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Abstract

Information flow security in a multilevel system aims at guaranteeing that no high
level information is revealed to low level users, even in thepresence of any possible
malicious process. This requirement could be stronger thannecessary when some
knowledge about the environment (context) in which the process is going to run is
available. To relax this requirement we introduce the notion of secure contexts for
a class of processes. This notion is parametric with respect to both the observation
equivalence and the operation used to characterize the low level view of a process.
As observation equivalence we consider the cases of weak bisimulation and trace
equivalence. We describe how to build secure contexts in these cases and we show
that two well-known security properties, namedBNDCandNDC, are just special
instances of our general notion.
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1 Introduction

The problem of protecting data in a multilevel system is one of the relevant issues in
computer security.Information flow security propertieshave been proposed as a means
to ensure confidentiality of classified information. These properties impose constraints
on information flow among different groups of entities with different security levels.
Often only two groups are considered and are labelled with the security levelshigh(H)
andlow (L). The condition is that no information should flow fromH to L.

An early attempt to formalize the absence of information flowwas the concept of
noninterferenceproposed in the seminal paper by Goguen and Meseguer [11]. Intu-
itively, to establish that information does not flow from high to low it is sufficient to
establish that high behavior has no effect on what low level users can observe, i.e., the
low level view of the system is independent of high behavior.Noninterference has been
further developed in different settings such as programming languages [38, 36, 35, 3],
trace models [20, 21], process calculi [30, 28, 33, 8, 6, 14],probabilistic models [2, 7],
timed models [13], cryptographic protocols [1, 9, 4].

Noninterference aims at characterizing the complete absence of any information
flow or, indeed stronger, the absence of any causal flow. As already noticed by many
authors [29, 26, 27, 33, 16] this is too strong for practical applications. For instance,
when two high level users communicate through an encrypted channel, a low level user
may only know that a communication occurred. In this case there is a causal flow
but not a (significant) information flow. More generally, there are situations referred
to asdowngrading, in which trusted entities are permitted to move information from
high to low. Thus the policy requirements may admit restricted/controlled information
flows. Sometimes it is more a question of functionality. Absolute noninterference can
hardly ever be achieved in real systems. In realistic situations high level input interferes
with low level output all the time [32]. Typically strict noninterference simply is not
feasible due to clashes of resource which it demands. Consider a simple device that
allows information flow from low to high but not from high to low. Such a device is
feasible from a theoretical point of view only, in practice some causal flow from high
to low is necessary to regulate the flow from low to high and avoid buffer overflow.

To deal with restricted/controlled information flows the notion of intransitive non-
interferencehas been introduced (see [29, 26]). Flows from the high levelto a trusted
part and flows from the trusted part to the low level are admissible since the trusted part
takes care of controlling them, while a direct flow from high to low is not allowed.

Total noninterference could be stronger than necessary also when some knowledge
about the environment (context) in which the process is going to run is available. The
following example illustrates one such situation. Consider a process representing a
client of a bank using his card in an Automatic Teller Machine(ATM) to take money
from his account. When the card is inserted in the ATM the codeof the card is read,
then the client can write his PIN code, and if the PIN is correct he can ask for the money.
All the actions involved concern the exchange of confidential (high level) information
between the client and the bank. Acorrect ATM should read the codes, and if they
are correct, it should give the money to the client. Since allthe data are protected, no
(high) information is revealed to an external observer; hence we can assume that the
ATM context is secure for the client. Imagine now that a maintenance engineer puts
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a laptop inside the ATM. The laptop records all the card numbers and the PINs of the
ATM’s users. We can also imagine that once the confidential data have been captured
the laptop send them to the bank so that the client receives the money and does not
suspect the fraud. Clearly, this context is not secure for the client. However, this does
not mean that we give up using cards and ATMs. We just want to besure to use them
in secure contexts.

In this paper we introduce the notion ofsecure contexts for a class of processes
to generalize noninterference to manage the cases illustrated above. The notion of
secure contexts for a class of processes is parametric with respect to both an observa-
tion equivalence relation and an operation used to characterize the low level view of a
process. We consider instances with weak bisimulation and trace equivalence as obser-
vation equivalence. We show how to build secure contexts andprove that the security
properties known asBNDCandNDC (see [8]) are just special instances of our general
security notion.

The paper is organized as follows. In Section 2 we recall the SPA language and its
semantics, and we introduce contexts as particular SPA expressions. Secure contexts
for a class of processes are introduced in Section 3. They areillustrated by means
of examples. In Sections 4 and 5 we study two instances of our general definition
through weak bisimulation and trace equivalence, respectively. In Section 6 we discuss
some related works and show how downgrading can be modelled by means of secure
contexts. Finally, in Section 7 we draw some conclusions.

2 Basic Notions

TheSecurity Process Algebra(SPA) [8] is a variation of Milner’s CCS [23], where the
set of visible actions is partitioned into high level actions and low level ones in order to
specify multilevel systems. SPA syntax is based on the same elements as CCS, i.e.: a
setL of visibleactions such thatL = I [O whereI = fa;b; : : :g is a set ofinputactions
andO= fā; b̄; : : :g is a set ofoutputactions; a special actionτ which models internal
computations, not visible outside the system; a complementfunction �̄ : L ! L , such
that ¯̄a= a, for all a2 L . Act= L [fτg is the set of allactions. Function ¯� is extended
to Act by definingτ̄ = τ. The set of visible actions is partitioned into two sets,H and
L, of high and low actions such thatH = H andL = L. The syntax of SPAtermsis
defined as follows:

T ::= 0 j Z j a:T j T +T j TjT j T nv j T[ f ℄ j recZ:T
whereZ is a variable,a2 Act, v� L , f : Act! Act is a renaming function such that
f (ᾱ) = f (α), f (τ) = τ, f (H)� H [fτg, and f (L) � L[fτg.

We apply the standard notions offree andbound(occurrences of) variables in a
SPA term. More precisely, all the occurrences of the variable Z in recZ:T arebound;
while Z is free in a termT if there is an occurrence ofZ in T which is not bound.

Definition 2.1. A SPA processis a SPA term without free variables. We denote byE
the set of all SPA processes, ranged over byE;F; : : :, and byEH the set of all high level
processes, i.e., those constructed only using actions belonging toH [fτg.
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The operational semantics of SPA processes is given in termsof Labelled Transition
Systems(LTS, for short). In particular, the LTS(E ;Act;!), whose states are processes,
is defined by structural induction as the least relation generated by the axioms and infe-
rence rules reported in Table 1, wherea is an action ofAct, while l belongs toL .

Intuitively, 0 is the empty process that does nothing;a:E is a process that can
perform an actiona and then behaves asE; E1 +E2 represents the nondeterministic
choice between the two processesE1 andE2; E1jE2 is the parallel composition ofE1

andE2, where executions are interleaved, possibly synchronizedon complementary
input/output actions, producing the silent actionτ; E nv is a processE prevented from
performing actions inv 1; E[ f ℄ is the processE whose actions are renamedvia the
relabelling functionf ; recZ:T[Z℄ is the recursive term which can perform all the actions
of the term obtained by substitutingrecZ:T[Z℄ to the place-holderZ in the contextT[Z℄.

To define security properties it is also useful to introduce thehidingoperator,=, of
CSP which can be defined as a relabelling as follows: for a given setv� L , E=v�
E[ fv℄ where fv(a) = a if a 62 v and fv(a) = τ if a2 v. In practice,E=v turns all actions
in v into internalτ’s.

A SPA term with free variables can be seen as an environment with holes (the free
occurrences of its variables) in which other SPA terms can beinserted. The result
of this substitution is still a SPA term, which could be a process. For instance, in
the termh:0j(`:X+ τ:0) we can replace the variableX with the process̄h:0 obtaining
the processh:0j(`:h̄:0+ τ:0); or we can replaceX by the terma:Y obtaining the term
h:0j(`:a:Y+ τ:0). When we consider a SPA term as an environment we call itcontext.

Definition 2.2. A SPA context, ranged over byC;D; : : :, is a SPA term in which free
variables may occur.

We can also consider a context as a derived SPAconstructor. In fact it can be
used to build SPA terms from sets of SPA terms. Its arity is determined by the number
of its free variables. For instanceXjX can be seen as a constructor of arity 1 which
transforms any processE into the parallel composition with itself,EjE.

Given a contextC, we use the notationC[Y1; : : : ;Yn℄ to stress the fact that we
are interested only in the free occurrences of the variablesY1; : : : ;Yn in C. The term
C[T1; : : : ;Tn℄ is obtained fromC[Y1; : : : ;Yn℄ by replacing all the free occurrences of
Y1; : : : ;Yn with the termsT1; : : : ;Tn, respectively. For instance, we can writeC[X℄ �
h:0j(`:X+ τ:0) or D[X℄ � (`:X+ τ:0)jY or C0[X℄ �Yjh:0. Hence, the notationC[h̄:0℄
stands forh:0j(`:h̄:0+ τ:0), while D[h̄:0℄� (`:h̄:0+ τ:0)jY andC0[h̄:0℄ �Yjh:0. Note
that the notationC[Y1; : : : ;Yn℄ implies neither that all the variablesY1; : : : ;Yn occur free
in the context nor that they include all the variables occurring free in the context. Note
also that ifW is a variable not occurring inrecZ:C[Z℄ and we replace all the occur-
rences ofZ in recZ:C[Z℄ byW we obtain the processrecW:C[W℄ (α-conversion) which
is semantically equivalent torecZ:C[Z℄. Nevertheless, the two termsrecZ:C[Z℄ and
recW:C[W℄ represents two different contexts (e.g., ifC � a:Z+ b:W then recZ:C[Z℄
andrecW:C[W℄ denote different terms).

The concept ofobservation equivalenceis used to establish equalities among pro-
cesses and it is based on the idea that two systems have the same semantics if and only

1Note that in CCS the operatorn requires that the actions ofE nv do not belong tov[ v̄.
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if they cannot be distinguished by an external observer. This is obtained by defining
an equivalence relation overE equating two processes when they are indistinguish-
able. In this paper we consider the relations namedweak bisimulation, �B, andtrace
equivalence,�T .

Let us first introduce the following auxiliary notations. Ift = a1 � � �an 2 Act� and
E

a1! ��� an! E0, then we writeE
t! E0 and we say thatE0 is reachablefrom E. We also

write E
t=) E0 if E( τ!)� a1! ( τ!)� � � � ( τ!)� an! ( τ!)�E0 where( τ!)� denotes a (possibly

empty) sequence ofτ labelled transitions. Ift 2 Act�, then t̂ 2 L � is the sequence

gained by deleting all occurrences ofτ from t. As a consequence,E
â=) E0 stands for

E
a=) E0 if a 2 L , and forE( τ!)�E0 if a = τ (note that

τ=) requires at least oneτ
labelled transition while

τ̂=) means zero or moreτ labelled transitions).
Theweak bisimulationrelation [23] equates two processes if they are able to mu-

tually simulate their behavior step by step. Weak bisimulation does not care about
internalτ actions.

Definition 2.3 (Weak Bisimulation). A binary relationR � E �E over processes is
aweak bisimulationif (E;F) 2 R implies, for alla2 Act,� if E

a! E0, then there existsF 0 such thatF
â=) F 0 and(E0;F 0) 2 R ;� if F

a! F 0, then there existsE0 such thatE
â=) E0 and(E0;F 0) 2 R .

Two processesE;F 2 E areweakly bisimilar, denoted byE �B F, if there exists a
weak bisimulationR containing the pair(E;F).

The relation�B is the largest weak bisimulation and it is an equivalence relation.
The trace equivalencerelation equates two processes if they have the same sets of

traces, again, without considering theτ actions.

Definition 2.4 (Trace Equivalence).For any processE 2 E the set of tracesTr(E)
associated withE is defined as follows

Tr(E) = ft 2 L � j 9E0E t=) E0g:
Two processesE;F 2 E aretrace equivalent, denoted byE �T F , if Tr(E) = Tr(F).

Trace equivalence is less demanding than weak bisimulation, hence if two pro-
cesses are weakly bisimilar, then they are also trace equivalent.

Following [23] we extend binary relations on processes to contexts as follows.

Definition 2.5 (Relations on Contexts).Let R be a binary relation over processes,
i.e., a subset ofE � E . Let C and D be two contexts andfY1; : : : ;Yng be a set of
variables which include all the free variables ofC andD. We say thatCR D if for all
set of processesfE1; : : : ;Eng it holds

C[E1; : : : ;En℄ R D[E1; : : : ;En℄:
5



In the case of weak bisimulation, applying the above definition we have that two
contexts are weakly bisimilar if all the processes obtainedby instantiating their vari-
ables are pair-wise bisimilar. For instance, using our notation, the contextsC[X℄ �
a:X+ τ:Y andD[X℄� a:τ:X+ τ:Y are weakly bisimilar since for allE;F 2 E it holds
a:E+τ:F �B a:τ:E+τ:F . Notice that not all the free variables ofC andD were explicit
in the notationC[X℄ andD[X℄. However, Definition 2.5 requires the instantiation of all
their free variables.

3 Secure Contexts

In this section we extend the concept of noninterference by introducing a general no-
tion of secure contexts for a class of processes. The idea is that a context represents
the environment interacting with processes during their execution. For instance, in Fig-
ure 1 on the left we represent a database DB, containing both confidential and public
information and running in a context which comprises a firewall, trojan horses and in-
terfaces allowing the users to interact with the database. The security notion we intend
to capture aims at ensuring that the interaction between thecontext and the database is
transparent with respect to the high level information for low level users. This means
that low level users cannot distinguish between the whole system (on the left of Figure
1) and the system where the database contains only low level information (on the right
in Figure 1). As an immediate consequence we have that no confidential information
of the database is revealed to the low level observers. Moreover, since the low level
database cannot interact with high level users through the interfaces in the context, as
a side effect we get that also the high level information contained in the context is not
revealed.

The notion ofsecure contexts for a class of processespresented below is parametric
with respect to an operation� l used to characterize the low level behavior,El , of a
processE, and an observation equivalence� used to equate two processes. We denote
by�l the relation� on the low level views of processes, i.e.,E�l F stands forEl �Fl .

Definition 3.1 (Secure Contexts for a Class of Processes).Let � and � l be an ob-
servation equivalence relation and an operation on processes, respectively. LetC be a
class of contexts,P be a class of processes, andX be a variable. The classC is secure
for the classP with respect to the variable Xif

for all C[X℄ 2 C and for allE 2 P ; C[E℄�l C[El ℄:
In this definition the variableX is used to determine the “holes” inC which are

intended to be filled in byE. Recall thatX might not occur free inC. In this caseC is
trivially secure (by reflexivity of�). Moreover, inC there can be other free variables
different fromX. In this case we have to apply Definition 2.5 and instantiate the other
free variables in all the possible ways.

EXAMPLE 3.2. Let� and� l be an observation equivalence relation and an operation
on processes, respectively. LetP = fEg andC = f`:X+ `:Y+h:Yg, with ` 2 L and
h2 H. To prove thatC is secure forP with respect to the variableX we have to prove
that for allF 2 E it holds`:E+`:F+h:F �l `:El +`:F+h:F . Similarly, to prove thatC
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is secure forP with respect to the variableY we have to prove that for allF 2 E it holds`:F + `:E+h:E �l `:F + `:El +h:El . The classC is trivially secure forP with respect
to the variableZ, since for allF;G2 E it holds that̀ :F+`:G+h:G�l `:F+`:G+h:G.

In the rest of this paper when we say thatC is secure forP we are implicitly
referring to the variableX.

The intended meaning of our security definition is that a low level observer cannot
distinguish the interactions between a processE 2 P and a contextC2 C from the in-
teractions between the low level viewEl of E andC. If, accordingly with our intuition,
El represents the low level behavior ofE then our definition is clearly in the spirit of
the noninterferenceschema proposed in [11]. In the literature the low level viewof
a process is usually modelled using eitherrestriction or hiding of high level actions.
The first case corresponds to disallowing any external synchronization on high level
actions; the second case simulates the situation in which all possible synchronizations
are performed.

Let us analyze the definition in the case in which only one process and one context
are involved. The definition can be read from two points of view: security for the
process and security for the context. On the one hand, if a context C is secure for a
processE, thenE can safely interact withC (security for the process), sinceC is not
able to reveal to the low level users any high level information contained inE. In fact,
it is revealed only the information that would be revealed bythe interaction withEl . On
the other hand, if a contextC is secure for a processE, thenC can safely interact with
E (security for the context). In fact,E is able to reveal the same information which
could be revealed byEl that cannot interact with the high level actions ofC. In the
introduction we gave a first example fitting with the first situation. Here we add two
more examples to explain the two points of view.

EXAMPLE 3.3 (SECURITY FOR THEPROCESSES). Suppose thatWholesalerltd is a
wholesale company which does not sell its products directlyto the final users but only
to the shopkeepers. Thus the price of its products can be seenas a confidential data that
only theWholesaler’s customers (shopkeepers) are allowed to know. On the otherhand
the company advertises its products both to shopkeepers (high level) and to potential
(low level) users. Consider a Java appletE downloadable from the site ofWholesaler
ltd which should allow the shopkeepers to get confidential data like prices and the rest
of the world to get a product list with generic information about the products. The
applet opens a window with two buttons: the first button allows to read the product list,
while the second one allows to read the price list, provided apassword is inserted. Let
PWD SHOPKEEPERbe the high level action representing the fact thatE is waiting for
a password from a shopkeeper before showing the price list. We assume that this is the
only protection for the confidential data in E. The appletE can be represented by the
following SPA process,

PWD SHOPKEEPER:PRICES+PRODUCTS

Wholesalerdoes not want the applet to be executed on a machine (context)which
reveals some high level information (e.g., the price list) to non authorized users. Let us
consider two possible contexts. LetC1 be the machine of the high level user in which
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the password has been stored. ThenC1 can be represented by a term of the form

XjPWD SHOPKEEPER:0:
In this case high level information can be revealed: when a low level user interacts
with C1[E℄, he (she) can read the price list. Hence,C1 cannot be considered secure for
E. Another more involved context is, for instance, a machineC2 shared between high
and low level users such that only high level users (shopkeepers) can read the price list,
while low level ones can read the product list:

PWD HIGH:(XjPWD SHOPKEEPER:0)+ PWD LOW:X:
In this case the flexibility of the context is obtained by splitting C2 into two non-
deterministic components: the first one manages the interaction with high level users
and has in memory the shopkeeper’s password; the second one interacts with low level
users and does not provide any password. Note that if a high level user interacts with
C2[E℄ by inserting the passwordPWD HIGH, the PRICEScomponent becomes accessi-
ble to low level observers. This can be seen as the possibility for the high level user
to downgrade(see Section 6) the level of the information stored in the price-list. Intu-
itively, the processE described here does not satisfy information flow security proper-
ties such as noninterference [25]. However, whenever downgrading is a high level user
decision, it is reasonable to assume that the contextC2 is secure forE.

EXAMPLE 3.4 (SECURITY FOR THECONTEXTS). Mr Earnerhas on his own machine
C some files containing the information about his investments. He would like to check
whether they are profitable and, if they are not, to have some suggestions about how
to change them. He installed on his machine a program which isable to check on the
stock market through an Internet connection, reads his investments files and performs
some computations to determine whether the investments areprofitable or not. If the
investments are going bad, the program checks again on the stock market, for better
opportunities. The second check on the stock market is recommended since it allows to
use the last quotations for computing suggestions (it is preferable not to use the cached
stock market’s quotations for this operation). ObviouslyMr Earnerdoes not want that
someone knows if his investments are good or not. The machineof Mr Earnercan be
in one of the following states:

XjGOOD:0 or XjBAD:SUGGESTIONS:0
which we assume to correctly represent the reality of his investments. In the first case
Mr Earner investments are good and this fact can be revealed through the high level
outputGOOD. In the second caseMr Earnerinvestments are bad, hence after the high
level output his machine is ready to have in input some suggestions through the high
level input actionSUGGESTIONS. Mr Earnerwants both contexts be secure with re-
spect to his investment program. Let us assume thatMr Earnerinvestments are good,
i.e., we consider the first context2. Let E1 be the following program

CHECK:(GOOD:0+ BAD .CHECK:SUGGESTIONS:0);
2All the considerations which follow hold also for the secondcontext.
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where the only low level action is the inputCHECK. By observing thatE1 has checked a
second time on the stock marked, a low level observer could beable to deduce thatMr
Earner’s investments are bad. Hence, in this case the context representingMr Earner’s
machine is not secure with respect toE1.

It is clear that in order to get a process such thatMr Earner’s machine is secure
with respect to it, aCHECK action after theGOODone should be added. However, with
the process

CHECK:(GOOD.CHECK:0+ BAD .CHECK:SUGGESTIONS:0)
the context is still not secure even if the only information which is revealed to the low
level user is that a high level action has been performed but not which one. This is due
to the fact that our security property is based on classical noninterference [11] and thus
it disallows any direct or indirect flow of confidential information. To allow restrict
information flow we need to opportunely redesign the processes. For instance, in this
case it is sufficient to add the masking componentCHECK:0. The resulting programE2

CHECK:(GOOD.CHECK:0 + BAD .CHECK:SUGGESTIONS:0+CHECK:0 )
is now secure according to our definition. Its behavior recalls the case of military radio
transmissions. In order to avoid that someone knows when some information has been
transmitted, everyn instants a message is sent. Only one of the messages containsthe
real information.

Another possibility to allow restricted flows is that of designingE2 by using down-
grading actions as described in Section 6.1.

Finally, if the market is “stable” and the elaboration of theinformation in Mr
Earner’s file is “fast”, the following programE3 can be used

CHECK:(GOOD:0+ BAD:SUGGESTIONS:0):
It performs the low level input only once before analyzing the situation of the invest-
ments and gives its suggestions using the cached data. Also in this case,Mr Earner’s
machine is secure with respect to this investment programE3.

When the classC has only one elementC we say thatC is secure forP . Similarly,
in the case in whichP has only one elementE we say that the classC is secure for the
processE. If a context is secure for a classP of processes, then it is secure also for all
the subclasses ofP . Analogously, if a class of contextsC is secure for a processE, then
all the subclasses ofC are secure forE. In the general case we obtain the following
result.

Proposition 3.5. Let C1 � C2 be two classes of contexts,P1 � P2 be two classes of
processes, and X be a variable. IfC2 is secure forP2 with respect to X, thenC1 is
secure forP1 with respect to X.

Proof. Let C2 be secure forP2 with respect toX. SinceP1� P2, thenC2 is also secure
for P1 with respect toX. Moreover, sinceC1 � C2, we get thatC1 is secure forP1 with
respect toX.
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Definition 3.1 introduces a general security notion. To analyze it more concretely it
is necessary to instantiate the observation equivalence� and the operation� l defining
the low level view of processes. A reasonable requirement toget useful instances is
that of using a decidable equivalence and a computable operation.

In the next two sections we consider two instances of our framework. We study the
properties of these instances and their connections with some security notions coming
from the literature. In particular, we consider two observation equivalences, named
weak bisimulation and trace equivalence. The choice of the observation equivalence
clearly depends on the application of interest. In [9] the authors study security prop-
erties of cryptographic protocols based on noninterference and they discriminate be-
tween those properties for which trace equivalence is sufficient, e.g., authentication, se-
crecy, and integrity, and those properties for which deadlock-sensitive equivalences like
bisimulation and testing equivalence are necessary, e.g.,fairness and non-repudiation.

4 First Instance: Weak Bisimulation and Restriction

We analyze the properties of our security definition by instantiating the observation
equivalence� and the operation� l as follows:� is �B (weak bisimulation) and� l is� nH (restriction on high level actions). Using such an instance, a class of contextsC is
secure for a class of processesP with respect to a variableX if

for all C[X℄ 2 C and for allE 2 P ; C[E℄nH �B C[E nH℄nH:
In the rest of this section we refer to this instance of our security property.

EXAMPLE 4.1. Consider again Example 3.3 where confidential data are protected only
by the passwordPWD SHOPKEEPER. Assume that PRODUCTS and PRICES show the
list of products and of prices to any (low or high) user askingfor them. In SPA this
behavior is obtained by creating two output actions for boththe product and the price
list, one for the low level users and the other for the high level ones.

PRODUCTS� PROD LIST H:0+ PROD LIST L:0
PRICES� PRICE LIST H:0+ PRICE LIST L:0:

C1[E℄nH � τ:PRICE LIST L:0+PROD LIST L:0 is not weakly bisimilar toC1[E nH℄n
H � PROD LIST L:0. Indeed, a low level user interacting withC1[E℄ can read the price
list, thus leaking confidential data. On the other hand, bothC2[E℄nH andC2[EnH℄nH
are bisimilar toPWD LOW:PROD LIST L:0, according to the intuition thatC2 is secure
for E.

EXAMPLE 4.2. In Example 3.4 we said that both the contexts representingMr Earner’s
machine are secure with respect to the second programE2. Indeed,E2 never reveals to
low level users the situation ofMr Earner’s investments, since a second check on the
market is performed in any case. For instance, using the firstcontext of Example 3.4
we obtain thatC[E2℄ nH � CHECK:(τ:CHECK:0+ CHECK:0) is weakly bisimilar to
C[E2nH℄nH � CHECK:CHECK:0, hence the security property holds.

The third programE3 of Example 3.4 satisfies thatC[E3℄nH �B C[E3 nH℄nH for
both the contexts, as can be easily checked.
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Using this first instance we find an interesting connection between our security def-
inition and the security property known asBNDCand proposed by Focardi and Gorrieri
[8]. The security propertyBNDC is based on the idea of checking the system against
all high level potential interactions, representing everypossible high level malicious
program. In particular, a processE is BNDC if for every high level processΠ a low
level user cannot distinguishE from (EjΠ), i.e., if Π cannot interfere with the low level
execution ofE.

Definition 4.3 (BNDC). Let E 2 E . E 2 BNDC if for all Π 2 EH ,

E nH �B (EjΠ)nH:
The following lemma states that the set of contexts of the form XjΠ with Π 2 EH

characterizes the class ofBNDCprocesses.

Lemma 4.4. Let E2 E . E 2 BNDC if and only if C[E℄ nH �B C[E nH℄ nH for all
contexts C[X℄� XjΠ, with Π 2 EH .

Proof. ()) If E 2 BNDC, then(EjΠ) nH �B E nH. Moreover,E nH is always in
BNDC and E nH nH �B E nH, hence(E nHjΠ) �B E nH nH �B E nH. So by
transitivity of�B, we obtain that(EjΠ)nH �B (E nHjΠ)nH.

(() SinceEnH is always inBNDCandEnH nH �B EnH, we have(EjΠ)nH �B(E nHjΠ)nH �B E nH.

EXAMPLE 4.5. The processE in Example 3.3 is not aBNDC process. In fact, the
contextXjPWD SHOPKEEPER:0 is a context of the formXjΠ with Π 2 EH and it is not
secure forE, hence by Lemma 4.4 we obtain thatE is notBNDC. However, as shown
in Example 4.1, there are complex contexts in whichE can be safely executed.

Both processesE2 andE3 of Example 3.4 can be proved to beBNDCprocess.

In Subsection 4.1 we identify two classes of contexts which are secure for all the
processes. Then, in Subsection 4.2 we concentrate on classes of processes character-
ized by some security notions (basically we will consider subclasses ofBNDC) and
analyze whether there exist larger classes of secure contexts for them.

4.1 �B Instance: Secure Contexts for a generic classP

Our first result can be easily proved by applying the definitions.

Theorem 4.6. LetP be a class of processes. LetC be the class of contexts containing� all F 2 E ;� all variables;� all contexts of the form∑l i2L l i :Ci +∑h j2H h j :D j , with the Ci ’s secure forP with
respect to X;� all contexts Cnv and C[ f ℄ with C secure forP with respect to X.

ThenC is secure forP with respect to X.
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Proof.� EachF 2 E is secure forP , sinceF nH �B F nH.� A variable is secure forE 2 P , sinceE nH �B E nH nH.� Let C[X℄ � ∑l i2L l i :Ci +∑h j2H h j :D j , with Ci secure forP for all i. We prove

thatC[X℄ is secure forE 2 P . If C[E℄ nH
a! C0, then there existsi such that

a= l i 2 L, andC0�Ci [E℄nH. So we have thatC[EnH℄nH
a!Ci [EnH℄nH, with

Ci [E℄nH �B Ci [E nH℄nH, by hypothesis onCi [X℄. The caseC[E nH℄nH
a!C0

is similar.� Let E 2 P . If C[E℄ nH �B C[E nH℄ nH, thenC[E℄ nH n v�B C[E nH℄ nH n v,
henceC[E℄nvnH �B C[E nH℄nvnH.� Let C[X℄ be secure forE 2 P and considerC[X℄[ f ℄, where f maps high actions
in H[fτg and low actions inL[fτg. If C[E℄[ f ℄nH

a!C0, thenC0 �C00[ f ℄, there

existsb2 L[fτg such thata= f (b) andC[E℄nH
b!C00. Hence,C[EnH℄nH

b̂)
C000 �B C00, andC[E nH℄[ f ℄nH

â)C000[ f ℄�B C00[ f ℄. SoC[X℄[ f ℄ is secure forE.

Notice that it does not hold that ifC andD are secure forP , thenCjD is secure for
P . This is a consequence of the fact that we do not know anythingabout the classP .

EXAMPLE 4.7. Consider the classP = fEg whereE � h:`:0+ h̄:0. The contextX is
secure forP (see Theorem 4.6), but the contextXjX is not secure forP .

Observe that Theorem 4.6 does not provide a decidability result. For instance, if
we know thatC is secure forP , then we can deduce thatCn v is secure forP , but, in
general, we cannot use Theorem 4.6 to prove thatC2 C and thus it is secure forP .

Hereafter we characterize a decidable class of contexts which are secure for all the
processes (i.e., for a generic classP ). Obviously we want the class to be as large as
possible. In order to obtain the decidability of the class werequire a compositionality
structure, i.e., contexts are built only using sub-contexts which belong to the class. In
order to ensure security we do not use the parallel composition when the context is not
a closed term (see Example 4.7).

Definition 4.8 (The ClassCs). Let Cs be the class of contexts which contains all the
SPA processes, all the variables, and is closed with respectto the following construc-
tors: ∑i2I ai :Yi (with ai 2 Act), Y nv, Y[ f ℄, recZ:Y.

Notice that ifC[Y℄;D 2 Cs, then we haveC[D℄ 2 Cs.
The classCs is decidable, in fact it is easy to define a proof system whose proofs

correspond exactly to the constructions of the contexts inCs.

EXAMPLE 4.9. The contextsX, Y andZ belong toCs. Hence, by using the constructor
a:Y1+ b:Y2+ c:Y3, the contexta:X + b:Y+ c:Z belongs toCs, and then, by using the
recY:W constructor, the contextrecY:(a:X+b:Y+c:Z) is in Cs.

12



All the contexts inCs are secure for all the processes, as it is stated by the next
theorem. The following lemmas are used in its proof.

Lemma 4.10. The relation�B is a congruence in the classCs with respect to its con-
structors.

Proof. The only non trivial case is “Recursion”. LetC;D 2 Cs be weak bisimilar,
we prove thatrecY:C �B recY:D. Without loss of generality we assumeC[Y℄ and
D[Y℄ with at most the single free variableY. The generalization follows from Defi-
nition 2.5. In fact, suppose thatC[Y;Y1 : : :Yn℄�B D[Y;Y1 : : :Yn℄, then for any choice of
E1 : : :En2 E we haveC[Y;E1 : : :En℄�B D[Y;E1 : : :En℄, and thusrecY:C[Y;E1 : : :En℄�B

recY:D[Y;E1 : : :En℄; thereforerecY:C[Y;Y1 : : :Yn℄�B recY:D[Y;Y1 : : :Yn℄.
Let us define the relationS onCs as:

S = f (G[recY:C[Y℄℄;G[recY:D[Y℄℄) j
C;D;G2 Cs; C�B D; andG contains at most one variableg:

We proveS is a weak bisimulation up to�B. From this it follows recY:C[Y℄ �B

recY:D[Y℄, by takingG� X.
We prove that ifG[recY:C[Y℄℄ a�!P then there existQ;Q0 2 Cs with (P;Q0)2 S and

G[recY:D[Y℄℄ ba=)Q�B Q0: The converse follows by the symmetry ofS .
We prove the claim by induction on the depth of the inference used to obtain

G[recY:C[Y℄℄ a�! P.
Base. If G[recY:C[Y℄℄ a�! P with an inference of depth 0, then the rule “Prefix”

has been applied, andG[X℄ � a:G0[X℄, so P � G0[recY:C[Y℄℄, with G0 2 Cs. Also
G[recY:D[Y℄℄� a:G0[recY:D[Y℄℄ a�!G0[recY:D[Y℄℄ and(G0[recY:C[Y℄℄;G0[recY:D[Y℄℄)2
S .

Induction. We proceed by cases on the structure ofG.� G2 E . Trivially G[recY:C[Y℄℄�G[recY:D[Y℄℄�G.� G� X. ThenrecY:C[Y℄ a�! P by applying “Recursion” at last step. Therefore
C[recY:C[Y℄℄ a�! P with a shorter inference. By induction

C[recY:D[Y℄℄ ba=)Q�B Q0 with (P;Q0) 2 S :
But C[Y℄�B D[Y℄ impliesD[recY:D[Y℄℄ ba=)Q00 �B Q: And we conclude

recY:D[Y℄ ba=)Q000 �B Q00 �B Q�B Q0
sinceD[recY:D[Y℄℄�B recY:D[Y℄.� G � ∑i ai :Gi . Then ∑i ai :Gi [recY:C[Y℄℄ a! P by applying “Sum” at last step.
So ai:Gi [recY:C[Y℄℄ a! P. HenceP� Gi [recY:C[Y℄℄, with Gi 2 Cs. By “Sum”,
G[recY:D[Y℄℄ a!Q�Gi [recY:D[Y℄℄, and(P;Q) 2 S .
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� G�G1nv. ThenG1[recY:C[Y℄℄n a! P by applying “Restriction” at last step. So,
P� P0 nv, a =2 v andG1[recY:C[Y℄℄ a! P0 by a shorter inference. By induction

G1[recY:D[Y℄℄ ba=)Q�B Q0 with (P0;Q0) 2 S :
We concludeG1[recY:D[Y℄℄nv

ba=) Qnv�B Q0 nv, with (P;Q0 nv) 2 S by con-
struction ofS . In fact, (P0;Q0) 2 S implies that there exists a contextH[X℄,
with only a free variableX, such thatP0 � H[recY:C[Y℄℄ andQ0 �H[recY:D[Y℄℄.
Hence,P� P0 nv� H[recY:C[Y℄℄nv andQ0 nv� H[recY:D[Y℄℄nv.� G� G1[ f ℄. ThenG1[recY:C[Y℄℄[ f ℄ a! P by applying “Relabelling” at last step.

So P� P0[ f ℄, a = f (a0), andG1[recY:C[Y℄℄ a0! P0 by a shorter inference. By
induction

G1[recY:D[Y℄℄ ba0=)Q�B Q0 with (P0;Q0) 2 S :
By construction ofS , we conclude

G1[recY:D[Y℄℄[ f ℄[f (a0)=)Q[ f ℄�B Q0[ f ℄ with (P;Q0[ f ℄) 2 S :� G� recZ:G1[X;Z℄. ThenrecZ:G1[recY:C[Y℄;Z℄ a! P by applying “Recursion”
at last step. It derives by a shorter inference from

G1[recY:C[Y℄; recZ:G1[recY:C[Y℄;Z℄℄ a! P:
By induction we know that

G1[recY:D[Y℄; recZ:G1[recY:D[Y℄;Z℄℄ ba=)Q�B Q0 with (P;Q0) 2 S :
Since G1[recY:D[Y℄; recZ:G1[recY:D[Y℄;Z℄℄ �B recZ:G1[recY:D[Y℄;Z℄, we can
finally conclude that

G1[recY:D[Y℄; recZ:G1[recY:D[Y℄;Z℄℄ ba=)Q00 �B Q�B Q0:
Lemma 4.11. Let C2 Cs. Then recY:(CnH)nH �B (recY:C)nH:
Proof. Without loss of generality we assumeC with at most the single free variableY.
The general case follows by Definition 2.5. LetS be defined asf(G[(recY:(CnH))℄nH;G[recY:C℄nH) j G[X℄;C2 Csg:
If we proveS to be a strong bisimulation, then the Lemma follows by considering
G[X℄� X.

Note that, sinceC has at most the single free variableY, the variables that occur
bound inG do not occur free inC.

In order to prove thatS is a strong bisimulation, we are verifying that for any pair(G[recY:(CnH)℄nH;G[recY:C℄nH) in S
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(1) if G[recY:(CnH)℄nH
a! P, thenG[recY:C℄nH

a!Q with (P;Q) 2 S
(2) if G[recY:C℄nH

a!Q, thenG[recY:(CnH)℄nH
a! P with (P;Q) 2 S .

We proceed by induction on the depth of the inference proof ofG[recY:(CnH)℄nH
a!P

or G[recY:C℄nH
a!Q.

Base. (1) If G[recY:(C nH)℄ nH
a! P with an inference of depth 1, then “Re-

striction” and “Prefix” have been applied. So,G[X℄ � a:G0[X℄ andP� G0[recY:(Cn
H)℄nH. By applying the same rules toG[recY:C℄nH we obtainG[recY:C℄nH

a!Q�
G0[recY:C℄nH with G0 2 Cs. Hence(P;Q) 2 S . Case (2) is similar.

Induction step. We proceed by cases on the structure ofG[X℄. In (1) we consider(recY:(CnH))nH
a! P, and in (2) we consider(recY:C)nH

a!Q.� G[X℄ 2 E . Trivial.� G[X℄ � X. (1)ThenP� P0 nH andC[recY:(CnH)℄ nH
a! P0 by a shorter in-

ference. HenceP0 is free from high level action, i.e.P � P0 nH � P0. By
induction,C[(recY:C)℄nH

a!Q, and so(recY:C)nH
a!Q, with (P0;Q) 2 S . (2)

ThenQ� Q0 nH andC[recY:C℄ nH
a! Q by a shorter inference. By induction

C[recY:(CnH)℄nH
a! P, and so(recY:(CnH))nH

a! P, with (P;Q) 2 S .� G[X℄ � ∑i2I ai :Gi [X℄. (1) Then there existsi 2 I such thata � ai and P �
Gi [recY:(CnH)℄nH. Hence,G[recY:C℄nH

a!Q with Q�Gi [recY:C℄nH. From
this we get(P;Q) 2 S . (2) Thena� ai and Q� Gi [recY:C℄ nH. Therefore,
G[recY:(CnH)℄nH

a! P with P�Gi [recY:(CnH)℄nH, this means that(P;Q) 2
S .� G[X℄�G1[X℄nv. Trivial.� G[X℄�G1[X℄[ f ℄. Trivial.� G[X℄ � recZ:G1[X;Z℄. (1) Then recZ:G1[recY:(C nH);Z℄ nH

a! P and also
G1[recY:(CnH); recZ:G1[recY:(CnH);Z℄℄ nH

a! P by a shorter inference. By
inductionG1[recY:C; recZ:G1[recY:C;Z℄℄ nH

a! Q and (P;Q) 2 S . Therefore,
recZ:G1[recY:C;Z℄℄ nH

a! Q, i.e., G[recY:C℄ nH
a! Q. (2) Then it holds that

G1[recY:C; recZ:G1[recY:C;Z℄℄ nH
a! Q, by a shorter inference. By induction

G1[recY:(CnH); recZ:G1[recY:(CnH);Z℄℄nH
a! P with (P;Q) 2 S . Therefore,

recZ:G1[recY:(CnH);Z℄nH
a! P.

Lemma 4.12. LetP be a class of processes and C[X℄2 Cs be secure forP with respect
to X. The context recY:C[X℄ is secure forP with respect to X.

Proof. Our hypothesis is thatC[E℄ nH �B C[E nH℄ nH and we have to prove that(recY:C[E℄)nH �B (recY:C[E nH℄)nH:
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From the hypothesis and Lemma 4.10 we have that

recY:(C[E℄nH)�B recY:(C[E nH℄nH):
By applying “nH” to both members we obtain

recY:(C[E℄nH)nH �B recY:(C[E nH℄nH)nH:
Notice that ifC[X℄ 2 Cs, then alsoC[E℄ andC[E nH℄ are inCs. By applying Lemma
4.11 to both members, we getrecY:(C[E℄) nH �B recY:(C[E nH℄) nH, which is the
thesis.

Theorem 4.13.LetP be a class of processes and X be a variable. If C2 Cs, then C is
secure forP with respect to X.

Proof. The proof follows by induction on the structure of the context C.� C2 E . We have already proved in Theorem 4.6, thatC is secure forP .� C�Y. Again, this has been proved in Theorem 4.6.� C� ∑i2I ai :Ci . By induction on theCi ’s and by Lemma 4.10 we have the thesis.� C�C1nv. By induction onC1 and applying Lemma 4.10 we obtain the thesis.� C�C1[ f ℄. Again, by induction onC1 and Lemma 4.10 we get the thesis.� C� recY:C1. By induction onC1 and Lemma 4.12 we have the thesis.

EXAMPLE 4.14. LetC be a machine shared between one low level user and one high
level user. When one of the two users is logged, the machine cannot be used by the
other one. The logged user can execute his program or a new program which has
been downloaded from the web. The programs of both the users always terminate and
at the end of their executions the other user can take the control. Let PWD HIGH be
high level action representing the input of the high level user password. Moreover,
let CALL PROG H be the high level call to the program andEX PROG H its execution.
Finally, let CALL WEB H be the high level call to the program downloaded from the
web. All the low level actions are similarly defined. Hence,C has the form

recY: ( PWD HIGH:(CALL PROG H:EX PROG H:Y+ CALL WEB H:X )+ PWD LOW:(CALL PROG L:EX PROG L:Y+ CALL WEB L:X ) )
SinceC belongs toCs, C is secure for the program coming from the web with respect
to X.

As shown in Example 4.7, without assumptions on the classP the contexts built
using the parallel operator cannot be considered secure. However, as seen in the pre-
vious examples most contexts involve the parallel operator, since it is at the core of
the exchange of information between processes and contexts. For this reason in the
next subsection we concentrate on classes of processes for which we prove that some
contexts involving the parallel operator are secure.
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4.2 �B Instance: Secure Contexts for sub-classes ofBNDC

As stated in Lemma 4.4 some particular contexts built using the parallel operator are
secure for the classBNDC. Unfortunately, the decidability ofBNDC is still an open
problem, and for this reason many sufficient conditions forBNDChave been introduced
and studied in the literature (see [8, 10, 5]). In particular, in [5] three of these sufficient
conditions have been considered and it has been shown that they can be parametrically
characterized with respect to a suitable bisimulation relation. In virtue of Proposition
3.5, all the contexts which are secure for the largest of these three classes, that is the
one namedP BNDC, are secure also for the other two classes.P BNDC is nothing
but the persistent version ofBNDC. The persistence ofP BNDChas been proved to be
fundamental to deal with dynamic contexts (see [10]).

Definition 4.15 (P BNDC). Let E 2 E . E 2 P BNDC if E0 2 BNDC for all E0 reach-
able fromE.

We will also use the following characterization ofP BNDC [5].

Theorem 4.16. Let E2 E be a process. E2 P BNDC iff for all E0 reachable from E,

if E 0 h! E00, then E0 τ̂=) E000 and E00 nH �B E000 nH.

In order to obtain that the parallel compositionCjD of secure contexts is still a
secure context we need to be able to exchange the parallel operator with the restriction
one, i.e., knowing thatC[E℄ nH �B C[E nH℄ nH andD[E℄ nH �B D[E nH℄ nH we
want to obtain that(C[E℄jD[E℄)nH �B (C[E nH℄jD[E nH℄)nH. Such property holds
for P BNDCprocesses as shown by the following lemma.

Lemma 4.17. Let E;F;G;K 2 P BNDC. If EnH �B F nH and GnH �B K nH, then(EjG)nH �B (F jK)nH.

Proof. Consider the following binary relation:

S = f((EjG)nH;(FjK)nH ) jE;F;G;K 2 P BNDC
andE nH �B F nH;GnH �B K nHg:

It is easy to prove thatS is a weak bisimulation. The only non-trivial case is the

synchronization on high actions. Assume that(EjG) nH
τ! (E0jG0) nH with E

h! E0
andG

h̄!G0. SinceE;G2P BNDC, by Theorem 4.16 we haveE
τ̂)E00 with E0 nH �B

E00 nH, andG
τ̂)G00 with G0 nH �B G00 nH. So,E nH

τ̂) E00 nH andGnH
τ̂)G00 nH.

By hypothesis, we obtainF nH
τ̂) F 0 nH with F 0 nH �B E00 nH andK nH

τ̂) K0 nH

with K0 nH �B G00 nH. Hence,(F jK)nH
τ̂) (F 0jK0)nH with E0;G0;F 0;K0 2P BNDC,

E0 nH �B F 0 nH, andG0 nH �B K0 nH, i.e. ((E0jG0)nH;(F 0jK0)nH) 2 S .
The previous lemma suggests that if we restrict to contexts mappingP BNDCpro-

cesses intoP BNDC processes we obtain that the parallel composition of securecon-
texts is secure.

The following definitions will be used also in the next section.
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Definition 4.18 (P -contexts). Let P be a class of processes andC[X;Y1; : : : ;Yn℄ be
a context whose free variables are infX;Y1; : : : ;Yng. C[X;Y1; : : : ;Yn℄ is said to be a
P -context with respect to Xif for all E 2 P and for allF1; : : : ;Fn 2 E it holds that
C[E;F1; : : : ;Fn℄ 2 P .

Definition 4.19 (P -secure contexts).A contextC[X℄ is said to beP -secure with re-
spect to Xif it is a P -context with respect toX and it is secure forP with respect to
X.

Theorem 4.20. Let C and D be two contexts which are PBNDC-secure with respect
to X. The context CjD is P BNDC-secure with respect to X.

Proof. The fact thatCjD is a P BNDC-context follows from the fact that if two pro-
cesses areP BNDC, then their parallel composition isP BNDC (see [10]).

We prove thatCjD is secure forP BNDC. If E 2 P BNDC, then by hypothesis we
haveC[E℄nH �B C[E nH℄nH andD[E℄nH �B D[E nH℄nH. Moreover, sinceE nH
is alwaysP BNDC we have thatC[E℄;C[E nH℄;D[E℄;D[E nH℄ areP BNDC. We get
the thesis, by applying Lemma 4.17 to the four processes.

Notice that we can apply the theorem more than once, thus obtaining contexts
which involve more parallel operators mixed with other operators.

From Proposition 3.5 we have that the contexts which can be proved to be secure
using Theorem 4.20 are secure also for the subclasses ofP BNDCnamedSBNDC(see
[8]), PP BNDC, andCP BNDC (see [5]), respectively.

EXAMPLE 4.21. Consider the programsE2 andE3 of Example 3.4. They areP BNDC,
hence by applying Theorem 4.20 we immediately get that the two contexts of Exam-
ple 3.4 are secure for these processes.

EXAMPLE 4.22. LetEND2 L be an action andE be aP BNDCprocess in which nei-
therEND nor END occur. LetP END be a class ofP BNDCprocesses whose termination
is announced by the execution of anEND action. Consider the contextC defined as(XjEND:E)nfENDg:
When inC we replace the variableX with a processF taken fromP END we obtain that
F is executed and thenE is executed, i.e., we obtain a context which behaves like a
sequential operator. From Theorem 4.20 and Proposition 3.5, we have thatXjEND:E is
secure forP END. Hence, from Theorem 4.6, we obtain thatC is secure forP END.

Theorem 4.20 does not provide a decidability result. In fact, to check that a context
is a P BNDC-context, in general, it is necessary to check that an infinite number of
processes are inP BNDC. The following definition characterizes a decidable class of
contexts which areP BNDC-contexts.

Definition 4.23 (The ClassC p). Let C p be the class of contexts which contains all the
P BNDCprocesses, the variableX, Y nH andY=H for every variableY, and is closed
with respect to the following constructors:YjZ, Y n v, Y[ f ℄, ∑i2I l i :Zi +∑ j2J(h j :Yj +
τ:Yj), wherel i 2 L andh j 2 H:
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EXAMPLE 4.24. The contextsX andW nH belong toC p. Hence, by using the con-
structor`:Z1+h:Y1+ τ:Y1, the context̀ :(WnH)+h:X+ τ:X belongs toC p.

Theorem 4.25. If C[X℄ 2 C p then C[X℄ is P BNDC-secure with respect to X.

Proof. First we prove that all the contexts inC p areP BNDC-contexts. This is imme-
diate by induction on the structure of the context. In particular, the case of the non
deterministic choice can be proved using the unwinding characterization ofP BNDC
presented in [5], while the case of the parallel operator is aconsequence of the fact that
the parallel composition ofP BNDCprocesses isP BNDC (see [10]).

Now we prove that all the contexts inC p are secure forP BNDC. This is immediate
by induction on the structure of the contexts. The basic steps are trivial. All inductive
steps follow by Theorem 4.6 except the parallel case, which follows from Lemma 4.17.

5 Second Instance: Trace Equivalence and Restriction

Sometimes weak bisimulation is too demanding since in some cases processes which
are not weakly bisimilar can be considered equivalent.

EXAMPLE 5.1. Consider again the process of Example 3.3.Wholesalerltd could
imagine that people usually set cookies. Hence, it could decide to change the applet
in the following way: if the password is inserted, then the price list is given, but as an
encrypted file. The high level user has to use another programto decrypt the file and
this program does not allow to store the decryption key. In this case the price list is
given in output only through a high level action and the processE becomes

PWD SHOPKEEPER:PRICE LIST H:0+ (PROD LIST H:0+ PROD LIST L:0):
If we consider the contextC1, that isXjPWD SHOPKEEPER:0; we haveC1[E℄ nH �
τ:0+PROD LIST L:0 is not weakly bisimilar toC1[EnH℄nH � PROD LIST L:0. How-
ever, the low level user cannot read the price list using thiscontext. He can only infer
whether a high level user has used the applet to read the pricelist. Since everybody
knows that there exists a price list (and thus its existence is not a secret), in this case
the use of bisimulation seems too restrictive. This examplerecalls the work presented
in [37] where the authors claim the need to define properties in terms of sequences of
interactions (traces) between the system and the users.

In this section we consider the following instance of our security definition: � is�T (trace equivalence) and� l is � nH (restriction on high level actions). In this case a
class of contextsC is secure for a class of processesP with respect toX if

for all C[X℄ 2 C and for allE 2 P ;C[E℄nH �T C[E nH℄nH:
In the rest of this section we refer to this instance of our security property.

EXAMPLE 5.2. Consider the contextC1 and the processE of Example 5.1. Using the
above instance of our security notion,C1 is secure forE with respect toX.
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Let us consider the security property known asNDC (see [8]) which is defined
similarly toBNDC, but using trace equivalence instead of weak bisimulation.

Definition 5.3 (NDC). Let E 2 E . E 2 NDC if for all Π 2 EH ,

E nH �T (EjΠ)nH:
TheNDC security property is decidable as it immediately follows from the follow-

ing characterization, whose proof can be found in [8].

Lemma 5.4. Let E2 E . E 2 NDC iff E=H �T E nH:
As in the case ofBNDC, it is possible to prove that all the contexts of the formXjΠ

with Π 2 EH are secure forNDC processes.

Lemma 5.5. Let E2 E . E2NDC iff C[E℄nH �T C[EnH℄nH for all contexts C[X℄�
XjΠ with Π 2 EH .

Proof. ()) If E 2 NDC, then we have(EjΠ)nH �T EnH. Moreover,EnH is always
in NDC andE nH nH �T E nH, and then(E nHjΠ)�T E nH. Hence(EjPi)nH �T(E nHjΠ)nH, by transitivity of�T .

(() SinceEnH is always inNDCandEnH nH �T EnH, we obtain(EjΠ)nH �T(E nHjΠ)nH �T E nH.

In the next subsection we study contexts which are secure, using this second in-
stance, for all the processes. Then in Subsection 5.2 we concentrate on the contexts
secure for the class ofNDC processes.

5.1 �T Instance: Secure Contexts for a generic classP

Since trace equivalence is less demanding than weak bisimulation we immediately
obtain that the contexts which were secure in the previous section are secure also in
this section.

Theorem 5.6. LetC be a class of contexts andP be a class of processes.
If C[E℄nH �B C[E nH℄nH for all C[X℄ 2 C and for all E2 P , then C[E℄nH �T

C[E nH℄nH for all C[X℄ 2 C and for all E2 P .

Proof. Immediate consequence of the fact that ifE �B F thenE �T F, for all E;F 2
E .

This means that the class of contexts of Theorem 4.6 and the classCs are secure for
a generic classP of processes also with the second instance of our definition.The next
theorem shows that we can enlarge the class of secure contexts for anyP .

Theorem 5.7. LetP be a class of processes and X be a variable. A context of the form
∑i2I Ci +∑h j2H h j :D j is secure forP with respect to X if Ci is secure forP with respect
to X for all i 2 I.
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Proof. Let E be a process inP . From the fact that all theCi are secure forP we obtain
that for all i 2 I it holdsCi [E℄nH �T Ci [E nH℄nH. We proceed by exploiting the fact
that�T is a congruence with respect to the non deterministic choiceoperator, and the
restriction operator commutes with the non deterministic choice. Hence we obtain

∑
i2I

(Ci [E℄nH)�T ∑
i2I

(Ci [E nH℄nH);
and so(∑i2I Ci [E℄)nH �T (∑i2I Ci [E nH℄)nH.

It trivially holds that(∑h j2H h j :D j [E℄)nH�T 0�T (∑h j2H h j :D j [EnH℄)nH. Hence(∑i2I Ci [E℄+∑h j2H h j :D j [E℄)nH �T (∑i2I Ci [EnH℄+∑h j2H h j :D j [EnH℄)nH, i.e. our
thesis.

Notice that, also in this case it does not hold that ifC andD are secure forP , then
CjD is secure forP . The contexts and the process presented in Example 4.7 witness
this fact.

5.2 �T Instance: Secure Contexts forNDC processes

Here we rediscover the analogues of the results proved in Subsection 4.2 forP BNDC
processes, in the case ofNDC processes. In particular, the following lemma corre-
sponds to Lemma 4.17.

Lemma 5.8. Let E;F;G;K 2 NDC. If EnH �T F nH and GnH �T K nH, then(EjG)nH �T (F jK)nH.

Proof. The following points are proved by Focardi and Gorrieri:

(1) if E;G2 NDC, thenEjG2 NDC;

(2) (EjG)=H �T E=HjG=H;

(3) if E0 �T F 0 andG0 �T K0, thenE0jG0 �T F 0jK0.
Hence we obtain (EjG)nH �T by (1) and Lemma 5.4(EjG)=H �T by (2)(E=HjG=H) �T by Lemma 5.4 and (3)(F=HjK=H) �T by (2)(F jK)=H �T by (1) and Lemma 5.4(F jK)nH:

This allows us to obtain the following result which states that contexts obtained
using the parallel operator are secure forNDC processes when the two contexts which
are put in parallel are secure and mapNDC processes intoNDC processes. We recall
that, by Definition 4.19, a contextC[X℄ is said to beNDC-secure with respect toX if it
is aNDC-context with respect toX and it is secure forNDC with respect toX.
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Theorem 5.9. Let C and D be two contexts which are NDC-secure with respect to X.
The context CjD is NDC-secure with respect to X.

Proof. The fact thatCjD is aNDC-context follows from the fact that if two processes
areNDC, then their parallel composition isNDC.

We prove thatCjD is secure forNDC. If E 2 NDC, then by hypothesis we have
C[E℄ nH �T C[E nH℄ nH andD[E℄ nH �T D[E nH℄ nH. Moreover, sinceE nH is
alwaysNDC we have thatC[E℄;C[E nH℄;D[E℄;D[E nH℄ areNDC. We get the thesis
by applying Lemma 5.8 to these four processes.

Theorem 5.9 does not provide a decidability result. In the following definition we
characterize a decidable class ofNDC-contexts, which is the analogue of the classC p

of Definition 4.23.

Definition 5.10 (The ClassCn). Let Cn be the class of contexts which contains all the
NDC processes, the variableX, YnH andY=H for every variableY, and is closed with
respect to the following constructors:`:Y with ` 2 L, YjZ, Y nv, Y[ f ℄, Y+Z, h:Y+ τ:Y
with h2 H:
Theorem 5.11. If C[X℄ 2 Cn then C[X℄ is NDC-secure with respect to X.

Proof. First we prove that all the contexts inCn areNDC-contexts. This is immediate
by induction on the structure of the context. In particular,we use the fact that trace
equivalence is a congruence with respect to non deterministic choice, the fact that if
E;F 2 NDC thenEjF;EnH 2 NDC.

Now we prove that all the contexts inCn are secure forNDC. This is immediate by
induction on the structure of the context. The basic steps are trivial. As weak bisimu-
lation implies trace equivalence, all the inductive steps follow by Theorem 4.6 except
cases of parallel and nondeterministic choice. The parallel step follows by Lemma 5.8.
Finally, letC[X℄ andD[X℄ be secure forNDC, i.e. Tr(C[E℄ nH) = Tr(C[E nH℄ nH)
andTr(D[E℄nH) = Tr(D[E nH℄nH) for all E 2 NDC, then for allE 2 NDC:

Tr((C[E℄+D[E℄)nH) = Tr((C[E℄nH)+(D[E℄nH))= Tr(C[E℄nH)[Tr(D[E℄nH)= Tr(C[E nH℄nH)[Tr(D[EnH℄nH)= Tr(C[E nH℄+D[EnH℄)
so we conclude thatC[X℄+D[X℄ is secure forNDC.

6 Related Works

Since the seminal work by Goguen and Meseguer [11], noninterference has played a
central role in the formalization of the notion of confidentiality. Nevertheless, many
authors notice that it is too demanding when dealing with practical applications indeed
no real policy ever calls for total absence of information flow over any channel. In
many practical applications confidential data can flow from high to low provided that
the flow is not direct and it is controlled by the system, i.e.,a trusted part of the system
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can control the downgrading of high level information. Consider for instance the case
in which the high level user edits a file and sends it through a private channel to an
encrypting protocol, the encrypting protocol encrypts thefile and sends it using a public
channel. Even if the high level data are sent using a public channel the fact that the file
is encrypted ensures that the low level users cannot read thedata. In fact, the low level
users can only observe that an encrypted file is passing on thepublic channel. In this
case the encrypting protocol represents the trusted part ofthe system which controls
the flow from high to low.

The problem of detecting only uncontrolled information flows has first been con-
sidered by Goguen and Meseguer in [12]. They introduce the notion of conditional
noninterferencewhich admits flow from high to low level through a controlled chan-
nel. Rushby in [29] develops a theory of downgrading in the deterministic case based
on the notion ofintransitive noninterference. Pinsky in [26] unifies the concepts of
standard and intransitive noninterference and describes adecision procedure for non-
interference. In [27] a formalization of intransitive noninterference in the context of
deterministic CSP is presented. In [33] the relationships between various definitions
of noninterference and notions of process equivalence are analyzed and some general-
izations to handlepartial and conditional information flows are outlined. The authors
provide a general definition of noninterference and discusshow such a generalization
could be appropriate to deal with realistic practical situations, e.g., with policies that al-
low for automatic downgrading of certain statistical information from a database. Our
definition follows the spirit of [31, 33] and generalizes theformalization presented in
those papers by allowing the use of more structured contextsand not considering only
trace-based equivalences.

Another approach to the problem of achieving noninterference in real systems is
presented in [7] where a probabilistic framework is used to give a quantitative esti-
mate of the information flowing through the systems. The authors use a parameterized
behavioral equivalence to consider as effectively noninterfering two distinguishable
behaviors provided that their difference is below a threshold ε. We can handle this
idea just instantiating our notion of secure context with their parameterized behavioral
equivalence. The presence of contexts in our definition allows the treatment of cases
in which the similarity between two processes strongly depends on the environment in
which they evolve.

In [17, 18], Martinelli observes that security properties can be naturally described
as properties of open systems, i.e., systems which may have unspecified components.
These may be used to represent a hostile intruder whose behavior cannot be predicted
or a malicious system component. The verification mechanismproposed by Martinelli
consists of checking that, for any instance of the unknown component, the resulting
system satisfies a property expressed as a formula of a suitable temporal logic. In
order to make decidable the verification problem, he does notconsider constructs for
modelling recursion. He also studies a method for finding, ifit exists, a suitable system
to be inserted into an unspecified component so that the wholesystem respects a given
specification. In [17], it is also proposed a generalizationof Focardi and Gorrieri’s
Non Deducibility on Composition(NDCandBNDC) by parameterizing the equivalence
relation over processes. In our work we endorse this idea of generalizingNDC and we
extend it by parameterizing also the power of an external observer (by introducing the
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concept of low level view) and the power of a generic attacker(by introducing the
context).

Secure contexts are also studied by Sabelfeld and Mantel in [34] where they pro-
pose a timing-sensitive security definition for programs ina simple multi-threaded lan-
guage. Sabelfeld and Mantel give a syntactic characterization of a class of contexts in
their language which preserve security, i.e., they are secure whenever one substitutes
holes with secure programs. This, in a sense, corresponds toour general definition
of P -secure contexts. In particular, their definition of securecontexts is based on a
“hook-up” (compositionality) property [19] of their notion of security. That is contexts
just reflect the compositionality property of their security notion. Actually the compo-
sitionality of security properties is a fundamental issue in the incremental definition of
secure systems (see [22, 39, 36]). As we point out in the previous sections there is a
strong relation between the compositionality properties of a classP of processes and
the compositionality properties ofP -secure contexts (see Theorem 4.20).

In [24] admissible interference(AI) is introduced as a trace based generalization of
SNNI[8] to deal with downgrading. In [15] a bisimulation based version ofAI, named
BNAI, is presented and applied to the analysis of cryptographic protocols. Like in our
approach, their basic model is a variant of CCS. This facilitates the comparison with
our work as shown below.

6.1 Persistent Secure Contexts and Downgrading

In order to model the notion of downgrading in our language weneed to introduce the
set of actions performed by the trusted downgrader, i.e., weassume thatL is partitioned
into the setsD (downgrading actions),H, andL. In the following we denote byH+ the
setH[D. It is reasonable to assume that an attacker cannot simulatethe trusted part of
the system, i.e., it cannot perform the actions inD. For instance, in the case of protocol
analysis the attacker cannot distribute the encryption keys. Moreover, we can assume
that the low level users cannot observe the actions performed by the trusted part. These
considerations can be translated in our framework as follows:� the classC of contexts in which we are interested has to be a subset of thesetCH

of all contexts built using only actions inH;� the operation�l has to remove all the behaviors relative to actions inH+.

In particular, if we consider our first instance, i.e., usingweak bisimulation and restric-
tion, and we focus on the class of contextsCBNDC= fXjΠ jΠ 2 EHg (i.e, the contexts
used to defineBNDC) we get that a processE has to satisfy(EjΠ)nH+ �B (E nH+ jΠ)nH+
for all Π 2 EH .

EXAMPLE 6.1. Let us consider the case in which an encrypting protocolreceives a
confidential file on a private channel, encrypts it and sends the resulting file on a public
channel. Letf ileh be the high level input representing the reception of the fileon the
private channel,encd be the downgrading action representing the encryption phase,okh
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be a confidential acknowledge to the high level user, andf ilel be the low level output
of the encrypted data. The encrypting protocol can be formalized as

Enc� f ileh:encd:okh: f ilel :0
Since it is reasonable to assume that an attacker cannot simulate the trusted part of the
system, i.e., it cannot perform the actions inD, if we consider any possible attacker
Π 2 EH we get that (EncjΠ)nH+ �B 0�B (E nH+jΠ)nH+
which means thatEncis secure.

Unfortunately imposing thatE satisfies(EjΠ)nH+ �B (E nH+jΠ)nH+
is not enough to guarantee no information flow. In fact, all the (uncontrolled) flows
which occur after the first downgrading are not revealed. This problem was observed
also in [24]. As done in [24, 15] we can check the flows occurring after the first
downgrading by imposingpersistency.

Definition 6.2 (Persistent-secure Contexts for a Process).A class of contextsC is
persistent-securefor a processE iff for all E0 reachable fromE, C is secure forE0.

Applying this definition to weak bisimulation and restriction with respect toH+,
and considering the class of contextsCBNDC we get that a processE has to be such that
for all E0 reachable fromE it holds(E0jΠ)nH+ �B (E0 nH+jΠ)nH+
EXAMPLE 6.3. Let us consider again the encrypting protocolEncabove, it reaches the
processE0 � okh: f ilel :0 which does not satisfy(E0jΠ)nH+ �B (E0 nH+jΠ)nH+
In fact if Π � okh:0 then(E0jΠ) nH+ �B f ilel :0; while (E0 nH+jΠ) nH+ �B 0: This
means that the low level user which observes the encrypted file passing on the public
channel can infer that the high level user has received the acknowledge. We can avoid
this kind of flow by adding a timeout to the protocol

Enc� f ileh:encd:(okh: f ilel :0+ τ: f ilel :0):
Now the process is secure.

TheBNAI property introduced in [15] corresponds to consider�l equal tonH+, �
equal to�B, and the class of contextsCBNAI of the form(X nD)=H. A processE is
BNAI if and only if CBNAI is persistent-secure forE. We can prove that this is equivalent
to consider the class of contextsCBNDC.
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7 Conclusions

We presented a generalization of the notions of noninterference which is more flexible
than the ones introduced by Focardi and Gorrieri [8]. The flexibility is a consequence
of the fact that our notion is parametric with respect to a class of contexts and thus not
limited to contexts of the formXjΠ, with Π 2 EH .

On the one hand our notion can be used to restrict the set of possible attackers: e.g.,
when it is not reasonable to assume that an attacker has the ability to perform any high
level action. This occurs in many practical applications. On the other hand our notion
allows us to enlarge the set of possible attackers, since contexts can also perform low
level actions and SPA operators can be freely combined in thecontext construction.

As noted by other authors (see, e.g., [8, 33, 17]) the notion of noninterference
strongly depends on the notion of process equivalence. But the problem of characteriz-
ing the behavioral equality between two processes is not trivial in a non-deterministic
system. In fact, there is no notion of system equivalence which everybody agrees upon,
the choice of the appropriate notion of equivalence dependson the environment and ap-
plication which are considered. The equivalence can be chosen among, for example,
trace or failure equivalence, various forms of bisimulation and testing equivalence. Our
notion is parametric with respect to the relational equivalence among processes, hence
it can be specified in order to fit the right idea of process equality in various contexts
of study.

In modelling real systems we cannot ignore the abilities of the low level observer.
This is captured in our approach by parameterizing also the low level view in order to
fit the situation in the real systems.
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Prefix
�

a:E a! E

Sum
E1

a! E0
1

E1+E2
a! E0

1

E2
a! E0

2

E1+E2
a! E0

2

Parallel
E1

a! E0
1

E1jE2
a! E0

1jE2

E2
a! E0

2

E1jE2
a! E1jE0

2

E1 !̀ E0
1 E2

¯̀! E0
2

E1jE2
τ! E0

1jE0
2

Restriction
E

a! E0
E nv

a! E0 nv
if a 62 v

Relabelling
E

a! E0
E[ f ℄ f (a)! E0[ f ℄

Recursion
T[recZ:T[Z℄℄ a! E0

recZ:T[Z℄ a! E0
Table 1: The operational rules for SPA
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Figure 1: The Database example.
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