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1 Introduction

In this paper we present a decidability result for a quantified theory of sets involving the boolean predicate
Finite. Also we will show a technique which, under certain conditions, allows the elimination of quantifiers
from a given formula. So far many unquantified theories have been shown to be decidable and decision
algorithms have been given for them (see for example [2]-[10] and [12]). Thus this procedure allows to lift
to the quantified case several decidability results concerning unquantified sublanguages. Related results for
quantified theories are also given in [11],[12]. Moreover a particular class of ∆0 purely universal formulae
is shown to be decidable by using a technique that also proves, as a by-product, a reflection result on the
hereditarily finite sets for that class of formulae. Notice that this is not the case in general, as it has been
shown in [14]. Related results for quantified theories are also given in [11],[12], [13] and [14]. For all the
definitions and basic properties in set theory we refer to [1].

2 The predicate Finite

Let T be the quantifier free theory in the language ∅,=,∈, F inite where the constant ∅ represents the
empty set and the predicate Finite(x) is true if and only if x represents a finite set.

DEFINITION 2.1 A simple prenex formula on the theory T is a formula of the form

Q1Q2 · · ·Qnϕ
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where:

(a) ϕ is a boolean combination of literals of type x ∈ y, x = y, F inite(x);

(b) the Qi’s are restricted quantifiers either all of the form ∃xi ∈ yi or all of the form ∀xi ∈ yi;

(c) no xi is a yj, for any i, j = 1, . . . , n.

DEFINITION 2.2 (i) By SPF (T ) we denote the class of simple prenex formulae of the theory T .

(ii) By SPF ?(T ) we denote the subclass of SPF (T ) consisting of those formulae in which the predicate
Finite can apply only to free variables.

(iii) By SPF ?
=(T ) we denote the subclass of SPF ?(T ) consisting of those formulae in which the relation

= never applies to pairs of bounded variables.

This paper solves the decision problem for the class of formulae SPF ?
=(T ). Namely, let Φ be a

conjunction of formulae of SPF ?
=(T ) and let V = {y1, ..., yn} be the set of free variables occurring in Φ.

Also, let V0 = V ∪ {∅}.

THEOREM 2.3 Let D and F be two collections of set variables such that |D| ≤ n2 − n and |F | ≤ n.
Let W = V0 ∪ D ∪ F and let Ψ be the formula obtained from Φ by recursively replacing each formula
(∀x ∈ y)ϕ with the set of formulae {((x ∈ y) → ϕ)x

t |t ∈ W} until no universal quantifiers are left. Then
Φ is injectively satisfiable if and only if there exist

• a set Q of membership and inequalities relations on the elements of W and assignments of truth
values to the predicate Finite ranging on V0, such that

– for each x, y distinct variables in W, either x ∈ y or x /∈ y is in Q,

– for each x, y distinct variables in W, x 6= y is in Q, and

– for each x ∈ V0 either Finite(x) or ¬Finite(x) is in Q.

• a disjunct Ψ′ of a disjunctive normal form of Ψ

such that

1. Ψ′ ∧ Q does not contain any explicit contradiction of the form x 6= x, or x = y ∧ x 6= y, or
x ∈ y ∧ x /∈ y, or Finite(x) ∧ ¬Finite(x);

2. Q does not contain any cycle of memberships x0 ∈ x1 ∈ · · · ∈ xh ∈ x0;

3. for each yi, yj in V either yi ≡ yj or there exists d in W such that either d ∈ yi ∧ d /∈ yj or
d /∈ yi ∧ d ∈ yj are in Q;

4. for each z in W, z /∈ ∅ is in Q;

5. for each y in V, ¬Finite(y) is in Q if and only if there exists f in F such that f ∈ y is in Q.

Proof. ⇒ Let us suppose that Φ has a model M , such that M∅ = ∅. Then for each y ∈ V , if My is
finite put Finite(y) in Q otherwise put ¬Finite(y) in Q. Put also Finite(∅) in Q. Let A be a minimal
set which intersects all nonempty sets of the form

(Mx \My) \ {Mz|z in V0}
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with x, y ranging over V0. For each a ∈ A introduce a new variable za and put Mza = a. Let D = {za|a ∈
A}. Clearly |D| ≤ n2 − n.

Let B be a minimal set which intersects all the infinite sets of the form

My \ {Mz|z in V ∪D},

for y in V , and which has empty intersection with all the finite sets My′, with y′ in V . For each b in B,
introduce a new variable fb and put Mfb = b. Let F be the set of these newly introduced variables. Then
clearly |F | ≤ n.

Finally for each pair of variables in V0 ∪D ∪ F , say z1 and z2, if Mz1 ∈ Mz2 put z1 ∈ z2 in Q, else
put z1 /∈ z2 in Q. Let then Ψ be a formula obtained from Φ as described in the statement of the theorem.

LEMMA 2.4 M satisfies Ψ.

Proof. Let C be a conjunct in Ψ. Then C is logically equivalent to a formula of type

(wi1 ∈ yi1 ∧ · · · ∧ wis
∈ yis

) → ϕ
xi1 ...xis
wi1 ...wis

,

for some conjunct (∀xi1 ∈ yi1) · · · (∀xis ∈ yis)ϕ in Φ. If Mwij /∈ Myij , for some j = 1, . . . , s, then C is
vacuously satisfied by M . On the other hand, if Mwij ∈ Myij for all j = 1, . . . , s, then since M satisfies
(∀xi1 ∈ yi1) · · · (∀xis ∈ yis)ϕ, it clearly satisfies ϕ

xi1 ...xis
wi1 ...wis

also.

Let us bring Ψ to in disjunctive normal form and let Ψ′ be a disjunct satisfied by M . Since M satisfies
Ψ′ and Q, from the very construction of Q it follows that conditions 1-5 hold.

⇐ Conversely, assume that there exist D, F, Q, Ψ′ such that conditions 1-5 are satisfied.
For every set s we define inductively

s(0) = s , s(h+1) = {s(h)}.

Let < be a total ordering of W such that

• ∅ is the minimum of <;

• if x ∈ y is in Q then x < y.

Notice that conditions 1, 2, 4, assure that such an ordering always exists.
Let {ix|x in W \ V0} and {jf |f in F} be two, respectively O(n2) and O(n), collections of pairwise

distinct, finite sets such that all the ix’s have the same rank ρ and cardinality γ ≥ n2 + 1 and all the jf ’s
have the same rank ρ′ ≥ ρ + n2 and cardinality γ′ ≥ γ.

Following the ordering < of variables, we put for all x in W :

Mx = Ix ∪ Fx ∪ {Mx′|x′ ∈ x is in Q, x′ in W} (1)

where:

Ix =
{ ∅ if x is in V0

{ix} if x is in W \ V0,

Fx =

{
∅ if f /∈ x is in Q for all f in F

{j(h)
f ∪Mf |h ≥ 1, f in F, f ∈ x in Q} otherwise.
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LEMMA 2.5 For all z ∈ W, f ∈ F, h ≥ 0, the following assertions are true

(i) Mz 6= ix, jf , for all x ∈ D ∪ F .

(ii) Mz 6= j
(h)
f .

(iii) Mz 6= j
(h)
f ∪Mf .

Proof. (i) If Fz 6= ∅, then |Mz| ≥ ω. On the other hand if Fz = ∅ then f /∈ x is in Q for all f in F so
that

|Mz| ≤ 1 + |W \ F | = 1 + |V0|+ |D| = 1 + n + 1 + n2 − n = n2 + 2.

Therefore either |Mz| ≥ ω or |Mz| ≤ n2 + 2 and in any case Mz 6= ix and Mz 6= jf , since n2 + 3 ≤ |ix| ≤
|jf | < ω.

(ii) The case in which h = 0 has already been considered in (i). We can therefore suppose h ≥ 1. We
distinguish two cases according to whether there is a chain of membership relations f ′ ∈ zi1 ∈ · · · ∈ zik

∈ z,
with k ≥ 0 and f ′ ∈ F , or not. In the first case, it follows easily that rank(Mz) ≥ ω. In the second case
it can be proved by induction that rank(Mz) ≤ ρ + hz + 1 where hz is the length of a longest chain of
membership relations ending in z. Thus hz ≤ |W \ F |, which in turn implies rank(Mz) ≤ ρ + n2 + 2. In
any case Mz 6= j

(h)
f , since ρ + n2 + 2 + h ≤ rank(j(h)

f ) < ω for all h ≥ 1, f ∈ F .

(iii) Assume by contradiction that Mz = j
(h)
f ∪ Mf , for some z in W , f in F , and h ≥ 1. Then

j
(h−1)
f ∈ Mz. Notice that j

(h−1)
f /∈ Iz, since if Iz 6= ∅ then rank(j(h−1)

f ) = ρ′ + (h − 1) > ρ = rank(iz).

In addition, by (ii), j
(h−1)
f /∈ {Mz′|z′ ∈ z is in Q, z′ in W}. Therefore, if Mz = j

(h)
f ∪ Mf , by (1) we

necessarily must have j
(h−1)
f ∈ Fz 6= ∅, i.e., j

(h−1)
f = j

(k)
g , for some k ≥ 1 and g in F such that g ∈ z is in

Q. We will show below that this is impossible, therefore proving that Mz 6= j
(h)
f ∪Mf , for all z in W , f

in F , h ≥ 1. Indeed, if j
(h−1)
f = j

(k)
g then from the definition of the jf ′ ’s, f ′ in F , we must have f ≡ g

and k = h− 1. But then f ∈ z would be in Q and j
(h)
f ∪Mf ∈ Mz, i.e., Mz ∈ Mz, which contradicts the

well foundedness of membership.

LEMMA 2.6 For all w1, w2 in W

(i) if w1 6≡ w2 then Mw1 6= Mw2;

(ii) w1 ∈ w2 is in Q if and only if Mw1 ∈ Mw2.

Proof. (i) Let w1 6≡ w2. Suppose first that w1, w2 are in V0. Let heightQ(w) be the length of a longest
chain of membership relations in Q ending in w. We will proceed by induction on max(heightQ(w1), heightQ(w2)).
If max(heightQ(w1), heightQ(w2)) = 0, then by condition 3 of the theorem w1 ≡ w2, which shows that
the base case of the induction is vacuously true. Concerning the inductive step, assume by contradiction
that Mw1 = Mw2. From condition 3 of the theorem, it follows that there exists a variable d in W such
that either d ∈ w1 ∧ d /∈ w2 is in Q, or d /∈ w1 ∧ d ∈ w2 is in Q. Suppose for definiteness that d ∈ w1 and
d /∈ w2 are in Q. The definition (1) of the model M implies that Md ∈ Mw1. Thus our initial assumption
yields Md ∈ Mw2, which by (i) and (iii) of the preceding lemma implies Md = Md′ for some variable d′

in W for which d′ ∈ w2 is in Q. But max(heightQ(d), heightQ(d′)) < max(heightQ(w1), heightQ(w2)).
Hence by induction d ≡ d′ and consequently both d /∈ w2 and d ∈ w2 are in Q, contradicting condition 1
of the theorem. Thus (i) is proved.
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(ii) If w1 ∈ w2 is in Q then from the definition (1) of the assignment M it follows that Mw1 ∈ Mw2.
Conversely, assume that Mw1 ∈ Mw2. From Lemma 2.5, it follows that Mw1 /∈ Iw2 ∪ Fw2 . Therefore
Mw1 = Mw′1 for some w′1 in W such that w′1 ∈ w2 is in Q. Thus from (i) w1 ≡ w′1, i.e. w1 ∈ w2 is in Q.

LEMMA 2.7 The following assertions are true for all h ≥ 1, f in F, x in W :

(i) (j(h)
f ∪Mf) ∈ Mx if and only if Mf ∈ Mx;

(ii) Mx ∈ (j(h)
f ∪Mf) if and only if Mx ∈ Mf ;

Proof. (i) Let (j(h)
f ∪ Mf) ∈ Mx, for some f in F , x in W and h ≥ 1. From (1), the definition of

the ix’s and jf ’s, and Lemma 2.5 it follows that j
(h)
f ∪ Mf = j

(k)
g ∪ Mg for some g in W such that

g ∈ x is in Q. We will show that f ≡ g, thus proving that f ∈ x is in Q and in turn by Lemma 2.6(ii)
that Mf ∈ Mx. We have j

(h−1)
f ∈ j

(k)
g ∪ Mg. We show that j

(h−1)
f ∈ j

(k)
g . Indeed if j

(f−1)
f ∈ Mg,

then as above, j
(h−1)
f ∈ j

(k′)
g′ ∪ Mg′, for some g′ in W such that g′ ∈ g is in Q, and for some k′ ≥ 1.

But by Lemma 2.5(ii) |j(k′)
g′ ∪ Mg′| ≥ 2, thus h = 1, i.e., j

(h−1)
f = jf . This is a contradiction since

rank(jf ) = rank(jg′) < rank(j(k′)
g′ ) ≤ rank(j(k′)

g′ ∪ Mg′). Having proved that j
(h−1)
f ∈ j

(k)
g , from the

definition of the j’s it follows that f ≡ g (and h = k).
Conversely, assume that Mf ∈ Mx. Then the preceding lemma yields that f ∈ x is in Q which by (1)

in turn implies that (j(h)
f ∪Mf) ∈ Mx, for all h ≥ 1.

(ii) In order to prove (ii) it is enough to show that Mx /∈ j
(h)
f for all f in F and h ≥ 1. But this

follows immediately from Lemma 2.5(ii), since if Mx ∈ j
(h)
f then we would have Mx = j

(h−1)
f , which is a

contradiction.

LEMMA 2.8 M is a model for Ψ′.

Proof. Notice that by condition 1 of the theorem:

- if x ∈ y (resp. x /∈ y) is in Ψ′ then x ∈ y (resp. x /∈ y) is in Q;

- if x = y is in Ψ′ then x ≡ y;

- if x 6= y is in Ψ′ then x 6= y is in Q;

- if Finite(x) (resp. ¬Finite(x)) is in Ψ′ then Finite(x) (resp. ¬Finite(x)) is in Q.

Thus in view of Lemma 2.6, in order to show that M models correctly every conjunct of Ψ′ it is enough
to show that if Finite(x) (resp. ¬Finite(x)) is in Ψ′, then |Mx| < ω (resp. |Mx| ≥ ω). But if Finite(x)
is in Ψ′ then from conditions 1,5 of the theorem and the definition of Q it follows that Fx = ∅, so that, by
(1), |Mx| = |Ix ∪ {Mx′|x′ ∈ x in Q}| < ω. And also, if ¬Finite(x) is in Ψ′, then again from conditions
1,5 of the theorem it follows that {j(h)

f ∪Mf |h ≥ 1} ⊆ Fx, for some f in F . Therefore |Mx| ≥ |Fx| ≥ ω.
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Now we are ready to show that M , as defined by (1), satisfies Φ. Since all unquantified conjuncts of
Φ are also present in Ψ′, we only need to prove that M satisfies all conjuncts in Φ of the form

(∀x1 ∈ yi1) · · · (∀xk ∈ yik
)ϕ (2)

where yi1 , . . . , yik
are in V and ϕ is an unquantified formula of T . To show that M satisfies (2) we must

prove that for all s1 ∈ Myi1 , . . . , sk ∈ Myik
, the assignment M [x1/s1] · · · [xk/sk] 1 satisfies ϕ.

Let

s̃j =

{
sj if sj ∈ {Mz|z ∈ yij

is in Q}
Mf if sj = j

(h)
f ∪Mf for some h ≥ 1, f in F such that f ∈ yij

is in Q.

Thus s̃j = Mzj for some z1, . . . , zk in W . Since M satisfies Ψ′ (cf. Lemma 2.8), it follows that
M satisfies Ψ too. Consequently, since Mzj ∈ Myij

, for all j = 1, . . . , k, M satisfies ϕx1,...,xk
z1,...,zk

. Let `
be any literal in ϕ. From our assumption that ϕ belongs to the class SPF ?

=(T ) it follows that ` can
be neither of type xi′ = xi′′ nor of type xi′ 6= xi′′ . By considering all remaining possibilities for the
literal `, Lemma 2.7 yields M [x1/s1] · · · [xk/sk](`) = M [x1/s̃1] · · · [xk/s̃k](`) = M(`x1···xk

z1···zk
). Therefore

M [x1/s1] · · · [xk/sk](ϕ) = M(ϕx1...xk
z1...zk

) = true. For the arbitrariness of s1 ∈ Myi1 , . . . , sk ∈ Myik
, this in

turn implies that M satisfies (2), concluding the proof of the theorem.

Remark. Notice that the preceding algorithm fails to detect unsatisfiability of certain conjunctions
of formulae of SPF ?(T ). Consider for example the formula

¬Finite(y) ∧ (∀x1 ∈ y)(∀x2 ∈ y)(x1 = x2)

which is clearly unsatisfiable. It is quite easy to see that by choosing D = ∅, F = {f}, Q = {f ∈ y, f /∈
∅, ∅ /∈ y, ∅ ∈ f}, all conditions of the theorem are satisfied.

3 Elimination of quantifiers in set theory

In this section we present a result of elimination of quantifiers in set theory.
Consider the class of formulae in the language L consisting of

(i) a denumerable infinity of set variables;

(ii) set operators (∅, ∪ , ∩ , \ , {· , . . . , ·} , pow , Un , × , . . . );

(iii) set predicates ( = ,∈ , . . .);

(iv) boolean connectives (∧ , ∨ , ¬ , → , ↔ );

(v) quantifiers (∀ , ∃).
DEFINITION 3.1 A formula ϕ in L is 0-flat if each quantified variable x in ϕ appears only within
atoms of type

x = t or x ∈ t,

where t is any term of L not containing x .
1Given an assignment A over sets, a variable x, and a set s, by A[x/s] we mean the assignment B such that By = Ay,

for all y 6≡ x and Bx = s
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Remark. Notice that the preceding definition implies that in a 0-flat formula ϕ:

(a) no composed term occurring in ϕ can contain quantified variables;

(b) if x ∈ y occurs in ϕ, then y is free;

(c) if x = y is in ϕ, then either x or y must be free.

THEOREM 3.2 Let ϕ be a 0-flat formula of L. Then there is an algorithm to construct a quantifier-free
formula ψ such that

`ZF (ϕ ↔ ψ) .

Proof. Below is the algorithm:

STEP 1. Bring ϕ in prenex normal form, denoted by ϕ1.

STEP 2. Let ϕ2 be obtained by replacing in ϕ1 every universal quantifier (∀x) by the expression ¬(∃x)¬.
Let p be the matrix of ϕ2 and let x be the innermost quantified variable (i.e., (∃x)p is a subformula of
ϕ2). Bring p into disjunctive normal form

(p11 ∧ · · · ∧ p1,h1 ∧ p1,h1+1 ∧ · · · ∧ p1,k1) ∨ · · · ∨ (pn,1 ∧ · · · ∧ pn,hn ∧ pn,hn+1 ∧ · · · ∧ pn,kn),

where x does occur in pj,1, . . . , pj,hj and does not occur in pj,hj+1, . . . , pj,kj , j = 1, . . . , n.

Comment: Notice that

`ZF (∃x)p ↔



n∨

j=1

(
(∃x)(pj,1 ∧ · · · ∧ pj,hj ) ∧ (pj,hj+1 ∧ · · · ∧ pj,kj )

)

 .

Therefore, for all j = 1, . . . , n, it is enough to construct a quantifier-free formula ψj, such that

`ZF (∃x)(pj,1 ∧ · · · ∧ pj,hj ) ↔ ψj .

STEP 3. If x = t is one of the conjuncts pj,1, . . . , pj,hj , then we put

ψj ≡ (pj,1 ∧ · · · ∧ pj,hj )
x
t .

So, assume that no pj` is of type x = t. Let

x ∈ t1, . . . , x ∈ tm1 ,
x 6∈ tm1+1, . . . , x 6∈ tm2 ,
x 6= tm2+1, . . . , x 6= tm3

be the conjuncts pj,1, . . . , pj,hj .
Then we put

ψj ≡
{

((t1 ∩ · · · ∩ tm1) \ (tm1+1 ∪ · · · ∪ tm2 ∪ {tm2+1, . . . , tm3}) 6= ∅) if m1 ≥ 1
true if m1 = 0.

Let ϕ3 be the formula obtained by replacing in ϕ2 the subformula (∃x)p by the subformula
∨n

j=1 ψj .
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Comment: We have `ZF (ϕ2 ↔ ϕ3). Moreover, ϕ3 has one quantifier less than ϕ2 and it is
still a 0-flat formula.

By applying repeatedly steps 2 and 3, in a finite number of iterations a quantifier-formula ψ is obtained.
Then, it follows immediately from the above observations that

`ZF (ϕ ↔ ψ) .

Remark. If the underlying unquantified theory is decidable, then so is the corresponding quantified class
of 0-flat formulae.

Example 1: Let L1 be the language whose set operators are ∅,∪,∩, \, {·, . . . , ·}, pow and whose predicate
symbols are =,∈. In [3] this theory has been shown to be decidable. Then the class of 0-flat formulae
over L1 is decidable.

Example 2: Let L2 be the language whose set operators are ∅,∪,∩, \,Un and whose predicate symbols
are =,∈. In [6] this theory has been shown to be decidable. Then the class of restricted 0-flat formulae
over L2 is decidable, where a formula is restricted 0-flat if all quantified variables can occur only within
atoms of the form x ∈ t.

3.1 Examples of elimination of quantifiers

In this subsection we show how the algorithm works on two examples.

Example 1: Consider the following formula ϕ

(∀x)(∃z)((z ∈ w ∧ x /∈ w) ∨ (z /∈ w ∧ x ∈ w)).

ϕ is already in prenex normal form so the first step of the algorithm can be skipped. Application of step
2 leads to

¬(∃x)¬(∃z)((z ∈ w ∧ x /∈ w) ∨ (z /∈ w ∧ x ∈ w))

whose matrix is already in disjunctive normal form. By distributing the existential quantifier over the
disjunction we then get

¬(∃x)¬((∃z)(z ∈ w ∧ x /∈ w) ∨ (∃z)(z /∈ w ∧ x ∈ w)),

which is logically equivalent to

¬(∃x)¬(((∃z)(z ∈ w) ∧ (x /∈ w)) ∨ ((∃z)(z /∈ w) ∧ (x ∈ w)).

Application of step 3 then produces the formula

¬(∃x)¬((w 6= ∅ ∧ x /∈ w) ∨ (true \ w 6= ∅ ∧ x ∈ w),

i.e.,
¬(∃x)¬((w 6= ∅ ∧ x /∈ w) ∨ x ∈ w).
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Bringing in the negation we obtain

¬(∃x)(¬(w 6= ∅ ∧ x /∈ w) ∧ x /∈ w),

i.e.,
¬(∃x)((w = ∅ ∨ x ∈ w) ∧ x /∈ w),

which is obviously logically equivalent to

¬(∃x)(w = ∅ ∧ x /∈ w).

Finally, execution of step 3 gives
¬(w = ∅ ∧ true),

i.e.,
w 6= ∅.

So we can conclude that

`ZF (∀x)(∃z)((z ∈ w ∧ x /∈ w) ∨ (z /∈ w ∧ x ∈ w)) ↔ w 6= ∅.

Example 2: Consider now the following formula ϕ′

(∃z)(∀x)((z ∈ w ∧ x /∈ w) ∨ (z /∈ w ∧ x ∈ w))

(which is obtained from the previous one by simply inverting the order of the quantifiers). Applying step
2 we get

(∃z)¬(∃x)¬((z ∈ w ∧ x /∈ w) ∨ (z /∈ w ∧ x ∈ w)),

which is logically equivalent to

(∃z)¬(∃x)((z /∈ w ∨ x ∈ w) ∧ (z ∈ w ∨ x /∈ w)),

and also to
(∃z)¬(∃x)((z /∈ w ∧ x /∈ w) ∨ (x ∈ w ∧ z ∈ w)).

Thus by eliminating the quantifier (∃x), we obtain

(∃z)¬((z /∈ w ∧ true) ∨ (w 6= ∅ ∧ z ∈ w)),

which is logically equivalent to
(∃z)((z ∈ w) ∧ (w = ∅ ∨ z /∈ w))

and also to
(∃z)((z ∈ w ∧ w = ∅) ∨ (z ∈ w ∧ z /∈ w)).

This last formula obviously simplifies to

(∃z)((z ∈ w ∧ w = ∅),
so that by applying again steps 2 and 3 we finally get

w 6= ∅ ∧ w = ∅ (≡ false).

Thus we can conclude that

(∃z)(∀x)((z ∈ w ∧ x /∈ w) ∨ (z /∈ w ∧ x ∈ w))

is unsatisfiable.
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4 The (∀)0 1-formulae

Let (∀)0 be the class of formulae such that
ϕ ∈ (∀)0

if and only if
ϕ =

∧

i=1,...,n

ϕi

and
ϕi = (∀xi,1 ∈ yi,1) . . . (∀xi,mi

∈ yi,mi
)(li,1 ∨ · · · ∨ li,pi

)

where mi ≥ 0 , pi ≥ 1 , and li,j for 1 ≤ j ≤ pi is a literal in the language ∅,∈,=.
A complete description of and an introduction to the class (∀)0 can be found in [13], where is also

shown that the decision problem for simple prenex formulae (section 2 of this work, [11], [12]) can be seen
as a subproblem of the decision problem for the (∀)0-formulae.

In [14] is presented a (∀)0-formula which is satisfiable but not finitely satisfiable and in the present sec-
tion we introduce a syntactic restriction that will allow us to obtain a reflection result over the hereditarily
finite sets as well as a decidability result for a subclass of the (∀)0-formulae.

DEFINITION 4.1 ϕ is a (∀)0 1-formula if and only if:

1. ϕ is a (∀)0-formula.

2. if ϕ is ϕ =
∧

i=1,...,n ϕi then any ϕi is of the form

ϕi = (∀x1,i ∈ y1,i) . . . (∀xmi,i ∈ ymi,i)(x ¦ y)

where ¦ can be any one of the predicates 6∈,∈, 6=, = .

Examples :

1. x ∈ y ∧ y ∈ w ∧ x 6= ∅ ∧ (∀z1 ∈ y)(∀z2 ∈ z1)(z2 ∈ w) is a (∀)0 1-formula.

2. (∀x ∈ y)(∀z ∈ x)(z ∈ y) ∧ y 6= ∅ is a (∀)0 1-formula.

Remark. Any decision algorithm for subclasses of the (∀)0-formulae can have, as preprocessing step,
the decision algorithm for the unquantified formulae of the language ∅,∈,= presented in [11] that forbids
to continue and declare the whole formula unsatisfiable if its unquantified part is unsatisfiable.

First we prove the following lemma that will allow us to put any (∀)0 1-formula in a suitable form.
Let (∀)0,l 1 the subclass of (∀)0 1-formulae of maximum nesting level l, where the nesting level of a

formula ϕ is the maximum K in any chain of the form

(∀x1 ∈ y)(∀x2 ∈ x1)(∀x3 ∈ x2) · · · (∀xK ∈ xK−1)

in one of the quantified prefixes of one of the conjuncts in ϕ .
Both the examples presented above are (∀)0,2 1 formulae (see [13] for more information).
In the following we will denote by

⋃
x the set of all elements of elements of x and by

⋂
x the intersection

of all elements of x.
Moreover

⋃n
x =

⋃
(
⋃n−1

x) and
⋂n

x =
⋂

(
⋂n−1

x) , where
⋃0

x =
⋂0

x = x.
Let us start by showing that it is general enough to consider only a rather simplified form of (forall)0 1-

formulae.
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LEMMA 4.2 Given any ϕ ∈ (∀)0,l 1 it is always possible to build a ψ such that:

i) ϕ and ψ are equisatisfiable (provably in a suitable axiomatic set theory).

ii) ψ is a propositional combination of literals of the form:

1.
⋃m

x ⊆ ⋂n
y,

with l > m > 0 , l > n ≥ 0.

2.
⋃m

x ∩⋃n
y = ∅,

with l > m > 0 and l > n > 0

3. x 6= ∅
4. (∀x1 ∈ x)(∀x2 ∈ x1) · · · (∀xp ∈ xp−1)L

where L is of the form
⋃m

xp ⊆
⋂n

xp with l > m + p > 0 , l > n + p ≥ 0

or ⋃m
xp ∩

⋃n
xp = ∅ with l > m + p, n + p > 0.

Proof. We will describe a sequence of algorithmic transformations of the formula ϕ such that the
formula obtained at the end will satisfy i), ii).

Step 0. Apply the test described in [11] and if the answer is unsatisfiable set ψ equal to ∅ 6= ∅. 2

Step 1. Consider all the unquantified conjuncts in ϕ of the form:

x 6= y

and substitute them with the following formula:

(zxy ∈ x ∧ zxy 6∈ y) ∨ (zxy 6∈ x ∧ zxy ∈ y)

with zxy a new variable.
Let ϕ1 be the formula obtained after this step.
Step 2. Bring ϕ1 in disjunctive normal form and perform the following actions on each disjunct:
substitute each conjunct of the form:

1. x ∈ y

2. x 6∈ y

3. x = y

4. (∀w ∈ y)(x ∈ w) (analogous for x 6∈ w)

respectively with the formula:

1. (∀z ∈ x′)(z = x) ∧ (∀z ∈ x′)(z ∈ y) ∧ x′ 6= ∅
2. (∀z ∈ x′)(z = x) ∧ (∀z ∈ x′)(z 6∈ y) ∧ x′ 6= ∅
3. (∀z ∈ x)(z ∈ y) ∧ (∀z ∈ y)(z ∈ x)

2see previous remark
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4. (∀z ∈ x′)(z = x) ∧ (∀z ∈ x′)(∀w ∈ y)(z ∈ w) ∧ x′ 6= ∅ (analogous for x /∈ w)

where x′ is a newly introduced variable.
Let ϕ2 be the formula obtained after this step.
In the following steps literals of the form z = y, z 6= y are eliminated from the matrices of quantified

conjuncts.
Step 3. Eliminate any conjunct in ϕ2 of the form:

(∀z ∈ x)(z 6= y)

by substituting it with
y 6∈ x

and then perform the substitution described in step 2 case 2 to eliminate this last unquantified conjuncts.
Eliminate any conjunct of the form

(∀z ∈ x)(z = y)

by substituting it with

(∀z ∈ x)(∀z1 ∈ z)(z1 ∈ y) ∧ (∀z ∈ x)(∀y1 ∈ y)(y1 ∈ z)

This transformation can be justified by observing that (∀z ∈ x)(z = y) is equisatisfiable with

(∀z ∈ x)((∀z1 ∈ z)(z1 ∈ y) ∧ (∀y1 ∈ y)(y1 ∈ z)).

Let ϕ3 be the formula obtained after this step.
Notice that at this point any unquantified conjunct in ϕ3 is of the form: x 6= ∅.
Step 4. Substitute any conjunct in ϕ3 of the form

(∀z ∈ x)(∀w ∈ y)(z = w)

with
(∀z ∈ x)(∀z′ ∈ z)(∀w ∈ y)(z′ ∈ w) ∧ (∀z ∈ x)(∀w ∈ y)(∀w′ ∈ w)(w′ ∈ z),

where this formula can be obtained as in the previous case in step 3 by distributing the bounded quantifiers.
Perform an analogous substitution in the cases in which the number of quantifiers of the quantified

conjunct is greater than two.
Substitute any conjunct of the form:

(∀z ∈ x)(∀w ∈ y)(z 6= w)

with
(∀z ∈ x)(z 6∈ y)

and perform an analogous substitution in the case the number of quantifiers of the quantified conjunct is
greater.

Let ϕ4 be the formula obtained after this step.
Notice that at this point any quantified conjunct has a literal of the form x ∈ y or x 6∈ y as matrix.
Step 5. Substitute any conjunct of the form

(∀x1 ∈ x)(∀x2 ∈ x1) · · · (∀xm ∈ xm−1)(∀y1 ∈ y)(∀y2 ∈ y1) · · · (∀yn ∈ yn−1)(xm ¦ yn)

(notice that we can assume m ≥ 1 because of step 2 case 4 with
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• ⋃m−1
x ⊆ ⋂n

y

if ¦ is ∈
• ⋃m−1

x ∩⋃n
y = ∅

if ¦ is 6∈

Let ψ be the formula obtained after this step.
Step 6. Substitute any conjunct of the form

(∀x1 ∈ x)(∀x2 ∈ x1) · · · (∀xp ∈ xp−1)(∀z1 ∈ xp) · · · (∀zm ∈ zm−1)(∀y1 ∈ xp) · · · (∀yn ∈ yn−1)(zm ¦ yn)

with

• (∀x1 ∈ x), · · · , (∀xp ∈ xp−1)(
⋃m−1

xp ⊆
⋂n

xp)

if ¦ is ∈
• (∀x1 ∈ x) · · · (∀xp ∈ xp−1)(

⋃m−1
xp ∩

⋃n
xp = ∅)

if ¦ is 6∈

It is now straightforward to check that i) and ii) hold

Now we prove a decidability result for the class C (included in (∀)0 1) of formulae which are conjunction
of literals of the form:

x 6= ∅ ,
⋃m

x ⊆ ⋂n
y

The class C is a proper subclass of the (forall)0 1 -formulae and is a class in which both the unary
operators

⋃
and

⋂
and the binary operator ⊆ occur in a particularly restricted form.

It is not known if the general case, in which occurrences of
⋃

,
⋂

and ⊆ are allowed unrestrictedly,
is decidable.

LEMMA 4.3 Given any formula ψ ∈ C it is possible to determine a number p such that if ψ is satisfiable
then it is satisfied by hereditarily finite sets of rank less than p.

From this lemma it is immediate to conclude:

COROLLARY 4.4 The class C is decidable.

Proof of LEMMA 4.3. To prove our lemma we will consider a formula ϕ ∈ C and we will assume
ϕ to be satisfiable, then we will assume Mx1, . . . , Mxk to be a model for ϕ (that is a tuple of sets
satisfying the formula) and we will give a method to build another (simpler) model for ϕ .

The following two facts will hold:

1. the model M and the new model will satisfy the same set of formulae in the class C ;

2. the model we will build will be a tuple of hereditarily finite sets.
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Let us define ` to be the maximum m or n appearing in a conjunct of the form
⋃m

x ⊆ t,

or
t ⊆ ⋂n

x

for t any term.
Considering all the terms that can possibly appear in ϕ , we have that any such term is of the following

form:

(0)
⋃0

x,
⋃1

x, . . . ,
⋃`

x,
⋂0

x,
⋂1

x, . . . ,
⋂`

x,

where x is a free variable.
We will use our model M as an oracle that will tell us some of the features that we will reproduce in

the hereditarily finite model we are going to build.
At this point we use M simply to establish which of the terms of the form (0) is non-empty, and to

consider, from now on, only those terms associated to non-empty sets by M .
Analogously we will consider only those terms which are actually associated to sets by M , that is we

will ignore those terms of the form
⋂

t such that the empty set is associated to t by M .

Here and in the following, we will look at any information retrieved from M as a (correct) guess of a
nondeterministic algorithm implementing the procedure we are outlining.

Besides the information directly contained in ϕ (such as inclusions of some term in some other and
non-emptiness of some term) it is easy to verify that a certain amount of information is hidden in ϕ .

The following algorithm having ϕ as input and ϕ̃ as output, modifies ϕ in such a way that some of
these hidden constraint appear explicitly. It is straightforward to check that all the conjuncts added to ϕ
by the algorithm, are a consequence of the usual meaning we give to the set-theoretic constructs involved.

Algorithm A.1

step 1: set ϕ̃ := ϕ ;

Notice that the intersection of a set a it is always included in the union of a since x ∈ ⋂
a iff

(∀z ∈ a)(x ∈ z) , whereas x ∈ ⋃
a iff (∃z ∈ a)(x ∈ z) . This fact generalizes and it is straightforward to

check that it is always
⋂n

a ⊆ ⋃n
a. This justifies the following step:

step 2: for each free variable x and each n ≤ ` , add
⋂n

x ⊆ ⋃n
x

to ϕ̃ , if the two terms
⋃n

x and
⋂n

x are not associated to the empty set by M ;

The feature relative of the semantics of our set-theoretic operators which is used in the following step is
basically this: given two sets a and b , if a ⊆ b , then

⋂
b ⊆ ⋂

a . This is easily checked and justifies step
3:

step 3: for each inclusion of the form
⋃m

x ⊆ ⋂n
y in ϕ̃ , add

⋂n+1
y ⊆ ⋃m+1

x

to ϕ̃ if it is not already there ;
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step 4: propagate all the inclusions in ϕ̃ , that is for any three terms t1, t2, t3 such that t1 ⊆ t2 and
t2 ⊆ t3 are in ϕ̃ , add t1 ⊆ t3 to ϕ̃ if it is not already there;

step 5: go back to step 3 until no inclusion is added to ϕ̃ .

At this point we have in ϕ̃ all the constraints contained in ϕ together with other inclusions forced
by ϕ itself.

There is another form of constraints forced by the choices we made so far: consider, for example, the
case in which the term

⋃
t was intended to be interpreted as the empty set. In this case if the term t

appears in ϕ̃ , then t must be interpreted as the set {∅} . Analogously, in this situation we would be
forced to interpret all the terms of the form

⋃n
t , as well as those terms which must be included in some

of these terms.
The following algorithm will determine those terms which are trapped in the previous sense.

Algorithm A.2
A trapped term is one which of which we can determine the rank (and therefore is one that we can guess).
Hence any term representig sets that may have rank only less than or equal to the rank of a trapped term
must be defined trapped as well. The rank of

⋃n
x is less than or equal to the rank of

⋃m
x if n ≥ m .

Moreover if
⋃n

x is trapped it is going to be interpreted by a hereditarily finite set of rank, say, ρx . This
implies that

⋃m
x with m ≤ ` can only be interpreted by a set of rank less than or eqal to ρx + ` .

This justifies the following step:

step 1: if
⋃n

x is interpreted as the empty set by M , or is trapped, then
⋃m

x for 1 ≤ m ≤ ` is
trapped ;

Since rank(
⋂m

x) ≤ rank(
⋂n

x) when m ≥ n we perform also the following step:

step 2: if
⋂n

x is interpreted as the empty set by M , or is trapped, then
⋂m

x for n ≤ m ≤ ` is
trapped ;

The following step is analogous to the previous ones:

step 3: if t0 ⊆ t1 is in ϕ̃ and t1 is trapped, then t0 is trapped ;

At this point we might have a bigger set of trapped terms, in which case we must start the procedure again
from the beginnig:

step 4: go back to step 1 until no new term is marked trapped.

Notice that the maximum rank of a set interpreting a term which is trapped is certainly less than the
number of trapped terms, therefore we can safely assume that we are able to substitute any trapped term
t by a closed term th in the language having only ∅ as constant and {· · ·} as term constructors, and
representing the set used to interpret t by M .

Again, one can see the previous argument as a nondeterministic step in the procedure we are describing.
Clearly we will assume that all the guesses made up to this point are consistent with the semantics of

the set-theoretic constructors involved in ϕ̃ . If, for example, th1 is used in place of a term t1 and th2

is used in place of
⋃

t1 , then we will assume that the unary union of the set represented by th1 is the
set represented by th2 .

Because of the previous assumption we drop all the inclusions in ϕ̃ of the form

th1 ⊆ th2
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with th1 and th2 representing hereditarily finite sets, since they are clearly satisfied and therefore give
no information to us.

Let us prove that no inclusion of the following form

(1)
⋃n

x ⊆ ⋃m
x

with m > n can appear in ϕ̃ .

By contradiction let us suppose that an inclusion of type (1) is in ϕ̃ .⋃n
x ⊆ ⋃m

x with m > n is an inclusion in a form that is not in ϕ and is not introduced by any
step but the propagation step in the algorithm generating ϕ̃ . Therefore we can conclude that for some
term t the following inclusions

1.
⋃n

x ⊆ t ,

2. t ⊆ ⋃m
x

are in ϕ .
Any inclusion having

⋃m
x as right hand side and not introduced in ϕ̃ by the propagation step, must

satisfy one of the following two conditions:

a) is of the form
⋂h+1

y ⊆ ⋃m
x ,

b) is of the form
⋂m

x ⊆ ⋃m
x .

In case a) it must be that either t ⊆ ⋂h+1
y is in ϕ̃ or t is itself

⋂h+1
y .

In both cases, using 1 and 2 and recalling step 3 and 4 of the algorithm generating ϕ̃ , we can conclude
that both the inclusions

i)
⋃n

x ⊆ ⋂h+1
y ,

ii)
⋃m−1

x ⊆ ⋂h
y ,

are in ϕ̃ .
Now recalling that n ≤ m− 1 , it is easy to see that i) and ii) cannot be satisfiable, contradicting the

fact that M is a model for ϕ and ϕ̃ . In fact: rank(
⋃n

x) ≥ rank(
⋃m−1

x) for any x whereas from i)
and ii) it would follow that

rank(
⋃n

x) ≤ rank(
⋂h+1

y) ≤ min{rank(z) | z ∈ ⋃m−1
x} < rank(

⋃m−1
x)

.
In case b) from 1. we would have

⋃n
x ⊆ ⋂m

x is in ϕ̃ and also in this case we would reach a
contradiction since

⋃n
x ⊆ ⋂m

x with m > n is unsatisfiable, in fact:
it is always the case that

⋂n
x ⊆ ⋃n

x , hence rank(
⋂n

x) ≤ rank(
⋃n

x) ; moreover rank(
⋂m

x) <
rank(

⋂n
x) if m > n and therefore

rank(
⋂m

x) < rank(
⋃n

x),

whereas from
⋃n

x ⊆ ⋂m
x it would follow that rank(

⋃n
x) ≤ rank(

⋂m
x) .
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As a particular case of (1) we have that no inclusion of the form

(2)
⋃n

x ⊆ ⋃n+1
x

is in ϕ̃ .
Notice that inclusions of the form (2) are satisfied by infinite sets.

At this point if there is a cycle of inclusions of the form

tj1 ⊆ tj2 ∧ tj2 ⊆ tj3 ∧ . . . ∧ tjp−1 ⊆ tjp
∧ tjp

⊆ tj1 ,

in ϕ̃ , let us substitute all the terms tj1 , . . . , tjp
in ϕ̃ by a new variable xj1,...,jp

(note that in this case
the model M must associate the same set to all terms in the cycle) and let us eliminate the inclusions of
the form

xj1,...,jp
⊆ xj1,...,jp

from ϕ̃ .
Let us now consider an ordering t1, . . . , ts of the terms appearing in ϕ̃ which complies with rank

comparison between sets associated to them by the model M and, moreover, satisfies the following
conditions:

i) if ti ⊆ tj is in ϕ̃ then i < j ;

ii) if ti is
⋃n+1

x and tj is
⋃n

x then i < j ;

iii) if ti is
⋂n+1

x and tj is
⋂n

x then i < j ;

iv) if for all z in Mtj , z ⊇ ti then i < j .

As a matter of fact any ordering of the terms which is compatible with the ranks would satisfy iii)
and iv), the only problem is to show that it is possible to arrange the elements of the same ranks in such
a way that both i) and ii) are satisfied, but this is guaranteed by (2).

At this point we are ready to define a first approximation of the sought hereditarily finite model M?

that we will call M ′ .
M ′ will be defined by induction on the ordering t1, . . . , ts .
Let us define M ′ti by cases and using the following inductive hypothesis:

1) if Mti ⊆ Mtj and i < j then M ′ti ⊆ M ′tj ;

2) M ′(
⋂n+1

y) =
⋂

M ′(
⋂n

y) ,

3) if for all z ∈ Mtj , z ⊇ Mti and i < j , then for all z ∈ M ′tj , z ⊇ M ′ti .

Case a): ti is a trapped term.
In this case we put M ′ti = Mti , that is M ′ti is defined to be exactly the hereditarily finite set

defined by ti .
In this case it is obvious that the inductive hypothesis continues to hold.

Case b): ti is
⋂`

y or
⋃`

y (recall: ` is the maximum integer for which
⋂n

y ,
⋃n

y can possibly
appear in ϕ̃ ).
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Let
M ′ti =

⋃{M ′tj | Mtj ⊆ Mti ∧ j < i} ∪A,

where A is different from the empty set only in the case in which there is no j < i such that Mtj ⊆ Mti ;
moreover, when A is non-empty it is of the form {a} with a such that, if for all z ∈ Mti, z ⊇ Mtj then
a ⊇ Mtj .

The set A is introduced in the definition of M ′ti (in this case ) only to ensure that M ′ti is not
empty when Mti is not empty.

Inductive hypothesis 2) continues to hold straightforwardly, and the very definition of M ′ti guarantees
that hypothesis 1) continues to hold too.

Hypothesis 3): let us suppose that for all z ∈ Mti, z ⊇ Mtj , then if A 6= ∅ we required that A = {a}
and a ⊇ M ′tj ; on the other hand if A = ∅ then z ∈ M ′tk with Mtk ⊆ Mti and k < i , hence for all
w ∈ Mtk, w ⊇ Mtj and therefore inductive hypothesis 3) on M ′tk allows one to conclude that z ⊇ M ′tj .

Case c): ti is of the form
⋂n

y with ` > n > 0 .
In this case property iii) of the well ordering t1, . . . , ts guarantees that M ′(

⋂n+1
y) has already been

defined, hence we can put

M ′ti =
⋃{M ′tj | Mtj ⊆ Mti ∧ j < i} ∪ {M ′(

⋂n+1
y)}.

Inductive hypothesis 1) continue to hold as before.
Inductive hypothesis 2): notice that if Mtj ⊆ M(

⋃n
y) and j < i, then for all z ∈ Mtj , z ⊇

M(
⋂n+1

y) =
⋂

M(
⋂n

y) , therefore from inductive hypothesis 3) it follows that for all z ∈ M ′ti, z ⊇
M ′(

⋂n+1
y).

Moreover the fact that M ′(
⋂n+1

y) itself is among the elements of M ′ti allows us to conclude that :
⋂

M ′ti =
⋂

M ′(
⋂n

y).

Inductive hypothesis 3) is proved analogously as in the previous case, with the additional observation
that, if for all z ∈ Mti, z ⊇ Mtj then also

⋂
Mti = M(

⋂n+1
y) ⊇ Mtj and therefore form hypothesis

1), M ′(
⋂n+1

y) ⊇ M ′tj .

Case d): ti is of the form
⋃n

y with ` > n > 0 .
Let

M ′ti =
⋃{M ′tj | Mtj ⊆ Mti ∧ j < i} ∪ {M ′(

⋃n+1
y)}.

Inductive hypothesis are proved analogously as in the previous cases.

Case e): ti is of the form
⋃0

y or
⋂0

y .

M ′ti =
⋃{M ′tj | Mtj ⊆ Mti ∧ j < i} ∪ {M ′⋂ y} ∪ {M ′⋃ y}.

Inductive hypothesis are proved as before.

Case f): ti is of the form xj1 , . . . , xjp .

M ′ti =
⋃{M ′tj | Mtj ⊆ Mti ∧ j < i} ∪ {M ′ ¯tjh

| 1 ≤ h ≤ p ∧ tjh
is

⋂n
y ∧ ¯tjh

is
⋂n+1

y}
∪{M ′ ¯tjh

| 1 ≤ h ≤ p ∧ tjh
is

⋃n
y ∧ ¯tjh

is
⋃n+1

y}.
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Inductive hypothesis are proved as before.

Notice that M ′t1, . . . ,M ′ts are already hereditarily finite sets and it is clear that they would constitute
the model we are seeking if we had the following property

2’) M ′(
⋃n+1

y) =
⋃

M ′(
⋃n

y)

in addition to properties 1) , 2) and 3), whereas up to this point we can only conclude that M ′(
⋃n+1

y) ⊆⋃
M ′(

⋃n
y) .

The following algorithm modifies the hereditarily finite sets M ′t1, . . . , M ′ts in such a way that when
it terminates the tuple M?t1, . . . ,M

?ts produced as output will satisfies 1) , 2) , 2’) and 3).
Algorithm A.3

step 0: initialize M? to M ′

for i = 1 to s do
M? := M ′ti ;

end for;

step 1: guarantee property 2’)
for i = s to 1 do

if ti =
⋃n

y ∧ n ≥ 1 then
M?ti :=

⋃
M?(

⋃n−1
y) or

M?ti :=
⋃

M?xxj1 ,...,xjp
when

⋃n−1
y has been substituted by xj1,...,jp ;

else if ti = xj1,...,jp then
M?xj1,...,jp =

⋃{⋃ M?(
⋃nr−1

y) | 1 ≤ r ≤ p ∧ tjr =
⋃nr y ∧ nr > 1}

end if;
end for;

step 2: restore properties 1) , 2) and 3)
for i = 1 to s do

if ti =
⋂`

y or ti =
⋃`

y then
if M?ti = {a} then M?ti = {a′} where
a′ = a ∪⋃{M?tj |(∀z ∈ Mti)(z ⊇ Mtj)} ;
else M?ti := M?ti ∪

⋃{M?tj |Mtj ⊆ Mti ∧ j < i} ;
end if ;

else if ti =
⋂n

y ∧ ` > n > 0 then
M?ti := M?ti ∪

⋃{M?tj |Mtj ⊆ Mti ∧ j < i} ∪ {M?(
⋂n+1

y)} ;
else if ti =

⋃n
y ∧ ` > n > 0 then

M?ti := M?ti ∪
⋃{M?tj |Mtj ⊆ Mti ∧ j < i} ∪ {M?(

⋃n+1
y)} ;

else if ti =
⋃0

y or ti =
⋂0

y then
M?ti := M?ti ∪

⋃{M?tj |Mtj ⊆ Mti ∧ j < i} ∪ {M?(
⋂

y)} ∪ {M?(
⋃

y)} ;
else if ti = xj1,...,jp then

M?ti := M?ti ∪
⋃{M?tj |Mtj ⊆ Mti ∧ j < i}∪

{M? ¯tjh
|1 ≤ h ≤ p ∧ tjh

is
⋂n

y ∧ ¯tjh
is

⋂n+1
y}∪

{M? ¯tjh
|1 ≤ h ≤ p ∧ tjh

is
⋃n

y ∧ ¯tjh
is

⋃n+1
y} ;

end if;
end for;
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step 3: go back to step 1 until no modification to M? is made.

Notice that the algorithm terminates in a finite number of steps since the maximum rank of the M?ti ’s
does not increase in a cycle (this is proved by induction on t1, . . . , ts ) and any M?ti can only grow at
any given cycle; therefore if we let r = max{rank(M ′ti) | 1 ≤ i ≤ s} , and r? be the number of sets of
rank less than r , in at most r? · s steps the algorithm will terminate.

Moreover at the end of step 1 hypothesis 2’) always holds, and at the end of step 2 , 1) , 2) and 3)
hold. Hence on exit we have that 1) , 2) , 2’) and 3) hold and M? is a model of ϕ̃ and ϕ since M
is a model of ϕ̃ and ϕ .

References

[1] Jech, T., Set Theory. Academic Press, New York (1978).

[2] Ferro, A., Omodeo,E.G., Schwartz, J.T., Decision procedures for elementary sublanguages of set
theory. I. Multilevel syllogistic and some extensions. Comm. Pure Appl. Math 33 (1980) 559-608.

[3] Cantone, D.A., A decision procedures for a class of unquantified formulae of set theory involving the
powerset and singleton operators. Ph.D. thesis, Courant Institute Math. Sci., NYU (Jan. 1987).

[4] Breban, M., Ferro, A., Decision procedures for elementary sublanguages of set theory. III. Restricted
classes of formulae involving the powerset operator and the general set union operator. Adv. in Appl.
Math. 5 (1984).

[5] Cantone, D.A., Ferro, A., Schwartz, J.T., Decision procedures for elementary sublanguages of set
theory. VI. Multilevel Syllogistic extended by the powerset operator. Comm. Pure Appl. Math.,
Special Anniversary issue, Vol.XXXVIII (1985) 549-571.

[6] Cantone, D.A., Ferro, A., Schwartz, J.T., Decision procedures for elementary sublanguages of set
theory. V. Multilevel Syllogistic extended by the general union operator. Journ. Comp. Syst. Sci.,
Vol. 34, No. 1, (Feb. 1987) 1-18.

[7] Omodeo, E.G., Decidability and proof procedures for set theory with a choice operator. Ph.D. thesis,
Courant Institute of Math. Sci., NYU (1984).

[8] Ferro, A., Omodeo, E.G., Decision procedures for elementary sublanguages of set theory. VII. Validity
in set theory when a choice operator is present. Comm. Pure Appl. Math., XL, pp. 265-280, 1987.

[9] Cantone, D.A, Ferro, A., Omodeo, E.G., Decision procedures for elementary sublanguages of set
theory. VIII. A semi decision procedure for finite satisfiability of unquantified set theoretic formulae.
Comm. Pure Appl. Math., XLI, pp. 105-120, 1988.

[10] Cantone, D.A., Schwartz, J.T., Decision procedures for elementary sublanguages of set theory. XI.
Multilevel Syllogistic extended by some elementary map construct. Submitted to Journal of Symbolic
Computation.

20



[11] Breban, M., Ferro, A., Omodeo, E.G., Schwartz, J.T., Decision procedures for elementary sublan-
guages of set theory. II. Formulas involving restricted quantifiers, together with ordinal, integer, map,
and domain notions. Comm. Pure Appl. Math 34 (1981) 177-195.

[12] Cantone, D.A., Cutello, V., Ferro, A., Decision procedures for elementary sublanguages of set theory.
XIV. Three languages involving rank related constructs. Proceedings of ISSAC-88.

[13] Parlamento, F., Policriti, A., Decision procedures for elementary sublanguages of set theory. XIII.
Model graphs reflection and decidability. Proceedings of ”New trends in Automated Mathematical
Reasoning”; Journal of Automated Reasoning. Submitted.

[14] Parlamento, F., Policriti, A., The logically simplest form of the infinity axiom. Proceedings of the
AMS. Volume 103, Number 1, May 1988.

21


