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1 Introduction

In interval temporal logics undecidability is usually the case (see, for instance,
[12,14]), while decidability is a rare exception. The quest for decidable fragments
and systems of temporal logics with interval-based semantics is one of the main
research problems in the area of interval logics. Several decidability results have
been established previously by reduction to point-based logics, either by way of
direct translation or by restriction of the semantics, e.g., imposing locality, ho-
mogeneity, or other principles that essentially reduce it to point-based semantics
[1,2,3,10,11,13,15].
Only recently some decidability results of genuinely interval-based logics have been
established [4,5,6,7,8,9]. In particular, in [4] we have developed a sound, complete
and terminating tableau for the logic D�· of strict subintervals (with both end-
points strictly inside the current interval) over dense linear orderings, by defining
a class of pseudo-models and proving finite model property with respect to such
pseudo-models.

Here we consider the interval logic D� of proper subintervals, that is, subintervals
different from the current interval, over dense linear orderings and we develop a
similar technique to devise a tableau-based decision procedure for that logic. Despite
the strong similarity with our previous work, the case of proper subintervals turned
out to be essentially more complicated. The presence of the special families of
beginning subintervals and ending subintervals of a given interval in a structure
with proper subinterval relation causes substantial distinction of the semantics from
the case of interval structures with strict subinterval relation studied in [4], further
leading to considerable complications in the constructions of both pseudo-models
and tableaux. For instance, the formula (〈D〉p∧〈D〉q) → 〈D〉(〈D〉p∧〈D〉q) is valid
in D�· but not in D� (for, p and q may only be satisfied in respectively beginning
and ending subintervals). Furthermore, the formula

〈D〉(p ∧ [D]q) ∧ 〈D〉(p ∧ [D]¬q) ∧ [D]¬(〈D〉(p ∧ [D]q) ∧ 〈D〉(p ∧ [D]¬q))

can only be satisfied in a D�-structure, as it forces p to be true at some beginning
and at some ending subintervals, a requirement which cannot be imposed in D�· .
Note, however, that while D� can refer to beginning or ending intervals, it cannot
differentiate between these. This is a subtle but crucial detail: as shown by Lodaya
[14], the interval logic BE with modalities respectively for beginning and ending
subintervals is undecidable over the class of dense orderings.

The paper is organized as follows. In Section 2, we give the syntax and semantics
of the logic of proper subintervals D�. Moreover, we introduce pseudo-models for
D� and we prove that satisfiability of D�-formulas in pseudo-models is equivalent
to satisfiability in standard models, thus establishing a small model property for
D�. Section 3 is devoted to the tableau-based decision procedure obtained from
the latter result. We conclude the paper with a short discussion of related open
problems and future research.
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2 Structures for D� formulas

2.1 Syntax and semantics of D�

Let D = 〈D,<〉 be a dense linear order. An interval over D is an ordered pair
[b, e], where b < e. We denote the set of all intervals over D by I(D). We consider
the proper (i.e., irreflexive) subinterval relation, denoted by �, defined as follows:
[dk, dl] � [di, dj ] if and only if di ≤ dk, dl ≤ dj and [dk, dl] �= [di, dj ]. We shall write
[dk, dl] � [di, dj ] as a shorthand for [dk, dl] � [di, dj ] ∨ [dk, dl] = [di, dj ].

The language of the modal logic D� of interval structures with proper subinterval
relation consists of a set AP of propositional letters, the propositional connectives
¬ and ∨, and the modal operator 〈D〉. The other propositional connectives, as well
as the logical constants 
 (true) and ⊥ (false) and the dual modal operator [D],
are defined as usual. Formulas of D� are defined as follows: ϕ ::= p | ¬ϕ | ϕ ∨
ϕ | 〈D〉ϕ. The semantics of D� is based on interval models M = 〈I(D),�,V〉. The
valuation function V : AP �→ 2I(D) assigns to every propositional variable p the set
of intervals V(p) over which p holds. The semantics of D� is recursively defined by
the satisfiability relation � as follows:

• for every propositional variable p ∈ AP, M, [di, dj ] � p iff [di, dj ] ∈ V(p);
• M, [di, dj ] � ¬ψ iff M, [di, dj ] �� ψ;
• M, [di, dj ] � ψ1 ∨ ψ2 iff M, [di, dj ] � ψ1 or M, [di, dj ] � ψ2;
• M, [di, dj ] � 〈D〉ψ iff there exists [dk, dl] ∈ I(D) such that [dk, dl] � [di, dj ] and

M, [dk, dl] � ψ.

A D�-formula is satisfiable if it is true at some interval in some interval model;
it is valid if it is true at every interval in every interval model.

2.2 Fulfilling D�-structures

In this section we introduce suitable pseudo-models, called fulfilling D�-structures,
for D�-formulas.

Definition 2.1 Given a D�-formula ϕ, a ϕ-atom is a subset A of CL(ϕ) such that:
(i) for every ψ ∈ CL(ϕ), ψ ∈ A if and only if ¬ψ �∈ A, and
(ii) for every ψ1 ∨ ψ2 ∈ CL(ϕ), ψ1 ∨ ψ2 ∈ A if and only if ψ1 ∈ A or ψ2 ∈ A.

Definition 2.2 Given a D�-formula ϕ and a ϕ-atom A ∈ Aϕ, the set REQ(A) of
(temporal) requests of A is the set {〈D〉ψ ∈ CL(ϕ) : 〈D〉ψ ∈ A}.

We denote the set of all ϕ-atoms by Aϕ and the set of all 〈D〉-formulas in CL(ϕ)
by REQϕ. Then, we define the binary relation Dϕ⊆ Aϕ × Aϕ, such that A Dϕ A′

if and only if for every [D]ψ in CL(ϕ), if [D]ψ ∈ A, then ψ ∈ A′.
Given an interval [b, e], a beginning subinterval of [b, e] is an interval [b, e′], with

e′ < e, an ending subinterval of [b, e] is an interval [b′, e], with b < b′, and an internal
subinterval of [b, e] is an interval [b′, e′], with b < b′ and e′ < e. To represent infinite
chains of beginning (resp., ending) subintervals of a given interval, we need to
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Figure 1. An example of D� -graph.

introduce the notion of cluster of reflexive nodes. Given a graph G = 〈V,E〉, we
define a cluster as a maximal strongly connected subgraph C which includes reflexive
vertices only. By abuse of notation, we say that a cluster C is a successor of a vertex
v if v does not belong to C and there exists a successor v′ of v in C. Conversely, a
vertex v is a successor of C if v does not belong to C and there exists a predecessor
v′ of v in C. D�-graphs are defined as follows.

Definition 2.3 A finite directed graph G = 〈V,E〉 is a D�-graph if:

(i) there exists an irreflexive vertex v0 ∈ V , called the root of G, such that any
other vertex v ∈ V is reachable from it;

(ii) every irreflexive vertex v ∈ V has exactly two clusters as successors: a beginning
successor cluster Cb and an ending successor cluster Ce;

(iii) Cb and Ce have a unique common successor vc, which is a reflexive vertex;
(iv) every successor of vc, different from vc itself, is irreflexive;
(v) there exists at most one edge exiting the clusters Cb and Ce and reaching an

irreflexive node;
(vi) apart from the edge leading to vc, there are no edges exiting from Cb (resp. Ce)

that reach a reflexive vertex.

Figure 1 depicts a portion of a D�-graph. The root v0 has two successor clusters Cb

and Ce of four vertices each. Both Cb and Ce have exactly one irreflexive successor.
Their common reflexive successor vc has two irreflexive successors.

Let ϕ be a D� formula. D�-structures are defined by pairing a D�-graph with
a labeling function that associates an Aϕ atom with each vertex of the graph.

Definition 2.4 A D�-structure is a quadruple S = 〈〈V,E〉,L,B, E〉, where:

(i) 〈V,E〉 is a D�-graph;
(ii) L : V → Aϕ is a labeling function that assigns to every vertex v ∈ V an atom

L(v) such that for every edge (v, v′) ∈ E, L(v) Dϕ L(v′);
(iii) B : V → 2REQϕ and E : V → 2REQϕ are mappings that assign to every vertex

the sets of its beginning and ending requests, respectively;
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(iv) for every irreflexive vertex v ∈ V , with successor clusters Cb and Ce, we have
that:

• the common reflexive successor vc of Cb and Ce is such that E(vc) = B(vc) =
∅ and REQ(L(vc)) = REQ(L(v)) − (B(v) ∪ E(v)),

• every reflexive vertex v′ ∈ Cb is such that B(v′) = B(v), E(v′) = ∅, and
REQ(L(v′)) = REQ(L(vc)) ∪ B(v),

• the unique irreflexive successor v′′ of Cb (if any) is such that B(v)∩L(v′′) ⊆
B(v′′) (requests which have been classified as initial in a given vertex cannot
be reclassified in its descendants),

• every reflexive vertex v′ ∈ Ce is such that E(v′) = E(v), B(v′) = ∅, and
REQ(L(v′)) = REQ(L(vc)) ∪ E(v),

• the unique irreflexive successor v′′ of Ce (if any) is such that E(v)∩L(v′′) ⊆
E(v′′) (requests which have been classified as ending in a given vertex can-
not be reclassified in its descendants).

Let v0 be the root of 〈V,E〉. If ϕ ∈ L(v0), we say that S is a D�-structure for ϕ.

Beginning and ending requests associated with a vertex v can be viewed as requests
that must be satisfied over respectively beginning and ending subintervals of any
interval corresponding to v (possibly over both of them), but not over its internal
subintervals.

Every D�-structure can be regarded as a Kripke model for D�, where the valu-
ation is determined by the labeling.

Definition 2.5 A D�-structure S = 〈〈V,E〉,L,B, E〉 is fulfilling if for every v ∈ V

and every 〈D〉ψ ∈ L(v), there exists v′ ∈ V such that v′ is a descendant of v and
ψ ∈ L(v′).

Theorem 2.6 Let ϕ be a D�-formula which is satisfied in an interval model. Then,
there exists a fulfilling D�-structure S = 〈〈V,E〉,L,B, E〉 for ϕ.

Proof Let M = 〈I(D),�,V〉 be an interval model and let [b0, e0] ∈ I(D) be an
interval such that M, [b0, e0] � ϕ. We recursively build a fulfilling D�-structure
S = 〈〈V,E〉,L,B, E〉 for ϕ as follows.

We start with the one-node graph 〈{v0}, ∅〉 and a labeling function L such that
L(v0) = {ψ ∈ CL(ϕ) : M, [b0, e0] � ψ}. Then, we partition the set REQ(L(v0)) into
the following three sets of formulas:

Beginning requests: Bv0 contains all 〈D〉ξ ∈ REQ(L(v0)) such that ξ is satisfied over
beginning subintervals of [b0, e0], but not over internal subintervals of [b0, e0];

Ending requests: Ev0 contains all 〈D〉ξ ∈ REQ(L(v0)) such that ξ is satisfied over
ending subintervals of [b0, e0], but not over internal subintervals of [b0, e0];

Internal requests: Iv0 = (REQ(L(v0)) \ Bv0) \ Ev0 , that is, the set of all 〈D〉ξ ∈
REQ(L(v0)) such that ξ is satisfied over internal subintervals of [b0, e0].

We put B(v0) = Bv0 and E(v0) = Ev0 . Then, for every formula 〈D〉ψ ∈ L(v0),
we choose an interval [bψ, eψ], with [bψ, eψ] � [b0, e0], such that M, [bψ, eψ] � ψ. If
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〈D〉ψ ∈ Iv0 , then b0 < bψ < eψ < e0, else if 〈D〉ψ ∈ Bv0 , then b0 = bψ < eψ < e0,
otherwise (〈D〉ψ ∈ Ev0) b0 < bψ < eψ = e0.

Since D is a dense ordering and CL(ϕ) is a finite set of formulas, there exist two
beginning intervals [b0, e1] and [b0, e2] such that:

• for every interval [bψ, eψ], with 〈D〉ψ ∈ Bv0 ∪ Iv0 , [bψ, eψ] � [b0, e2] � [b0, e1];
• [b0, e1] and [b0, e2] satisfy the same formulas of CL(ϕ).

We start the construction of the beginning successor cluster Cb of v0 by adding
a new vertex vb and a pair of edges (v0, vb) and (vb, vb), and by putting L(vb) =
{ξ ∈ CL(ϕ) : M, [b0, e1] � ξ}, B(vb) = Bv0 and E(vb) = ∅. Next, for every 〈D〉ψ ∈
B(vb), we establish whether or not we must add a vertex vψ in Cb as follows. Let
[b0, eψ] be a beginning subinterval such that M, [b0, eψ] � ψ. We add a reflexive ver-
tex vψ to Cb if [b0, eψ] satisfies the same temporal formulas [b0, e1] satisfies. Moreover,
we put L(vψ) = {ξ ∈ CL(ϕ) : M, [b0, eψ] � ξ}, B(vψ) = B(vb), and E(vψ) = ∅. Let
{v1, . . . , vk} be the resulting set of vertices added to Cb. For i = 1, . . . , k − 1, we
add an edge (vi, vi+1) to E; furthermore, we add the edges (vb, v1) and (vk, vb) to
E. If for all formulas 〈D〉ψ ∈ B(vb) there exists a corresponding vertex vψ in Cb, we
are done. Otherwise, let ΓB be the set of the remaining formulas 〈D〉ψ ∈ B(vb) and
let [b0, e

max
B ] be a beginning subinterval such that, for every formula 〈D〉ψ ∈ ΓB,

we have that M, [b0, e
max
B ] � ψ or M, [b0, e

max
B ] � 〈D〉ψ. We add a new irreflexive

vertex vmax
b and an edge connecting an arbitrary vertex in Cb to it, say (vb, v

max
b ),

and we define its labeling as L(vmax
b ) = {ξ ∈ CL(ϕ) : M, [b0, e

max
B ] � ξ}.

The ending successor cluster Ce of v0 is built in the very same way.
To complete the first phase of the construction, we must introduce the common

reflexive successor vc of Cb and Ce. Since D is a dense ordering and CL(ϕ) is a finite
set of formulas, there exist two intervals [b3, e3] and [b4, e4] such that:

• for every interval [bψ, eψ], with 〈D〉ψ ∈ Iv0 , [bψ, eψ] � [b4, e4] � [b3, e3];
• [b3, e3] and [b4, e4] satisfy the same formulas of CL(ϕ).

We add a new vertex vc, together with the edges (vb, vc), (ve, vc), and (vc, vc), and
we put L(vc) = {ξ ∈ CL(ϕ) : M, [b3, e3] � ξ}, B(vc) = E(vc) = ∅.

For every formula 〈D〉ψ ∈ Iv0 , we add a new vertex vψ and an edge (vc, vψ), and
we define its labeling as L(vψ) = {ξ ∈ CL(ϕ) : M, [bψ, eψ] � ξ}.

Then, we recursively apply the above procedure to the irreflexive vertices we
have introduced. To keep the construction finite, whenever there exists an irreflexive
vertex v′ ∈ V such that L(vψ) = L(v′) for some vψ, we simply add an edge to v′

instead of creating a new vertex vψ and an edge entering it. Since the set of atoms
is finite, the construction is guaranteed to terminate. �

Let S be a fulfilling D�-structure for a formula ϕ. To build a model for ϕ, we
consider the interval [0, 1] of the rational line and define a function fS mapping
intervals in I([0, 1]) to vertices in S.

Definition 2.7 Let S = 〈〈V,E〉,L,B, E〉 be a D�-structure. The function fS :
I([0, 1]) �→ V is defined recursively as follows. First, fS([0, 1]) = v0. Now, let [b, e]

D. Bresolin et al. / Electronic Notes in Theoretical Computer Science 231 (2009) 131–151136



be an interval such that fS([b, e]) = v and fS has not been yet defined over any of
its subinterval. We distinguish two cases.

Case 1: v is an irreflexive vertex. Let Cb and Ce be the reflexive successor beginning
and ending clusters of v, respectively, and vc be their common reflexive successor.
Let vmax

b be the irreflexive successor of Cb (if any), vmax
e be the irreflexive successor

of Ce (if any), and v1, . . . , vk be the k irreflexive successors of vc (if any). Let
p = e−b

2k+3 . The function fS is defined as follows:
(i) we put fS([b, b + p]) = vmax

b and fS([e − p, e]) = vmax
e ;

(ii) for every i = 1, . . . , k, we put fS([b + 2ip, b + (2i + 1)p]) = vi;
(iii) for every i = 1, . . . , k + 1, we put fS([b + (2i − 1)p, b + 2ip]) = vc;
(iv) for every strict subinterval [b′, e′] of [b, e] which is not a subinterval of any of

the intervals [b + ip, b + (i + 1)p], we put fS([b′, e′]) = vc.
To complete the construction, we need to define fS over the beginning subintervals
[b, e′] such that b + p < e′ < e and the ending subintervals [b′, e] such that
b < b′ < e − p. We map such beginning (resp., ending) subintervals to vertices
in Cb (resp., Ce) in such a way that for any beginning subinterval [b, e′] (resp.,
ending subinterval [b′, e]) and any vb ∈ Cb (resp., ve ∈ Ce), there exists a beginning
subinterval [b, e′′], with [b, b+ p] � [b, e′′] � [b, e′] (resp., ending subinterval [b′′, e],
with [e−p, e] � [b′′, e] � [b′, e]) such that fS([b, e′′]) = vb (resp., fS([b′′, e]) = ve) 1 .

Case 2: v is a reflexive vertex. The case in which v belongs to Cb or Ce has been
already dealt with. Thus, we only need to consider the case of vertices vc with
irreflexive successors only (apart from themselves). We distinguish two cases:
(i) vc has no successors apart from itself. In such a case, we put fS([b′, e′]) = vc

for every subinterval [b′, e′] of [b, e].
(ii) vc has at least one successor different from itself. Let v1

c , . . . , v
k
c be the k

successors of vc different from vc. We consider the intervals defined by the
points b, b + p, b + 2p . . . , b + 2kp, b + (2k + 1)p = e, with p = e−b

2k+1 . The
function fS over such intervals is defined as follows:
• for every i = 1, . . . , k, we put fS([b + (2i − 1)p, b + 2ip]) = vi

c.
• for every i = 0, . . . , k, we put fS([b + 2ip, b + (2i + 1)p]) = vc.
We complete the construction by putting fS([b′, e′]) = vc for every subinterval
[b′, e′] of [b, e] which is not a subinterval of any of the intervals [b+ ip, b+(i+
1)p].

The function fS satisfies some basic properties.

Lemma 2.8

(i) For every interval [b, e] ∈ I([0, 1]), if fS([b, e]) = v and v′ is reachable from v,
then there exists an interval [b′, e′] such that fS([b′, e′]) = v′ and [b′, e′] � [b, e].

(ii) For every pair of intervals [b, e] and [b′, e′] in I([0, 1]) such that [b′, e′] � [b, e],
we have that for every formula [D]ψ ∈ L(fS([b, e])), both ψ and [D]ψ belong to

1 Notice that the density of the rational interval [0, 1] plays here an essential role.

D. Bresolin et al. / Electronic Notes in Theoretical Computer Science 231 (2009) 131–151 137



L(fS([b′, e′])).

Proof Condition 1 can be easily proved by observing that it trivially holds for all
successors of v by definition of fS and then extending the result to every descendant
v′ of v by induction on the length of the shortest path from v to v′.

As for condition 2, let [b, e] and [b′, e′] be two intervals in I([0, 1]) such that
[b′, e′] � [b, e], v = fS([b, e]), and v′ = fS([b′, e′]). If v′ is a descendant of v in
the D�-graph, then condition 2 holds by definition of Dϕ. When we apply the
construction step defined by Case 1, Point 4, of Definition 2.7, it may happen that
[b′, e′] � [b, e] but v′ is not reachable from v in the D�-graph. In such a case, both
[b, e] and [b′, e′] are internal subintervals, and thus, by definition of the labeling
functions B and E , condition 2 is satisfied. �

Theorem 2.9 Given a fulfilling D�-structure S for ϕ, there exists an interval
model MS = 〈I([0, 1]),�,V〉 over the rational interval [0, 1] such that MS, [0, 1] � ϕ.

Proof For every p ∈ AP, let V(p) = {[b, e] : p ∈ L(fS([b, e]))}. We can prove by
induction on the structure of formulas ψ ∈ CL(ϕ) that for every interval [b, e] ∈
I([0, 1]):

MS, [b, e] |= ψ iff ψ ∈ L(fS([b, e])).

The atomic case immediately follows from definition of V; the Boolean cases
follow from the definition of atom; finally, the case of temporal formulas follows
from Lemma 2.8. This allows us to conclude that MS, [0, 1] |= ϕ. �

2.3 A small-model theorem for D�-structures

Given a fulfilling D�-structure, we can remove from it those vertices which are not
necessary to fulfill any 〈D〉-formula to obtain a smaller D�-structure of bounded
size, as proved by the following theorem.

Theorem 2.10 For every satisfiable D�-formula ϕ, there exists a fulfilling D�-
structure with breadth and depth bounded by 2 · |ϕ|.

Proof Consider a fulfilling D�-structure S. The size of the structure can be safely
reduced as follows:

• we remove from every cluster C all vertices that either do not fulfill any 〈D〉-
formula or fulfill only formulas that are fulfilled by some descendant of it. Let
C be the resulting cluster. We select a minimal subset C′ ⊆ C that fulfills all
formulas that are fulfilled only inside C and we replace C with C′ (if C′ is empty,
we replace C with one of its vertices);

• for every common reflexive successor vc of a pair of clusters, we select a minimal
subset of its irreflexive successors whose vertices satisfy all 〈D〉-formulas in vc.

The execution of the first removal process produces a D�-structure where the
size of every cluster is at most |ϕ| and every vertex in a cluster of size at least 2
fulfills some ψ formulas which are not fulfilled elsewhere, while the execution of the
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second removal process produces a D�-structure where every vertex has at most |ϕ|
immediate successors.

Since whenever we exit from a cluster or we move from a reflexive node to an
irreflexive one the number of requests strictly decreases, we can conclude that the
length of every loop-free path is at most 2 · |ϕ|. �

As a direct consequence of Theorem 2.10, we have that a fulfilling D�-structure
for a formula ϕ (if any) can be generated and explored by a non-deterministic
procedure that uses only a polynomial amount of space. This gives the following
complexity bound to the decision problem for D�.

Theorem 2.11 The decision problem for D� is in PSPACE.

The very same reduction that has been used to prove D�· PSPACE hardness in
[4] can be applied to D�, thus proving the PSPACE completeness of the satisfiability
problem for D�.

3 The tableau method for D�

In this section we present a tableau system for D�. From the model-theoretic results
in the previous section, we have that a D�-formula ϕ is satisfiable if and only if there
exists a fulfilling D�-structure for it. The tableau method attempts systematically
to build such a structure if there is any, returning “satisfiable” if it succeeds and
“unsatisfiable” otherwise.

The nodes of the tableau are sets of locally consistent formulas (i.e., parts of
atoms). At the root of the tableau, we place a set containing only the formula ϕ the
satisfiability of which is being tested. We then proceed recursively to expand the
tableau, following the expansion rules described below. Every disjunctive branch
of the tableau describes an attempt to construct a fulfilling D�-structure for the
atom at the root. Going down the branch roughly corresponds to going deeper
into subintervals of the interval corresponding to the root. The applicability of an
expansion rule at a given node depends on the formulas in the node and on the part
of D�-structure we are building. The expansion of the tableau proceeds as follows.

(i) We start with the current vertex (at the beginning, the root) v0 of the D�-
structure that is being constructed and we apply the usual Boolean rules to
decompose Boolean operators.

(ii) Then, we impose a suitable marking on 〈D〉-formulas to partition them into four
sets: the set of formulas that are satisfied only on beginning subintervals, that
of formulas that are satisfied only on ending subintervals, that of formulas that
are satisfied both on beginning and ending subintervals, and that of formulas
that are satisfied on internal subintervals.

(iii) The third phase of the procedure is the construction of the first vertex vb of
the beginning successor cluster Cb, the first vertex ve of the ending successor
cluster Ce, and their common successor vc.
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(iv) Next, we proceed in parallel with the construction of the clusters Cb and Ce by
guessing the 〈D〉-formulas from the set REQ(L(v0)) that should be satisfied
inside each of them.

(v) Then, we build the irreflexive successor vmax
b of Cb, the irreflexive successor vmax

e

of Ce, and the irreflexive successors of vc, if needed, and proceed recursively
with their expansion from Step 1 above.

During the expansion of the tableau, we restrict our search to models with the
property stated in Theorem 2.10. In particular, during the construction of a cluster
we explicitly satisfy only those 〈D〉-formulas that should be satisfied inside the
cluster and can never be satisfied outside it. In this way we have the following
advantages:

i) we consider a 〈D〉-formula only once on a given branch of the tableau.
ii) when we exit a cluster, we can add the negation of every 〈D〉-formula that has

been explicitly satisfied inside that cluster, thus reducing the search space of
the successive expansion steps.

3.1 The rules of the tableau.

Before describing the tableau rules in details, we need to introduce some preliminary
notation. A formula of the form 〈D〉ψ ∈ CL(ϕ) can be possibly marked as follows:

〈D〉Mψ, 〈D〉Bψ, 〈D〉BCψ, 〈D〉BNCψ, 〈D〉Eψ, 〈D〉ECψ, 〈D〉ENCψ, 〈D〉BEψ.

This notation has the following intuitive meaning. The markings 〈D〉Mψ, 〈D〉Bψ,
〈D〉Eψ, and 〈D〉BE appear when we try to construct an irreflexive interval node
and we guess that the formula 〈D〉ψ should be satisfied over an internal (middle)
subinterval, only over a beginning subinterval, only over an ending subinterval, or
both over a beginning and over an ending (but not over middle) subinterval of
the current one. The markings 〈D〉BCψ or 〈D〉BNCψ (resp. 〈D〉ECψ,〈D〉ENCψ)
substitute a previously marked 〈D〉Bψ (resp. 〈D〉Eψ) formula when we try to
construct a beginning cluster and we guess that the formula ψ should be satisfied
in the current cluster (〈D〉BCψ marking) or not (〈D〉BNCψ marking). The marking
is only used for bookkeeping purposes, to facilitate the correct choice of the rules to
be applied. It does not affect the existence of a contradiction; we say that a node
is closed iff once we remove the marking from every formula in it, it then contains
both ψ and ¬ψ for some ψ ∈ CL(ϕ).

Given a set Φ of possibly marked formulas, the set TF (Φ) (the temporal frag-
ment of Φ) is the set of all the formulas in Φ of the types 〈D〉ψ and [D]ψ (ig-
noring the markings). Given a set of formulas Γ, we use (D)Γ, where (D) ∈
{[D], 〈D〉, 〈D〉M , 〈D〉B,〈D〉BC , 〈D〉BNC , 〈D〉E , 〈D〉EC , 〈D〉ENC , 〈D〉BE}, as a short-
hand for {(D)ψ | ψ ∈ Γ}. Likewise, ¬Γ stands for {¬ψ | ψ ∈ Γ} and Γ ∨ (D)Γ for
{ψ ∨ (D)ψ | ψ ∈ Γ}.

We now describe the rules used to expand the tableau nodes. In order to help
the reader in understanding them, they are introduced and briefly explained in the
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order they appear in the procedure. We start with an initial tableau consisting of
only one node containing the formula ϕ that we want to check for satisfiability. We
apply the following Boolean Rules to {ϕ} and to the newly generated nodes until
these rules are no longer applicable:

Φ,¬¬ψ

Φ, ψ

Φ, ψ1 ∨ ψ2

Φ, ψ1 Φ, ψ1

Φ,¬(ψ1 ∨ ψ2)

Φ,¬ψ1,¬ψ2

Next, we focus on a node to which the Boolean Rules are no more applicable.
At this stage the node contains only atomic formulas and a subset of the temporal
fragment of an atom (there may exist a formula 〈D〉ψ ∈ REQ(ϕ) for which neither
〈D〉ψ nor [D]¬ψ belongs to the current node). In order to obtain a complete
temporal fragment, we apply the following Completion Rule to the current node
and to all newly generated nodes:

Φ

Φ, 〈D〉ψ Φ, [D]¬ψ
where 〈D〉ψ ∈ CL(ϕ), 〈D〉ψ /∈ Φ, and [D]¬ψ /∈ Φ.

Given a node with a complete temporal fragment, we have to classify every
formula of the form 〈D〉ψ belonging to it as a beginning, middle, ending, or both
beginning and ending one. This is done by the following Marking Rule:

Φ, 〈D〉ψ

Φ, 〈D〉Bψ Φ, 〈D〉Mψ Φ, 〈D〉Eψ Φ, 〈D〉BEψ

where neither 〈D〉Bψ nor 〈D〉Eψ

belongs to an ancestor
of the current node.

The conditions for the application of this rule will be explained later.

Given an irreflexive node with a complete temporal fragment, whose 〈D〉-
formulas have been classified and marked, we generate its two reflexive successors,
together with their common reflexive successor. This operation is performed by
applying once the following Reflexive Step Rule:

Φ, 〈D〉BΓ, 〈D〉MM, 〈D〉BEΘ, 〈D〉EΛ, [D]Δ

〈D〉BΓ, 〈D〉BΘ, 〈D〉MM,

[D]¬Λ, [D]Δ,¬Λ, Δ

〈D〉MM,

[D]¬Γ, [D]¬Θ, [D]¬Λ,

[D]Δ,¬Γ,¬Θ,¬Λ, Δ

〈D〉EΛ, 〈D〉EΘ, 〈D〉MM,

[D]¬Γ, [D]Δ,¬Γ,Δ

This rule splits the requests over three nodes accordingly to their classification. If
a request cannot appear in a node, it introduces the corresponding negation. The
generated nodes have a complete temporal fragment and are reflexive since all box
arguments belong to them.

Now we have to deal with the expansion of the middle node. First, we apply the
Boolean Rules until they are no longer applicable. Then, we apply the following
Middle Step Rule:
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Φ, 〈D〉Mμ1, ..., 〈D〉Mμh, [D]Γ

μ1,Γ, [D]Γ ... μh, Γ, [D]Γ

For every request in the current node, this rule creates an irreflexive successor of
it. Then, we re-apply the expansion procedure from the beginning for every newly
generated node.

The expansion of a beginning node takes place as follows. As usual, we first apply
the Boolean Rules to it, and to the newly generated nodes, until they are applicable.
Then, for any 〈D〉Bψ formula in the current node, we distinguish two cases: 〈D〉Bψ

can be fulfilled in the cluster or it can be fulfilled in one of its descendants. They
are dealt with the following Build Beginning Cluster Rule:

Φ, 〈D〉Bψ, 〈D〉BΓB, 〈D〉BCΓBC , 〈D〉BNCΓBNC , 〈D〉MM, [D]Δ

ψ, 〈D〉BΓB, 〈D〉BC(ΓBC ∪ {ψ}),
〈D〉BNCΓBNC , 〈D〉MM, [D]Δ, Δ

Φ, 〈D〉BΓB, 〈D〉BCΓBC ,

〈D〉BNC(ΓBNC ∪ {ψ}), 〈D〉MM, [D]Δ

The former case is handled by the first branch, which marks the request as 〈D〉BCψ

(in order to avoid loops) and satisfies ψ in a new cluster node with the same temporal
fragment as the current one. The latter case is handled by the second branch
that simply reclassifies the request as 〈D〉BNCψ without moving to another cluster
node. Such a procedure is iterated until every 〈D〉Bψ is re-marked as 〈D〉BCψ or
〈D〉BNCψ.

The case of ending nodes is dealt with in a very similar way by means of the
following Build Ending Cluster Rule:

Φ, 〈D〉Eψ, 〈D〉EΓE , 〈D〉ECΓEC , 〈D〉ENCΓENC , 〈D〉MM, [D]Δ

ψ, 〈D〉EΓE , 〈D〉EC(ΓEC ∪ {ψ}),
〈D〉ENCΓENC , 〈D〉MM, [D]Δ, Δ

Φ, 〈D〉EΓE , 〈D〉ECΓEC ,

〈D〉ENC(ΓENC ∪ {ψ}), 〈D〉MM, [D]Δ

Once we reach a cluster node such that no Boolean rules are applicable and every
〈D〉Bψ request has been reclassified as 〈D〉BCψ or 〈D〉BNCψ, we proceed as follows.
If the node does not include any 〈D〉BNCψ request, we are done (all requests have
been satisfied in the cluster). Otherwise (there exists at least one marked formula
of the form 〈D〉BNCψ), we generate an irreflexive successor of the cluster that, for
every formula 〈D〉BNCψ, satisfies either ψ or 〈D〉Bψ. This last case is handled
by the formulas ΓBNC ∨ 〈D〉BΓBNC introduced by the following Exit Beginning
Cluster Rule:

Φ, 〈D〉BCΓBC , 〈D〉BNCΓBNC , 〈D〉MM, [D]Δ

ΓBNC ∨ 〈D〉BΓBNC , [D]¬ΓBC , [D]Δ, Δ
where ΓBNC �= ∅.

The case of the ending cluster is dealt with in a very similar way by means of
the following Exit Ending Cluster Rule:
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Φ, 〈D〉ECΓEC , 〈D〉ENCΓENC , 〈D〉MM, [D]Δ

ΓENC ∨ 〈D〉EΓENC , [D]¬ΓEC , [D]Δ, Δ
where ΓENC �= ∅.

Then, we apply again all steps from the beginning, with only a little difference
in the application of the Marking Rule. The Completion Rule may produce some
requests 〈D〉ψ devoid of any markings. For all these requests, we must check whether
they have been marked as 〈D〉Bψ or 〈D〉Eψ in an ancestor of the current node and,
if this is the case, we must guarantee the downward propagation of their markings.
To this end, before applying the Marking Rule, we apply the following Persistent
Beginning and Persistent Ending Rules:

Φ, 〈D〉ψ

Φ, 〈D〉Bψ

Φ, 〈D〉ψ

Φ, 〈D〉Eψ

whenever 〈D〉Bψ (resp., 〈D〉Eψ) belongs to an ancestor of the current node.

3.2 Building the tableaux.

A tableau for a D�-formula ϕ is a finite graph T = 〈V,E〉, whose vertices are subsets
of CL(ϕ) and whose edges are generated by the application of expansion rules. The
construction of the tableau starts with the initial tableau, which is the single node
graph 〈{{ϕ}}, ∅〉. To describe such a construction process, we take advantage of
macronodes, which can be viewed as the counterpart of vertices of D�-structures.

Given a set V ′ ⊆ V , let E(V ′) be the restriction of E to vertices in V . More-
over, let the Reflexive Step, Middle Step, Build Beginning/Ending Cluster and Exit
Beginning/Ending Cluster rules be called Step Rules. Macronodes are defined as
follows.

Definition 3.1 Let 〈V,E〉 be a tableau for a D�-formula ϕ. A macronode is a set
V ′ ⊆ V such that:

• 〈V ′, E(V ′)〉 is a tree;
• the root of 〈V ′, E(V ′)〉 is either the initial node of the tableau or a node gen-

erated by an application of a Step Rule;
• every edge in E(V ′) is generated by the application of an expansion rule which

is not a Step Rule;
• the only expansion rule that can be applied to the leaves of 〈V ′, E(V ′)〉 is a

Step Rule.

A macronode m is reflexive if its root is generated by the application of the Re-
flexive Step Rule or of the Build Beginning/Ending Cluster Rules; otherwise, it is
irreflexive.

We say that a rule is applicable to a node n if it generates at least one successor
node. The construction of a tableau for a D�-formula ϕ starts with the initial
tableau 〈{{ϕ}}, ∅〉 and proceeds by applying the following expansion strategy to the
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leaves of the current tableau, until it cannot be applied anymore.

Apply the first rule in the list whose condition is satisfied:

(i) a Boolean Rule is applicable;

(ii) the Completion Rule is applicable;

(iii) the node belongs to an irreflexive macronode and the Persistent Beginning Rule
is applicable;

(iv) the node belongs to an irreflexive macronode and the Persistent Ending Rule
is applicable;

(v) the node belongs to an irreflexive macronode and the Marking Rule is appli-
cable;

(vi) the node belongs to an irreflexive macronode and the Reflexive Step Rule is
applicable;

(vii) the node belongs to a reflexive macronode with only M markings and the
Middle Step Rule is applicable;

(viii) the node belongs to a reflexive macronode with B markings or E markings
and the Build Beginning/Ending Cluster Rules are applicable;

(ix) the node belongs to a reflexive macronode with B markings or E markings and
the Exit Beginning/Ending Cluster Rules are applicable.

Termination is ensured by the following looping conditions:

• if an application of the Reflexive Rule generates a node which is the root of an
existing reflexive macronode, then add an edge from the current node to this
node instead of creating the new one.

• if the Middle Step Rule is applied to a node n and one of the successor nodes
it generates, say n′, is such that TF (n′) = TF (n), then add the edge (n′, n) to
the tableau. Do not apply any expansion rule to n′.

We say that a node n in a tableau is closed if one of the following conditions holds:

• there exists ψ such that both ψ and ¬ψ belong to n;
• a Middle Step Rule or a Reflexive Step Rule have been applied to n and at

least one of its successors is closed;
• a rule different from the Middle Step Rule and the Reflexive Step Rule has

been applied to n and all its successors are closed;
• n is a descendant of a node n′ to which an Exit Beginning/Ending Cluster Rule

has been applied and TF (n′) = TF (n).

A node in a tableau is open if it is not closed. A tableau is open if and only if its
root is open. We will prove that a formula is satisfiable if and only if there exists
an open tableau for it.

As for computational complexity, it is not difficult to show that the proof of
Theorem 2.10 can be adapted to the proposed tableau method. The only difference
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is that at any step of the tableau construction we either expand a node or mark one
of its formulas. As a consequence, any node of a D�-structure corresponds to a path
of at most |ϕ| nodes in the tableau. Hence, the depth of the tableau is bounded by
2 · |ϕ|2. Since the breadth of the tableau is 2 · |ϕ|, we can conclude that the proposed
tableau-based decision procedure is in PSPACE (and thus optimal).

Theorem 3.2 (Complexity) The proposed tableau procedure is in PSPACE.

3.3 Example of application.

Here we give an example of the above-described expansion strategy at work. Con-
sider the formula ϕ = 〈D〉p∧〈D〉q∧ [D]¬(〈D〉p∧〈D〉q), which states that the given
interval has a subinterval where p holds and a subinterval where q holds, but no
subintervals covering both of them. It is easy to see that in any model for this
formula p and q respectively hold in a beginning and an ending subinterval only,
or vice versa. Part of the tableau for ϕ is depicted in Figure 2. Due to space
limitations, we restrict our attention to the non-closed region of the tableau and
we skip the details about the application of Boolean Rules. We start with the root
A, whose temporal fragment is complete, and we apply the Marking Rule. For the
sake of conciseness, we only consider a correct marking, which inserts 〈D〉Bp and
〈D〉Eq in B. Once all 〈D〉-formulas have been marked, we apply the Reflexive Step
Rule, that generates the three successors of B. The first successor is node C that
contains the request 〈D〉Bp and the negation of the request 〈D〉Eq, namely, [D]¬q.
The second one is node E that contains the request 〈D〉Eq and the negation of the
request 〈D〉Bp, namely, [D]¬p. The third one is node D that contains the negation
of the two requests (such a node represents the middle reflexive vertex of the corre-
sponding D�-structure). Node D contains no 〈D〉-formulas and thus it cannot be
expanded anymore. Since it does not include any contradiction, we declare it open.
Consider now node C. According to the expansion strategy, we apply the Build
Beginning Cluster Rule to 〈D〉Bp in node C, that generates nodes F and G. Node
F includes p and, accordingly, replaces 〈D〉Bp with 〈D〉BCp. It does not contain
〈D〉BNC formulas and no expansion rules are applicable to it. Since it does not
include any contradiction, we declare it open. The same argument can be applied
to nodes E and H. This allows us to conclude that the tableau is open (and thus
ϕ is satisfiable).

To better explain the proposed tableau method, we include in Figure 2 additional
nodes which are not strictly necessary to conclude that the tableau is open. This
is the case with node G that replaces 〈D〉Bp with 〈D〉BNCp, thus postponing the
satisfaction of p. According to the expansion strategy, we apply the Exit Beginning
Cluster Rule to G, that generates the irreflexive node L. Such a node contains the
formula 〈D〉Bp∨p, stating that p is satisfied either in L or in some descendant of it.
The application of the Or Rule to 〈D〉Bp ∨ p generates nodes M and N . Node M

includes again the formula 〈D〉Bp and, since TF (M) = TF (G), we declare it closed.
As for node N , that satisfies p, we apply the Completion Rule (neither 〈D〉p nor
[D]¬p belongs to N), that generates its two successors. The first successor turns
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A

〈D〉p, 〈D〉q, [D]¬(〈D〉p ∧ 〈D〉q)

B

〈D〉B
p, 〈D〉E

q, [D]¬(〈D〉p ∧ 〈D〉q)

C

〈D〉B
p, [D]¬q

[D]¬(〈D〉p ∧ 〈D〉q)

¬q, ¬(〈D〉p ∧ 〈D〉q)

D

[D]¬p, [D]¬q

[D]¬(〈D〉p ∧ 〈D〉q)

¬p, ¬q, ¬(〈D〉p ∧ 〈D〉q)

E

〈D〉E
q, [D]¬p

[D]¬(〈D〉p ∧ 〈D〉q)

¬p, ¬(〈D〉p ∧ 〈D〉q)

F

p, ¬q, 〈D〉BC
p, [D]¬q

[D]¬(〈D〉p ∧ 〈D〉q)

G

¬q, 〈D〉BNC
p, [D]¬q

[D]¬(〈D〉p ∧ 〈D〉q)

H

q, ¬p, 〈D〉EC
q, [D]¬p

[D]¬(〈D〉p ∧ 〈D〉q)

I

¬p, 〈D〉ENC
q, [D]¬p

[D]¬(〈D〉p ∧ 〈D〉q)
L

¬q, 〈D〉B
p ∨ p, [D]¬q

[D]¬(〈D〉p ∧ 〈D〉q)

M

¬q, 〈D〉B
p, [D]¬q

[D]¬(〈D〉p ∧ 〈D〉q)

closed

N

p, ¬q, [D]¬q

[D]¬(〈D〉p ∧ 〈D〉q)

O

p, ¬q, [D]¬q, [D]¬p

[D]¬(〈D〉p ∧ 〈D〉q)

P

¬p, 〈D〉E
q ∨ q, [D]¬p

[D]¬(〈D〉p ∧ 〈D〉q)

Q

¬p, 〈D〉E
q, [D]¬p

[D]¬(〈D〉p ∧ 〈D〉q)

closed

R

q, ¬p, [D]¬p

[D]¬(〈D〉p ∧ 〈D〉q)

S

q, ¬p, [D]¬q, [D]¬p

[D]¬(〈D〉p ∧ 〈D〉q)

Figure 2. (Part of) the tableau for ϕ = 〈D〉p ∧ 〈D〉q ∧ [D]¬(〈D〉p ∧ 〈D〉q).

out to be identical to M and thus we add an edge from N to M instead of adding a
new node; the second successor is node O, with TF (O) ⊂ TF (G). Then, we apply
Reflexive Step Rule to node O. Since it does not contain any 〈D〉-formula, its three
reflexive successors coincides with node D. Hence, we add an edge from O to D

and we stop the expansion of (this part of) the tableau.

3.4 Soundness and completeness

We conclude the section by proving soundness and completeness of the tableau
method.

Theorem 3.3 (soundness) Let ϕ be a D�-formula and T be a tableau for it. If
T is open, then ϕ is satisfiable.

Proof We build a fulfilling D�-structure S = 〈〈V,E〉,L,B, E〉 for ϕ step by step,
starting from the root of T and proceeding according to the expansion rules that
have been applied in the construction of the tableau.

Let n0 be the root of T . We generate the one-node D�-graph 〈{v0}, ∅〉 and we
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put formulas belonging to n0 in L(v0). Now, let n be an open node in T and let
v be the corresponding vertex in the D�-graph. The way in which we develop the
D�-structure depends on the expansion rule that has been applied to n during the
construction of the tableau.

• A Boolean Rule has been applied. Then, at least one successor n′ of n is
open. We add formulas belonging to n′ to L(v) and we proceed by taking into
consideration the tableau node n′ and the vertex v.

• The Completion Rule has been applied. Then, at least one successor n′ of n is
open. As in the previous case, we add formulas belonging to n′ to L(v) and we
proceed by taking into consideration the tableau node n′ and the vertex v.

• The Marking/Persistent Beginning/Persistent Ending Rule has been applied.
Let 〈D〉ψ be the formula to which the rule has been applied and let n′ be one
of the open successors of n. Four cases may arise, depending on which marking
has been applied to the considered formula in n′:
· if 〈D〉Bψ ∈ n′, then we put 〈D〉ψ ∈ B(v);
· if 〈D〉Eψ ∈ n′, then we put 〈D〉ψ ∈ E(v);
· if 〈D〉BEψ ∈ n′, then we add 〈D〉ψ to both B(v) and E(v);
· if 〈D〉Mψ ∈ n′, then the marking does not influence the construction of the

D�-structure.
In all cases, we proceed recursively by taking into consideration the tableau
node n′ and the current vertex v.

• The Reflexive Step Rule has been applied. Since T is open, all successors of n

are open either. Let nb, nc, and ne be the first, second, and third successor of n,
respectively. We add three reflexive vertices vb, vc, and ve to V and the edges
(v, vb), (v, ve), (vb, vc), (ve, vc), (vb, vb), (vc, vc), and (ve, ve) to E. The labeling
of vb, vc, and ve is defined as follows: L(vb) = nb, L(vc) = nc, and L(ve) = ne.
We recursively apply the construction by taking into consideration the node nb

with the corresponding vertex vb, the node nc with the corresponding vertex
vc, and the node ne with the corresponding vertex ve.

• The Middle Step Rule has been applied. Since n is open, all its successors
n1, ..., nh are open either. We add h new vertices v1, ..., vh to V and the edges
(v, v1), ..., (v, vh) to E, and we define their labeling in such a way that for
i = 1, . . . , h, L(vi) = ni. We recursively apply the construction to every node
ni paired with the corresponding vertex vi.

• The Build Beginning/Ending Cluster Rule has been applied. Suppose that the
rule has been applied to a formula 〈D〉Bψ ∈ n (the case of 〈D〉Eψ is analogous)
and let n′ be an open successor of n. Two cases may arise:
(i) 〈D〉BCψ ∈ n′ (〈D〉ψ has been satisfied in the cluster). We introduce a new

node v′ in the cluster of v by adding the edges (v, v′), (v′, v′), and (v′, v) to
E. The labeling L(v′) of v′ consists of the set of formulas belonging to n′.
We proceed by taking into consideration the node n′ and the corresponding
vertex v′.

(ii) 〈D〉BNCψ ∈ n′ (satisfaction of 〈D〉ψ has been postponed). We do not
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add any vertex to the D�-structure, but simply proceed by taking into
consideration the node n′ and the current vertex v.

• The Exit Beginning/Ending Cluster Rule has been applied. Since T is open, the
unique successor n′ of n is open and it is the root of an irreflexive macronode.
We add a new irreflexive vertex v′ to V and an edge (v, v′) to E. Moreover, we
set the labeling of v′ as the set of formulas belonging to n′. Then, we proceed
by taking into consideration the node n′ with the corresponding vertex v′.

To keep the construction finite, whenever the procedure reaches a tableau node n′

that has been already taken into consideration, instead of adding a new vertex to
the D�-structure, it simply adds an edge from the current vertex v to the vertex v′

corresponding to n′.
Since any tableau for ϕ is finite, such a construction is terminating. However,

the resulting structure 〈〈V,E〉,L,B, E〉 is not necessarily a D�-structure: there may
exist a vertex v ∈ V and a non-temporal formula ψ ∈ CL(ϕ) such that neither ψ

nor ¬ψ belongs to L(v). To overcome this problem, we can consistently extend the
labeling L(v) as follows:

• if ψ = p, with p ∈ AP, we put ¬p ∈ L(v);
• If ψ = ¬ξ, we put ψ ∈ L(v) if and only if ξ �∈ L(v);
• If ψ = ψ1 ∨ ψ2, we put ψ1 ∨ ψ2 ∈ L(v) if and only if ψ1 ∈ L(v) or ψ2 ∈ L(v).

The resulting D�-structure 〈〈V,E〉,L,B, E〉 is a fulfilling D�-structure for ϕ and
thus ϕ is satisfiable. �

Theorem 3.4 (completeness) Let ϕ be a D�-formula. If ϕ is satisfiable, then
there exists an open tableau for it.

Proof Let S = 〈〈V,E〉,L,B, E〉 be a fulfilling D�-structure that satisfies ϕ. We
take advantage of such a structure to show that there exists an open tableau T for
ϕ. In particular, we will define a correspondence between (some) nodes in T and
vertices in S that satisfies the following constraints:

(1) if n is associated with an irreflexive vertex v, then n belongs to an irreflexive
macronode;

(2) if n is associated with a reflexive vertex v, then n belongs to a reflexive macron-
ode;

(3) ff n is associated with a vertex v, then, for every formula ψ ∈ n, ψ ∈ L(v).

Let n0 be the root of the tableau. We associate it with the root v0 of S. Since
n0 belongs to an irreflexive macronode, v0 is an irreflexive vertex, and ϕ ∈ L(v0),
all constraints are satisfied.

Let n be the current node of the tableau, v be the vertex of S associated with it,
and, by inductive hypothesis, n and v satisfy the constraints. We proceed by taking
into consideration the rule that, according to the expansion strategy, is applicable
to node n.

• One of the Boolean Rules is applicable. We consider the application of the
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OR Rule to a formula of the form ψ1 ∨ ψ2 (the other cases are simpler and
thus omitted). Since ψ1 ∨ ψ2 ∈ n, by Constraint (3), ψ1 ∨ ψ2 ∈ L(v) and thus
ψ1 ∈ L(v) or ψ2 ∈ L(v). If ψ1 ∈ L(v), then we associate the successor n1 of
n, that contains ψ1, with v; otherwise, we associate the successor n2 of n, that
contains ψ2, with v. In either cases, all constraints are satisfied.

• The Completion Rule is applicable. Let us consider the application of the
Completion Rule to the formula 〈D〉ψ. Since L(v) is an atom, either 〈D〉ψ ∈
L(v) or [D]¬ψ ∈ L(v). In the former case, we associate the successor n1 of n,
that contains 〈D〉ψ, with v; in the latter case, we associate the successor n2 of
n, containing [D]¬ψ, with v. In either cases, all constraints are satisfied.

• The Marking Rule is applicable. Let us consider the application of the Marking
Rule to the formula 〈D〉ψ. According to the expansion strategy, n belongs to
an irreflexive macronode and thus, by inductive hypothesis, v is an irreflexive
vertex. Let Cb be the beginning successor cluster of v, Ce the ending successor
cluster of v, and vc their common reflexive successor (see Definition 2.3). Four
cases may arise:
(i) 〈D〉ψ appears in Cb, but not in Ce and vc. In this case, we associate the

successor n′ of n, which includes 〈D〉Bψ, with v.
(ii) 〈D〉ψ appears in Ce, but not in Cb and vc. In this case, we associate the

successor n′ of n, which includes 〈D〉Eψ, with v.
(iii) 〈D〉ψ appears in Cb and Ce, but not in vc. In this case, we associate the

successor n′ of n, which includes 〈D〉BEψ, with v.
(iv) 〈D〉ψ appears in Cb, Ce, and vc. In this case, we associate the successor n′

of n, which includes 〈D〉Mψ, with v.
• The Persistent Beginning/Ending Rule is applicable. We associate the unique

successor n′ of n with v.
• The Reflexive Step Rule is applicable. According to the expansion strategy,

n belongs to an irreflexive macronode and thus, by inductive hypothesis, v is
an irreflexive vertex. Let vb be a node in the beginning successor cluster of
v, ve a node in the ending successor cluster of v, and vc the common reflexive
successor of the two clusters. According to the expansion strategy, when such
a rule turns out to be applicable, all 〈D〉-formulas have already been marked
in accordance with S. Let n = {Φ, 〈D〉BΓ, 〈D〉MM, 〈D〉BEΘ, 〈D〉EΛ, [D]Δ},
where Φ only contains atomic formulas. We have that {〈D〉Γ, 〈D〉Θ, 〈D〉M,

[D]¬Λ, [D]Δ,¬Λ, Δ} ⊆ L(vb), that {〈D〉Λ, 〈D〉Θ, 〈D〉M, [D]¬Γ, [D]Δ,¬Γ, Δ}
⊆ L(ve), and that {〈D〉M, [D]¬Γ, [D]¬Θ[D]¬Λ, [D]Δ, ¬Γ, ¬Θ, ¬Λ, Δ} ⊆ L(vc).
We associate the first successor of n with vb, the second one with ve, and the
third one with vc.

• The Middle Step Rule is applicable. According to the expansion strategy, n

belongs to a macronode whose root is the middle node generated by an ap-
plication of the Reflexive Step Rule and thus, by inductive hypothesis, n is
associated with a middle reflexive vertex vc. Since S is fulfilling, for every for-
mula 〈D〉ψ ∈ n there exists a successor vψ of vc such that ψ ∈ L(vψ) and for
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every [D]θ ∈ n, θ, [D]θ ∈ L(vψ). For all 〈D〉ψ ∈ n, we associated the successor
nψ of n with vψ.

• The Build Beginning Cluster Rule is applicable. Given the expansion strategy,
by inductive hypothesis we have that n is associated with a node v that belongs
to a beginning cluster C. Let us consider the application of the rule to the
formula 〈D〉Bψ. Two cases may arise: either S fulfills 〈D〉ψ outside C or not.
In the former case, we associate the successor n′ of n, that contains 〈D〉BNCψ,
with v; in the latter case, there exists a node v′ ∈ C such that ψ ∈ L(v′) and
we associate the successor n′ of n, that contains both ψ and 〈D〉BCψ, with v′.

• The Build Ending Cluster Rule is applicable. This case is analogous to the
previous one and thus omitted.

• The Exit Beginning Cluster Rule is applicable. Given the expansion strategy,
by inductive hypothesis we have that n is associated with a node v that belongs
to a beginning cluster C. Let v′ be the unique irreflexive successor of C. We
have that, for every formula 〈D〉BNCψ ∈ n, ψ ∈ L(v′) or 〈D〉ψ ∈ L(v′). The
labeling of the unique successor node n′ of n is thus consistent with v′ and we
can associate n′ with v′.

• The Exit Ending Cluster Rule is applicable. This case is analogous to the
previous one and thus omitted.

At the end of the above construction, we have obtained (a portion of) a tableau
for ϕ. Since all its nodes are open, we can conclude that there exists an open tableau
for ϕ. �

4 Conclusions

In [4], we devised a technique for constructing finite pseudo-models and building
tableau-based decision procedures for logics of subinterval structures and applied it
to the logic of strict subintervals. In this paper, we generalized it to the much more
difficult case of the logic of proper subintervals. In such a way, we have completed the
analysis and the proof of decidability for all versions of the semantics of subinterval
logics (strict, proper, and reflexive) over dense linear orders, where point-intervals
are not admitted. The inclusion of point-intervals is, however, unproblematic, be-
cause in the two difficult cases (strict and proper subinterval semantics) they are
definable over dense linear orders by the formula 〈D〉⊥. Thus, the decidability
results and tableau constructions carry over to subinterval structures with point-
intervals after suitable minor modifications. On the contrary, the cases of discrete
and arbitrary linear orders seem rather more difficult, and they are currently still
under investigation.
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