
20 April 2024

Università degli studi di Udine

Original

Object migration in temporal object-oriented databases

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Availability:
This version is available http://hdl.handle.net/11390/681843 since

Informatica xx page xxx–yyy 1

Object migration in temporal object-oriented databases

Angelo Montanari Elisa Peressi
Dipartimento di Matematica e Informatica, Università di Udine
Via Zanon, 6 - 33100 Udine, Italy
e-mail: [montana,peressi]@dimi.uniud.it

Barbara Pernici
Dipartimento di Elettronica e Informazione, Politecnico di Milano
Piazza Leonardo da Vinci, 32 - 20133 Milano, Italy
e-mail: pernici@elet.polimi.it

Keywords: object-oriented databases, temporal databases, query languages, roles

Edited by:

Received: Revised: Accepted:

The paper presents T-ORM (Temporal Objects with Roles Model), an object-oriented data model
based on the concepts of class and role. In order to represent the evolution of real-world entities,
T-ORM allows objects to change state, roles and class in their lifetime. In particular, it handles
structural and behavioral changes that occur in objects when they migrate from a given class
to another. First, the paper introduces the basic features of the T-ORM data model, emphasiz-
ing those related to object migration. Then, it presents the query and manipulation languages
associated with T-ORM, focusing on the treatment of the temporal aspects of object evolution.

1 Introduction

Since the ’70s, relational databases have been suc-
cessfully used in many application domains. In the
last years, however, many advanced application areas
have been identified for which the data model under-
lying relational databases is not the most appropri-
ate one. A number of applications in the areas of
CAD/CAM, office automation, knowledge represen-
tation, software engineering indeed require semanti-
cally richer data models. New constructs are needed
to model structured entities, complex attribute do-
mains, different types of relationships among entities,
relationships among entity types. To support such
features, object-oriented databases have been devel-
oped, and several commercial systems based on the
object-oriented paradigm are now available. In ad-
dition, many of these applications must cope with
problems involving temporal information about ob-
ject evolution. For this reason, conventional snap-
shot databases, that maintain information about the
current state of the world only, need to be replaced
by temporal databases that record information about
past, present and, possibly, future states. In order
to model the evolution of real-world entities, object-
oriented database must be able to handle both changes
in object states and changes in object structures due
to their migration to other classes [30]. As an example,
they must be able to represent the fact that a person

becomes an adult (class change), that a student be-
comes a professor (role change), and that a student
moves from a given university to another one (state
change) in a uniform framework.

During the last fifteen years, several time models
have been proposed to manage temporal knowledge in
database systems. Most of them extend the relational
model with one or more time dimensions, e.g. [13, 28].
Temporal extensions of object-oriented models have
been proposed in [6, 7, 8, 29, 31]. Most extensions
are only concerned with the representation of state
evolution, and neither support the notion of object
role, nor allow the shift of an object from one class to
another (they assign a class to an object once and for
all).

In the paper we consider the problem of providing
temporal object-oriented databases with the notion of
object migration. The importance of such a notion
has been pointed out by [20, 30]. In object-oriented
databases objects belong to hierarchically structured
classes, and remain statically linked to their original
position in the hierarchy. On the contrary, in many
application domains it is quite natural to allow ob-
jects to dynamically change the class(es) they belong
to. For example, it seems fairly acceptable to allow an
object belonging to the class PERSON to migrate to
the subclass ADULT. Only few papers deal with object
migration in object-oriented databases using either be-
havioral constructs to describe semantic information

2 Informatica xx page xxx–yyy

[4], or dynamic integrity constraints [30], or consider-
ing a restricted notion of migration [10, 11]. The issue
of object migration has not been addressed at all in
the context of temporal object-oriented databases.

The paper describes T-ORM [19], a temporal ex-
tension of the object-oriented conceptual model ORM
(Object with Roles Model [20]), that generalizes the
temporal models proposed in [6, 8, 27] by adding the
notion of object migration. It first analyzes in de-
tail the notion of object evolution, and consider dif-
ferent types of evolution which can be of interest for
database applications; then, it identifies the basic re-
quirements that a temporal model of object evolution
must satisfy; finally, it shows how object evolution may
affect state, structure and behavior of the evolving
object and of the objects related to it. All the fea-
tures of the T-ORM model are illustrated in terms of
query and manipulation languages. There is plenty of
literature on temporal extensions to query languages
[7, 21, 22, 24, 25, 28, 29, 31] and we do not deviate
from them defining a query language which is based on
the SQL syntax. Besides the usual primitives of struc-
tured query languages, it is provided with all temporal
relations of Allen’s interval logic and with some spe-
cific constructs that allow one to query the history of
objects.

The organization of the paper is as follows. Section
2 first illustrates the ORM model and then describes
the basic features of its temporal extension T-ORM.
Section 3 introduces and discusses the notion of object
migration, and shows how it is dealt with in T-ORM.
Section 4 provides a detailed presentation of the T-
ORM query language. Section 5 sketches out the basic
features of T-ORM data manipulation language. The
concluding remarks provide an assessment of the work.

2 The T-ORM data model

2.1 Classes and roles

One of the main problems in real-world modeling is the
management of object behavior. Most of the efforts in
this area have been limited by static schema defini-
tions, supplying objects with methods which operate
on object states. Recently, it has been suggested to in-
corporate rules within objects for expressing object be-
haviors. Besides the necessity of representing changes
in state, another problem occurs. Many applications
have the necessity of describing particular entities from
different perspectives, dealing with multifaceted object
states, that is, an object can play different roles and its
behavior depends on the role it plays. The term role
has been used in various contexts with different mean-
ings. As regards our approach, similar concepts have
been developed by Richardson and Schwarz [23], Su
[30], Wieringa [32], Sciore [26], and Papazoglou [18].

The ORM model has been originally proposed as an

object-oriented design framework for specifying infor-
mation systems requirements. Such a model allows one
to represent object behavior by means of the concept
of role. A role is a state in which an object can be and
if the object is in that state, we say that it plays that
role. Traditional class-based object-oriented systems
model the various states which an entity may assume
using specialization hierarchies and representing real-
world entities as instances of the most specific class
they belong to. This approach has numerous draw-
backs. Consider the following example appeared in
[32].

Assume that passenger is a subclass
of person and consider a person who
migrates to the passenger subclass of
person, say by entering a bus. This
bus may carry 4000 passengers in one
week, but counted differently, it may
carry 1000 persons in the same week.
So counting persons differs from
counting passengers.

The conclusion of this observation can be stated in
terms of identifiers. If PASSENGER would be a sub-
class of PERSON, then each passenger identifier would
also be a person identifier. Since this is not the case,
persons and passengers apparently have different iden-
tifiers. We should have a different way to represent
those instances. We must realize that a passenger is
not identical to a person, but that it is a state of a
person, or, more properly, it is a role of the class PER-
SON. So, when we count passengers, we really count
how often persons have been playing the role of pas-
senger. Moreover, using only the mechanism of class
specialization, when we have an entity which can as-
sume different roles independently (for example a per-
son may be a student and an employee), we have to
define a separate class which is a subclass of both EM-
PLOYEE and STUDENT classes. Subclasses of this
type should be defined for every possible combination
of roles.

In ORM, an object assumes a certain role via a
mechanism of instantiation which is analogous to that
used to populate classes. We talk about role instances
in the same way in which we speak about class in-
stances. Every time that a role is instantiated, we as-
sociate a unique identifier (Role Identifier o RID) with
the instance which preserves instance identity across
changes of its state (i.e., changes to attribute values).
We assume that this identifier is unique across the
database. All instances of roles evolve independently.

From another point of view, the reason why roles
cannot be implemented as subclasses is that the clas-
sification mechanism does not allow multiple instanti-
ation. As we said, a person could become a passenger
more then once during a week. We cannot instantiate
the same person as a passenger more than once and

Informatica xx page xxx–yyy 3

also we cannot think of representing all different kinds
of passengers as different subclasses. On the contrary,
the role mechanism allows an object to play different
roles at different times, to play more than one role at
the same time, and to have more than one instance of
the same role at the same time (for example, a person
who is employed in two different firms). This capabil-
ity is one of the features that distinguishes the ORM
model from other object-oriented models with roles.
As an example, in the model proposed in [18] an en-
tity can play several roles simultaneously, but only a
single occurrence of each role type is permitted per
entity.

At a first glance, one could object that roles repre-
sent only particular states which an entity could as-
sume during its lifetime and, as such, one could imple-
ment them as a multi-valued time-stamped attribute
“state”. In general, this is not possible because an ob-
ject playing a role has a particular behavior specific of
that role, which is specified in the role component of
a class description through a set of rules and messages
and that could not be represented with the traditional
way of modeling classes.

A class in the ORM model is defined by a name Cn
and a set of roles Ri, each one representing a different
behavior of this object:

class = (Cn,R0,R1,...,Rn)

Each role Ri is a 5-uple:
Ri = < Rni,Pi,Si,Mi,Rri >

consisting of a role name Rni, a set of properties Pi

of that role (abstract description of object character-
istics), a set of abstract states Si that the object can
be at while playing this role, a set of messages Mi that
the object can receive and send in this role, and a set
of rules Rri.

Rules fall into two categories: state transition rules
and integrity rules. State transition rules define which
messages an object can receive/send in each state and
the state changes these messages cause. Integrity rules
specify constraints on object evolution. This is another
aspect which characterizes roles: we can represent ob-
ject evolution by means of rules and constraints on
those rules [9].

Every class has a base-role R0 that describes the ini-
tial characteristics of an instance and the global prop-
erties concerning its evolution. These properties are
inherited by all the other roles; the messages of the
base-role are used to add, delete, suspend and resume
instances of roles; the possible states in the base-role
are pre-defined (active and suspended); and the rules
define transitions between roles and global constraints
for the class. Each property has a property name and
a domain. Domains may be simple, composite or com-
plex. Simple domains are predefined domains (such as
string, integer, real, boolean), classes, or roles; com-
posite domains are classes and roles; complex domains
are defined as aggregates, sets (unordered collections

of objects) or sequences (ordered collections of homo-
geneous objects) of other domains (simple or complex).

Finally, a class can be a subclass of one or more
classes (multiple inheritance) and inherits all roles
specified in the parent class(es).

2.2 Adding time to objects

Adding the time dimension to object-oriented systems
is required for modeling how the entities and the rela-
tionships the object denote may change over time [6].
Often an object is created at a given time and is rele-
vant to a system for only a limited period of time. Fur-
thermore, during their existence, objects may change
the values of their attributes, the roles that they play,
and even the classes they belong to. Temporal (object-
oriented) databases may differ from each other both in
the structure of the underlying time domain and in the
way of associating time information to database enti-
ties.

The basic features of time domains have been pre-
cisely identified in the literature. Referring to the clas-
sification given in [1], we assume that the T-ORM time
domain is bidimensional (both valid time and transac-
tion time are supported) and linear in both dimen-
sions, the valid time axis is unbound in both direc-
tions, whereas the transaction time axis is bound in
both directions (it spans from database creation until
the current instant), and both axes map to integers.
Furthermore, the time point is taken as the primitive
temporal entity (intervals are defined as a derived con-
cept) and the usual metric on integers is defined to
measure distances between time points.

With respect to the association of time with data,
object attributes can be partitioned in time-varying
and constant ones [17], depending on the fact that
their value may change or not over time. The values
of time-varying attributes are usually time-stamped at
specific time points or intervals; therefore we do not
know their value at a time where there is no a specific
entry. Common assumptions about their value in such
points fall into three categories: (i) step-wise constant
values, (ii) discrete values, and (iii) values changing
according to a given function of time (e.g. uniformly
changing values) [17]. In cases (i) and (iii), the un-
known values can be derived from the stored values
using a suitable interpolation function. In case (ii),
if there is no a specific entry stored at a given time,
the attribute must be considered undefined. A further
distinction is concerned with the choice of the data
unit to time stamp. Two approaches have been pro-
posed in the literature: attribute versioning [5], and
object versioning [1]. In the first case, valid and trans-
action times are associated with each time-varying at-
tribute; in the second case, they are associated with
the whole object, and so to all attributes of that ob-
ject. Attribute versioning presents several advantages,

4 Informatica xx page xxx–yyy

including the following ones: (i) different properties
may be associated with time at different granularities;
(ii) some properties are inherently not time-varying,
so recording time information for them is useless; (iii)
time-varying properties of the same object may change
asynchronously over time, so as we have to record all
object values when a change occurs, we have to du-
plicate a lot of information (the values which did not
change).

Besides associating time information to attributes,
object-oriented temporal databases (OOTDBs) can
temporally characterize the existence of objects, that
is, they can specify when and how an object exists in
the database. In most OOTDBs, the set of time in-
tervals during which an object logically exists in the
database is called its lifespan [6]. This object lifespan
spans from the object creation (the point in time when
the database first records any information about it) till
its complete termination (i.e., logical deletion). As an
object can be member of different classes, an object
lifespan is the union of its lifespans in all classes in
which it has participated. An object lifespan within
a class coincides with the union of the lifespans of
its properties as a member of that class. In histor-
ical object-oriented databases the notion of “reincar-
nation” is also supported, because a death of an object
is not necessarily terminal [6]. For example, employees
can be hired, fired, and subsequently rehired.

In the T-ORM model, time is associated with single
attributes, class instances and role instances.

With respect to attributes, we assume that their
values are step-wise constant. Therefore an object
attribute identifies a sequence of values, each one
associated with a different time interval, which has
been called time sequence (TS) in the literature [27].
Due to the bidimensionality of time, time sequences
are constituted by triples < attribute value, valid −
time interval, transaction − time interval >. Each
time interval is represented by a pair [s, e), where s
denotes the starting point of the interval, and e its
ending point. The interval is closed at the left and
open at the right. We assume that valid time intervals
for a given attribute are totally ordered with respect
to any given transaction point. Finally, if the attribute
value has a complex structure, e.g. an aggregate, a set,
or a list, we assume that valid and transaction times
can be associated with both the whole structure and
each of its components. As an example, suppose that
the attribute address is defined as the aggregate com-
posed of street and town. Time sequences for address
represent changes of values of either street or town, or
both.

With respect to classes and roles, we associate a time
sequence with each class (role) instance to denote the
time periods during which it is active. The lifespans of
role instances and those of the corresponding objects
are linked by specific constraints. An object after be-

ing suspended can neither send nor receive messages.
Therefore, lifespans of role instances are always con-
tained in the lifespan of the corresponding object. For-
mally, let o be an object instance of a class C, ρ(C) be
a function that maps C to the set of roles its instances
can play and r(o,R) be a function that maps an ob-
ject o to the set of its role instances of the role R. The
following constraint must hold:

∀R ∈ ρ(C) ∀r ∈ r(o,R)

(r.LIFESPAN) ⊆ (o.LIFESPAN)

If

(r.LIFESPAN) = {[sr
1, e

r
1), ..., [s

r
n, er

n)}
and

(o.LIFESPAN) = {[s1, e1), ..., [sm, em)}
the given constraint states that

∀i = 1, ..., n∃j ∈ {1, ...,m} such that [sr
i , e

r
i) ⊆ [sj , ej)

All role instances are deleted when the corresponding
object is deleted. When an object is suspended, all
the roles it has instantiated are also suspended. Object
suspension allows us to represent what has been called
in [6] object killing and reincarnation.

Let us introduce now a simple schema that will be
used in the rest of the paper as a source of exemplifica-
tion (see Figure 1). We consider four classes, namely
PROJECT, DOCUMENT, PERSON and ADULT,
which is a subclass of PERSON. Objects belonging to
the class PERSON can play two different roles (Em-
ployee and Student), each one characterized by its own
properties. Projects are developed by persons playing
the role of employee. Each project has associated a
set of documents written by the employees who par-
ticipate in the project.

In the following we present some extensions to the
ORM model defined in [20] regarding the object-
oriented data modeling aspects, and then we explore
them in the temporal context. The main concept we
examine is object migration. This important issue has
still been little researched on. In fact, while existing
OODBMSs may capture the notion that an adult is
a person, through the mechanism of is-a hierarchies,
most of them do not support the notion of a given
entity being created as a person and then becoming
an adult, that is an entity “migrating” along the class
hierarchy it belongs to.

2.3 Composite objects

In object-oriented data models the value of an at-
tribute can itself be an object. In this way, an object
can refer to another object. In our model we adopt the
categorization of references proposed in ORION [15]:

Informatica xx page xxx–yyy 5

ADULT

driving_licence

project-name

reports *

objective *

participants *

BASE-ROLE

PROJECT

abstract

topic

authors

doc_name

BASE-ROLE

DOCUMENT

BASE-ROLE

PERSON

age *

telephone *

name

address

*street

*city

*no

STUDENT

reg_number

BASE-ROLE

EMPLOYEE

domicile *

manager *

salary *

simple property

multivalued property

is-a hierarchy

* time-varying property

Figure 1: Example of ORM schema

- weak references: they are the standard references
used in object-oriented systems, and are not pro-
vided with any special semantics;

- composite references (called also part-of relation-
ships): they allow one to define composite objects,
i.e., objects composed of other objects.

A composite reference can be:

– exclusive or shared

In the first case, the referred object can be part of
one and only one object; in the second case, it can
be part of several composite objects. Two inter-
pretations of exclusivity are possible, depending
on its temporal characterization. According to a
time-independent interpretation of exclusivity, an
object can be part of only one object during its
existence. According to a time-dependent inter-
pretation, an object can be part of only one object
at each time instant, but it can be part of different
objects at different instants. In this second case,
exclusivity can be expressed by the following con-
straint: if an object o is part of the composite
objects o′ and o′′, then the period during which it
is part of o′ must have an empty intersection with
the period during which it is part of o′′.

– dependent or independent

In the first case, the referred object exists (if and)
only if the composite object exists, while in the
second case, the existence of the referred object
does not depend on the existence of the composite
object.

The classification of composite references as exclusive
or shared, and as dependent or independent are or-

thogonal, and thus identify four different types com-
posite references.

The main problems involved in the management
of composite references concern the relationships be-
tween the creation and deletion of composite objects
and the creation and deletion of their components. As
an example, let o′ be a composite object and o be a
component of o′. We could state that the deletion of
o′ causes the deletion of o if one of the following two
conditions hold: (i) o′ has a dependent exclusive ref-
erence to o; (ii) o′ has a dependent shared reference to
o, but it is the only object currently involved in such
a relation with o.

In [6], for instance, a rather restrictive notion of
part-of relationship is adopted, based on the assump-
tion that a composite object can exist only when its
components exist. Such an assumption can be formal-
ized as follows. Let us assume that some composite
object o′ is defined in terms of n other objects o1, .., on

and that its lifespan consists of a set of m disjoint inter-
vals, that is, o′.LIFESPAN = {[s1, e1), .., [sm, em)}.
Moreover, let im be the number of disjoint intervals be-
longing to the lifespan of the component object i, for
each i = 1, .., n. According to the given assumption,
the following constraint must always be satisfied:

∀i o′.LIFESPAN ⊆ oi.LIFESPAN

which is equivalent to:

∀i, j(1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ [sj , ej] ∈
o′.LIFESPAN ⊃ ∃k(1 ≤ k ≤ im ∧

[sk, ek) ∈ oi.LIFESPAN) ∧ [sj , ej) ⊆ [sk, ek)))

Such a solution has two major drawbacks: (i) a com-
posite object cannot be created until all its compo-
nents have been created; (ii) a composite object must
be deleted when one of its components is deleted.

An alternative approach consists in making the ex-
istence of a composite object independent from the
existence of its components by modeling the part-
of relationship in terms of roles. This allows us to
deal with composite objects which dynamically change
their components, supporting the addition/dropping
of components to/from a composite object.

3 Migration

In most object-oriented data models proposed in the
literature an object is created as an instance of a class
with some attribute values and operations associated
with it, and remains an instance of that class till its
deletion from the database. This restriction strongly
limits the expressiveness of those models. In ORM,
it has been partially removed by adding the concept
of role, that allows one to deal with the case of an
object that plays the same role more than once by the

6 Informatica xx page xxx–yyy

mechanism of multiple role instantiation, preserving
the single object identity. As an example, an object of
the class PERSON can simultaneously play the roles of
Student and Employee (instantiation) and, later, can
lose the role of Employee (suspension). The notion
of role, however, does not suffice to model the case
of an object that migrates from one class to another
maintaining its identity (its oid). This means that a
member of the class PERSON cannot migrate to the
class ADULT maintaining its oid. In the literature,
these aspects of object modeling are classified under
the general term of instance evolution.

3.1 Instance evolution

Instance evolution may assume different forms. In par-
ticular, it is possible :

– to let the object migrate to a different class (the
object becomes an instance of the new class);

– to specialize the object, that is, it migrates to a
subclass (the object becomes an instance of the
subclass, but remains a member of the original
class);

– to generalize the object, that is, it migrates to
a superclass (the object becomes an instance of
the superclass and it is no more a member of the
original class);

– to dynamically add new classes to an object, so
that it can be an instance of more than one class
at the same time;

– to dynamically delete classes from an object;

– to specialize or generalize at instance level
adding/redefining/deleting attributes and meth-
ods for single objects.

These evolutions are controlled by specific semantic
constraints in order to restrict the set of classes where
an object can migrate to. For example, referring to
the schema of Figure 1, a PERSON can become an
ADULT, but he/she cannot become a PROJECT. In
[33] those constraints are treated as special integrity
constraints, which allow one to specify, for each class,
its essentiality or its exclusivity. A class C is essential
if object migration is constrained on the inheritance
hierarchy rooted at C. An object could be member of
more than one essential class if the model allows mul-
tiple inheritance. A class C is exclusive with respect
to a class C′ if its instances cannot migrate to C′.

In T-ORM we only support two forms of object mi-
gration: object generalization and object specializa-
tion. In such a way, object migration is allowed only
along a unique class hierarchy. This is not an unac-
ceptable restriction if the data model allows the def-
inition of a common root for all class hierarchies. In

that case, using an appropriate combination of gener-
alization and specialization operations, we may allow
an object to migrate everywhere. In general, however,
object migration does not make sense when it occurs
between different hierarchies, because it can involve
a complete change of the nature and the structure of
an object. For example, it does not make sense to
allow a person to become a vehicle. One simple way
to avoid the problem of unrestricted migrations is to
define different class hierarchies (e.g. one rooted on
the class PERSON and one rooted on the class VEHI-
CLE) and maintain them separated. The usefulness
of having a common root is advocated in [15]. Ac-
cordingly, in the ORION system the class hierarchy
forms a direct, rooted, acyclic graph (a DAG), hav-
ing the system-defined class OBJECT as root. That
constitutes one of the schema invariants defined by
the ORION model in order to maintain schema con-
sistency after schema updating. For example, when
we add a new class to the schema hierarchy without
specifying its superclass(es), the new class is added as
a subclass of the root class OBJECT. It is worth not-
ing that, even in the presence of a common root, one
can still avoid object migration between different hi-
erarchies preventing the migration of objects to pass
through the root.

In T-ORM, we asssume to have a number of dis-
joint class hierarchies, that is, T-ORM classes form a
disconnected forest and not a tree.

3.2 Constraints on object migration

The inheritance mechanism requires to impose seman-
tic constraints on object migration operators. Let us
assume that there is an object o which is an instance of
class Ci and the object migrates to class Cj . Consider
the four cases illustrated in Figure 2.

case 1) specialization with single inheritance:
non-inherited properties defined for class Cj are
added to the object; their values are either pro-
vided by the user or considered to be null; the
object starts its life cycle as a member of class
Cj ;

case 2) generalization with single inheritance:
all properties that are specific for Ci, i.e., not in-
herited from Cj , are dropped from the object; the
lifespan of object o as an instance of class Ci is
terminated;

case 3) generalization with multiple inheri-
tance: all properties which are not defined for
Cj are dropped; these properties include all prop-
erties which are specific for Ci, and all specific or
inherited Ck properties not defined for Cj through
inheritance links; the lifespan of o as an instance
of class Ci is terminated; the lifespans of o as a

Informatica xx page xxx–yyy 7

(1)

Ci

Ci Ci

Ci mCkC

jC

jC jC

jC

(2) (3) (4)

migration direction

is-a hierarchy

Figure 2: Different cases of object migration

member of class Ck and its ancestors are termi-
nated appropriately, depending on possible inher-
itance links between Ck and its ancestors and Cj :
lifespans in classes belonging also to Cj ancestors
are not terminated;

case 4) specialization with multiple inheri-
tance: all properties of class Cj that are inherited
from a superclass Cm of Cj , where Cm is not a su-
perclass of Ci, and all properties specific for Cj are
added to the object; their values are either pro-
vided by the user or considered to be null. The
lifespan of o in classes Ci and all its ancestors,
excluded Ci and its ancestors, which are already
active, are started.

Consistency of data referring to composite objects
has also to be examined in view of object migration.
In fact most object-oriented DBMS establish that if
an attribute has a class C as domain, its values may
be all objects belonging to C or to any subclass of C.
If an object o instance of a class C is used as value of
an attribute A (with domain C) of an object o′, the
migration of o to a superclass of C violates the domain
integrity constraint of A. In fact object o′, after the
migration of o, will have, as a value of A, an object
which is neither instance nor member of A′s domain.
We remember that an object is said to be an instance
of a class C, if C is the most specialized class which the
object belongs to. An object is said to be a member
of a class C if it is an instance of C or of a subclass
of C. A solution proposed in [33] allows temporary
inconsistency and provides a notification mechanism
to determine which objects are inconsistent. In these
cases, we adopt the same constraints defined above for
the deletion of objects, so that inconsistent references
must be dropped.

3.3 Storing information about object
life cycle

During its lifetime an object can change roles and mi-
grate along the class hierarchy.

As mentioned in Sect. 2, different kinds of temporal
information can be associated to objects:

– The object has associated a lifespan for each in-
stantiated role and for each class of which it is
(has been) a member, as discussed in section 2.2.
We denote with oid.LIFESPAN(classname) the
lifespan of oid as a member of class classname
i.e., the set of intervals in which oid is instance of
the class classname. Similarly, we indicate with
oid.LIFESPAN(rolename) the history of instanti-
ations of role rolename for a given object indicated
by oid.

– The class-lifespan stores the history of object mi-
gration. It is a time sequence representing the
various classes the object is (or was) instance of.
The value components are sets of the class types
the object belongs to, during the associated valid
and transaction time intervals. We indicate with
oid.CLASSLIFESPAN the time sequence repre-
senting migration history for object oid.

– The role-lifespan is a time sequence which repre-
sents the union of the lifespans of the single role
instances the object has played during its history.
The value components in the time sequence are
the sets of role identifiers of the active instances of
roles in the associated valid and transaction time
intervals. We indicate with oid.ROLELIFESPAN
the role-lifespan of object oid.

The object migration mechanism leads us to impose
some temporal constraints on the object lifespan. In
particular, if class Cj is an ancestor of class Ci, and oid

8 Informatica xx page xxx–yyy

is the identifier of an object which has been member
both of Ci and Cj , the following temporal constraint
must hold, according to the consistency constraints on
migration indicated in the previous section:

oid.LIFESPAN(Ci) ⊆ oid.LIFESPAN(Cj)

Example

Consider the following example of evolution of an
object through a series of role instantiations and class
migrations (the example is based on the T-ORM
schema illustrated in Figure 3 and the history of the
object is schematically represented in Figure 4):

base-role

role R
C1

base-role

role S

C2

C3base-role

Figure 3: Example of T-ORM schema

– at time t1, the object o1 is created as an instance
of the class C1

– at t2, role R of class C1 is instantiated the first
time as role instance r1

– at t3, role R is instantiated the second time as
role instance r2

– at t4, o1 migrates to class C2

– at t5, role r1 is suspended

– at t6, role r1 is resumed and role S of class C2 is
instantiated as role instance r3

– at t7, role r2 is suspended

– at t8, the object o1 is suspended

– at t9, the object o1 is resumed

– at t10, role r1 is suspended again

– at t11, role r2 is resumed

– at t12, role r1 is resumed

Given the class hierarchy shown in Figure 3, when
the object o1, instance of class C1, is migrated to class
C2 at time t4, its life cycle as an instance of class
C1 continues; in addition, besides starting being an
instance of class C2, it starts also as an instance of
class C3. When the object is suspended at time t8, all
active roles are also suspended; roles which were active
at the object suspension time are also resumed when
the object is resumed.

For the given example, the object lifespan, the role-
lifespan, and some of the roles and classes lifespans
graphically represented in Figure 4 are shown (for sake
of simplicity, only valid times are indicated):

o1.CLASSLIFESPAN = <{C1},[t1,t4)>,

<{C1,C2,C3},[t4,t8)>, <{C1,C2,C3},[t9,+∞)>

o1.ROLELIFESPAN = <{r1}, [t2,t3)>, <{r1,r2},
[t3,t5)>, <{r2}, [t5,t6)>,

<{r1,r2,r3},[t6,t7)>, <{r1,r3},[t7,t8)>,

<{r3}, [t10,t11)>, <{r2,r3}, [t11,t12)>,

<{r1,r2,r3, [t12,+∞)>

o1.LIFESPAN(C2) = <[t4,t8),[t9,+∞)>

o1.LIFESPAN(R) = <<{r1},[t2,t3)>,

<{r1,r2},[t3,t5)>, ...

r1.LIFESPAN = <[t2,t5), [t6,t8), [t9,t10),

[t12,+∞) > <r1,[t6,t8)>, ...

4 Querying T-ORM databases

The complete definition of a data model requires the
definition of the corresponding query and data manip-
ulation languages. The goal of querying a temporal
database is the retrieval of stored information, taking
into account the modifications performed on it. Since
bitemporal databases model two temporal dimensions,
we can distinguish two basic types of queries: (i)
queries that retrieve the sequence of historical values of
time-varying information (along the valid time axis);
(ii) queries that retrieve data as of a past database
state (along the transaction time axis).

In this paper, we focus mainly on queries of the first
type that allow us to:

– select an attribute value valid at a given instant,
e.g. find John’s salary on 04/15/1986;

– select an attribute value valid at a time instant as-
sociated with another attribute value of the same
object, e.g. find John’s salary when Mary was his
manager;

– select an attribute value valid at a time instant
associated with another attribute value of another
object, e.g. find John’s salary when Mary’s salary
was $4000;

Informatica xx page xxx–yyy 9

o1.LIFESPAN(C1)

o1.LIFESPAN(C2)

o1.LIFESPAN(C3)

r1.LIFESPAN

r2.LIFESPAN

r3.LIFESPAN

o1.CLASSLIFESPAN

o1.ROLELIFESPAN

o1.LIFESPAN(R)

o1.LIFESPAN(S)

time

suspended role

suspended object

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12

Figure 4: Lifespan dimensions

– select objects stored in the database during a
given time interval, e.g. find all employees in year
1992;

– select time intervals starting from attribute val-
ues, e.g. find the time period during which Mary
was John’s manager.

General aspects of temporal object-oriented data
models require special retrieving properties in order
to deal with the concepts of class hierarchy, object
identifier, complex domain, complex relationship, valid
time, transaction time, time intervals, part-of relation-
ships. Some authors attempted to provide a new query
language which is compatible with a relational query
language (e.g. SQL in the case of IRIS [12]). Other
systems, such as ORION, support a new query lan-
guage which is based on the nested-relational model.
Moreover, there are other features which our query
language must take into account introduced by the
ORM model, such as the concept of role. Due to those
new concepts, we define a language which has suitable
operators for additional attribute domains (e.g. time),
for all kinds of entity compositions and relationships
and which allows selecting a portion of object histories.

Query languages for temporal object-oriented
databases, like query languages for conventional
databases, are divided in two categories: declarative
languages and procedural languages. Declaratives lan-
guages allow one to describe a query specifying its tar-
get and the conditions it must satisfy, without saying
how to obtain the result. Procedural languages, in-
stead, use operators to specify a procedure which tells

the system how to obtain the result starting from data.
The extensions to existing query languages proposed
in literature are based both on declarative languages
(such as TQuel [29], extension of Quel, and TOOSQL
[25], extension of OSQL) and on procedural languages
(e.g. the relational algebra [13]). In an object-oriented
perspective it is important to abstract from implemen-
tation details, so we think that declaratives languages
are the best choice. Thus, the language we define is an
extension of the query language of the ORION system
[15], and is based on SQL syntax.

In the following we focus our presentation on those
aspects which are related to object migration and time
In the examples, we refer to the schema of Figure 1.

4.1 Basic query structure

A query has the following structure:
RETRIEVE < target clause >

FROM < specification clause >

WHERE < qualification clause >

AS OF < as-of clause >

The target clause specifies what parts of the selected
information must be retrieved, which could be a set
of instances (specifying only an instance variable), a
time sequence, a set of values, or a sequence of time
intervals (points).

The specification clause specifies instance variables
used in the query, linking them with the correspondent
set of object (role) instances.

The qualification clause specifies conditions on
time sequences to select particular information. In

10 Informatica xx page xxx–yyy

bitemporal databases we have three dimensions: the
data dimension, the valid-time dimension and the
transaction-time dimension. The language we are go-
ing to define has operators suitable for manipulating
all dimensions. In order to maintain the language as
simple as possible, we chose to have only one clause
(qualification clause) to specify constraints both on
the value and the valid-time dimension, whereas other
extensions of SQL (such as TSQL [31]) introduce ad-
ditional clauses.

The as-of clause specifies constraints on the
transaction-time dimension. It is used to determine
the values of object properties as they were recorded
sometime in the past and successively revised. In
this way we could retrieve information about previous
states of the database.

One important element of an object-oriented query
language is the facility to express equality between two
objects, comparing either their value (value equality)
or their oids (object or identity equality). Therefore
our query language needs to support both types of
equality, which are denoted as == and =, respec-
tively.

Because of the nested definitions of objects aris-
ing from the class-composition hierarchy, the T-ORM
query language must easily allow the specification of
predicates on a nested sequence of attributes. In this
respect we adopt the well-known dot notation to ex-
press paths along the class-composition hierarchy (ob-
taining what we call path-expressions).

4.2 Queries on time-varying
properties

Time-varying attributes are the main distinguishing
characteristics of temporal databases. Each attribute
is modeled with a time sequence which represents all
its history (see 2.1). A query language must allow the
selection of a portion of that history through the spec-
ification of conditions either on time, or on attribute
values, or both. We can directly select the first two
components of < value, valid-time, transaction-time
> triplets in time sequences, with the following nota-
tions:

e.salary.value
e.salary.vtime

A path expression of the kind e.salary retrieves the
time sequence associated with an instance for the spec-
ified attribute (salary). We must provide our query
language with operators which allow one to select por-
tions of that history. To do that we can use in the
where clause predicates with relational operators in-
volving time. Such operators are those of Allen’s in-
terval logic [2] (that is PRECEDES, MEETS, OVER-
LAPS, STARTS, ENDS, INCLUDES, their inverse
and EQUAL), those between time points (i.e. <, =
and >) and those between time points and intervals

(i.e. BEFORE, BEGINS, ENDS, IN, AFTER and
their inverse). For example the following query re-
trieves all values assumed by the property salary of
the instance of the class EMPLOYEE whose name is
John, which were valid before 04/10/1987. We assume
that the property name of class PERSON is not time-
varying, so it is not modeled as a time sequence, but
it assumes only one value.

EX1: “Find John’s salary before that of 04/10/1987”

RETRIEVE s.value

FROM (e,Employee)

WHERE e.name == “John”

AND (04/10/1987 AFTER s.vtime)

A path expression which refers to a set of values (such
as e.salary) can be quantified using either the existen-
tial (EXISTS) or the universal quantifier (FORALL)
having the usual meaning. Quantification cannot be
made on the variables of the target clause, which are
free. We assume that all operators, when applied to a
set, distribute on its elements (in the previous example
the operator AFTER distributes on the elements iden-
tified by s.vtime). Particular elements of a sequence
can be selected with the following operators:

- FIRST(s,e.salary) =⇒ retrieves the first element
in the sequence and assigns it to the variable s

- CURRENT(s,e.salary) =⇒ retrieves the current el-
ement in the sequence

- LAST(s,e.salary) =⇒ retrieves the sequence
whose element is the last element in the given se-
quence

- <n>-TH(s,e.salary) =⇒ retrieves the n-th ele-
ment in the sequence

EX2: “Find John’s current salary”

RETRIEVE c.value

FROM (j,Employee)

WHERE j.name == “John”

AND CURRENT(c,j.salary)

Our model is based on time intervals, however we
could also select the endpoints of intervals using the
functions BEGIN and END which could be applied to
a unique interval or to a sequence of intervals, so they
return a single time point or a sequence of time points.

Summarizing, we have defined selection operators on
time sequences, which act at different levels of detail,
as shown in Figure 5.

4.3 Queries on the history of an
object

The other important aspect related to time in object-
oriented databases concerns the history of an object

Informatica xx page xxx–yyy 11

HISTORY

SUBHISTORY

SINGLE ELEMENTS

SINGLE COMPONENTS

TIME VALUE

FIRST(s,seq) = <(v ,[s ,e))>

<v ,[s ,e)),...,(v ,[s ,e))>
1 11 n n n

seq = <v ,[s ,e)),...,(v ,[s ,e))>

j 10 ≤ ≤m n and j ∃≤ ≤ ≤ ≤∀ m 1k n such thatk

(v ,[s ,e))=(v ,[s ,e))

i1 i1 i1 im im im

ij ij ij k k k

i1 i1i1

seq.value = {v ,...v }
seq.vtime = {[s ,e),...,[s ,e)}
BEGIN(seq) = {s ,...,s }

i1

i1

i1

i1

im

imim

im

Figure 5: Operators on time sequences

as a whole, in addition to considering the history of
single attributes as in the previous section.

In our model, we distinguish between local histories
and global object histories. The local history regards
single classes and roles and refers to the variations suf-
fered by the set of their instances. The global object
history refers to the previous information viewed from
the side of the object, that is it contains the history
of its variations as member of various classes and in-
stance of various roles.

4.3.1 Local history

Due to object migration the set of objects belonging
to a class can change over time, and therefore some
representational primitives are needed to denote the
set of instances of a certain class at a specific time
point. They allow a user to query the database to
know the time interval(s) during which a given object
was an instance of a certain class, to know a particular
attribute value or the roles played by the object during
such a period of time, or whatever else. The T-ORM
query language allows one to refer to instances of a
class (role) in three different ways, depending on the
considered fragment of the class history:

1. the set of all past and current class (role) in-
stances. According to the previously introduced
notation, such a set can be identified as follows :

(<object-variable>,<class/role name>)

EX3: ”Find all employees (now and in the past)”

RETRIEVE e

FROM (e,Employee)

2. the set of instances belonging to a given class dur-
ing a specific time interval. They are retrieved by

means of appropriate conditions on the valid time
dimension in the where clause:

EX4: ”Find John′s salary in 1975 when he was an employee

and his manager was Mary”

RETRIEVE s.value

FROM (e,Employee)

WHERE e.name == “John”

AND EXISTS(s,e.salary):

([01/01/1975,12/31/1975]) INCLUDES s.vtime

AND EXISTS(m,e.manager):

(m.name == “Mary”) AND

((m.vtime INCLUDES s.vtime) OR
(m.vtime OVERLAPS s.vtime) OR
(m.vtime STARTS s.vtime) OR
(m.vtime ENDS s.vtime) OR
(m.vtime EQUAL s.vtime))

3. the current set of class (or role) instances

(<object-variable>, CURRENT(<class/role name>))

EX5: “Find all employees (now)”

RETRIEVE e

FROM (e,CURRENT(Employee))

If we denote the set of instances of a class (or role) C
at time t with the function o(C)(t), then the following
constraint must hold:

o ∈ o(C)(t) ⇐⇒ t ∈ o.LIFESPAN(C)

and we have:

(o,CURRENT C) returns o(C)(t) with t = NOW
(o,C) returns ∪t∈[−∞,NOW] o(C)(t)

12 Informatica xx page xxx–yyy

4.3.2 Migration history

In this paragraph we show how to apply the operators
defined for attribute time sequences also to the lifes-
pans time sequences. Remember our representation
of object lifespans discussed in paragraph 3.3. We are
interested in answering questions of the following type:

EX6: At which time did Mary become an employee? (role)

EX7: At which time did Mary become an adult? (subclass)

EX8: During which time period was Mary an employee?

EX9: During which time period was Mary an adult?

EX10: When did Mary change class?

EX11: Which roles did Mary play at 9/6/1994?

EX12: Which roles did Mary play during 1994?

The answer to those questions can be easily found
by appropriate queries on the various dimensions of
the object lifespan with the use of temporal functions
like BEGIN and END. For instance, in query EX10, we
select the starting points of valid time intervals from
the object class-lifespan, which indicate when a class
migration or resuming occurred:

EX10: RETRIEVE BEGIN(p.CLASSLIFESPAN.vtime)

FROM (p,PERSON)

WHERE p.name == “Mary”

In query EX11, we select the role identifiers from
the role-lifespan time sequence:

EX11: RETRIEVE s.value

FROM (p,PERSON)

WHERE p.name == “Mary”

AND EXISTS(s,p.ROLELIFESPAN):
(9/6/1994 IN s.vtime)

Query EX12 shows an example of using predicates
on object history inside the qualification clause:

EX12: “Find the salary of the employees who became employees

before becoming adults”

RETRIEVE c.value

FROM (e,Employee)

WHERE EXISTS

(s,e.LIFESPAN(Employee)):
(s.vtime PRECEDES

FIRST(e.LIFESPAN(ADULT)).vtime)

AND CURRENT(c,e.salary)

5 The Data Manipulation
Language

In the DML the operations to create, delete and mod-
ify instances have to be extended to involve valid-time
specifications. Moreover new operators have to be pro-
vided to manipulate the particular features of the ex-
tended model such that states, roles and object migra-
tion.

5.1 Instance creation

An object is created as an instance of a class. That
object could become instance of other subclasses later
through the mechanism of object migration. Values
for all attributes of that class must be provided by the
user, otherwise a null value is assigned by the system.
This operation returns the oid of the created object,
which can be assigned to an object variable.

If an attribute value is an instance or a set of in-
stances of a class or a role, we can specify those in-
stances directly via their oids (or rids), or indirectly
specifying a query. The VALID clause may be omit-
ted. In this case the created object is valid since the
time of insertion; an interval whose left end is con-
stituted by transaction time and whose right end is
constituted by the value +∞ is inserted in the object
lifespan. If only the FROM part is specified, the inter-
val [t1, +∞) is inserted in the object lifespan. Finally
if both FROM and TO parts are specified, the inter-
val [t1, t2) is inserted. A time-varying attribute value
may be associated with its valid-time. If a validity in-
terval is specified, it must be contained in the validity
interval of the whole object. If valid-time specifica-
tion is omitted, then the attribute value is considered
to be valid since time t1 of the valid clause, or since
transaction time if t1 is not specified, up to time t2 of
the VALID clause, or +∞. If only the FROM part is
specified, the attribute value is valid to t2 or +∞.

In the following example, a PROJECT object is cre-
ated.

EX13: CREATE-OBJECT PROJECT

WITH (project-name : “P11ts6765”,

participants : {John,Mary} UNION

RETRIEVE e

FROM (e,EMPLOYEE)

WHERE e.manager.name == “Smith”,

reports : {})

Roles instantiation is similar to class instantiation, but
the user must provide the identifier of the object to be
instantiated.

In the following example, the Employee role is in-
stantiated for object John with the listed attribute
values, and starting from Jan. 1, 1993.

EX14: John-empl :

INSTANTIATE-ROLE (John,EMPLOYEE)

WITH (salary : 1600000,

address : “via G. Cesare 57 - ROMA”

manager : %Smith)

VALID FROM 1/1/1993

5.2 Properties updating

Properties updating is an important issue in temporal
databases, because we have the possibility of modify-

Informatica xx page xxx–yyy 13

ing present, past and future data without losing the
old one. Updating is not done directly on stored data,
but it is performed by insertion of new components
in the object history or, more precisely, in their time
sequences. Therefore updating an attribute value re-
quires the selection of one or more time sequence com-
ponents. The selection is based either on the value
component, or on the valid-time component, or both.
Finally updating existing values requires the “invali-
dation” of the old ones, and that is done by acting on
the transaction-time component.

We could define two different primitives to update
and insert information and impose that when we try
to update a value during a time period where there
is no correspondent time sequence component, the re-
quest will be ignored. But in that case, the user should
have a precise knowledge of how data are distributed
in time. Instead, we chose to have a unique primitive
to update and insert information.

The instance to modify is selected via its identifier
or retrieving it with the specification of a query on its
property values. The temporal qualification of prop-
erties can be omitted. In this case the interval [NOW,
+∞) is assumed. If the TO part is not specified, then
+∞ is assumed.

Let us suppose that P1 is a time-varying property
whose value is a time sequence like the following:

<(v1,[VTi1,VTf1),[TTi1,TTf1)),

(v2,[VTi2,VTf2),[TTi2,TTf2)),...>

First of all we must retrieve all time sequence compo-
nents whose valid-time interval overlaps [Ti1,Tf1) and
whose transaction-time interval rightend point is +∞
(i.e. the corresponding value is currently valid). These
components must be modified as follows according to
five cases.
Let (v1,[VTi1,VTf1),[TTi1,TTf1)) be such a compo-
nent, we may have the cases illustrated in Figure 6.
We modify the old value for the portion of interval in
the object lifespan which overlaps [Ti1,Tf1), for the
rest of the interval we insert a new component in the
time sequence.

Let us follow in detail case a. The specified valid-
time interval partially overlaps a valid-time interval
in the time sequence. For the portion of time which
overlaps with [VTi1,VTf1) the attribute value must
be modified, for the part which does not overlap with
[VTi1,VTf1) a new value is inserted. We must put:
TTf1 = NOW (the time sequence component is no more
valid)
and insert three new components in the time sequence:

(v1,[VTi1,Ti1),[NOW, +∞)),

(val1,[Ti1,VTf1),[NOW, +∞)),

(val1,[VTf1,Tf1),[NOW, +∞))

As we can note from the figure, after updating we
could have two or three contiguous intervals with the
same value associated with them. Even if we could col-
lapse the two intervals into one in order to have time

sequence components with associated different values,
we chose to maintain those intervals separated, be-
cause they represent portions of object life which have
different histories behind.

The constructs defined for properties updating may
be further enriched allowing the specification of oper-
ators which calculate the new attribute values starting
from the old ones.

5.3 Object migration

In our model, objects can migrate only along the class
hierarchy which they belong to, so we consider every
class as essential. An object can migrate from a class C
to a class C′ which is either a superclass or a subclass
of C with the primitives MIGRATE [UP/DOWN].

EX15: MIGRATE DOWN (John,PERSON)

TO ADULT

WITH (driving-license : UD56865G9)

VALID FROM 1/1/1993

In this case a new lifespan for the object identified by
John as an instance of ADULT starts at time 1/1/1993
and its lifespan as a member of the class PERSONS
goes on.
In the case of migration of an object to a superclass,
we must check if that causes the violation of domain
integrity constraints for some attributes (see par. 3.3)
and delete inconsistent references.

We remember also that in order to maintain the
identity constraint of objects, object migration does
not change object identifiers. Finally in our model
we do not consider a hierarchy between roles, such as
introduced in [32].

6 Conclusions

Object-oriented data models have several promising
features that make them suitable for being extended
with new capabilities. In this paper, we studied a tem-
poral extension of an existing object-oriented concep-
tual model (the ORM model), focusing our attention
on object evolution. The basic features of the pro-
posed approach to object migration do not depend on
the particular model we chose, and, in principle, can
be extended to any other object-oriented data model.
The ORM model was chosen for its particular suitabil-
ity in representing dynamic aspects of object life. We
discussed some alternatives for associating temporal
information to attributes, to class membership, and
to role instantiations. A query and manipulation lan-
guage have been defined and discussed, focusing on the
constructs provided to manage temporal information.

Some remaining open issues concern the definition
of a formal semantics for the T-ORM definition, query

14 Informatica xx page xxx–yyy

val 1 val 1 val 1

val 1

val 1 val 1

v1

v1

VT i1 VT f1

T f1T i1

(a)

val 1val 1 v1

v1

VT i1 VT f1

val 1
T f1T i1

(b)

val 1 val 1
val 1

T f1T i1

(c)

val 1v1 v1

v1 v1

VT i1 VT f1 VT i1 VT f1

T f1T i1

(d)

val 1

T f1T i1

(e)

Figure 6: Cases of properties updating

and manipulation languages, and the generalization of
the notion of object evolution to deal with changing
schemas. Further work is also needed to model tem-
poral aspects in complex objects, such as variations of
object composition in time.

Acknowledgments

This work has been partially supported by the
P.A.O.L.A. Consortium (Asem Resolutions, INSIEL,
and University of Udine) within the project “Sistemi
Multimediali per la Gestione del Patrimonio” and by
the Italian Consiglio Nazionale delle Ricerche. The au-
thors would like to thank Nina Edelweiss for her useful
suggestions. A preliminary version of this paper ap-
peared in [19].

References

[1] Ahn, I., and R. Snodgrass; A taxonomy of time in
databases. SIGMOD Record, Vol. 14, 1985, 236-
246.

[2] Allen J. F.; Maintaining knowledge about tempo-
ral intervals. Comm. ACM, Vol. 26, No. 11, 1983,
832-843.

[3] Bolour, A, and L.J. Dekeyser; Abstractions in
temporal information, Information Systems. Vol.
8, No. 1, 1983, 41-49.

[4] Brodie, M.L.; On modeling behavioral semantics
of databases, Proc. Int. Conf. on VLDB, 1981,
32-42.

[5] Clifford, J., and A.U. Tansel; On an algebra for
historical relational databases: Two views. ACM
SIGMOD 1985, 247-265.

[6] Clifford, J., and A. Croker; Objects in time. IEEE
Data Eng., Vol. 11, No. 4, 1988, 11-18.

[7] Dayal, U., and G.T.J. Wuu; Extending existing
DBMSs to manage temporal data: an object-
oriented approach. In [29].

[8] Edelweiss, N., J.P.M. de Oliveira, and B. Pernici;
An object-oriented temporal model. Proc. CAISE
93, Paris, Springer Verlag, June 1993.

[9] Edelweiss, N., J.P.M. de Oliveira, E. Peressi, A.
Montanari, and B. Pernici; T-ORM: Temporal
aspects in objects and roles. Proc. ORM-1, In-
ternational Conference on Object-Role Modelling,
Townsville, Australia, July 1994, 18-27.

[10] El-Sharkawi, M.E., and Y. Kambayashi; Ob-
ject migration mechanisms to support updates in
object-oriented databases. Proc. PARBASE 1990,
378-387.

[11] El-Sharkawi M.E.; Answering queries in temporal
object-oriented databases. Proc. Int. Symposium
on Database Systems for Advanced Applications,
Tokyo, Japan, April 1991, 21-30.

[12] Fishman, D.H. et al.; Overview of the IRIS
DBMS, Chapter 10 in [16], 219-250.

[13] Gadia, S.K.; A homogeneous relational model and
query languages for temporal databases. ACM
TODS, Vol. 13, No. 4, December 1988, 418-448.

[14] Hartmann, T, G. Saake, R. Jungclaus, P. Har-
tel, and J. Kusch; Revised version of the model-
ing language TROLL (TROLL Version 2.0). Tech.
Rep. no. 94-03, University of Braunschweig, April
1994.

[15] Kim, W., et al.; Features of the ORION object-
oriented database system. Chapter 11 in [16], 251-
282.

Informatica xx page xxx–yyy 15

[16] Kim, W., and F.H. Lochovsky (eds.), Object-
Oriented Concepts, Databases and Applications,
Addison-Wesley, New York, 1989.

[17] Montanari, A., and B. Pernici; Temporal Reason-
ing. Chapter 21 in [31], 534-562.

[18] Papazoglou, M.P.; Roles: a methodology for rep-
resenting multifaceted objects. Proc. DEXA 1991,
Springer Verlag, 7-12.

[19] Peressi, E., A. Montanari, and B. Pernici; T-
ORM: evolving objects and roles, Proc. 4th In-
ternational Conference on Dynamic Modeling and
Information Systems, A. Verbraeck, H.G. Sol, and
P.W.G. Bots (eds.), Tech. University Delft, No-
ordwijkerhout, NL, September 1994, 101-119.

[20] Pernici, B.; Objects with roles. Proc. IEEE/ACM
Conference on Office Inf. Syst., Cambridge, MA,
1990, 205-215.

[21] Pissinou, N., K. Makki, and Y. Yesha; Research
perspective on time in object databases. In [29].

[22] Pissinou N., Snodgrass R., Elmasri R., Mumick I.,
Oszu M.T., Pernici B., Segev A., Theodoulidis B.;
Towards an infrastructure for temporal databases
- A workshop report, SIGMOD Record, March
1994, 35-52

[23] Richardson, J., and P. Schwartz; Aspects: Ex-
tending objects to support multiple, independent
roles. Proc. of the ACM SIGMOD Int. Conf. on
MOD, Denver, Colorado, May 1991, 298-307.

[24] Rose, E., and A. Segev; A temporal object-
oriented algebra and data model. Tech. Rep. LBL-
32013, The University of California, Information
and Computing Sciences Division, June 1992.

[25] Rose, E., and A. Segev; TOOSQL - A temporal
object-oriented query language. Tech. Rep. LBL-
33855, The University of California, Information
and Computing Sciences Division, March 1993.

[26] Sciore, E.; Object specialization. ACM Trans. on
Information Systems, Vol. 7, No. 2, April 1989,
103-122.

[27] Segev, A., and A. Shoshani; Logical modeling of
temporal data. Proc. of the ACM SIGMOD Con-
ference, San Francisco, CA, May 1987, 454-466.

[28] Snodgrass, R.; The Temporal Query Language
TQuel. ACM TODS, Vol. 12, No. 2, June 1987,
247-298.

[29] Snodgrass, R. (ed.); Proceedings of the Interna-
tional Workshop on an Infrastructure for Tempo-
ral Databases. Arlington, Texas, June 1993.

[30] Su, J.; Dynamic constraints and object migration.
Proc. of the 16th Int. Conf. on VLDB, September
1991, 233-242.

[31] Tansel, A.U., J. Clifford, S.K. Gadia, S. Jajodia,
A. Segev, and R.T. Snodgrass (eds.); Temporal
Databases: Theory, Design, and Implementation.
The Benjamin/Cummings, 1993.

[32] Wieringa, R., and W. de Jonge; The identification
of objects and roles - Object identifiers revisited.
Technical report IR-267, Vrije University, Ams-
terdam, December 1991.

[33] Zdonik, S.; Object-oriented type evolution. In
Bancilhon, F., and P. Buneman (eds.), Advances
in Database Programming Languages, Addison-
Wesley, 1990, 277-288.

