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ABSTRACT. In this paper we explore the connections between the monadic second-order theory of
one successor (MSO[<] for short) and the theories of ω-layered structures for time granularity.
We first prove that the decision problem for MSO[<] and that for a suitable first-order theory
of the upward unbounded layered structure are inter-reducible. Then, we show that a similar
result holds for suitable chain variants of the MSO theory of the totally unbounded layered
structure (this allows us to solve a decision problem about theories of time granularity left open
by Franceschet et al. [FRA 06]).

KEYWORDS: time granularity, expressiveness, decidability.

1. Introduction

In this paper we explore the connections between the monadic second-order (MSO)
theory of one successor and the theories of ω-layered structures for time granularity.
We first prove that the decision problem for the MSO theory of one successor and that
for a suitable first-order theory of the upward unbounded layered structure are inter-
reducible. Then, we show that a similar result holds for suitable chain variants of the
MSO theory of the totally unbounded layered structure.

The ability of representing the same situation and/or different situations at vari-
ous time granularities and of relating these different representations in a principled
way is recognized as a meaningful research theme for temporal logic and a major
requirement for a number of applications in different areas of computer science, in-
cluding formal specification and verification, artificial intelligence, and temporal data-
bases, e.g., [BET 00, DYR 95, FIA 94, LAD 86, LAM 85]. We focus our attention
on the area of formal methods for the specification and verification of complex sys-
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tems [FRA 03a, MON 99, MON 02, MON 96b]. In this area, the addition of a no-
tion of time granularity makes it possible to specify in a concise way reactive sys-
tems whose behaviour can be naturally modeled with respect to a (possibly infinite)
set of differently-grained temporal domains. A logical framework for time granular-
ity has been systematically developed in [MON 96a] and later extended in [FRA 01]
and [PUP 06]. It is based on a many-level view of temporal structures that replaces
the flat temporal domain of standard linear and branching temporal logics by a tem-
poral universe consisting of a (possibly infinite) set of differently-grained temporal
domains.

The MSO theory of the n-layered (there are exactly n temporal domains) k-
refinable (each time point can be refined into k time points of the immediately finer
temporal domain, if any) temporal structure for time granularity, with matching de-
cidability results, has been investigated in [MON 96b]. The MSO theory of the k-
refinable upward unbounded layered structure (UULS, for short), that is, the ω-layered
structure consisting of a finest temporal domain together with an infinite number of
coarser and coarser domains (a portion of the 2-refinable UULS is depicted in Figure
1), has been studied in [MON 99]. In the same paper, the authors deal with the MSO
theory of the k-refinable downward unbounded layered structure (DULS), that is, the
ω-layered structure consisting of a coarsest domain together with an infinite number
of finer and finer domains (a portion of the 2-refinable DULS is depicted in Figure
2). Finally, the MSO theory of the k-refinable totally unbounded layered structure
(TULS), which merges the UULS and the DULS, has been studied in [PUP 06]. The
decidability of the MSO theory of the UULS can be proved by reducing the satisfi-
ability problem for MSO logic over the UULS to the emptiness problem for systolic
tree automata, while the decidability of the MSO theories of the DULS and the TULS
can be proved by reducing the satisfiability problem for MSO logic over them to the
emptiness problem for Rabin tree automata. The structure of the decidability proofs
for the UULS and the DULS is briefly summarized in [EUZ 05]. The proof for the
TULS is an easy adaptation of the one for the DULS. The proof for the DULS exploits
an embedding technique that appends the infinite sequence of k-refinable infinite trees
to the rightmost full path of the k-ary tree. The same technique can be applied to the
case of the TULS, provided that we reverse the edges on the leftmost full path from a
given node upward. In [MON 04], Montanari and Puppis shows that one can embed
both the UULS and the DULS into the TULS by adding a unary predicate that identi-
fies a distinguished layer of the structure, namely, the bottom (resp., top) layer of the
UULS (resp, DULS). The decision problem for such an expanded structure has been
solved by reducing it to the acceptance problem for Rabin tree automata.

In this paper, we establish some interesting connections between the MSO theory
of one successor, denoted by MSO[<], and suitable fragments of (variants of) MSO
theories of ω-layered structures. In particular, we take into consideration ω-layered
structures expanded with the equi-level and equi-column predicates. The equi-level
predicate constrains two time points to belong to the same layer, while the equi-
column predicate constrains them to be at the same distance from the origin of the
layers they belong to. Definability and decidability issues for ω-layered structures
expanded with the equi-level and equi-column predicates have been systematically in-
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vestigated by Franceschet et al. in [FRA 06]1. In this paper we broaden the scope of
such an investigation. First, we introduce a notion of reducibility via interpretations
and we exploit it to compare the expressiveness of first-order (FO) and MSO logics
interpreted over the discrete linear order 〈N, <〉 and the 2-refinable UULS. One can
easily show that the logics of the latter structure are strictly more expressive than the
logics of the former one. However, we prove that the expansion of 〈N, <〉 with the
binary predicate (actually a function) flip [MON 00b], which expresses properties of
the binary representations of numbers, makes the resulting FO (resp., MSO) logic at
least as expressive as the FO (resp. MSO) logic over the UULS. Next, we introduce a
relaxed notion of reducibility, which allows us to define a mapping of formulas from
one logic to another one where each variable can be mapped into several variables,
instead of a single one, of possibly different types. By exploiting such a reduction,
and by encoding finite sets with natural numbers, we show how to translate formu-
las of MSO logic over 〈N, <〉 into equi-satisfiable formulas of the FO logic over the
2-refinable UULS expanded with a suitable predicate Path. We also provide the con-
verse reduction, thus showing that the satisfiability problems for the two logics are
actually inter-reducible.

As a matter of fact, the effective translation from FO[<, ↓0, ↓1, Path<, D0] to
MSO[<] has a nontrivial practical impact, since it allows one to map verification
problems for UULSs to verification problems for MSO[<], thus making it possible
to exploit the wide spectrum of techniques available for that logic.

We then consider the TULS equipped with the layer 0 predicate and either the
equi-level or the equi-column predicate. We exploit a different encoding of (possibly
infinite) chains (that is, subsets of paths) in order to reduce the satisfiability problem
for the chain fragment of MSO logic over the 2-refinable TULS to the satisfiability
problem for (full) MSO logic over 〈N, <〉. The converse reduction is accomplished by
embedding 〈N, <〉 inside the leftmost branch of the TULS. All together these results
provide alternative characterizations of the MSO theory of one successor in terms
of suitable theories of ω-layered structures. In addition, the characterization of the
chain fragment of MSO logic over the TULS equipped with the equi-column predicate
positively answers to a decision problem left open in [FRA 06], namely, the problem
of establishing whether the satisfiability problem for the chain/path fragment of MSO
logic over the 2-refinable DULS is decidable.

The rest of the paper is organized as follows. In Section 2 we introduce basic
concepts and notation, and we provide background knowledge on MSO logics of ω-
layered structures. In Section ?? we compare the expressiveness of FO and MSO
logics interpreted over the discrete linear order and the UULS. In Section ?? we show
that the satisfiability problems for MSO logic over 〈N, <〉 and for FO logic over the
2-refinable UULS expanded with the predicate Path are inter-reducible. Finally, in
Section ?? we prove that the satisfiability problems for MSO logic over 〈N, <〉 and
for the chain fragment of MSO logic interpreted over the UULS are inter-reducible.

1. In [FRA 06], the authors also provide a succinct account of existing results about definability
and decidability problems for k-ary trees expanded with equi-level and equi-column predicates.
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2. MSO logics of ω-layered structures

In this section we introduce classical monadic logics and interpret them over lay-
ered structures for time granularity.

DEFINITION 1. — (The language of monadic second-order logic) Let τ = c1, . . . ,
cr, u1, . . . , us, b1, . . . , bt be a finite alphabet of relational symbols, where c1, . . . , cr

(resp., u1, . . . , us, b1, . . . , bt) are constant symbols (resp., unary relational symbols,
binary relational symbols), and let P be an alphabet of (uninterpreted) unary rela-
tional symbols. The language MSO[τ ∪P] of monadic-second order logic over τ and
P is defined as follows:

– atomic formulas are of the forms x = y, x = ci, with 1 ≤ i ≤ r, ui(x), with
1 ≤ i ≤ s, bi(x, y), with 1 ≤ i ≤ t, x ∈ X , and P (x), where x, y are individual
variables, X is a set variable, and P ∈ P;

– formulas are built up from atomic formulas by means of the Boolean connectives
¬ and ∧, and the quantifier ∃ ranging over both individual and set variables.

In the following, we shall write MSOP [τ ] for MSO[τ ∪P] and we shall write MSO[τ ]
when P is meant to be the empty set. The symbols belonging to the signature τ are
interpreted over a suitable relational structure, such as, for instance, the setN of natural
numbers or an infinite tree, in the obvious way. Details can be found in [THO 97].

The satisfiability problem for MSO[τ ] (resp., MSOP [τ ]) with respect to a given re-
lational structure is the problem of establishing, for any given MSO[τ ]-formula (resp.,
MSOP [τ ]-formula) φ(x1, . . . , xm, X1, . . . , Xn), whether there exists a valuation of
free variables in {x1, . . . , xm, X1, . . . , Xn} (resp., of free variables in {x1, . . . , xm,
X1, . . . , Xn} and symbols in P) that satisfies φ. The MSO[τ ] (resp., MSOP [τ ]) the-
ory of a given relational structure (resp., P-labeled relational structure) is the set of all
and only the MSO[τ ]-sentences (resp., MSOP [τ ]-sentences) that hold in the structure
(resp., P-labeled structure). The decision problem for the MSO[τ ] (resp., MSOP [τ ])
theory of a given structure (resp., P-labeled structure) can be easily reduced to the
satisfiability problem for MSO[τ ] (resp., MSOP [τ ]) over such a structure (resp., P-
labeled structure). For this reason, hereafter we shall concentrate our attention on the
latter problem.

In the following, we shall also take into consideration the first-order fragment
FO[τ ] of MSO[τ ], over ω-layered structures, as well as its path (resp., chain) fragment
MPL[τ ] (resp., MCL[τ ]), which is obtained by constraining set variables to be evalu-
ated over paths (resp., chains), together with their P-variants FOP [τ ] and MPLP [τ ]
(resp., MCLP [τ ])2. It is worth pointing out that, while free set variables in the path
(resp., chain) fragments are evaluated over the set of paths (resp., chains), there are no
constraints on the valuation of symbols P in the first-order, path, and chain fragments.
As a consequence, we have that the satisfiability problem for FOP [τ ], MPLP [τ ], and
MCLP [τ ] is more difficult than that for FO[τ ], MPL[τ ], and MCL[τ ].

2. The definitions of path and chain differ from one ω-layered structure to the other and they
will be formally stated below.
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Figure 1. The 2-refinable upward unbounded layered structure.

To compare the various logics, we take advantage of a suitable notion of reducibil-
ity. We say that (the satisfiability problem for) a logic L is reducible to (the satisfiabil-
ity problem for) a logic L′, denoted L → L′, if there exists an effective translation of
L-formulas into equi-satisfiable L′-formulas (notice that the number and the types of
free variables in the former formulas may not coincide with the number and the types
of free variables in the latter formulas). Moreover, we say that L and L′ are inter-
reducible, denoted L À L′, if both L → L′ and L′ → L. It is immediate to see that if
L → L′ and L′ is decidable (resp., L is undecidable), then L is decidable (resp., L′ is
undecidable) as well. As a matter of fact, a well-known method to reduce the satisfi-
ability problem for a logic L to the satisfiability problem for a logic L′ is to define an
interpretation of L′ into L, namely, to find (i) a mapping ι from elements in the rela-
tional structure of L′ to elements in the relational structure of L and (ii) a mapping τ
from atomicL′-formulas toL-formulas with the same free variables in such a way that
an L′-formula φ(x1, ..., xm, X1, ..., Xn) holds with a valuation (c1, ..., cm, b1, ..., bn)
if and only if the corresponding formula τ(φ(x1, ..., xm, X1, ..., Xn)) holds with a
valuation (ι(c1), ..., ι(cm), ι(b1), ..., ι(bn)) (here the mapping ι is extended in the nat-
ural way to sets bi of elements and the mapping τ is extended to boolean combinations
and existential closures of atomic formulas). Notice that if there is an interpretation
of a logic L′ into a logic L, then L′ is trivially reducible to L. In such a particular
case, we say that L is at least as expressive as L′. If there is also a converse reduction
from L to L′ obtained via interpretation, then we say that L is as expressive as L′. Let
α be a unary (resp. binary) relational symbol. We say that α is definable in MSO[τ ]
if there is an interpretation of MSO[τ ∪ {α}], in particular, of atomic formulas of
the form α(x) (resp. α(x, y)), into MSO[τ ]. Clearly, if α is definable in MSO[τ ],
then MSO[τ ∪ {α}] is as expressive as MSO[τ ]. The notion of definability naturally
transfers to any fragment of MSO[τ ].

Upward unbounded layered structures.. Let U =
⋃

i≥0 Ti. For any k ≥ 2, the
k-refinable upward unbounded layered structure (UULS) is a triplet 〈U , (↓i)k−1

i=0 , <〉,
which intuitively represents a complete k-ary infinite tree generated from the leaves
(cf. Figure 1). The set U is the domain of the structure, defined as the union of
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Figure 2. The 2-refinable downward unbounded layered structure.

all non-negative layers, ↓i, with i = 0, . . . , k − 1, is a projection function such that
↓i (a0) = ⊥ for all a ∈ N and ↓i (ab) = cd if and only if b > 0, d = b − 1, and
c = a ·k+ i, and < is the total ordering of U given by the inorder (left-root-right) visit
of the tree shaped structure. A path over an UULS is a subset of the domain whose
elements can be written as a possibly infinite sequence x0, x1, . . . such that, for every
i > 0, there exists 0 ≤ j < k such that xi−1 =↓j (xi). Notice that every pair of
infinite paths over an UULS may differ on a finite prefix only. A chain is any subset
of a path.

Downward unbounded layered structures.. Let D =
⋃

i≤0 Ti. For any k ≥ 2,
the k-refinable downward unbounded layered structure (DULS) is a triplet 〈D, (↓i

)k−1
i=0 , <〉, which can be viewed as an infinite sequence of complete k-ary infinite trees

(cf. Figure 2). The set D is the domain of the structure, defined as the union of
all non-positive layers, ↓i, with i = 0, . . . , k − 1, is a projection function such that
↓i (ab) = cd if and only if d = b−1 and c = a ·k + i, and < is the total ordering ofD
induced by the natural ordering on the top layer T0 (i.e. 00 < 10 < 20 < . . .) and by
the preorder (root-left-right) visit of the elements belonging to the same tree. A path
over a DULS is a subset of the domain D whose elements can be written as a possibly
infinite sequence x0, x−1, . . . such that, for every i ≤ 0, there exists 0 ≤ j < k such
that xi−1 =↓j (xi). A chain is any subset of a path.

Totally unbounded layered structures.. Let T =
⋃

i∈Z Ti. For any k ≥ 2, the
k-refinable totally unbounded layered structure (TULS) is simply the union of the k-
refinable DULS and the k-refinable UULS (cf. Figure 3). It can be formally defined
as the triplet 〈T , (↓i)k−1

i=0 , <〉, where ↓i, with i = 0, . . . , k−1, is a projection function
such that ↓i (ab) = cd if and only if d = b − 1 and c = a · k + i, and < is the total
ordering of T given by the inorder (left-root-right) visit of the tree shaped structure.
A path over a TULS is a subset of the domain whose elements can be written as a
possibly bi-infinite sequence . . . , x−1, x0, x1, . . . such that, for every i ∈ Z, there
exists 0 ≤ j < k such that xi−1 =↓j (xi). A chain is any subset of a path.
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Figure 3. The 2-refinable totally unbounded layered structure.

A P-labeled UULS (resp. DULS, TULS) is obtained by augmenting, for each
predicate in P , a UULS (resp. DULS, TULS) with a set P ⊆ U (resp. P ⊆ D,
P ⊆ T ), which represents all elements where the predicate holds.

The theories MSO[<, (↓i)k−1
i=0 ] of UULSs (resp. DULSs, TULSs) are monadic

second-order theories with the equality and the binary relational symbols <, ↓0, . . . , ↓k−1.
Notice that the theories of UULSs and TULSs are equivalent to their corresponding
theories devoid of the ordering relation < (this because < can be defined both in the
UULSs and in the TULSs by suitable MSO[(↓i)k−1

i=0 ]-formulas which use the projec-
tion functions only). On the other hand, the theories of DULSs devoid of the ordering
relation < are strictly less expressive than the corresponding plain theories, because
the ordering on the top layer T0 can not be defined on the grounds of the projection
functions only. Moreover, the theories of DULSs and UULSs are embeddable into the
theories of TULSs expanded with the unary predicate T0.

The decidability of the theories of DULSs, UULSs, and TULSs (possibly ex-
tended with the predicate T0) has been proved by reducing each the underlying re-
lational structures to suitable ‘collapsed’ structures. In particular, the theory of the
k-refinable DULS is embeddable into the monadic second-order theory of the in-
finite complete k-ary tree, and the theory of the k-refinable UULS is embeddable
into the monadic second-order theory of the k-ary systolic tree [MON 99, MON 00a,
MON 02, MON 04].

THEOREM 2. — The satisfiability problem for MSOP [<, (↓i)k−1
i=0 ] over the k-refinable

DULS, UULS, and TULS is (nonelementarily) decidable.

Figure 4 summarizes the relationships between the considered logics induced by re-
ducibility (an arrow from L to L′ stands for L → L′). From Theorem 2 it follows that
all the satisfiability problem for all logics in Figure 4, when interpreted over UULSs,
DULSs, and TULSs, are decidable.
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Figure 4. The hierarchy of logics over layered structures.

3. On the expressiveness of logics of linear and layered structures

In this section, we discuss reducibility relationships between logics over (discrete)
linear temporal structures and logics over upward unbounded layered ones. Here, we
focus on reductions obtained via interpretations.

In [?], Montanari et al. describe in detail how the basic temporal operators for time
granularity, namely, the displacement, contextualization, and projection operators, can
be defined in MSO[<, ↓0, ↓1]. As an example, we report the definition of the unary
predicate ∆0 holding at the origin of each layer. The predicate ∆0 is interpreted as
the set of all and only the elements belonging to the leftmost branch of an upward
unbounded layered structure, which is defined as the least set containing the element
00 and all its ancestors 01, 02, . . . (cf. Figure ??). This predicate can be defined in
MSO[<, ↓0, ↓1] as follows. Given a second-order formula φ(X), with a free set vari-
able X , let µ(φ(X))(x) be the following second-order formula, with a free individual
variable x:

∃X (x ∈ X ∧ φ(X) ∧ ∀Y (φ(Y ) → ∀y(y ∈ X → y ∈ Y ))).

µ(φ(X))(x) evaluates to true if and only if the valuation for x belongs to the smallest
valuation for X for which φ(X) holds true. Using the operator µ, ∆0(x) can be
expressed as follows:

µ (00 ∈ X ∧ ∀y, z ((z ∈ X ∧ ↓0 (y) = z) → y ∈ X)) (x),

where 00 ∈ X is a shorthand for ∃y (y ∈ X ∧ ∀z (y ≤ z)). It is easy to verify
that such a formula captures the smallest valuation for X which contains 00 and it is
closed parent-wise. This shows that ∆0 is definable in MSO[<, ↓0, ↓1].

Now, we show that MSO[<, ↓0, ↓1] is reducible (via interpretation) to MSO[<
, flip], which is a proper extension of MSO[<] with the binary relation symbol flip
[MON 99, MON 00b, THO 03]. The language of MSO[<, flip] is defined in the
standard way. The domain of the underlying relational structure is the set of natural
numbers N. The relational symbol < is interpreted as the usual ordering over N, while
the relational symbol flip is interpreted as a unary function, which, for any natural
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Figure 5. The structure of the function flip.
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Figure 6. The concrete 2-refinable upward unbounded layered structure.

number x > 0, returns the natural number x − x′, where x′ is the least power of 2,
with a non-null coefficient, that occurs in the binary representation of x.

DEFINITION 3 (THE FUNCTION flip). — The function flip : N+ → N is such that,
for all x ∈ N+,

flip(x) = y iff x =
n∑

j=0

2ij , with in > in−1 > . . . > i0 ≥ 0, and y = x− 2i0 .

The function flip is not defined for x = 0; however, totality can be recovered
by extending it with flip(0) = 0. (Notice that flip(x) < x, for all x ∈ N+, and
flip(x) ≤ x, for all x ∈ N. Later, we will often use these properties of flip to
simplify definitions.) Furthermore, it is useful to add a maximum element ∞ to N,
with flip(∞) = 0. A graphical representation of the function flip is given in Figure
5.

An interpretation of MSO[<, ↓0, ↓1] into MSO[<, flip] can be defined as follows
[?]. First, it is possible to rename each node ab of the 2-refinable upward unbounded
layered structure by a positive natural number ι(ab) = 2b + a2b+1. The resulting



10

structure is called concrete 2-refinable upward unbounded layered structure and it can
be viewed as the (discrete) linear order 〈N+, <〉 expanded with two functions ↓0 and
↓1 such that, for every x = 2b + a2b+1 ∈ N+, ↓0 (x) = x − 2b−1 and ↓1 (x) =
x + 2b−1. A fragment of this concrete structure is depicted in Figure 6. Notice that
all odd numbers are associated with layer T0, while even numbers are distributed over
the remaining layers. Notice also that the labeling of the concrete structure does not
include the number 0. In the following, we will see that it is convenient to consider 0
as the image of the first node of an imaginary additional finest layer, whose remaining
nodes have no corresponding number in N (notice that the node corresponding to 0
turns out to be the left son of the node corresponding to 1). It is worth to remark that
the addition/removal of a (definable) node in a structure preserves the expressiveness
of the corresponding logic. For such a reason, in the following, we do not focus on
the encoding of the element 0.

The binary relations ↓0 and ↓1 of the concrete 2-refinable UULS cannot be defined
neither in FO[<] nor in MSO[<] (this can be easily seen by considering, for instance,
the relation ↓0 restricted to the elements of the leftmost branch, which coincides with
the relation {(2x, x) : x ∈ N+}). This implies that MSO[<, ↓0, ↓1] (resp. FO[<, ↓0
, ↓1]) is strictly more expressive than MSO[<] (resp. FO[<]). However, both relations
↓0 and ↓1 can be defined in terms of the function flip, as shown below. For every even
natural number x (the relations ↓0 and ↓1 are not defined on odd natural numbers), we
have:

↓0 (x) = max{y : y < x, flip(y) = flip(x)}, and (1)

↓1 (x) = max{y : flip(y) = x}. (2)

Such a correspondence can be translated into suitable first-order logical formulas, thus
implying that both relations ↓0 and ↓1 are definable in FO[<, flip].

THEOREM 4. — MSO[<, flip] (resp. FO[<, flip]) is at least as expressive as
MSO[<, ↓0, ↓1] (resp. FO[<, ↓0, ↓1]) over the (concrete) UULS.

PROOF 5. — In order to prove the claim it suffices to provide suitable FO[<, flip]-
formulas τ(↓0 (x, y)) and τ(↓1 (x, y)) for the interpretation of the two atomic formu-
las ↓0 (x, y) and ↓1 (x, y), belonging to both the logical languages MSO[<, flip] and
FO[<, flip]. Such formulas are defined as follows:

τ(↓0 (x, y)) := y < x ∧ flip(y) = flip(x) ∧
∀z ((z < x ∧ flip(z) = flip(x)) → (z = y ∨ z < y));

τ(↓1 (x, y)) := flip(y) = flip(x) ∧
∀z ((flip(z) = flip(x)) → (z = y ∨ z < y)).

n

In [MON 00b], show that the satisfiability problem for MSO[<, flip] is (non-
elementarily) decidable. From such a result and from Theorem 4 it immediately fol-
lows that the satisfiability problem for MSO[<, ↓0, ↓1] is decidable. The same result
holds among the first-order fragments of the considered logics.



11

We now want to give an interpretation of MSO[<, flip] (resp. FO[<, flip]) into a
suitable monadic second-order (resp. first-order) logical language over the 2-refinable
(concrete) UULS. In order to do that we denote by ↓∗0 the reflexive and transitive
closure of ↓0 and we define the function flip in terms of ↓∗0 and ↓1:

flip(x) = y iff (↓1 (y), x) ∈↓∗0 or (y = 0 ∧ (x, 0) ∈↓∗0). (3)

From such a correspondence it follows that the relation flip is definable in FO[<, ↓∗0
, ↓1].

THEOREM 6. — MSO[<, ↓∗0, ↓1] (resp. FO[<, ↓∗0, ↓1]) over the (concrete) UULS is
at least as expressive as MSO[<, flip] (resp. FO[<, flip]).

PROOF 7. — We simply need to translate the atomic FO[<, flip]-formula flip(x, y)
(holding true if and only if y = flip(x)) into an equivalent FO[<, ↓∗0, ↓1]-formula
σ(flip(x, y)). This can be done by defining the mapping σ as follows:

σ(flip(x, y)) := (∃z (↓1 (y, z) ∧ ↓∗0 (z, x))) ∨
(∀z (y = z ∨ y < z) ∧ ↓∗0 (x, y)).

n

As a concluding remark, it is worth to notice that the projection function ↓0 can be
defined in FO[<, ↓∗0, ↓1]:

↓0 (x) = y iff ↓∗0 (x, y) ∧ ¬∃z (y < z ∧ ↓∗0 (x, z)).

This allows us to conclude that FO[<, ↓∗0, ↓1] (resp. MSO[<, ↓∗0, ↓1]) is at least as
expressive as FO[<, ↓0, ↓1] (resp. MSO[<, ↓0, ↓1]). In fact, one can easily show
that FO[<, ↓0, ↓1] is less expressive than FO[<, ↓∗0, ↓1] (for instance, the unary pred-
icate {2n : n ∈ N} is definable in FO[<, ↓∗0, ↓1] but not in FO[<, ↓0, ↓1]). On
the other hand, since the reflexive and transitive closure of a binary predicate is al-
ways in monadic second-order logic, we have that MSO[<, ↓∗0, ↓1] is as expressive as
MSO[<, ↓0, ↓1].

The relationships among the various first-order and monadic second-order logics
over linear and layered structures are summarized in Figure 7, where a bold arrow from
a logicL to another logicL′ means thatL′ is at least as expressive asL (in other words,
bold arrows represent reducibility relations obtained via logical interpretations).

4. An alternative characterization of MSO[<]

In the following, we provide a characterization of MSO[<] in terms of the first-
order logic over the expanded 2-refinable UULS (U , <, ↓0, ↓1, Path<, D0). The
predicate Path< subsumes both the equi-level predicate T and the ancestor predi-
cate ↓?, while D0 holds at all and only the elements belonging to the leftmost branch
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Figure 7. The expressiveness of logics over linear and layered structures.

of the tree. From the point of view of expressiveness, such a result defines the pre-
cise relationship that holds between the logic MSO[<] over the flat structure of nat-
ural numbers and the logic MSO[<, ↓0, ↓1, Path<, D0] over the UULS, showing the
rather surprising fact that the satisfiability problem for MSO[<] is reducible to the sat-
isfiability problem for a suitable first-order logic over the UULS. As a matter of fact,
the effective translation from FO[<, ↓0, ↓1, Path<, D0] to MSO[<] has a nontrivial
practical impact, since it allows one to map verification problems for UULSs to ver-
ification problems for MSO[<], thus making it possible to exploit the wide spectrum
of techniques available for that logic.

We start by defining the predicate Path<. The predicate Path<(x, y, z, w) over
the UULS holds true if and only if T (x, z) (x and z belong to the same layer), T (y, w)
(y and w belong to the same layer), and there exist two finite downward paths, one
from x to y and the other from z to w, such that, for each right projection in the path
from x to y, there exists a corresponding right projection in the path from z to w.
More formally, we require that

– T (x, z) and T (y, w);
– there are two paths c0, . . . , cn and b0, . . . , bn such that x = c0, y = cn, z = b0,

w = bn, ci+1 =↓ic (ci), and bi+1 =↓ib
(bi), with ib, ic ∈ {0, 1} for 0 ≤ i ≤ n− 1;

– ↓ic=↓1 implies ↓ib
=↓1, for all 0 ≤ i ≤ n− 1.

It is immediate to see that the predicate Path<(x, y, z, w) subsumes the equi-level
predicate T (x, y), since T (x, y) is equivalent to Path<(x, x, y, y). Moreover it also
subsumes the ancestor predicate ↓? (x, y). By definition, ↓? (x, y) holds true if and
only if either x is equal to y or x is an ancestor of y, that is, there exists a finite path
c0, . . . , cn such that c0 = x, cn = y, and ci+1 =↓i (ci), for 0 ≤ i ≤ n − 1, and
thus ↓? (x, y) is equivalent to Path<(x, y, x, y) (in the following we will often use
↓? (x, y) as a shorthand for Path<(x, y, x, y)).

THEOREM 8. — FO[<, ↓0, ↓1, Path<, D0] over the 2-refinable UULS is inter-reducible
to MSO[<].

PROOF 9. — We first prove that the logic MSO[<] can be reduced to the logic
FO[<, ↓0, ↓1, Path<, D0]. As a first step, we replace MSO[<] with Weak MSO[<]
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(WMSO[<]), where second-order quantification refers to finite sets only. As shown by
McNaughton [THO 90a], MSO[<] and WMSO[<] have the same expressive power,
and thus such a replacement is legitimate. Moreover, we replace WMSO[<] with
the simpler, but equivalent, formalism WMSO0[<] where only second-order variables
occur and the atomic formulas are of the forms X ⊆ Y (X is a subset of Y ) and
Succ(X, Y ) (X and Y are the singletons {x} and {y}, respectively, and y = x + 1).

The reduction is based on a suitable coding of (finite) sets of natural numbers into
elements of the concrete 2-refinable UULS. More precisely, any second-order variable
X of WMSO0[<] is replaced by a first-order variable x of FO[<, ↓0, ↓1, Path<, D0]
and any interpretation ν(X) of X is mapped into an interpretation µν(x) of x as
follows:

– if ν(X) = ∅, then µν(x) is the origin (i.e. the lower left element) of the UULS;
– if ν(X) = {n0, n1, . . . , ns}, then µν(x) is the element ab of the UULS such

that 2b + a2b+1 = 2ns + . . . + 2n1 + 2n0 .
It is worth pointing out that in the logic WMSO0[<] the interpretation ν(X) of a
second-order variable X is finite, and thus rule 2 is effective. An intuitive account
of the mapping ν can be given in terms of the concrete 2-refinable UULS depicted in
Figure 6: the set ν(X) is the set of positions of the non-zero coefficients of the binary
representation of µν(x).

Later in the proof, we will take advantage from the following interpretation of the
set ν(X) as a path over the concrete UULS. First notice that, since in WMSO0[<] the
interpretation of set variables is finite, ν(X) has not only a least element min(ν(X)),
but also a greatest element max(ν(X)). We associate ν(X) with the path from the ori-
gin of the layer Tmax(ν(X)) to the element µν(x), belonging to the layer Tmin(ν(X)).
Such a path provides an encoding of the elements of ν(X) as follows: max(ν(X))
(i.e. the index of the layer of the first element in the path) and min(ν(X)) (i.e. the
index of the layer of the last element in the path) belong to ν(X); moreover, if the
element ab of the UULS, with min(ν(X)) < b ≤ max(ν(X)), belongs to the path,
then ↓1 (ab−1) belongs to the path if (and only if) b−1 ∈ ν(X) and ↓0 (ab−1) belongs
to the path if (and only if) b− 1 6∈ ν(X).

On the ground of the above defined correspondence, we can translate every of
WMSO0[<]-formula φ into an FO[<, ↓0, ↓1, Path<, D0]-formula τ(φ), where the
mapping τ is inductively defined as follows:

τ(Succ(X,Y )) := D0(x) ∧ D0(y) ∧ ↓0 (y) = x;
τ(X ⊆ Y ) := (x = y) ∨

(x < y ∧ ∃z, w (D0(z) ∧ (Path<(z, x, w, y)∨
∃h, k (Path<(z, x, w, k) ∧ h =↓1 (k)∧ ↓? (h, y)))));

τ(φ ∧ ψ) := τ(φ) ∧ τ(ψ);
τ(¬φ) := ¬τ(φ);

τ(∃X φ) := ∃x τ(φ).

The rules for atomic formulas can be explained by taking into account the relation-
ship that holds between interpretations of set variables in WMSO0[<] and interpreta-
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tions of the corresponding individual variables in FO[<, ↓0, ↓1, Path<, D0] as well
as the structure of the concrete 2-refinable UULS. As for the formula Succ(X,Y ), it
suffices to notice that singletons are mapped into elements which are powers of two,
and thus belong to the leftmost branch of the concrete UULS, and that the successor
relation can be directly captured by the left projection. The translation of the formula
X ⊆ Y is more involved. The case in which X = Y is trivial, and thus we concentrate
our attention on the case X ⊂ Y . As anticipated, we take advantage from the interpre-
tation of ν(X) and ν(Y ) as paths over the concrete UULS. In order to guarantee that
X ⊂ Y we have to check that at each layer Ti, with min(ν(X)) < i ≤ max(ν(X)),
if the path associated with ν(X) follows a right projection, then the path associated
with ν(Y ) must follow a right projection as well (notice that in general the path as-
sociated with ν(Y ) may be longer than the one associated with ν(X)). This can be
ensured by exploiting predicate Path<.

From the given translation of WMSO0[<] into FO[<, ↓0, ↓1, Path<, D0] and from
the correspondence between the interpretation of set variables in WMSO0[<] and the
interpretation of the corresponding individual variables in FO[<, ↓0, ↓1, Path<, D0],
it is not difficult to show that a WMSO0[<]-formula φ is satisfiable, with an interpre-
tation ν, if and only if τ(φ) is satisfiable, with the interpretation µν .

Let us consider now the opposite reduction, namely, from the logic FO[<, ↓0, ↓1
, Path<, D0] to the logic MSO[<]. Also in this case we assume to have an injective
mapping each first order variable x of FO[<, ↓0, ↓1, Path<, D0] to a second order
variable X of MSO[<]. The encoding of the elements of the UULS into natural num-
bers is exactly the reverse of the encoding considered in the opposite case, which
induces, for an interpretation µ over the UULS, an interpretation νµ over the natural
numbers. A formula φ of FO[<, ↓0, ↓1, Path<, D0] is translated into a formula σ(φ)
of FO[<] by a function σ inductively defined as follows:

σ(x = y) := X = Y ;
σ(D0(x)) := ∃z (z ∈ X ∧ ∀h (h ∈ X → h = z));
σ(x < y) := ∃z (z ∈ Y ∧ z 6∈ X ∧

∀w ((w ∈ X ∧ w 6∈ Y ) → w < z));
σ(Path<(x, y, z, w)) := ¬∃z (z ∈ X ∨ z ∈ Y ∨ z ∈ Z ∨ z ∈ W ) ∨

∃h, k (h ∈ X ∧ h ∈ Z ∧ k ∈ Y ∧ k ∈ W ∧
∀v (v ∈ X → h ≤ v ∧ v ∈ Z → h ≤ v) ∧
∀v (v ∈ Y → k ≤ v ∧ v ∈ W → k ≤ v) ∧
∀v ((v ∈ X ∧ v > h) → v ∈ Y ∧

(v ∈ Y ∧ v > h) → v ∈ X) ∧
∀v ((v ∈ Z ∧ v > k) → v ∈ W∧

(v ∈ W ∧ v > k) → v ∈ Z) ∧
∀v ((v < h ∧ k ≤ v ∧ v ∈ Y ) → v ∈ W ));
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σ(↓0 (x) = y) := ∃z (z ∈ X ∧ z 6∈ Y ∧
∀w (w ∈ X → z ≤ w) ∧
∀w ((w ∈ X ∧ z < w) → w ∈ Y ∧

(w ∈ Y ∧ z ≤ w) → w ∈ X ∧
(w ∈ Y ∧ w < z) → z = w + 1) ∧

∃w (w ∈ Y ∧ w < z));
σ(↓1 (x) = y) := ∃z (z ∈ X ∧

∀w (w ∈ X → z ≤ w) ∧
∀w ((w ∈ X ∧ z ≤ w) → w ∈ Y ∧

(w ∈ Y ∧ z ≤ w) → w ∈ X∧
(w ∈ Y ∧ w < z) → z = w + 1) ∧

∃w (w ∈ Y ∧ w < z));
σ(φ ∧ ψ) := σ(φ) ∧ σ(ψ);

σ(¬φ) := ¬σ(φ);
σ(∃x φ) := ∃X σ(φ).

The translation σ can be better understood by considering the concrete UULS structure
over natural numbers. The predicate D0(x) holds if x is interpreted over a power of
two, namely if µν(X) is a singleton.

As for the predicate Path<(x, y, z, w), we have that the elements x and z (resp.,
y and w) belong to the same level if their corresponding sets X and Z (resp. Y and
W ) have the same least element. Moreover, the predicate ↓? (x, y) holds if the path
from the leftmost branch to x, described by the set X , is a prefix of the path from the
leftmost branch to y, described by Y .
The translation of the projections ↓0 and ↓1 exploits the fact that, iff x = 2kn +2kn−1+
. . . + 2k0 , with kn > kn−1 > . . . > k0 > 0, then ↓0 (x) = y if y = x− 2k0 + 2k0−1

and ↓1 (x) = y if y = x + 2k0 + 2k0−1. n

5. Another characterization of MSO[<]

In this section, we provide another characterization of MSO[<] in terms of the
chain fragments of monadic second-order logics interpreted over TULSs expanded
with the unary predicate T0 and with either the equi-level predicate T or the equi-
column predicate D. The binary equi-level predicate T allows one to check whether
two given elements of a layered structure belong to the same layer, while the equi-
column predicate D allows one to check whether two given elements are at the same
distance from the origin of the layer they belong to. In the case of TULSs, we can
formally define the predicate T and D as follows:

T := {(ab, cb) : a ∈ N, c ∈ N, b ∈ Z};
D := {(ab, ad) : a ∈ N, b ∈ Z, d ∈ Z}.

The results presented in this section imply that the satisfiability problem for the
chain fragments of monadic second-order logics interpreted over the structures 〈T , (↓i

)k−1
i=0 , <, T0, T 〉 and 〈T , (↓i)k−1

i=0 , <, T0, D〉 is decidable. Such results are taken from
[tes] and partly based on a proof method introduced by Thomas in [THO 90b], which
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allows one to reduce the chain fragment of a monadic second-order logic over a tree-
shaped strcuture to a monadic second-order logic over a discrete linear structure. As
usual, we consider, for simplicity, 2-refinable layered structures.

THEOREM 10. — MCL[<, ↓0, ↓1, T0, T ] over the TULS is inter-reducible to MSO[<].

PROOF 11. — We show that the logic MSO[<] over the natural numbers is reducible
to the logic MCL[<, ↓0, ↓1, T0, T ] over the TULS. We first replace MSO[<] with
the equivalent framework MSO0[<] where only second-order variables occur and the
atomic subformulas are of the forms X ⊆ Y and Succ(X,Y ). We denote by D0

the unary predicate that consists of all and only the elements belonging to the left-
most upward branch of the 2-refinable TULS. Such a predicate can be easily de-
fined by a formula in the chain fragment of monadic second-order logic over the
TULS. Thus, we can translate a given MSO0[<]-formula φ into an equi-satisfiable
MCL[<, ↓0, ↓1, T0, T ]-formula τ(φ) by constraining each second-order variable to be
interpreted with elements from D0. Formally, the mapping τ is inductively defined as
follows:

τ(X ⊆ Y ) := Y ⊆ D0 ∧X ⊆ Y ;
τ(Succ(X,Y )) := X ⊆ D0 ∧ ∀x, y(x ∈ X ∧ y ∈ Y → x =↓0 (y));

τ(φ ∧ ψ) := τ(φ) ∧ τ(ψ);
τ(¬φ) := ¬τ(φ);

τ(∃Xφ) := ∃X τ(φ).

Since D0 is definable in MCL[<, ↓0, ↓1, T0, T ], we have that MSO0[<] (and hence
MSO[<]) is reducible to MCL[<, ↓0, ↓1, T0, T ].

As for the converse result, we have to translate a given MCL[<, ↓0, ↓1, T0, T ]-
formula into an equi-satisfiable MSO[<]-formula. We define such a translation in
two steps. We first translate an MCL[<, ↓0, ↓1, T0, T ]-formula into an equi-satisfiable
monadic second-order formula over the bi-infinite linear structure 〈Z, <〉. Then, we
exploit stardard constructions in logic to map the latter formula to an equi-satisfiable
MSO[<]-formula over 〈N, <〉. As for the first step, we encode chain variables with
suitable pairs of second-order variables and then we give rules to rewrite atomic for-
mulas. Notice that the ordering < of the TULS can be easily defined by a formula in
the chain fragment of its monadic second-order logic. Moreover, we can assume, with-
out loss of generality, that second-order variables of MCL[<, ↓0, ↓1, T0, T ]-formulas
are interpreted by non-empty chains. Therefore, we can restrict ourselves to the equiv-
alent setup of MCL[<, ↓0, ↓1, T0, T ] where variables are instanciated by non-empty
chains and atomic formulas are of the forms X ⊆ Y (chain X is included in chain Y ),
↓i (X, Y ) (X and Y are singletons {x} and {y}, respectively, and y =↓i (x)), T0(X)
(X is a singleton {x}, with x ∈ T0), and T (X, Y ) (X and Y are singletons {x} and
{y}, respectively, and x and y belong to the same layer).

As a preliminary remark, notice that, for every non-empty chain C over the TULS
and for every b ∈ Z, there is at most one a ∈ N such that ab is an element of C. Now,



17

we explain how one can encode a generic non-empty chain C with two subsets ZC

and WC of Z. We say that P ⊆ T is a cover of a non-empty chain C if P is a maximal
path including C, namely, if C ⊆ P and for every b ∈ Z, there is exactly one a ∈ N
such that ab ∈ P . We denote by PC the leftmost cover of C, that is, the (unique)
cover PC such that, whenever b is the least integer for which there is a ∈ N satisfying
ab ∈ C, then every descendant of ab along PC is of the form cd, with c = 2b−da and
d ≤ b. Then, we define ZC and WC in such a way that, for every b ∈ Z,

– b ∈ ZC iff there is a (unique) odd index a ∈ N such that ab ∈ PC (namely, ab is
a ↓1-successor in the path PC);

– b ∈ WC iff there is a (unique) index a ∈ N such that ab ∈ C (namely, C
intersects the layer Tb).
Intuitively, ZC represents those layers which are reached by right-hand side projec-
tions along the path PC , while WC selects only those layers which intersect the chain
C. Notice that the encoding (ZC ,WC) determines in an unambiguous way the non-
empty chain C. Moreover, we can map the above construction in the logic. Precisely,
for each chain variable X , we introduce two set variables ZX and WX (to be in-
stantiated by sets of integers) and we translate a given MCL[<, ↓0, ↓1, T0, T ]-formula
φ to an equi-satisfiable MSO[<]-formula σ(φ). For the sake of simplicity, we ex-
istentially close the formula φ, thus obtaining an equivalent MCL[<, ↓0, ↓1, T0, T ]-
sentence. The mapping σ is inductively defined as follows (for the sake of readability,
we introduce various obvious shorthands):

σ(X ⊆ Y ) := WX ⊆ WY ∧ (ZX = ZY ∨
∃w (w ∈ WX ∧ ∀w′ (w′ ∈ WX → w′ ≥ w) ∧

∀z (z ≥ w → (z ∈ ZX ↔ z ∈ Zy))));
σ(↓0 (X,Y )) := ∃w (ZX = ZY ∧WX = {w} ∧WY = {w − 1});
σ(↓1 (X,Y )) := ∃w (ZX ∪ {w − 1} = ZY ∧WX = {w} ∧WY = {w − 1});

σ(T0(X)) := WX = {0};
σ(T (X,Y )) := ∃w (WX = WY = {w});
σ(φ ∧ ψ) := σ(φ) ∧ σ(ψ);

σ(¬φ) := ¬σ(φ);
σ(∃X φ) := ∃ZX ,WX (σ(φ) ∧ WX 6= ∅ ∧ ∀w (w ∈ WX →

(∀w′(w′ 6∈ WX ∨ w′ ≥ w) → ∀z(z 6∈ ZX ∨ z ≥ w)))).

It is routine to check that the MCL[<, ↓0, ↓1, T0, T ]-sentence φ holds in the structure
〈T , ↓0, ↓1, <, T0, T 〉 if and only if σφ holds in 〈Z, <〉.

It remains to prove that MSO[<] over 〈Z, <〉 is reducible to MSO[<] over 〈N,
<〉. In order to do that, we denote by even and odd the (definable) unary predicates
{2n : n ∈ N} and {2n + 1 : n ∈ N}, respectively, and then we translate any given
formula over 〈Z, <〉 into an equi-satisfiable formula over 〈N, <〉 by replacing every
atomic formula of the form x < y with the formula (odd(x)∧ even(y))∨ (even(x)∧
even(y)∧x < y)∨(odd(x)∧odd(y)∧y < x). This shows that MCL[<, ↓0, ↓1, T0, T ]
is reducible to MSO[<]. n
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THEOREM 12. — MCL[<, ↓0, ↓1, T0, D] over the TULS is inter-reducible to MSO[<].

PROOF 13. — We first show that the logic MSO[<] over the natural numbers is
reducible to the logic MCL[<, ↓0, ↓1, T0, D] over the TULS. In a way similar to the
proof of Theorem 10, we replace MSO[<] with the equivalent framework MSO0[<]
where only second-order variables occur and the atomic subformulas are of the forms
X ⊆ Y and Succ(X, Y ). Then, we denote by D0 the leftmost upward branch of the
2-refinable TULS. Such a predicate can be defined by a suitable formula in the chain
fragment of monadic second-order logic over the TULS. Finally, we translate a given
MSO0[<]-formula φ into an equi-satisfiable MCL[<, ↓0, ↓1, T0, D]-formula τ(φ), by
following the same construction provided in the proof of Theorem 10. Since D0 is
definable in MCL[<, ↓0, ↓1, T0, D], we have that MSO0[<] (and hence MSO[<]) is
reducible to MCL[<, ↓0, ↓1, T0, D].

As for the converse result, in order to make it possible to check whether two el-
ements of the TULS lie on the same column, we need to encode non-empty chains
by suitable values and sets over a discrete linear structure. Notice that the order-
ing < of the TULS can be easily defined by a formula in the chain fragment of
monadic second-order logic. Thus, we can restrict ourselves to the equivalent setup of
MCL[<, ↓0, ↓1, T0, D] where variables are instanciated with non-empty chains over
the 2-refinable TULS and atomic formulas are of the forms X ⊆ Y (chain X is in-
cluded in chain Y ), ↓i (X,Y ) (X and Y are singletons {x} and {y}, respectively,
and y =↓i (x)), T0(X) (X is a singleton {x}, with x ∈ T0), and D(X,Y ) (X and
Y are singletons {x} and {y}, respectively, and x and y belong to the same column).
Then, we existentially close an MCL[<, ↓0, ↓1, T0, D]-formula to be interpreted over
〈T , (↓i)k−1

i=0 , <, T0, D〉 and we translate the corresponding sentence φ into an equiv-
alent MSO[<,neg]-sentence σ(φ) over the structure 〈Z ∪ {∞}, <, neg〉, where ∞
denotes a special element not belonging to Z and neg denotes the binary relation
{(z,−z) : z ∈ Z}. Later, we will show that the logic MSO[<,neg] over the structure
〈Z ∪ {∞}, <, neg〉 is reducible, in its turn, to the logic MSO[<] over 〈N, <〉.

The idea for the translation from MCL[<, ↓0, ↓1, T0, D] to MSO[<,neg] is to
encode a non-empty chain C by an integer sC and three subsets ZC ,WC , QC of N.
We denote by PC the rightmost cover of C, formally, the superset of C that contains
exactly one element ab of the TULS for each b ∈ Z and such that, whenever b is the
least integer for which there is a satisfying ab ∈ C, then every descendant of ab along
PC is of the form cd, with c = 2b−d(a + 1) − 1 and d ≤ b. We now distinguish
between two cases: either PC coincides with the leftmost branch of the TULS (this
happens when C is a downward infinite chain lying entirely on the leftmost branch),
or there is a minimum index i ∈ Z such that 0i ∈ PC . In the former case, we set
sC = ∞, ZC = ∅, WC = {i ≥ 0 : 0−i ∈ C}, and QC = {i > 0 : 0i ∈ C}. In
the latter case, we define sC as the minimum i ∈ Z such that 0i ∈ PC and we define
ZC ,WC , QC ⊆ N as follows:

– b ∈ ZC iff there is a (unique) odd index a ∈ N such that asC−b ∈ PC (namely,
asC−b is a ↓1-successor in the path PC);
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– b ∈ WC iff there is a (unique) index a ∈ N such that asC−b ∈ C (namely, C
intersects the layer TsC−b);

– b ∈ QC iff b > 0 and 0sC+b ∈ C (namely, C intersects the layer TsC+b).
Notice that, in both cases, the encoding (sC , ZC ,WC , QC) uniquely determines the
non-empty chain C. Switching to logic, we introduce, for each chain variable X , a
first-order variable sX and three second-order variables ZX , WX , and QX . Then,
we translate an MCL[<, ↓0, ↓1, T0, D]-sentence φ to an MSO[<,neg]-sentence σ(φ)
inductively as follows:

σ(X ⊆ Y ) := (WX ⊆ WY ) ∧ (QX ⊆ QY ) ∧
((sX = sY = ∞) ∨ (sX = sY 6= ∞∧ ZX = ZY ) ∨
(sX = sY 6= ∞∧
∃w (w ∈ WX ∧ ∀w′(w′ ∈ WX → w ≤ w′)∧

∀z(z ≥ w → (z ∈ ZX ↔ z ∈ ZY )))));
σ(↓0 (X,Y )) := (sY = sX − 1 ∧ ZX = ZY ∧

WX = WY = {0} ∧ QX = QY = ∅) ∨
∃w (sX = sY 6= ∞ ∧ ZX = ZY ∪ {w − 1} ∧

WX = {w} ∧ WY = {w − 1} ∧ QX = QY = ∅);
σ(↓1 (X,Y )) := (sX = sY 6= ∞) ∧ (ZX = ZY ) ∧

∃w (WX = {w} ∧ WY = {w − 1}) ∧
(QX = QY = ∅);

σ(T0(X)) := (WX = {neg(sX)}) ∧ (QX = ∅);
σ(D(X,Y )) := (sX 6= ∞) ∧ (sY 6= ∞) ∧ (ZX = ZY ) ∧

∃w (WX = WY = {w}) ∧ (QX = QY = ∅);
σ(φ ∧ ψ) := σ(φ) ∧ σ(ψ);

σ(¬φ) := ¬σ(φ);
σ(∃X φ) := ∃sX , ZX ,WX , QX

σ(φ) ∧ (ZX ∪WX ∪QX ⊆ N) ∧ (WX ∪QX 6= ∅) ∧
((sX = ∞∧ ZC = ∅)∨
(sX 6= ∞∧ ∀w((w ∈ Wx ∧ ∀w′(w′ ∈ WX → w ≥ w′)) →

∀z(z > w → z ∈ ZX)))).

It is routine to check that for every sentence φ, φ holds in the TULS expanded with
the predicates T0 and D if and only if σ(φ) holds in the structure 〈Z ∪ {∞}, <, neg〉.

It remains to prove that MSO[<,neg] over 〈Z ∪ {∞}, <, neg〉 is reducible to
MSO[<] over 〈N, <〉. In fact, the structure 〈Z ∪ {∞}, <, neg〉 can be embedded in
〈N, <〉. Precisely, we can denote by even and by odd the (definable) unary predi-
cates {2n : n ∈ N} and {2n + 1 : n ∈ N}, respectively, and we can translate any
MSO[<,neg]-formula ψ into an MSO[<]-formula ρ(ψ) by replacing every atomic
formula of the form x < y with the formula (x = 1∧y = 2)∨(odd(x)∧odd(y)∧x <
y) ∨ (x 6= 0 ∧ even(x) ∧ even(y) ∧ y < x) and every atomic formula of the
form neg(x, y) with the formula (x = y = 1) ∨ (odd(x) ∧ x = y + 1) ∨ (x 6=
0 ∧ even(x) ∧ y = x + 1). This shows that MCL[<, ↓0, ↓1, T0, D] over the TULS is
reducible to MSO[<]. n
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In [FRA 03b] Franceschet et al. show that the satisfiability problems for the (weak)
MSO logics over the DULS and the UULS expandend with either the equi-level or the
equi-column predicates are not decidable. These undecidability results are proved
by reducing several undecidable problems (e.g., the tiling problem over the two-
dimensional infinite grid) to satisfiability problems for the corresponding structures.
On the positive side, they prove the decidability of the satisfiability problem for the
chain fragment of MSO logic interpreted over the DULS and the UULS expanded
with the equi-level predicate and over UULSs expanded with the equi-column predi-
cate, but they leave open the problem for the DULS expanded with the equi-column
predicate. Since the MSO-definability of the DULS and the UULS in terms of the
TULS, equipped with the predicate T0, holds even if we restrict ourselves to interpre-
tations with chain quantifiers only, Theorems 10 and 12 allow us to positively solve
such a decision problem.

COROLLARY 14. — The satisfiability problem for MCL[<, ↓0, ↓1, T0, D] over the
DULS is decidable.
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