherea andg are twoO 4-clauses inD havingL andL°
as rightmost literal, respectively.

Eithera or 8 must be nonvalid (becauseis); suppose without loss of gen-
erality thata is nonvalid. By induction hypothesis occurs inD;. There are
two possible cases:

1. g nonvalid. Then, likex, g also occurs inD;. A further O 4-T -resolution
step allows one to obtaip. To finish putdD’ = D] o y.
2. B is valid. We can finish by applying Lemma 2.1.0.

It remains to be shown that no application of Lemma 2.1 violategthedering
rule. At point 2 above, the literal& and L¢ are rightmost ine and 3, respec-
tively. By the definition ofA-ordered resolvent we have that for every litetale
max(a’ U B'), L'# 4L (L°). It follows that to every clause introduced in the proof
of Lemma 2.1 there corresponds a suitaBle-clause, withL as rightmost literal,
which will be used in the finaD 4-T-derivation. O
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THEOREM 2.3 (Completeness of,4-T-resolution) Given a sefS of clauses and
an A-ordering <y, if S is T-unsatisfiable, then there exists @h,-T -refutation
of S.

Proof. Immediate ifS contains ar-unsatisfiable clause.

Otherwise, there exist a finite subs®tof S and a finite sef”’ of ground valid
clauses such th& U T’ is minimally unsatisfiable.

From the completeness 6%, -resolution, it follows that there is ab,-refutation
of U T'. By Lemma 2.3 we can obtain the desired result. O

As with linear refinement, completeness is preserved if loading is restricted to
literals having predicate symbol ii(T) (see the remark after Lemma 2.1).

A further step can be employed in controlling loading operations. IfAhe
ordering is such that all literals i€ (7T) are > 4-smaller than those not g (7)
(remember that clauses fhmay be written in a languagé* that is an extension
of L(T)), then the refutation obtained has the property that loading operations are
never performed on clauses containing literals nat{f’). Let us consider how the
O 4-T-refutation’ of S’ is built using Lemma 2.1, starting from tli, -refutation
D of S’"UT’. Each application of this lemma introducesiii a sequence of loading
steps of literals of8’ corresponding to an ordered resolution step employing the
Oa-Clausesy = o’ U{L}andB = B’ U{L} € T, and resolving orl. andL¢. If
<4 has the mentioned property (remember thatAbhardering is the same for both
derivations), then, sincE € max(«), o contains only literals inC(7T) (otherwise
L could not be maximal im). It follows that all loading operations needed to reach
completeness are those performed®nclauses consisting of literals if(7).

RemarkEven if O 4-T-resolution is restricted in a narrow fashion (i.e., resolv-
ing out just one literal from each clause), it remains complete and never employs
T-valid clauses. The analogous refinement proposed for narrow theory resolution
(cf. [2]) has to call into play even tautological clauses in order to guarantee com-
pleteness; this happens even for simple cases, as the following example (taken
from [2]) illustrates.

EXAMPLE. Let § = {A v B, =A v =B} where the maximal literals are under-
lined, and supposg implies the logical equivalence df andB. S is T-unsatisfia-
ble and the following is a (“narrow”p 4-T -refutation ofS.

1) B,A

2) -—-B,—-A

3) B from 1 and an arbitrary) ,-clause sincd’ = —-A Vv B
4) -B from 2 and an arbitrary) 4-clause sincd” = A v —B
5 O 0 4-clause of the resolvent of 3t
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2.4. LOADING

As mentioned in the preceding sections, loading plays a fundamental role in the
use of theT -resolution rule. It is needed to ensure completeness (Section 1.3), and
it is one of the features that guarantee the complete separation of the background
reasoner from the foreground reasoner in our approa€htteeorem proving (Sec-
tion 1.4). Unfortunately however, it introduces some inefficiency in the derivation
process, preventing any full application of subsumption technigues; nevertheless,
such techniques can actually be applied “locally” (this is effectively done below in
our T-generalizationT-M E) of model elimination), considering only the sections
of T-derivation not involving loading steps.

Some simple restriction strategies on loading that are easily shown to preserve
completeness are available. For example:

— loading can be restricted to a preprocessing phase, where a new infiuisset
obtained from the given sétof clauses, through loading steps only.

The main disadvantage of this heuristic is that, in general, even starting with a
minimally T-unsatisfiable sef, the setS’ is not necessarily minimall§-unsatis-
fiable. Moreover, sincéd C §’, the number of input clauses may increase.

In the case of nonlinear refinements, an equivalent approach that does not di-
rectly modify the given set of clauses is as follows: Allow loading only on clauses
that either are input clauses or are obtained by loading steps.

Other possibilities, which preserve completeness, have been noted in preceding
sections, namely:

— we can avoid resolving two clauses each of which results from loading steps;
— we can load only literals whose atoms occur in the giennsatisfiable set
of clauses (Proposition 2.2);

— from Lemma 2.1 (see also the remark following Lemma 2.1) it follows that,
even if the given set of clauses is written in a languatfe(extension of
L(T)), loading can be restricted to those literals having predicate symbol in
L(T).

Some further heuristics that we are currently studying to handle loading are as
follows:

— load each literal at most once;

— load only literals that do not occur in the given set of clauses, but whose
complements do (i.e., allow loading &fif and only if L¢ occurs inS but L
does not);
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— perform all loading steps considered to be useful on a single input clause
a € S (namely, obtaire’ by loading enough literals o so that each atom
will occur with both polarities in the set U {«'}).

A more specific heuristic, not directly related to loading, is employed in our
implementation ofT’-ME. There we made intensive use of the (unit) lemmas
obtained in searching for the refutation, to simplify the given set of clauses. This
technique actually broadens the class of problems solvaldiedegolution without
performing loading (see Section 3.3 for technical details).

3. T-Resolution and Model Elimination

In this section we illustrate our-generalization of ground model elimination.
Beginning with a suitable set of inference rules, we follow the same approach
we used with the previous refinements. However, there is a significant increase
of complexity.

3.1. THET-ME CALCULUS

Model elimination, as proposed in [19], is essentially a calculus ensuring soundness
and completeness even dealing with input derivations only (i.e., linear derivations
where in each inference step one of the parent clauses comes from the given input
set). This feature is realized by storing information about the inference steps in
particular literals (the so-called A-literals) in clauses being derived.

In this context the concept of clause is replaced by thathain that is an
ordered sequence of literals. The literals can be of two kinds: A-literals and B-
literals. The A-literals are bracketed (aq i) to distinguish them from B-literals.

Not all literal sequences are legitimate chains: A chaiadseptablef and only
if no two literals, of any kind, are identical or complementary and the rightmost
literal is a B-literal.

In what follows, we borrow from [19] (refer to it for the technical details) the
concept ofaccepting transformatio, which can be viewed as a mapping from
chains to chains. The basic actions of the accepting transformations on a given
chain are merging left for identical B-literals; deletion of the rightmost literal in
the chain, whenever it is an A-literal; and removal of those B-literals occurring
to the right of a complementary A-literagifound reductionstep). Since we deal
with the ground case only, the last kind of action is the mechanism that allows
the calculus to simulate the inference steps involving previously derived chains
(namely, the removal of a B-literal corresponds to a resolution step involving a
previously derived chain).

Given a set of clauses, let 7(S) be {7 (@) | « is a chain of a clause ifi}.
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For the ground case, a single inference rule is employed:

Extension rule. Given two acceptable chaing, (parent chain) ands (input chain),
if their rightmost literals are complementary, then this rule yields a chain
T (x3), Whereas is formed by making the rightmost literal in, an A-literal,
and placing all literals ifx,, except the rightmost, to the right @f according
to the specified ordering rule.

In this section, unless otherwise specified, we will dseB, perhaps with sub-
scripts, to denote A-literals, B-literals, respectively. As abavay, M, ... will be
used for generic literals. Since chains are ordered sequences of literals, given two
chainse and g, a o B is the chain obtained by their concatenation.

Given a chainx, with By, ..., B, as B-literals andlA4], ..., [A,] as A-literals
(in the order shown), we writé(«) and A(«) for By, ..., B, and Ay, ..., A,
respectively, and writet () for A{, ..., AS. AlthoughB(«), +(a), and-(a) are
defined as chains, we will, if need be, regard them as sets or as disjunctions of
literals.

The key point in adapting the framing mechanism to Thease is that we are
forced to permit the framing of literals in arbitrary positions in the chain, when
justified by the theory. These steps are guaranteed by the loading and unloading
rules introduced below. However, in order to keep suEkraming” under control
(and to preserve soundness), the ordering in which these steps take place must be
kept track of while the derivation is being constructed. For this reason we define
T-chains as pairs whose second component encodes this ordering; thus the framing
process is regulated by using an ordered list of B-literals that serve as witnesses to
the framings.

DEFINITION 3.1. A chaina is a BCHAIN if A(x) = #. A T-CHAIN & is a
pair («; t,) of (possibly empty) chains (referred to fast andsecond parbf the
T-chain, respectively).

Givena = («; 1,), a B-literal in« is said to bepairedif there exists an identical
(pairing) B-literal in 7. A paired B-literal B may be made into an A-literdlB]
(framing), which will still be said to bepaired

We now introduce th€T)-generalizations of the conceptsaiceptable chain
andaccepting transformatian

DEFINITION 3.2. AT-chaina is ACCEPTABLE if and only if

— «a is an acceptable chain and each A-literakiis paired,;
— 1, isaB-chain such that for each B-literlin z,,, eitherB or [ B] occurs ino.

An INPUT T-CHAIN is aT-chaina = («; t,), wherea is an input chain and, is
empty. AT-chain(O; O) is called aREFUTING or EMPTY T-chain.
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In what follows, 8 (@) will stand for B («).

DEFINITION 3.3. AT-TRANSFORMATION 77 mapsx into 77 (a) according to
the following rules:

RO merge left for identical B-literals in;

R1 if a paired A-literal[A] occurs to the left of a B-literali in «, then remove
A¢ from «;

R2 if an A-literal [A] is the rightmost literal iy, then remove it and the corre-
sponding B-literalA in .

The resultingr’-chain is produced only if it is acceptable.

From now on we assume as given 8fE-ordering ruleO (see [19]), which
determines the inpuf-chains and the ordering of literals frrextension steps.

We next introduce the inference rules of diwM E-calculus. Note that since
T7 is employed in those rules, the resultifigchain (if any) is always acceptable.

T-Extension rule. Let & = («; 7,) be aT-chain such thatr = «; o ap with
a1 = (Ly,...,L,) anda, = (B,), and letd = (B; O) be an inputT-chain
such thatB = B1 0 B with By = (Hy, ..., H._1) andB, = (H,,..., H,).
Moreover, let us assume that

TEaz A B2 — Blow) V A) Vi (4)

andlety = 77 (y)withy’ = (L1, ..., L., [B,], Hy, ..., H,_1; 7,) andt, =
1, if B, is paired ina, or r, = B, o 7, otherwise. Then, we say that
is DERIVED from & and g provided that neitheB (@) nor B8(8) subsumes
B¥).

Compare (4) with
TEaxApBz—> a1V B, )

which is the general condition to performraresolution step, introduced in Sec-
tion 1.3. The only significant difference is the presenceAgf;), namely, the
disjunction of negations of A-literals that have been produced in previous deduc-
tion steps. These A-literals (let us call thé¢ai ], . .., [A},]) testify that in building

the derivation yieldingx we have generate@ T-chains §1, ..., 5,), such that,
foreachi = 1,...,m, A, € B(5) andB(S;) \ {A]} T-subsumesB(a). The
T-extension step (which is binary) makes use of information obtained from these
T-chains. This is a generalization of a simpler situation existing in model elimina-
tion. In that case, the presence of an A-litdrdl in a chainy ensures that there
exists a previous derived chairi (called A-ancestorchain) such that the B-literal

Ais rightmost iny’ and each B-literal iy’ occurs to the left ofA] in . Hence, ifa
B-literal A€ occurs to the right ofA] in y, its removal (reduction step) corresponds

to a resolution step betweeri andy, on the literalsA and A¢, respectively.
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The subsumption requirement on the resulfitghain, in the above rule, comes
from the same argument already exploited for linEenesolution (cf. Section 2.2).

Let us consider a particular case of theaesolution rule: Whew = 8 = a1 U
{L}, a1 = B1, anda, = B, = {L}. Condition (5) then becomeB = L — «3. In
this case the theory permits the discarding df from the clause, thus obtaining
a1 € Rest(a, o) (or more generally; € Resr(«, 8), for each clausé, so we can
see this kind of step as an unary step).

In T-ME a similar kind of step is a particular case of theextension rule:
whenL is rightmost in the first paet of a T-chaine, g is arbitrary,a, = {L}, and
B1=0.

The following rule generalizes this idea.

Unloading rule. Leta = («; 1,) be aT-chain such that = o’ o a”, L € o’ is
a B-literal followed (ina’) by nonpaired B-literals only, and” is empty or
starts with a paired literal (A-literal or B-literal). If

TEL— B \{L)VAWQ), (6)

then letx; be obtained fron& in the following manner:

— if L is paired with the leftmost literal im, anda” = @, then replacd.
with [L]in «,
— if L is not paired, then remove it from

We say thaty = 77 (@) is DERIVED (by unloadingL) from «.

Remark.When L is paired but not with the leftmost literal iy, removing it
would yield a non-acceptablB-chain; so, in this case, rib-chain is produced.

To ensure the completeness of the calculus (see Lemma 3.4 below), we need
to allow unloading of B-literals even if they are not rightmost, provided that the
step is justified by condition (6) using only literals occurring to the lefutf
Using literals ina” would introduce unsound steps into the derivation. This is
intuitively clear recalling the intuitive idea behind tlieextension step outlined
above: if we unload literals by means @f, then we cannot ensure the existence
of the mentionedr'-chainsss, . .., 8,, in the previous part of the derivation (cf.
Lemma 3.1).

From another point of view, the unloading rule isTageneralization of the
model elimination reduction rule: Following the philosophy of theesolution
approach, syntactical identity is replaced by logical consequente in

The following rule introduces loading in our calculus.

Loading rule. Let@ = («; 1,) with B the rightmost literal inx, and letB’ be a
B-literal. TheT-chainy = 77((« o B’; 7)), with T = ¢, if B is paired ina
ort € {t,, B o 7,} otherwise, iDERIVED (by loadingB’) from &.
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Remark.The nondeterminism of the loading rule could be avoided admitting
loading of a sequence of literals in a single step. In this case takirgB o T,
when B is not paired inx is sufficient to ensure completeness (see Lemma 3.4).

Given a set of nontautological input chaifisthenS = 77(S) contains thef -
chain(«; O) for eacha € S. Moreover, ifR is a set of clauses, then € 7 (R)
implies that(a; O) € 77(R), because the ordering rule is the same. These facts
will be implicitly used below.

We now give a formal definition of derivation ii-M E.

DEFINITION 3.4. AT-M E-DERIVATION of aT-chaing, , from the set of input
T-chainsS is a finite sequence,, ..., &,,, of acceptablég’-chains such that

- ay,...,0Q, are inputT-chains;
— foralli,r +1<i <r+n,a; is obtained fron;_; by:

— T-extension rule, using an inp@t-chaine; for j < r; or
— unloading rule; or
— loading rule, loading a literal whose atom occursin

The chaing, is the TOP CHAIN of the T-M E-derivation. Prefix and suffix are
defined as usual. X-M E-refutation is ar' -M E-derivation of an empty -chain.

EXAMPLE. Consider the set of clauseS:= {{P, 0}, {—0, R}, {—P, R}}, and
let T be defined as followsT = {{—Q, =R}, {—=P—R}}. Suppose the ordering
adopted allows the set of inp@itchain S listed in the prefix. Then the following is
aT-M E-refutation ofS:

1) (P,0;0)

2) (R,—0;D)

3) (R,—P;D)

4) (P,[QLR;0Q) by T-extension of 1 with 2

5 (P;D) by unloading ofR (sinceT = P v —=Q v —R) and
application of77

6) ([Pl.R;P) by T-extension of 5 with 3

7)) (O;0) by unloading ofR (sinceT &= —P v —R) and application ofi7

Given aT-chaine and a modeM, we write M |= « if there is a B-literal inx
true in_M (i.e.,a i_s satisfied inM); moreover, given a se&t of T-chains, we write
MpESforVae S M E a.
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3.2. SOUNDNESS AND COMRETENESS OFT-ME

Formally, T-ME is not a refinement of -resolution. Hence, as occurs also with
model elimination in the classical setting, we have to prove the soundness of its
inference rules. The following technical lemma, exploiting the peculiarities of our
inference rules, guarantees that the characteristic propertyMfacalculus holds

for the T-M E-calculus.

LEMMA 3.1. Given aT-M E-derivationD of aT-chaina = (o’ o [A] o @”; T)
from S, there exists & -M E-derivation D’ of y = (&’ o A; 7,) from S, shorter
thanD.

Proof. The occurrence dfA] in & could have been introduced in two ways:

(1) By an unloading step on&-chaina; = (a3 0 A o arf; A o 7,,) WhereA oo/
is made of B-literals only, and the occurrenceddh the second part a@f; has been
introduced by a previous loading step olechaina, = (a5 o A; 1,), Yielding
a3 = (ay0 A, B; A o 1,,) (WhereB is a B-literal).

Let us callD; the segment ofD starting fromas and yieldinga. In D1 no
framing of paired B-literals to the left of can be performed by using the unloading
rule, because the corresponding pairing literal would not be leftmost. Moreover,
neither T-extension steps nor loading steps can alter the sequence of literals to
the left of A in the first components df -chains inD,. Hence, the transformation
performed on the prefix; (of a,) to obtaine} (and theny’) are independent from
literals of the suffix A...” (resp. ‘[A]..."). This is true because being (resp.

[A]) paired, each removal of B-literals caused by the unloading rule (see (6)) has
to be justified by using only literals to the left df (resp.[A]). Therefore, starting
from &y, just mimicking;, it is possible to derive th&-chainy = (¢’ o A; 7,).

TheT-M E-derivation®D’ obtained is shorter tha® because we can ignore all the
steps indD; not modifying literals to the left ofA; obviously, the first step ifD;
(loading of B) is one of them.

(2) By a T-extension step on th&-chaina, = («j o A; 7,,) With the input
T-chaina, = (a5 o aj; O) obtainingas = (@] o [A] o 5; A o 1,,,). Afterwards,y
is produced by processirig; let us callD, the part ofT-M E-derivation yielding
y from @;. Since in eacl'-chain of D, the literal[A] is paired (every A-literal is
paired), we can conclude the proof as in the previous case. In thigxasshorter
thanD because at least the extension step produgingan be skipped iD’. O

LEMMA 3.2. LetS be a set of inpul’-chains. For eacl’-chaina T-M E-derived
from S and for eachl’-modelM, we have thall &= S — M [ a.

Proof. Let D denote thel'-M E-derivation ofa, and letM be aT-model ofS.
The proof is by induction on the length .

Base casex € S: M = S; thenM [ a.
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Inductive step. Let &; be 77 (@), and supposédf = «. Clearly, merging left of
identical B-literals (rule R0), as well as rule R2, is sound. Let us show that so
is rule R1.

Leta = (@’ o[A]oa” 0 A 0 a’; 7,) and@; be obtained removing® from
a. From Lemma 3.1 it follows that there exist§'aM E-derivationD of the
T-chainy = (o' o A; 1,) from S shorter thand. Hence,M = 7. Since
M &= @ andM = y, it follows thatM = B(a') v A° Vv B(a”) v B(a’’) and
M = B(a) v A, hence, we havé! = B(a’ o a” o &”). ThereforeM = a;.

This proves that the transformatiéi is sound.

It remains to prove the soundness of the inference rules. This is immediate for
loading. Let us considef-extension and unloading rules:

— lety’ be obtained as indicated in the definition of thieextension rule; let
M &= @ andM = B.
From (4) it follows that

M = B(a) V Al V 1V —az V —f. )

Let A(a1) = (A1, ..., A,), and leta” be the prefix ofx; to the left of[A;]
(i = 1,...,p). By Lemma 3.1 there exists A-M E-derivation ofa® =
(@D o A;; T,m) from § such thatM = a® for eachi = 1,..., p. Hence,
ME8B@?)Vv A (=1...,p) fromwhich we have

M= B(ay) VA VPLY =2V —az (8)

foreachi =1,..., p.
From (7) and (8) it follows that

M= 8B(ay) Vv 1V —B2V —ay. )

Now we use the hypothesis anandg: the fact thatV = B(@) andM = B,
together with (9), gived! = B(ay) V B1. ThereforeM = y'.

— Leta; be obtained as indicated in the definition of the unloadingrudmd let
M = &. From (6) it follows thatM = B(a’ \ L) v A(a’) v LE. Similar to the
previous case, supposing thata’) = (A1,...,A,), foreachi =1, ..., p,
itis the case thaf = B(a’ \ L) V A;. It follows thatM &= B(a’ \ L) v L-.
By the hypothesis o we haveM = B(a') v B(¢”). So.M = B’ \ L)V
B(a"), and hencé = a;. a

* Refer to it for symbolism.
** Refer to it for symbolism.
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The following proposition gives the soundnesseiM E.

PROPOSITION 3.1 (SoundnessBfME). AnyT-chaina T-M E-derived from
a T-satisfiable set of’ -chainsS is T-satisfiable.

Proof.Let M be aT-model ofS that must exist becausgis T-satisfiable. From
Lemma 3.2 it follows thatM = @; hence there must exist at least one B-literal in
o true inM. O

To prove the completeness, we translate a standard derivation of aaChmem
aT-M E-derivation of thel'-chain(«; O).

LEMMA 3.3. Givena, B acceptable chaingg input chain) such thaty is ob-
tained by the extension rule from them, anfl-&/ E-derivation®; of & = («; 7,),
there exists & -M E-derivation®D’ of y = (y; 1,).

Proof.Leta = L,,...,L,, BandB = Hq, ..., H,_,, B°. D’ will be obtained
with a further step off -extension fromD;. Sincep is an input chain, there exists
an inputT-chain 8 = (8; 0). The extension step produces a chainframing
B and appendindd,, ..., H;_; (possibly reordered by) to its right; 3’ is then
transformed by, which (modulo merging of B-literals) may

1. delete a B-literal. because of a complementary A-litefaF] to its left (ground
reduction step);
2. remove the rightmost literal if it is an A-literal.

In a T-extension step we can produce thechain (y'; B o t,), which will be
transformed byr. Rules RO—R2 allow7 to mimic 7. It is then possible to derive

y=(:1). 0

The role played by Lemma 2.1 for the refinements described in the preceding
sections is here exploited by Lemma 3.4, which relates model elimination steps
andT-ME steps.

LEMMA 3.4. Givena, B acceptable chaingg valid input chain such thaty
is obtained by the extension rule from them, anfl-&/ E-derivation D; of & =
(a; y), there is al'-M E-derivation D’ of y = (y; 7).

Proof.Leta = L4,...,L,, BandB8 = Hy, ..., H,_1, B°. As with Lemma 3.3
the extension step produce$= L,,...,L,,[B], Hy, ..., H,_; (modulo O and
merging of B-literals) and transforms it usirfg, which performs the two usual
kinds of actions. We can deriv@.1, ..., L,,, B, Hy,...,H,_1; Bo1t,), byr —1
loading steps, fron&; then the unloading rule is applied to maBean A-literal
([B]), using the fact thal = —(H1V ---V H,_;) — —B holds. Now, as was done
in the proof of Lemma 3.3, lef simulateT™ yielding y . a
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Lemma 3.5 and the subsequent theorem guarantee the completefiessmf

LEMMA 3.5. If there exists aM E-derivation D of y from 7(S) U 7 (T") with
top chain in7 (S), then there exists &-M E-derivation D’ of y = (y; t,,) from
T7(S).

Proof. By induction on the length of suffixD).

Base casen = 0. There is nothing to prove because, by hypothesis,77(S).

Inductive step. Assume the lemma holds for af E-derivations with suffix shorter
thann > 0. LetD = D, o y, let D, be aM E-derivation ofa, and lety
obtained by extension from and an input chai € 7(S) U 7 (T").

By induction hypothesis oD, there exists &'-M E-derivationD; of a =
(o 1) from T77(S). There are two possibilities:

1. If B € 7(S) thenB = (B; O) € T7(S), « and B are acceptable, and;
is aT-M E-derivation ofa, then by Lemma 3.3 we are through.

2. If p € T(T"), then sincex and B are acceptables is valid, andD; is a
T-M E-derivation ofa, then by Lemma 3.4 we are through. a

Lemma 3.5 is employed in proving our main result.

THEOREM 3.1 (Completeness 8f M E). Let O be anM E-ordering rule. Given
a T-unsatisfiable sef§ of clauses, there exists M E-refutation ofS’ = 77(S5)
for S’ C S.
Proof. Immediate ifS contains & -unsatisfiable clause. In fact, starting from
any T-chain ofa, a sequence of unloading steps will give an eniptghain.
Otherwise, there exist a finite subs®tof S and a finite sef”’ of ground valid
clauses such that U T’ is minimally unsatisfiable. Obviously, § is T-unsatisfia-
ble, so isT(S"), and thert7 (S") U 7 (T’) is an unsatisfiable set of chains such that
at least one chain ifi (§') is essential for unsatisfiability. By the completeness of
ME, it follows that there exists aW E-refutation of7 (5”) U 7 (T’) with top chain
in 7(S").
By Lemma 3.5 we can obtain the desired result, since for each acceftable
chaina it is the case thatz, | < | « |, considering th@ -chainy whose existence
is ensured by Lemma 3.5;# = O, theny = (0O; ) = (O; D). O

3.3. IMPLEMENTATION AND EXPERIMENTAL RESULTS. A CASE STUDY

In this section we briefly describe an implementatiorf'eM E written in SETL2

[26] and run on a Sun SPARC 10, and we present some of our experimental results.
Since our implementation is just a prototype, we have been mainly interested in the
number of steps performed for a given example, rather than with CPU time or other
technical details.
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As is the case with model elimination, a number of optimizations and features
can be added to the original calculus. Most of them have analogues used with
model elimination (see, for example, [12]), although some do take advantage of
the specific properties of tHe-resolution rule.

Search strategy.The search space can be viewed simply as a tree (possibly, with
multiple occurrences of equal subtrees) whose noded aeains and such that
each child of a node can be obtained from its parenfkbgxtension, loading, or
unloading.

The fact that thg'-M E procedure (as model elimination does) essentially deals
with input derivations suggests an immediate optimization: the procedure can avoid
processing the san¥e-chain more than once (i.e., visiting equal subtrees).

The search strategy used is a depth-first iterative deepening combined with a
best-first heuristic search. Basically, the algorithm proceeds by performing a se-
guence of bounded depth-first searches, with increasing bounds. The bound is not
placed on the depth reached in the search tree but rather on the total cost of a path,
the cost of a path taking into account the distance from the root (i.e., the node
corresponding to the top-chain) to the currently visited nodeand the length of
the path fronm to a leaf-node (possibly corresponding to a refutiiighain). This
length has to be heuristically estimated, and the simple heuristic employed is the
number of B-literals in the first part of the currefiichain, which is in fact a lower
bound to the length of the remaining part of the path. At each iteration a depth-
first search is performed cutting off each branch whose total cost exceeds some
given value. The value employed in the subsequent iteration will be the lowest cost
among those exceeding the bound in the current search.

The algorithm is initially provided with a list of inpuf-chains. The selection
of the top T-chains is made following the given order. Unloading is attempted
beforeT-extension, which precedes loading operations. For each ymlitaina
(suppose its first part containsB-literals); then, at most contrapositives can be
used as sid&-chains inT -extension steps. These are obtained fiolyy moving
each B-literal to the right end of the first part. This process fulfills Loveland’s re-
guirement that each literal should occur in the rightmost position somewhere in the
input set (see [19]). Control parameters (see below) usually prevent the exploration
of all & alternatives.

Control parameters and rejection rules. A set of control parameters can be
employed to reduce the number of derivablehains:

— bounds are imposed on the number of A-literals and B-literals occurring in
the first part of a derived'-chain;

— abound is imposed on the length of the first part of a derfahain;

— for each inpuf-chaing, there is a bound on the number®fextension steps
that can employ a contrapositive @fas sideT’-chain in the same derivation;

JARSMD10.tex; 5/03/1999; 13:23; p.35



468 ANDREA FORMISANO AND ALBERTO POLICRITI

— the set of inputl'-chains is partitioned in classes (a similar strategy is em-
ployed in the implementation of model elimination described in [12]) accord-
ing to the length of the first parts. There are four classes, for ifpciains
made of 2, 3, 4, and more than 4 B-literals. Units are treated in a special way,
as will be explained below.

It is possible to impose a bound on the total number of Fidghains used in
the same derivation and coming from the same class.

Rejection rules are employed to eliminate useless branches of the search space:

— acceptability of derived'-chains is imposed, so tautologies are always avoided;

— any T-chain whose first part has the first part of an inffuthain, or of a
previously derived’-chain (in the current derivation), as prefix is rejected,;

— T-chains already derived are rejected;

— rejection of validT'-chains can be optionally imposed.

Lemmas and units.Note that inT-M E the (ground) reduction operation is incor-
porated in thel' -extension step. In fact, it can be viewed as a special case of the
unloading operation. However, obtaining lemmas from reduction steps as is pos-
sible in model elimination is not very useful i+-M E because the characteristics

of the T'-resolution rule force one to consideachB-literal in the first part of the
T-chains as part of the lemmas.

Actions produced by th&-extension and unloading rules on B-literals are justi-
fied in general by the presence of several B-literals (see (4) and (6)) in the first parts
of the T-chains. Extending the “scope-mechanism” (see [19]) to
T-ME would require the capability to determine which literals in thechains
are sufficient to perform th&-derivation step (in order to obtain short lemmas).
Obviously, handling this “minimality” requirement would make lemma production
not so advantageous. On the other hand, if this requirement is ignored, each lit-
eral (the A-literals complemented) of the first part of a&hain would have to be
included in each lemma produced from it, making lemmas substantially useless.

Nevertheless, each derivedtkchain generates a lemma consisting of the B-
literals occurring in its first part. Lemmas of this kind are actually used in our
implementation with some restrictions:

— only lemmas with less than a predefined number of literals are retained,;

— anonunit lemma is retained only if it subsumes at least one ifiglhtain, in
which case the subsum@&tchains are replaced by the new lemma;

— unit lemmas are intensively employed. Together with unit inpethains,
they form a conjunction of literals that will be always considered in e&ch
satisfiability test performed by the procedure (in general this technique tends
to reduce the number @f-models to be considered by tifedecider). More-
over, whenever a new unit is obtained, a step similar to the Davis—Putnam’s
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unit rule is applied to the inpuf-chains: those subsumed are removed (they
will not be used anymore), whereas each occurrence of literals complementary
to the derived unit is deleted from tliechains (this process can generate new
units that will be employed in the same manner to simplify the given set of
T-chains). Clearly, if & -unsatisfiable conjunction of literals is obtained, the
initial set of T-chains is declare@'-unsatisfiable. We note that the procedure
may find aT -satisfiable conjunction of literals satisfying each infputhain,

in which case the set is declar@dsatisfiable.

The strategy just outlined takes advantage of previously defiveldains and

the use of units corresponds to permitting implicit nonbinary steps (as in the
case of total theory resolution) but only when all but one of the Bigédains

are units and complementary to a literal occurring in the other two parent
T-chains.

From another point of view, the conjunction of units gives Thdecider sup-
plementary knowledge about the entire problem faced by the theorem prover,
making theT-satisfiability tests more restrictive, “simplifying” the work of
the T'-decider and increasing global efficiency.

Further features and heuristics. A few strategies and heuristics were employed
mainly to increase efficiency and to reduce the number of calls t@ thatisfiabi-
lity decider:

— ground-reduction and merging left of identical B-literals are handled automat-
ically;

— unloading is always tried first;

— each rejection test is done as soon as possible, possibly before invoking the
T -satisfiability decider;

— standard resolution steps are intercepted without invoking thatisfiability
decider;

— the set of sidg’-chains (their contrapositives) is heuristically ordered before
trying T-extension, using an estimate for the number of B-literals of each po-
tential resolvent. Moreover, resolution steps may be attempted before proper
T-extension steps;

— loading operations can be restricted in one of the following ways:

— completely avoided;
— allowed only if the loaded literal does not occur in the initial setref
chains, but its complement does.

Remark.Even if loading is avoided, the use of units as described above actu-
ally increases the power of the procedure. For exampleT thasatisfiable set of
clauses of the example in Section 1.3 is found t@’be=futable by our implemen-
tation even without loading operations.
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Remark.Although we restrict our treatment to the ground cas& ¥/ E, our
implementation is able to deal with with certain nonground problems. This capa-
bility arises from the presence of tlfedecider: an appropriate modeling of the
problem and a convenient choice of the the@rynay enable one to incorporate
the nonground part of the problemTh

An example. We applied our procedure to Lewis Carroll's “Salt and Mustard
Problem” [8].

The problem is about five friends (Barry, Cole, Dix, Lang, and Mill) that agreed
to have lunch together. They devised the following rules, to be observed whenever
beef appeared on the table:

1. If Barry takes salt, then either Cole or Lang takes one only of the two condi-
ments, salt and mustard; if he (Barry) takes mustard, then either Dix takes
neither condiment, or Mill takes both.

2. If Cole takes salt, then either Barry takes only one condiment, or Mill takes
neither; if he takes mustard, then either Dix or Lang takes both.

3. If Dix takes salt, then either Barry takes neither condiment, or Cole takes both;
if he takes mustard, then either Lang or Mill takes neither.

4. If Lang takes salt, then either Barry or Dix takes only one condiment; if he
takes mustard, then either Cole or Mill takes neither.

5. If Mill takes salt, then either Barry or Lang takes both condiments; if he takes
mustard, then either Cole or Dix takes only one condiment.

Moreover, it is assumed that

— phrases like “Barry takes salt” leave open two possibilities: “Barry takes salt
only” or “Barry takes both condiments”;

— phrases like “either Cole or Lang takes one only” allow three possible cases:
“Cole takes one only; Lang takes both or neither”, “Lang takes one only; Cole
takes both or neither”, and “Cole takes one only; Lang takes one only”;

— every rule is to be understood as implying the wordsd' vice versa(i.e.,
the first rule should be completed by “and, if either Cole or Lang takes only
one condiment, then Barry takes salt”, and so on).

The original problem was to discover whether these rules are compatible (i.e.,
satisfiable). A (nonground) clause formulation of the problem is used in [20] to
shown that the conditions are in fact satisfiable as follows:

Barry takes both condiments.
Cole and Dix take neither salt nor mustard.
Lang takes mustard but not salt.

Mill takes salt but not mustard.
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Let us see how to deal with this problem in the context’e#/ E. By employ-
ing a theoryT, which is essentially a finite axiomatic set theory modeling only
membership, union, intersection, and symmetric difference of sets, it is possible to
formulate the Salt and Mustard Problem at the ground level.

The languagel(T), is 2L S [13]. It is a simplified case oM LS (Multi Level
Syllogistig, which is known to be decidable [14]. A&-decider has actually been
implemented.

We have.L(T) 2 {in, union inter, sdiff}. In this particular problem we will
model the five friends as individuals, while sets will identify who takes which
condiment. Thus, if the friends are represented by the leitassc, I, m, and if
S and M represent the set of those who take salt or mustard, respectively, then
the set of those who take both condiments is giversby M. We use the atom
inter(inter M S, S, M) to represent the assertion thiater M S is the intersection
of SandM.

The following three unitl' -chains define, respectively, the sets of those who
take only one, at least one, and both condiments:

1) (< sdiffldeltaMS, M, S) >; <>)
2) (< union(unionMS, M, S) >; <>)
3) (< inter(interMS, M, S) >; <>)

The five rules describing the problem can be reformulated as the following set
of T-chains:

4) (< =in(b, M), —in(d, unionMS), in(m, inter M S) >; <>)
5 (< in(d,unionMS),in(b, M) >; <>)

6) (< —in(d,deltaMSs),in(b, S) >; <>)

7) (< =in(b, S),in(c,deltaM ), in(l, deltaMS) >; <>)

8) (<in(b,S),—in(c,deltaMSs) >; <>)

9) (<in(b, M), —in(m, interMS) >; <>)

10) (< —in(c, S), —in(m, unionMS), in(b, deltaM S) >; <>)
11) (< —in(b,deltaM S),in(c, S) >; <>)

12) (< in(c, S),in(m, unionMS) >; <>)

13) (< —in(e, M), in(l, inter MS),in(d, inter MS) >; <>)
14) (< —in(d, interMS),in(c, M) >; <>)

15) (< —in(, inter M S),in(c, M) >; <>)

16) (< —in(d, S),in(c, inter M S), =in(b, unionM S) >; <>)
17) (< in(d, S),in(b, unionMS) >; <>)
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18) (< —in(c, inter M S),in(d, S) >; <>)

19) (< —in(d, M), —in(m, unionM S), —=in(l, union M S) >; <>)
20) (< in(d, M),in(l, unionMS) >; <>)

21) (< in(m,unionMS),in(d, M) >; <>)

22) (< —in(, S),in(b,deltaM S),in(d, deltaM §) >; <>)

23) (< —in(b,deltaM ), in(l, S) >; <>)

24) (< —in(d, deltaM S),in(l, S) >; <>)

25) (< —in(l, M), =in(c, unionM S), —in(m, union M S) >; <>)
26) (< in(c,unionMS),in(l, M) >; <>)

27) (< in(m,unionMS),in(l, M) >; <>)

28) (< —in(m, ), in(b, inter M S),in(l, interMS) >; <>)

29) (< —in(b, interMS),in(m, S) >; <>)

30) (< —in(, interMS),in(m, S) >; <>)

31) (< —in(m, M), in(d, deltaM S), in(c, deltaM S) >; <>)
32) (< —in(c, deltaM ), in(m, M) >; <>)

33) (< —in(d,deltaM ), in(m, M) >; <>)

To build aT-unsatisfiable set of clauses, we need a furthehain, expressing
the negation of the answer (i.e., eliminating the only model of the given set of
clauses):

34) (< —in@m, S), in(m, M), =in(l, M), =in(b, inter M S),
in(d, unionMS), in(c, unionM ), in(l, §) >; <>)

Our implementation of"-M E was able to find & -refutation of the given set
of T-chains with various settings of the control parameters, in particular when the
parameters were defined as follows:

— bound on the number of A-literals: 6;

— bound on the number of B-literals: 2;

— bound on the length of the first part: 7;

— at most one contrapositive for each input clause in the same derivation;
— no loading operation is allowed, and no retention of lemmas;

— forced rejection of valid resolvents

The procedure derivedZ-unsatisfiable conjunction of urilt-chains, declaring

the conjunction of the 34 input clauses tobainsatisfiable. This was done produc-
ing 150 newT -chains and trying’-extension on 91 of them. ThB-decider was
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called 6263 times on 2097 different conjunction of literals (further optimization
could have been realized by intercepting repeated calls).

It should be noticed that the choice of the Bgchains along with the retention
of valid T-chains considerably influences the search for the refutation. The most
useful parameters for reducing the portion of the search space explored seem to be
the bounds on length and number of literals as well as an appropriate choice of the
initial cost bound.

4. Applications of T-Resolution

This section illustrates how an approach based emresolution can be profitably
adopted in various situations. In particular, we show how the features df-the
resolution rule can be exploited to define a deduction framework which generalizes
theC L P approach to logic programming. A second application is a theorem prover
for modal logic employing an implementation of tiieM E calculus to realize a
(semi-)decision procedure for a wide class of modal logics.

4.1. T-RESOLUTION AS A DEDUCTION SCHEME

A general deduction scheme based Biesolution was proposed in [10]. The
starting points are the previously illustrated features offtiresolution rule:

the existence of nontrivial linear refinements;

the capability of integrating domain specific knowledge;

the clear distinction and a strong separation between the background and the
foreground reasoners.

These features are in strict analogy with similar propertiesioP [16, 17], arising

from the integration of logic programming and (independently developed) con-

straint solvers from which its usefulness derives. In this context the background
and the foreground reasoners realize the calculation level (i.e., constraint solving)
and the deduction level of the system, respectively.

The generality of the theorie® allowed in our development is very advan-
tageous. Ordinarily, to formalize a real problem in terms of a set of clauses to
be processed by an automated deduction system, it is necessary to design a the-
ory suitable to express the characteristics of the specific domain of knowledge of
interest.

If the system is based on a pure logic programming approach (e.g., Prolog), the
axioms of that theory have to be added to the description of the problem. This step
considerably increases the number of the clauses to be taken into account.

In the systems based on tid. P-schemes, where an equational theory is built
in, we do not need to consider the standard equality axioms as part of the problem
description. This can substantially simplify the set of clauses and provide higher
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efficiency. However, not every problem can easily be expressed in an equational
theory, and even when this is the case, it might be more appropriate to employ a
theory more directly related to the specific domain of knowledge from which the
problem is taken.

Usually, in schemes based 611, P the only way to share/exchange information
between the theory and the program is via the equality relation.TFresolution
approach allows a better and more useful cooperation between the foreground
reasoner and thB-decider, which, in general, can handle a nonequational theory.

The deduction scheme we propose has the standam®-scheme as a special
case and offers several improvements that arise from the possibility of using inter-
preted predicate symbols (i.e., symbols£fT)) in the head of the clauses (this
feature is ordinarily not present L P-schemes).

4.1.1. T Logic Programming

In this subsection we introduce the syntax and semantics of our deduction scheme,
T Logic ProgrammingT L P for short). We adopt notation taken from [16] (which
may be consulted for a detailed descriptiorCdt P).

Let X = ¢ U Xp be afirst-order signatur& is the CONSTRAINT signature
andXp is thePROGRAM signature. We requir&c N Xp = @, X¢c = T U F¢,
andXp, = IIp U Fp, wherell denotes a set of predicate symbols afidh set
of function (and constant) symbols. B-ATOM is an atomp(ty, ..., t,), where
p € IT andt, ..., t, are terms built from#- U £ and a denumerable set of
variables. ATT-LITERAL is either all-atom or the negation of E-atom. There are
cases in whicll" deals with all possible functional symbols (e.g., standard Clark
equality theory); in such cases, cleatp = .

The general form of & Logic ProgrammingPROGRAM CLAUSEIS By <«

Bi1, ..., B,, where B; can be either d1p,-atom or allc-literal* If By is allc-
literal, then the clause is said to beraHEADED CLAUSE (such clauses are not
allowed inCL P-schemes). IBq, By, ..., B, all arellc-literals, then the clause is
said to be &ONSTRAINT CLAUSE A GOAL is a clause with empty head.

Unlike predicate symbols dfl p, predicates il can be (partially) defined
in T, which can be any first-order theory. Moreover, they can occur in a negative
literal either in the head or in the body offd. P-program clause.

In CL P there is no way to act on the theofyby modifying semantics of the
predicate and function symbols Bf- and of #p. For instance, having @L P (R)
system, for two uninterpreted functional symbgls € F», we have no means of
requiring thatg (X, X) < f(X) whenO< X < 1.

The possibility of writingT’ L P-clauses with interpreted head makes it possible
to overcome such restrictions. There are three types of program clauses of this kind:

* Hence, negativél p-literals cannot occur in any clause.

JARSMD10.tex; 5/03/1999; 13:23; p.42



T-RESOLUTION: REFINEMENTS AND MODEL ELIMINATION 475

1. Clauses that add known (entailed) informationTtofor instance, ifT is a
theory of natural numbers and the symbal belongs tollc: (0 < X) «
1< X).

2. Clauses that cause the inconsistency of P; with respect to the above theory
T, for instance(x * x < 0) < (0 < x).

3. Clauses that contain the functional symbols#ip or £- and consistently
extendT, such agf(X) < f(Y)) < (X <Y).

Clearly, situations of the type 2 should be avoided. This task is left to the
programmer.

Considering constraint clauses only, we can characterize these three kinds of
clauses in model-theoretic terms: clauses of type 1 have, as models, all the models
of T; none of the models of clauses of type 2 is moder'pbnly a proper subset
of the models ofl' are models of clauses of kind 3. Clauses of type 1 could be
introduced in order to give a higher priority to some theorems of the thEdry
the inference process.

An issue offered by L P is the possibility of using program-defined predicates,
to provide a semantics to new constants.

EXAMPLE. Consider a program containing tiid. P-clause:
Xec<«Xea, rX),

wherer(X) is a program defined atom (i.e.T&--atom). The abovéd L P-clause
characterizes the constanby requiring that in eaclf-model of the progran® it
is the case that

{Xea|r(X)} Cec.

By means of this feature it is possible, for instance, to force the semantics of a
constant ¢ in the following example) in a such a way that in every model of the
program it is interpreted as the set of answers to certain gealsym(X)).

EXAMPLE. LetT be a fragment of set theory, and consider the following program:

num) <«
numX U {X}) < num(X)
(X € w) < numX)

The (minimal) semantics for the constant symbdk exactly the (infinite) set
of all numerals intended la Von Neumann.

The following definition introduces the rules @fL P, each of them being an
instance of the generdl-resolution rule (see Definition 1.6). In particular, R1is a
generalization of the standard Prolog-like inference rule, and it is sufficient to sim-

JARSMD10.tex; 5/03/1999; 13:23; p.43



476 ANDREA FORMISANO AND ALBERTO POLICRITI

ulate theC L P inference rule, provided the satisfiability checker is implemented
(hence,I' LP hasCLP as a special case).

DEFINITION 4.1. Letu be a substitution ane- H,, ..., H, be a goal*
R1: If By < B4, ..., B, isaTL P-clause, and3y and H; areIl p-atoms,
Bo < Bl,...,Bn (—-fﬁj...,f&
<_(B17"'7B}’L7H27"'7Hk)/"L
I'=VY({((BoA—Hy) = (=B1V -V =B,) vV (=Hy V-V =H)) ).
R2: If <~ By, ..., B, is aT-headed clause (i.eqB; < Bg, ..., Bi_1, Bi;1, ...,
B,,) or a previously derived goal,
< Bo,...,Bn é—-fﬁj...,fh
(_(807"'7BS7H17"'7H}‘)/~’L
T =EV((m=Bsq1 V- V=B)AN(—H 11V -V —H) —
(=BoV:--V=B)V(=HyV-- -V —H,))),
whereH, 1, ..., Hy, Bsy1, ..., B, are allllc-literals.

Loading: Let o be program clause andbe all-literal,

o < bﬁ,...,fﬁ
((_ H]_,...,Hk,L),LL

Linaor—Lin«.

Rules R1 and R2 constitute a proper refinement of the gefiferakolution
rule. R1 operates on pairs ofp-literals in a classical fashion; however, the rule
generalizes the standard Prolog inference step, since it uses knowledge embedded
in the theory and in the whole parent-clauses. Rule R2, on the other hand, uses the
full power of T-resolution and deals only with th@*=part” of theT L P-program.

Notice that the parts of &L P-derivation (see below) built by using rule R1 ac-
tually have a linear-input character (just as Horn clauses — pure Prolog — derivations
have). This is the main factor justifying the introduction of two different instances
(i.e., R1 and R2) of the generéalresolution rule.

Observe that strictness condition — never derive a clause including a variant of
the parent clauses (this restriction is analogous to that imposed on ground linear
T-resolution, see Section 2.2) — holds for rule R1. Moreover, we require that only
strict applications of R2 are allowed. This constraint does not affect completeness
and guarantees a proper linearity of the derivation.

DEFINITION 4.2. Given a progranP and a goalG, a T L P-DERIVATION is
a sequence of goals§ = Gy, ..., G, such that, for eachh € {1,...,n}, G; is
obtained fromG,;_, and

e aprogram clause using rule R1lovading,

* For the sake of simplicity, we assume the body of a clause to be a multiset of literals. This
assumption guarantees that selectiigwill be like considering a generic elemefif of the multiset.
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e aT-headed program clause, or a géal, k < i, using rule R2.

A TLP-REFUTATION is a derivation of a goak— Hi, ..., H;, with H; a Ilc-
literal (for alli € {1,...,k}), such thatd; A --- A Hy is T-satisfiable. For each
i €{1,...,n}, letu; be the substitution employed to obtaih from G,_;. The
pair consisting ofty o --- o w, andHy A --- A Hy istheCOMPUTED ANSWER

EXAMPLE. Let T be a theory over the reals dealing withand €. Consider the
simple programP defined by the following clauses:

Xea «—2<X
pX) <« Xea, X <2

The first clause provides semantics for the constant symbyolerms ofe, stating

that it must be interpreted as a set containing at least all numbers greater than or
equal to 2. The second clause defindd aliteral (namely,p (X)) in terms of the

new constrainiX € a. Submitting the goal«~ p(X), a few inference steps yield
thegoal«~2< X, X < 2.

The following theorems give soundness and completenegg. &f.

THEOREM 4.1 (SoundnesdRulesR1, R2, andLoading preserver -satisfiabili-
ty.

Proof. It is immediate that the three rules are instances of the gefieresolu-
tion inference rule. Therefore, the soundness follows from Theorem 1.5. O

THEOREM 4.2. (Completeness).et P be aT L P-program andG be a goal. If
P U {G} is aT-unsatisfiable set of clauses, then there existaLaP -refutation of
P U {G}.

Proof. The proof will follow the classical pattern of proving ground complete-
ness and then lifting the result to the general case. Ground completeness follows
easily from the completeness of groufid-T-resolution (see [10] for a detailed
proof). 0

Even though the above result is a direct consequence of the completeness of
SL-T-resolution, the restrictions imposed on thaesolution rule and on the kind
of program clauses allowed in the context ®f. P, make Theorem 4.2 rather
significant. As a matter of fact, the two main differences betwEéP and SL-
T-resolution are the following: (1YL P deals with sets of clauses built from
two different (disjoint) sets of symbols (namel},c and Xp); (2) the part of
the derivation relative tdlp-literals is in fact a linear-input derivation. In other
words, the inference process relative lig-literals proceeds in a “Prolog-like
fashion”. Neither of these characteristics is achievable in the general context of
SL-T-resolution.
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4.2. A MODAL THEOREM PROVER

The main problem addressed here is to determine the derivability of a modal for-
mula from a given set of modal axioms. Most of the methods proposed in the past
have followed one of two different approaches.

e DIRECT METHODSWOrk directly on the modal formula in analogy with the
methods developed for classical logic;

e INDIRECT METHODS solve the problem by translating it into an equivalent
problem in classical logic and then applying usual deduction algorithms.

The key point in the approach outlined below is a new translation technique
introduced in [11] (and subsequently studied in [4, 5]) that enables one to express
modal formulas in set-theoretic terms. In this manner the problem of deciding the
validity of a (propositional) modal formula is solved by deciding the validity of
a first-order formula with respect to a suitable ground-decidable set theory (i.e.,
MM, see below).

We first recall some basics about modal logic (for a detailed description, see [6]).

In the following we use a fairly standard syntax for propositional modal logic,
consisting of propositional variables (or letter), P,, ...; logical connectives
A, —; and the modal operatan. Derived symbols, to be used as abbreviations,
arev and< (defined as-0—). Well-formed formulas are defined as usual with the
O as a unary operator.

The starting point for the set-theoretic translation is the notiokrgdke frame

semantics: &RAME F is a pair(W, R) in which W represents the set of (possi-
ble) woRLDS and R is a binary relation orW calledACCESSIBILITY RELATION.
A VALUATION of a propositional variable is a subsetWt Relative to a valuation
of all variables, one defines, for all € W, the notionw = ¢ by induction on the
structural complexity of the modal formuja(see [6]).

Aformulag is

e VALID IN AFRAME (W, R) ifand only if, for allw € W and for any valuation

=, w &= ¢ holds;
e VALID ifitis valid in all frames;

aFRAME LOGICAL-CONSEQUENCEOf a formulay (¢ = ¢) if and only if,
for all frameskF, if ¢ is valid in F, theng is valid in F.

The minimal modal logid; consists of a set of propositional axioms complete
for classical logic, the modal axiom

0Py — Py) — (OP1 — OPy),

and the rules of modus ponens, substitution (i.e., irpﬁérfrom @), and necessi-
tation (infer O¢ from ¢). Derivability of ¢ from + in K| is defined as usual and
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denoted by -, ¢. Aformulay is said to becoMPLETEIf and only if, for all ¢,

Vg o & Y Ere.

Other modal logics can be obtained considering afs&tf modal axioms ex-
tending the minimal systerk,. For instance, here are some common modal axiom
schemes:

T: OP— P

4. OP —- oOP
B: P—OCP
5: OP —- OOP

The basic idea of the set-theoretic translation is to replace the accessibility
relation (R) by the membership relatiore). On this basis, a world accessible
from w becomes amrlementof w; a further step fromv using the accessibility
relation R will be like looking intov in order to reach one of its elements.

This straightforward encoding of the relati®as membership has a number of
interesting consequences:

1. worlds and frames, as well as valuations of propositional variables, are simply
sets(of worlds);

2. aframeF can be identified with its suppoW, being the accessibility relation
implicitly defined as the membership relation Bf)

3. since we clearly want that all worldsaccessible from a given worl@ in a
frame W are themselves elements Wf, it is natural to require that all frames
aretransitivesets!

Since a valuation for a propositional variable is but a set of worlds, the standard
definition of = will allow us to associate a set of worlds with each propositional
formula. This will be the collection of those worlds in the frame in which the
formula holds true. At this point the relatiga can be entirely replaced by the
membership relatios.

The translation involves a specific theod M, which is defined by the follow-
ing set of axiom schemes:

xeyUz<exeyVvxez

XEY\z<XEYAXEZ

xCy<Vi(zex —>z€y)

Pow(x) N Pow(y) € Pow(x N y)

x Cy —> Powx) € Pow(y)
whereg; N @, stands forp; \ (@1 \ @2).

The theoryM M has been shown to be ground-decidable (see [29], where a

decision algorithm fo M is given). The following result holds.

THEOREM 4.3. Given any unquantified formula of £L(M M), it is decidable
whether or not there exists a modelMiM in which3y is satisfied.

* A set istransitiveif it contains the members of all of its members.
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A given modal formulap (P4, . .., P,) is translated into a formula*(x, x1, ...,
x,) of L(M M) using the so calleth-As-Pow TRANSLATION, which acts follow-
ing these rules:

Pi* = X;,

T = x;

(p1V @2)" = @1 Ugs;

(p1 A 92)* = @1 N3,

(—p)* = x\ ¢%

(1 = @2)* = (x \ ¢7) U 93;
(Op)* = Powg™).

Moreover,< is translated as0—, ande; N @5 stands forp; \ (o] \ ¢3).

If ¥(x1,...,x,) is the conjunction of the modal axioms defining the modal
theory H, andg (P4, ..., P,) is a modal formula, then the probleth =, ¢ is
faced in solving the corresponding problem obtained by means afitagPow
translation:

MM = (Vx(x S Powx) A AXiomy (x) — YZ(x € ¢*(x, 2)))),

whereAxiomy (x) corresponds to the formutacy, .. ., x,, (x C ¥*(x, x1, ..., Xp)).
The following result ensures soundness and completeness of the above approach
(see [29)).

THEOREM 4.4. Let (¥, ¢)* = Vx(x € Pow(x) A Axiomy (x) — VZ(x € ¢*(x,
2))), then

o Ytk o=MME (¥, 0
o MME (V,0)" =¥ Eyo.

Moreover, ifH is complete, then the following hold¥M = (Y, ¢)* & V¥ g, ¢.

The (prototypal) modal theorem prover described in [29] consists of three dif-
ferent modules combined to constitute a semi-decider for modal logic. Notice that
the modal logic can be viewed as a parameter of the modal theorem prover. The
modules are (see Figure 3):

a translator exploiting thel-asPowtranslation outlined above;

a decider for the theoryf M,

an implementation of the model elimination refinement of linBaesolution
(T-ME).

The interaction between these modules is rather simple: given a modal formula
¥ (representing the sef of modal axiom-schemes defining a modal theory),
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T-ME M M-decider

O-asPow
translator

Figure 3. The MTP architecture.

and a modal formula, the translator generates a first-order formulatgi M)

in CNF. In general, the formula obtained is nonground; therefore, an instanti-
ate/check method is employed to generate a sequence of ground instances of the
problem. The check phase is exploitedIiM E, using theM M-decider, to decide

the M M-satisfiability of each generated ground instance unil & -unsatisfiable

set of clauses is found (if any).

5. Future Work and Open Problems

The results presented in this paper suggest several open problems and research
directions. For example, the relationship betw&eresolution and other important
theory-reasoning methods (e.g., theory connection calculus or theory consolution)
and different approaches to theorem proving suckR &g P, which have not been
addressed here.

Refinements expressly designedfoeresolution offer interesting research start-
ing points; they involver-validity freeness7 -subsumption7 -factoring, etc. Fur-
ther efforts should be done in controlling loading operations, following the ideas
outlined in Section 2.4, and exploring their compatibility with such techniques and
linearity.

As mentioned at the end of Section 1.3, the problem of lifigerivations is
still not settled in a satisfactory manner: given a theory, every exteosiah L (7))
must be considered in order to guarantee a (rather standard) liftirglefivations.

A most important problem in this area is the reach of deductive methods based
on T-resolution allowing the statement of (uniform) conditions on the th&bty
guarantee the lifting. Other important classes of open problems arise from attempts
to lift all the presented results to the non-ground case; consider, for example, the
problem of maintainind-validity properties .

Section 3.3 describes a first attempt at implementing and testing a theorem
prover based off’-resolution. Further experimentation witfrresolution should
include the design of a new implementationTofM E taking advantage from the
experience previously gained, in particular regarding heuristics on the treatment of

JARSMD10.tex; 5/03/1999; 13:23; p.49



482 ANDREA FORMISANO AND ALBERTO POLICRITI

T-validity, lemmas, and loading. Hence, in the context of this task we have in mind
two goals among others:

e realization of a foreground reasoner using a more efficient programming lan-
guage (e.g., for instance, C++) ensuring a greater and easier integrability with
other languages; this is strictly connected with the following point:

e integration of the main foreground reasoner with background reasoners al-
ready available, and design of a greater numbef -afeciders for different
theories in order to build a larger set of scenarios for tesfifrgsolution.
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