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Interval temporal logics provide a natural framework for qualitative and quantitative temporal reason-
ing over interval structures, where the truth of formulae is defined over intervals rather than points.
In this paper, we study the complexity of the satisfiability problem for Metric Propositional Neigh-
borhood Logic (MPNL). MPNL features two modalities to access intervals “to the left” and “to the
right” of the current one, respectively, plus an infinite set of length constraints. MPNL has been
recently shown to be decidable by a doubly exponential procedure. We improve such a result by
proving that MPNL is actually EXPSPACE-complete (even when length constraints are encoded in
binary), when interpreted over finite structures, the naturals, and the integers. Moreover, we develop
an optimal decision procedure for MPNL over the integers, which can be easily tailored to the cases
of finite linear orders and of the naturals.

1 Introduction

Interval temporal logics provide a natural framework for temporal representation and reasoning about
interval structures over linearly (or partially) ordered domains. They take time intervals as the primitive
ontological entities and define truth of formulae with respect to them instead of to time instants. The
modal operators of an temporal logic correspond to binary relations between pairs of intervals (in fact,
an interval logic of ternary interval relations has been developed by Venema in [15]). A special role in
the interval logic setting is commonly accorded to Halpern and Shoham’s modal logic of time intervals,
abbreviated HS, whose modalities make it possible to express all Allen’s (binary) interval relations [1].

Interval-based formalisms have been extensively used in various areas of computer science and arti-
ficial intelligence, including hardware specification and verification, constraint processing, planning and
plan validation, theories of action and change, and natural language understanding. However, in many
applications, severe syntactic and semantic restrictions have been imposed that considerably weaken
their expressive power. Interval temporal logics relax these restrictions, thus allowing one to express
much more complex temporal properties. Unfortunately, most of them, including HS and the majority
of its fragments, turn out to be undecidable (a comprehensive survey on interval logics can be found in
[11]; an up-to-date picture of decidability and undecidability results about them is given in [9, 13]).

One of the few cases of a decidable interval logic with genuine interval semantics, that is, not re-
ducible to point-based semantics, is the propositional logic of temporal neighborhood (Propositional
Neighborhood Logic, PNL for short), interpreted over various classes of temporal structures, including
all, dense, discrete, and finite linear orders, as well as rational, integer, and natural numbers [10]. PNL
is the fragment of HS featuring two modalities corresponding to Allen’s relations meets and met by (the
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one is the inverse of the other). Decidability of PNL with respect to various classes of linear orders has
been proved in [3] via a reduction to the satisfiability problem for the two-variable fragment of first-
order logic for binary relational structures over ordered domains [12]. Decidability of PNL with respect
to other classes of linear orders via a model-theoretic direct argument has been recently shown in [7],
where tableau-based optimal decision procedures for PNL, interpreted in the considered classes of linear
orders, have also been developed.

Despite its seeming simplicity, PNL is well-suited for a number of concrete application domains.
One of them is that of transaction-time databases (also called append-only databases), that keep track
of the sequence of timestamped versions of the database, where information is never removed and new
information is appended to existing information, respecting the temporal ordering. However, in such
an application domain as well in various other ones, a metric dimension turns out to be a necessary in-
gredient. A metric extension of PNL has been developed by Bresolin et al. in [2]. The resulting logic,
called Metric PNL (MPNL for short), pairs PNL modalities with a family of special atomic proposi-
tions expressing integer constraints (equalities and inequalities) on the length of the intervals over which
they are evaluated. The authors show that the satisfiability problem for MPNL, interpreted over natural
numbers, is decidable. However, they leave the precise characterization of its complexity as an open
problem. Metric constraints in MPNL are expressed in terms of some k ∈N. When k is a constant of the
formula or it is expressed in unary, MPNL is NEXPTIME-complete, but when k is expressed in binary,
then the satisfiability problem for MPNL has been shown to be somewhere in between EXPSPACE and
2NEXPTIME only.

In this paper, we focus our attention on MPNL. We first provide an original model-theoretic proof
of the decidability of the satisfiability problem for MPNL, with a binary encoding of metric constraints,
over finite linear orders, natural numbers, and integer numbers. As a matter of fact, the proof gives us
a doubly-exponential upper bound to the size of the (pseudo-)model for the input MPNL formula (if
any), when interpreted in the linear orders under consideration. Then, we devise an EXPSPACE decision
procedure for MPNL, interpreted over the integer numbers, and we show how to adapt it to the cases
of finite linear orders and natural numbers. EXPSPACE-completeness immediately follows from the
already known EXPSPACE-hardness of the problem. As a by-product, we solve the issue about the
exact complexity of MPNL, interpreted over the natural numbers, when k is expressed in binary, which
was left open in [2]. Moreover, since MPNL is expressively complete for a fragment of first-order logic
with two variables and one successor function, interpreted over the same classes of linear orders [2], the
proposed decision procedure can be used to check the satisfiability of formulae of such a logic as well.

The paper is organized as follows. In Section 2, we introduce the logic. Then, in Section 3, we
provide some basic definitions and results to be used in the following. In Section 4, we prove the de-
cidability of the satisfiability problem for MPNL over finite linear orders. In the following two sections,
we generalize such a result to the cases of natural and integer numbers by showing that every satisfiable
formula has a model that can be represented with a suitable small “generator”. Finally, in Section 7, we
outline an EXPSPACE decision procedure for satisfiability checking in the most general case of integer
numbers, which can be easily tailored to the cases of finite linear orders and natural numbers.

2 The logic MPNL

The logic MPNL can be viewed as a natural metric extension of PNL. The language of PNL consists
of a set AP of atomic propositions, the propositional connectives ¬ and ∨, and the modal operators
♦r and ♦l for Allen’s relations meets and met by, respectively [1]. Representation theorems, axiomatic
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systems, and decidability results for PNL, interpreted over various classes of linear orders, have been
given in [3, 10]. An optimal tableau-based method for deciding the satisfiability problem for the future
fragment of PNL (RPNL) over the natural numbers has been presented in [8], and later extended to the
full PNL over the integers in [5], while an optimal tableau system for RPNL over the class of all linear
orders can be found in [6]. Optimal tableau-based decision procedures for PNL, interpreted over various
classes of linear orders, can be found in [7].

An extension of PNL, interpreted over the natural numbers, with (a limited set of) metric constraints
has been defined and systematically studied in [2] (as a matter of fact, a metric extension of RPNL
was first considered in [4]). Let δ be the distance function over natural numbers defined as δ(x,y) =

|x−y| (the same definition applies to any finite linear order and to the integers). Metric PNL (MPNL) is
obtained from PNL by adding a set of (pre-interpreted) atomic propositions for length constraints. These
propositions allow one to constrain the length of the current interval and can be viewed as the natural
metric generalization of the modal constant π of propositional interval logics [10], which evaluates to
true precisely over point-intervals. Formally, for each ∼∈ {<, 6, =, >, >}, MPNL features a length
constraint len∼k, whose semantics is defined as follows: M, [x,y]  len∼k iff δ(x,y) ∼ k. Hereafter, we
limit ourselves to one type of metric constraints only, namely, len<k, as all the remaining ones can be
expressed in terms of it. As an example, we have thatM, [x,y] len=k⇔M, [x,y] len<k+1 ∧¬len<k.
Formulae of MPNL (denoted by ϕ,ψ, . . .) are generated by the following grammar:

ϕ ::= len<k | p | ¬ϕ | ϕ∨ϕ | ♦lϕ | ♦rϕ, where p ∈AP and k ∈ N.

The other propositional connectives, the logical constants > (true) and ⊥ (false), and the dual modal
operators 2r and 2l are defined as usual. Moreover, the modal constant π can be defined as len<1.

Given a linearly-ordered domain D = 〈D,<〉, a (non-strict) interval over D is an ordered pair [x,y],
with x6 y. We denote by I(D) the set of all intervals over D. Moreover, we denote by ymax the greatest
point in D (if there is not such a point, we put ymax = +∞) and by ymin the least point in D (if there
is not such a point, we put ymin = −∞). The semantics of MPNL is given in terms of models of the
form M = 〈D,V〉, where V : AP→ 2I(D) is a valuation function assigning a set of intervals to every
atomic proposition. From now on, we assume the domainD to be either Z, N, or a finite prefix of N. We
recursively define the truth relation  as follows:

• M, [x,y]  p iff [x,y] ∈ V(p), for any p ∈AP;

• M, [x,y]  len<k iff δ(x,y)< k;

• M, [x,y]  ¬ϕ iff it is not the case thatM, [x,y] ϕ;

• M, [x,y] ϕ∨ψ iffM, [x,y] ϕ orM, [x,y] ψ;

• M, [x,y]  ♦lϕ iff there exists z6 x such thatM, [z,x] ϕ;

• M, [x,y]  ♦rϕ iff there exists z> y such thatM, [y,z] ϕ.

Any MPNL-formula ϕ is said to be satisfiable if there exists a model M and an interval [x,y] on it such
thatM, [x,y] ϕ.

In [2], the satisfiability problem for MPNL has been shown to be decidable when interpreted over
the set of natural numbers. More precisely, it has been shown that the satisfiability problem for MPNL
over the set of natural numbers is NEXPTIME-complete when either the maximal k that occurs in metric
constraints is a constant or the parameter k of metric constraints is represented in unary, and it is in
between EXPSPACE and 2NEXPTIME when the parameter k is represented in binary. In the following,



4 An Optimal Decision Procedure for MPNL over the Integers

by a model-theoretic argument, we will show that the satisfiability problem for MPNL over finite linear
orders, the natural numbers, and the integer numbers, with a binary representation of the parameter(s) k
of metric constraints, is actually EXPSPACE-complete, and we develop an optimal decision procedure
for it. It is worth noticing that the model-theoretic argument behaves, in a way, worse than the one
in [2], as it provides a doubly-exponential upper bound on the size of (pseudo-)models regardless of the
representation of k. Nevertheless, we will show that in the search for a model of a given formula, at any
time, we need to keep track of a portion of the model that can be recorded in exponential space, thus
leading to an EXPSPACE decision procedure.

3 Atoms, types, dependencies, and compass structures

In this section, we introduce the basic machinery to be used in the following sections. LetM= 〈D,V〉 be
a model for an MPNL-formula ϕ. In the sequel, we relate every interval inM to the set of sub-formulae
of ϕ it satisfies. To do that, we introduce the key notions of ϕ-atom and ϕ-type. First of all, we define
the closure Cl(ϕ) of ϕ as the set of all sub-formulae of ϕ and of their negations (we identify ¬¬α with
α, ¬♦rα with 2r¬α, and so on), and we define Kϕ = {k | len<k ∈ Cl(ϕ)} as the set of all metric
parameters that appear in ϕ.

Definition 1. A ϕ-atom is any non-empty set F⊆ Cl(ϕ) such that:

1. for every α ∈ Cl(ϕ), we have α ∈ F iff ¬α 6∈ F,
2. for every γ= α ∨ β ∈ Cl(ϕ), we have γ ∈ F iff α ∈ F or β ∈ F, and

3. for every k,k ′ in Kϕ such that k < k ′, we have that len<k ∈A implies len<k ′ ∈A.

Intuitively, aϕ-atom is a maximal locally consistent set of formulas chosen from Cl(ϕ). Note that the
cardinality of Cl(ϕ) is linear in the length |ϕ| of ϕ, while the number of ϕ-atoms is at most exponential
in |ϕ| (precisely, we have that |Cl(ϕ)| is at most 2|ϕ| and there are at most 2|ϕ| distinct atoms). We define
Aϕ as the set of all possible atoms that can be built over Cl(ϕ). For every model M and every interval
[x,y] ∈ I(D), we associate the set of all formulas ψ ∈ Cl(ϕ) such that M, [x,y] � ψ with [x,y]. We call
such a set theϕ-type of [x,y] and we denote it by TypeM([x,y]). We have that everyϕ-type is aϕ-atom,
but not vice versa. Hereafter, ϕ-atoms (resp., ϕ-types) will be simply called atoms (resp., types). Given
an atom F, we denote by Obsr(F) (resp., Obsl(F) ) the set of all future (resp., past) observable formulae
of F, namely, the set of formulae ψ ∈ F such that ♦rψ ∈ Cl(ϕ) (resp., ♦lψ ∈ Cl(ϕ)). Similarly, given
an atom F, we denote by Reqr(F) (resp., Reql(F)) the set of all ♦r-requests (resp., ♦l-requests) of F,
namely, the set of formulae ψ ∈ Cl(ϕ) such that ♦rψ ∈ F (resp., ♦lψ ∈ F), and we use the shorthand
Req(F) for Reqr(F)∪Reql(F). Making use of the above notions, we can define the following relation
between two atoms F and G:

F R−→G iff Obsr(G) ⊆ Reqr(F) and Obsl(F) ⊆ Reql(G)

The relation R−→ satisfies a view-to-type dependency, that is, for every pair of intervals [x,y], [x ′,y ′] in
I(D), we have that y= x ′ implies TypeM([x,y]) R−→ TypeM([x ′,y ′]).

We provide now a natural interpretation of MPNL over grid-like structures (compass structures) by
exploiting the existence of a natural bijection between the intervals [x,y] and the points (x,y) of aD×D
grid with x 6 y. Such an interpretation was originally proposed by Venema in [14], and it can be given
for HS and all its fragments as well. As an example, Figure 1 shows four intervals [x0,y0], ..., [x3,y3]

such that (i) y0 = x1, (ii) x0 = y2, (iii) the length of [x2,y2] is less than k, and (iv) the length of [x3,y3] is
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[x0,y0]

[x3,y3],¬len<k+1

[x1,y1][x2,y2], len<k

(x0,y0)
(x3,y3)

(x1,y1)

(x2,y2)

k

Figure 1: Correspondence between intervals and the points of the compass structure.

greater than k, together with the corresponding points (x0,y0), ...,(x3,y3) of the grid (notice that Allen’s
interval relations meets and met by are mapped into the corresponding spatial relations between pairs
of points). Such an alternative interpretation of MPNL over compass structures will be exploited in the
decidability proofs to make them easier to understand.

Definition 2. Given an MPNL formula ϕ, a compass ϕ-structure is a pair G = (PD,L), where PD is
the set of points of the form (x,y), with x,y ∈ D and x 6 y, and L is a function that maps any point
(x,y) ∈ PD to a ϕ-atom L(x,y) in such a way that:
• for every pair of points (x,y),(x ′,y ′) ∈ PD , if y = x ′ then L(x,y) R−→L(x ′,y ′) (temporal con-

sistency);
• for every point (x,y) ∈ PD, and every len<k ∈ L(x,y), y−x < k (length consistency).

We say that a compassϕ-structure G = (PD,L) features a formulaψ if there exists a point (x,y)∈PD
such that ψ ∈ L(x,y). Fulfilling compass structures are defined as follows.

Definition 3. Given an MPNL formula ϕ and compass ϕ-structure G = (PD,L) for it, we say that
G is fulfilling if and only if for every point (x,y) ∈ PD and every formula ψ ∈ Reqr

(
L(x,y)

)
(resp.,

ψ∈Reql
(
L(x,y)

)
), there exists a point (x ′,y ′)∈ PD such that x ′ = y (resp., y ′ = x) andψ∈L(x ′,y ′).

The following proposition proves that the satisfiability problem for MPNL is reducible to the prob-
lem of deciding, for any given formula ϕ, whether there exists a ϕ-compass structure featuring ϕ. Its
easy proof is left to the reader.

Proposition 1. An MPNL-formula ϕ is satisfiable if and only if there exists a fulfilling ϕ-compass
structure that features ϕ.

Without loss of generality, we will assume ϕ to be satisfied by the initial point-interval 0 (resp., to
belong to L(0,0)) [13].

Given an MPNL-formula ϕ, we denote by kϕ the maximum k occurring in ϕ. If there is not any
k in ϕ, we simply put kϕ = 0. We assume kϕ, as well as any length constraint occurring in ϕ, to be
encoded in binary, and thus it immediately follows that kϕ 6 2|ϕ|.

Given a compass ϕ-structure G = (PD,L), we define a marking function M : PD→ Aϕ× 2Cl(ϕ)×
{0, . . . ,kϕ} such that, for every (x,y) ∈ PD, M(x,y) = (F,Ψ,h), where (i) F = L(x,y), (ii) Ψ = {ψ ∈
Cl(ϕ) | ψ ∈ Reqr(x,x)∧∀x6 y ′ 6 y(ψ /∈ L(x,y ′))}, and (iii) h is defined as follows:

h=

{
y−x if y−x < kϕ;
kϕ otherwise.
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Notice that, for every point (x,y), Ψ is the set of formulae that must belong to the labeling of points
(x,y ′), with y ′ > y (points “above” (x,y)), to guarantee the fulfilling of all ♦r-requests in L(x,x), that
is, for each ψ ∈ Ψ, there must exist at least one point (x,y ′) such that ψ ∈ L(x,y ′)).

Let AM
ϕ be the image of M. We call any triplet in AM

ϕ a marked atom. It can be easily shown that
|AM
ϕ |6 23|ϕ| (|Aϕ|6 2|ϕ|, |Reqr(L(x,x))|6 |ϕ|, and kϕ 6 2|ϕ|).

Definition 4. Given aMPNL formula ϕ, a compass ϕ-structure G = (PD,L) for ϕ, and a point y ∈D,
we define the horizontal configuration of y in G as a counting function Cy : AM

ϕ → N∪ {ω} such that for
every (F,Ψ,h) ∈AM

ϕ , Cy(F,Ψ,h) = |{x | M(x,y) = (F,Ψ,h)}|.

It is worth noticing that, for any given y, (i) there exists a unique marked atom of the form (F,Ψ,0), with
Cy(F,Ψ,0) = 1, and (ii) for every 0 < h < kϕ, there exists at most 1 marked atom of the form (F,Ψ,h),
and if for every marked atom (F,Ψ,h), C(F,Ψ,h) = 0, then C(F ′,Ψ ′,h ′) = 0 for every marked atom
(F ′,Ψ ′,h ′) with h ′ > h. On the contrary, there is not a bound on the number of occurrences of a marked
node of the form (F,Ψ,kϕ) (it can be equal toω).

Finally, we define the following equivalence relation on the set of horizontal configurations, where p
and f are defined as p= |{♦lψ ∈ Cl(ϕ)}| and f= |{♦rψ ∈ Cl(ϕ)}|, respectively.

Definition 5. Given an MPNL formula ϕ and a compass ϕ-structure G = (PD,L) for it, we say that
two horizontal configurations Cy and Cy ′ are equivalent (written Cy ≡ Cy ′) if and only if for every
(F,Ψ,h) ∈ AM

ϕ , either Cy ′(A,Ψ,h) = Cy(F,Ψ,h) or h = kϕ and both Cy(F,Ψ,kϕ) > p · f+ p and
Cy ′(F,Ψ,kϕ)> p · f+p.

It can be easily shown that the relation of Definition 5 is an equivalence relation of finite index. For
every marked atom (F,Ψ,h) ∈ AM

ϕ , we do not distinguish between two configurations Cy and Cy ′ such
that Cy(F,Ψ,h) and Cy ′(F,Ψ,h) are different, but both greater than p · f+ p. Hence, the number of
equivalence classes in ≡ is bounded by

(
p · f+p+1

)|AM
ϕ |
6

(
|ϕ|2

4
+

|ϕ|

2
+1
)23|ϕ|

,

since p · f+p6 |ϕ|2

4 +
|ϕ|

2 and
∣∣AM
ϕ

∣∣6 23|ϕ|.

4 Decidability of MPNL over finite linear orders

In this section, we show that if there exists a finite fulfilling compass structure G for an MPNL formulaϕ,
then there exists a finite fulfilling compass structure G ′ whose size is doubly exponential in the length of
ϕ. To prove this result, we will make use of the following lemma, which states that we can always shrink
the size of a fulfilling compass structure, provided that we can find two points with the same horizontal
configuration.

Lemma 1. Let ϕ be an MPNL formula and let G = (PD,L) be a finite fulfilling ϕ-compass structure
which features ϕ. If there exist two distinct points y < y ′ in D such that Cy ≡ Cy ′ , then it is possible to
build a finite fulfilling compass structure G ′ = (PD ′ ,L ′) featuring ϕ with |D ′| = |D|−(y ′−y).

Proof. Suppose that G = (PD,L) is a finite fulfilling ϕ-compass structure which features ϕ and such
that there exist two distinct points y < y ′ in D with Cy ≡ Cy ′ . We build the required compass structure
G ′ = (PD ′ ,L ′), with |D ′| = |D|−(y ′−y), by executing the following procedure.
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1. For every (x,y) ∈ PD ′ , with y6 y, we put L ′(x,y) = L(x,y).

2. For every (x,y) ∈ PD ′ , with y > y and y−kϕ < x 6 y, we put L ′(x,y) = L(x+(y ′−y),y+

(y ′−y)).

3. For every (A,Ψ,kϕ) ∈AM
ϕ , we define a partial injective function g : {0, . . . ,y−kϕ}→ {0, . . . ,y ′−

kϕ} as follows:

g(x) =


x ′ with M(x ′,y ′) = (A,Ψ,kϕ) if M(x,y) = (A,Ψ,kϕ) and

Cy(A,Ψ,kϕ) = Cy ′(A,Ψ,kϕ)

undefined otherwise

By the injectivity of g, every x (where g is defined) is associated with a distinct x ′. Moreover,
since Cy(A,Ψ,kϕ) = Cy ′(A,Ψ,kϕ), for every x ′ such that M(x ′,y ′) = (A,Ψ,kϕ), there exists
(a unique) x such that g(x) = x ′. Now, for every 06 x6 y−kϕ such that g(x) is defined, we put
L ′(x,y+ i) = L(g(x),y ′+ i) for every 16 i6 ymax−y ′.

4. For every (A,Ψ,kϕ) ∈ AM
ϕ such that Cy ′(A,Ψ,kϕ) > p · f+p, we choose a “witness” w(A,Ψ)

such that M(w(A,Ψ),y ′) = (A,Ψ,kϕ). Then, we identify a set ES
y ′

(A,Ψ) = {y ′1, . . . ,y ′m} (essential

elements) which is a minimal set such that, for everyψ∈Ψ, there exists a point y ′j ∈ ES
y ′

(A,Ψ) with
ψ ∈ L(w(A,Ψ),y ′j). By the definition of marked atom (in particular, by definition of Ψ), we have
that y ′i > y

′ for every 16 i6m. It is easy to see thatm6 f. We define the set Blocked
y
(A,Ψ) =

{x ′1, . . . ,x ′m ′} of blocked elements as the minimal set for which for every 16 i6m and for every
ψ ∈Reql(y

′
i,y
′
i) if there exists x ′ with ψ ∈L(x,y ′i) and M(x ′,y ′) = (A,Ψ,kϕ) then there exists

16 j6m ′ with ψ ∈ L(x ′j,y
′
i) and M(x ′j,y

′) = (A,Ψ,kϕ).

Since m 6 f, we have that |Blocked
y ′

(A,Ψ)| 6 p · f. We can choose a set Blocked
y
(A,Ψ) =

{x1, . . . ,xm ′} such that, for every 16 i6m ′, we have M(xi,y) = M(w(A,Ψ),y ′)(= (A,Ψ,kϕ)).
Then, we put L ′(xi,y+ j) = L(x ′i,y

′+ j) for every 16 i6m ′ and every 16 j6 ymax−y ′. As
a result, the labeling of all points (xi,y) in G ′, with 16 i6m ′, is defined and all ♦r-requests of
points (xi,xi) are fulfilled. Finally, we select p elements Wit(A,Ψ) = {xm ′+1, . . . ,xm ′+p} not be-
longing to Blocked

y
(A,Ψ) and such that M(xi,y) = M(w(A,Ψ),y ′)(= (A,Ψ,kϕ)) (the existence

of these points is guaranteed by the fact that Cy(A,Ψ,kϕ)> p ·f+p and |Blocked
y
(A,Ψ)|6 p ·f),

and we put L ′(xm ′+i,y) = L(w(A,Ψ),y ′+ j) for every 16 i6 p and every 16 j6 ymax−y ′.

5. Unfortunately, the previous steps do not guarantee that all ♦l-requests are fulfilled in G ′. Consider
a point y > y and a formula ψ ∈ Reql(y,y) which is not fulfilled in G ′. By construction, we have
that L ′(y,y) = L(y+ (y ′−y),y+ (y ′−y)) and thus, since G is fulfilling, there exists a point
(x ′ψ,y+(y ′−y)) such that ψ ∈ L(x ′ψ,y+(y ′−y)). Two cases may arise:

a) for every (A,Ψ,kϕ)∈AM
ϕ we have that y+(y ′−y) /∈ES

y ′

(A,Ψ). Let M(x ′ψ,y ′) = (A,Ψ,kϕ)

the marked atoms associated with the point (x ′ψ,y ′) in G. We have that Cy ′(M(x ′ψ,y ′)) >
p · f+p (if this was not the case, x ′ψ would not belong to the range of g, thus violating the
properties we impose to it at step 3). Then we have defined at step 4 the set Wit(A,Ψ) =

{xm ′+1, . . . ,xm ′+p}. Since |Reql(L(y,y))|6 p and the formula ψ has not yet been fulfilled
in G ′ for (y,y) there exists 16 j6 p for which for every ψ ′ ∈ Reql(L(y,y))∩L(xm+j,y)
there exists 06 l6pwith l 6= j andψ ′ ∈L(xm+l,y). This means that (xm+j,y) is “useless”
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for the fulfilling of the ♦l requests of (y,y), moreover since y+(y ′−y) /∈ ES
y ′

(A,Ψ) we have
that for every ψ ∈ Ψ there exists y ′ 6= y with ψ ∈ L(xj,y ′) and thus (xj,y) is “useless”
for the fulfilling of the ♦r-request of (xj,xj) in G ′. For this reasons L ′(xj,y) can be safely
rewritten as L ′(xj,y) = L(x ′ψ,y+(y ′−y));

b) there exists (A,Ψ,kϕ) ∈ AM
ϕ with y+ (y ′− y) ∈ ES

y ′

(A,Ψ). Let M(x ′ψ,y ′) = (A,Ψ,kϕ)

the marked atoms associated with the point (x ′ψ,y ′) in G. We have that Cy ′(M(x ′ψ,y ′)) >
p · f+p (if this was not the case, x ′ψ would not belong to the range of g, thus violating the
properties we impose to it at step 3). Then we have defined at step 4 the set Wit(A,Ψ) =

{xm ′+1, . . . ,xm ′+p}. Since |Reql(L(y,y))|6 p and the formula ψ has not yet been fulfilled
in G ′ for (y,y) there exists 16 j6 p for which for every ψ ′ ∈ Reql(L(y,y))∩L(xm+j,y)
there exists 06 l6pwith l 6= j andψ ′ ∈L(xm+l,y). This means that (xm+j,y) is “useless”
for the fulfilling of the ♦l requests of (y,y). In addition we can prove that y+(y ′−y) /∈
ES
y ′

(A,Ψ). Suppose by contradiction that y+(y ′−y)∈ES
y ′

(A,Ψ) then by the procedure applied

in step 4 there exists xj ′ ∈Blocked
y
(A,Ψ) for which ψ ∈ L(xj ′ ,y) and thus ψ is fulfilled for

(y,y) (contradiction). Then we have that for every ψ ∈ Ψ there exists y ′ 6= y with ψ ∈
L(xj,y ′) and thus (xj,y) is “useless” for the fulfilling of the ♦r-request of (xj,xj) in G ′. For
this reasons L ′(xj,y) can be safely rewritten as L ′(xj,y) = L(x ′ψ,y+(y ′−y)).

6. The previous step fulfills all ♦l-requests in G ′. However, there may exist some point (x,y) ∈ PD ′

with y > y whose labeling is still undefined. Let (x,y) be one of such points. By the very same
argument of step 5, we can assume that Cy(M(x,y)) > p · f+p. Now, let M(x,y) = (A,Ψ,kϕ)

and let w(A,Ψ) be the witness defined at step 4. We can safely complete the labeling of G ′ by
putting L ′(x,y) = L(w(A,Ψ),y+(y ′−y).

At the end of the procedure, G ′ turns out to be a fulfilling compass structure for ϕ. 2

By exploiting the above lemma, we can prove that a formula ϕ is satisfiable in a finite compass
structure if and only if it is satisfiable by a finite compass structure where all horizontal configurations
are pairwise non-equivalent.

Theorem 1. Let ϕ be an MPNL-formula, if there exists a finite fulfilling ϕ-compass structure G =

(PD,L) which features ϕ, then there exists a finite fulfilling ϕ-compass structure G ′ = (PD ′ ,L ′) which

features ϕ such that |D ′|6
(

|ϕ|2

4 +
|ϕ|

2 +1
)23|ϕ|

.

Proof. Let G = (PD,L) be a finite fulfilling compass structure featuring ϕ and suppose that |D| >(
|ϕ|2

4 +
|ϕ|

2 +1
)23|ϕ|

. Since the index of ≡ is finite and smaller than |D|, there exist two distinct points

y < y ′ in D such that Cy ≡ C ′y. Then, we can exploit Lemma 1 to build a smaller compass structure
G1 = (PD1 ,L1) such that |D1| = |D|−(y ′−y). By iterating the application of Lemma 1, we eventually
obtain a compass structure Gn = (PDn ,Ln) such that all horizontal configurations are pairwise non-

equivalent. Since the number of equivalence classes in ≡ is less than or equal to
(

|ϕ|2

4 +
|ϕ|

2 +1
)23|ϕ|

,
the thesis immediately follows. 2
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5 Decidability of MPNL over the naturals

In this section, we extend the results of the previous section in order to deal with satisfiability of MPNL
over N. First, we identify a subset of finite compass structures, called compass generators, which turn
out to be crucial for decidability.

Definition 6. Letϕ be an MPNL formula. An N-compass generator forϕ is a finiteϕ-compass structure
G = (PD,L), which features ϕ, that satisfies the following conditions:

1. all ♦l-requests of every point (x,y) ∈ PD are fulfilled;

2. there exists yinf < ymax such that:

(a) for every (F,Ψ,h) ∈AM
ϕ , if Cymax(F,Ψ,h)> 0, then Cyinf(F,Ψ,h)> 0, and

(b) M(x,ymax) = (F,∅,h), for every 06 x6 yinf.

Theorem 2. An MPNL formulaϕ is satisfiable over N if and only if there exists an N-compass generator
which features ϕ.

Proof. To prove the left-to-right direction, suppose ϕ to be satisfiable over N, and let G = (PN,L) be
a fulfilling compass structure which features ϕ. Since the index of the equivalence relation ≡ over the
set of configurations is finite, there must exist an infinite sequence S = y1 < y2 < . . . in N such that
Cyi ≡ Cyj for every i, j ∈ N. Consider now the first element y1 in the sequence S, and let (x,y1) ∈ PN
be a point on the row y1. Suppose M(x,y1) = (F,Ψ,kϕ). Since G is fulfilling, for every ψ ∈ Ψ, there
exists yψ >y1 such thatψ∈L(x,yψ). Let y be the maximum of such yψ with respect to all x6 y1 and
all ψ ∈ Ψ, with M(x,y1) = (F,Ψ,kϕ), and let yj be the smallest element in S such that y < yj. By the
definition of the marking function M, we have that M(x,yj) = (F,∅,h), for every 06 x6 y1. Consider
now the restriction G ′ of G to D = {0,1, . . . ,yj}. It is straightforward to check that, given ymax = yj,
y1 satisfies the conditions for yinf of Definition 6, and thus G ′ is an N-compass generator featuring ϕ
((0,0) belongs to G ′).

To prove the right-to-left direction, suppose that G = (PD,L) is an N-compass generator for ϕ. We
build a fulfilling compass structure Gω = (PN,Lω) as the (infinite) union of an appropriate sequence
of N-compass generators G0 ⊂ G1 ⊂ . . .. First, we take G0 = G. Then, for every i > 0, we build
Gi+1 = (PDi+1 ,Li+1) starting from Gi = (PDi ,Li) as follows. Let yinf ∈ Di satisfy the conditions
of Definition 6, and let gap = ymax−yinf. We put Di+1 = {0,1, . . . ,ymax, . . . ,ymax+gap} and we
define Li+1 as follows:

1. for every (x,y) ∈ PDi , we put Li+1(x,y) = Li(x,y);

2. for every (x,y) ∈ PDi+1 such that x > ymax−kϕ and y > ymax, we put Li+1(x,y) = Li(x−

gap,y−gap);

3. for every (x,y)∈PDi+1 such that ymax−kϕ> x>yinf−kϕ and y>ymax, we put Li+1(x,y) =

Li(x
′,y−gap), for some x ′ such that M(x ′,yinf) = M(x,ymax) (the existence of such an x ′ is

guaranteed by property (a) of Definition 6);

4. for every (x,y)∈PDi+1 such that yinf−kϕ> x> 0 and y>ymax, we put Li+1(x,y) = Li(x,y−

gap).

By construction, it holds that for every (F,Ψ,h)∈AM
ϕ , if Cymax+gap(F,Ψ,h)> 0, then Cymax(F,Ψ,h)>

0, Moreover, M(x,ymax+gap) = (A,∅,h), for every 0 6 x 6 ymax, and thus Gi+1 is a N-compass
generator for ϕ.

The fulfilling compass structure satisfying ϕ on N we were looking for is Gω =
⋃
i>0 Gi. 2
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Theorem 3. Let ϕ be an MPNL formula. If there exists an N-compass generator G = (PD,L) that
features ϕ, then there exists an N-compass generator G ′ = (PD ′ ,L ′), that features ϕ, with |D ′| 6(
23|ϕ| +2

)
·
(

|ϕ|2

4 +
|ϕ|

2 +1
)23|ϕ|

+1.

Proof. Let G = (PD,L) be an N-compass generator which features ϕ, and let yinf ∈ D satisfy the
conditions of Definition 6. We define a minimal set S = {y0, . . . ,ym} of elements in D such that (i)
y0 = 0, (ii) yj < yj+1, for each 0 6 j < m, (iii) ym−1 = yinf, (iv) ym = ymax, and (v) for every
(F,Ψ,h) ∈ AM

ϕ , if Cyinf(F,Ψ,h) > 0, then there exists yj such that M(yj,yinf) = (F,Ψ,h). From the
minimality requirement, it follows thatm6 23|ϕ| +3.

We build a finite sequence of N-compass generators G0 ⊃ G1 ⊃ . . . ⊃ Gn, whose last element is a
small enough N-compass generator Gn, as follows. We start with G0 = G. Now, let Gi = (PDi ,Li) be
the i-th compass generator in the sequence, and let Si = {y0, . . . ,ym} be the above-defined minimal set
of elements in Di. If there exist no y,y ′, with yj 6 y < y ′ < yj+1 for some 0 6 j < m, such that
Cy ≡ Cy ′ , we terminate the construction and put n= i, that is, Gi is the last N-compass generator in the
sequence. Otherwise, we must distinguish two cases. If yinf 6 y,y ′ < ymax, then the application of
(the construction of) Lemma 1 to the pair of positions y and y ′ produces an N-compass generator Gi+1 =

(PDi+1 ,Li+1), with |Di+1| = |Di|−(y ′−y). It can be easily checked that the resulting structure satisfies
the conditions of Definition 6 (notice that some triples may disappear from ymax, that is, Cymax(F,Ψ,h)

may become equal to 0 for some triple (F,Ψ,h)). If yj 6 y,y ′ < yj+1 for some j 6 ym−2, we can still
apply (the construction of) Lemma 1 to the pair of positions y and y ′, but we must guarantee that all
triples belonging to the row yinf in Di are preserved. It is possible to show this can be done (whenever
necessary) by an appropriate choice of the witnesses at step 4 of (the construction of) Lemma 1. It is
worth noticing that in both cases, while the positions between yj+1 and ym−2 (if any) remain unchanged,
those between y1 and yj may change from Si to Si+1.

At the end of the procedure, all the horizontal configurations in between two consecutive elements
yj,yj+1 ∈ S are pairwise non-equivalent. From this, it immediately follows that the final N-compass

generator Gn = (PDn ,Ln) is such that |Dn|6
(
23|ϕ| +2

)
·
(

|ϕ|2

4 +
|ϕ|

2 +1
)23|ϕ|

+1. 2

6 Decidability of MPNL over the integers

In this section, we extend the notion of compass generator in order to prove the decidability of the
satisfiability problem for MPNL over Z.

Definition 7. Let ϕ be an MPNL formula. A Z-compass generator for ϕ is a finite ϕ-compass structure
G = (PD,L) such that there exist yfut,ypast ∈ D, with ymin < ypast < 0 < yfut < ymax, which
satisfies the following conditions:

1. all ♦l-requests of every point (y,y) ∈ PD, with ypast 6 y6 ymax are fulfilled;

2. for every (F,Ψ,h) ∈ AM
ϕ , if Cymax(F,Ψ,h) > 0, then Cyfut(F,Ψ,h) > 0, and M(x,ymax) =

(F,∅,h), for every ymin 6 x6 yfut;

3. for every (F,Ψ,h) ∈ AM
ϕ , if Cypast(F,Ψ,h) > 0, then there exists ypast 6 x 6 0 with M(x,0) =

(F,Ψ,h).

Theorem 4. An MPNL formula ϕ is satisfiable over Z if and only if there exists a Z-compass generator
for it.
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Figure 2: From a Z-compass generator to a compass structure over Z.

Proof. We start with the left-to-right direction. From the satisfiability of ϕ over Z, it follows that there
exists a fulfilling compass structure G = 〈PZ,L〉 which featuresϕ. It suffices to show that there exist five
elements ymin < ypast < 0< yfut < ymax that satisfy the conditions of Definition 7.

Since the index of the equivalence relation ≡ over configurations is finite, there exists an infinite-to-
the-past sequence of elements S = y−1 > y−2 > . . . such that, for every i, j ∈N, Cyi ≡ Cyj . Without loss
of generality, we can assume that y−1 = 0. Since S is infinite to the past, there exists j < −1 such that,
for every (F,Ψ,h) ∈AM

ϕ , with Cyj(F,Ψ,h) > 0, there exists yj 6 x6 y−1, with M(x,y−1) = (F,Ψ,h).
We put ypast = yj. The elements ymax and yfut can be selected using the very same argument of
the proof of Theorem 2 guaranteeing that 0< yfut < ymax. Next, we take an element y < ypast such
that, for every ypast 6 y 6 ymax and every ψ ∈ Reql(L(y,y)), there exists an element y 6 x 6 y
with ψ ∈ L(x,y). We put ymin = y. Finally, we define a compass structure G ′ = 〈PD,L ′〉 such that
D = {ymin, . . . ,ymax} and, for every (x,y) ∈ PD, the condition L ′(x,y) = L(x,y) holds. G ′ is a Z-
compass generator for ϕ.

The right-to-left direction is much more involved with respect to the case of natural numbers. We
give a sketch of the proof only, taking advantage of the pictorial representation given in Figure 6. Figure
6.a depicts a Z-compass generator G = 〈PD,L〉 for some MPNL formula ϕ. The vertical segments that
are used to fill in the gaps that appear during the construction of the infinite suffix are suitably numbered;
lowercase letters are used to identify the vertical segments that will be exploited to fill in the new vertical
lines in between 0 and ymax; Finally, upper case letters identify the marked atoms.

We start with the definition of the labeling of the infinite prefix of Z. First, we remove all portions
of the compass structure consisting of the vertical lines starting at x6 ypast (Figure 6.b). As an effect,
we have that the ♦l requests of the points (x,x), with ypast 6 x6 0, may not be fulfilled. To make the
argument more concrete, suppose that they need all the vertical segments 1, . . . ,5 in order to fulfill all
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their ♦l requests. To fix such a problem, we must create a sufficient number of “rooms” for the correct
copy of these five vertical segments. To do that, we copy the triangle T0 three times on the diagonal
(Figure 6.b). Moreover, we fill in the emerging verticals by using the segments 1, . . . ,5. Notice that,
since the marked atom on the lower end of the segments 1,2, and 3 is the same, we can copy each of
them above the other. Then, we have three available rooms on the left side of T0 for the segments 1,2, and
3, and we can copy them fixing the defects for the ♦l requests of the points (x,x), with ypast 6 x6 0.
The ♦l requests of points (x,x), with 0 6 x 6 ymax, are satisfied by copying the verticals denoted by
lower case letters above the appropriate verticals (Figure 6.c), possibly duplicating some of them. Now,
we can use the very same procedure to fix the defects for the points (x,x), with 2 ·ypast 6 x < ypast)
(the points on the edge of T1). By repeating this procedure infinitely many times, we can correctly label
all the points in the infinite prefix of Z. Then, we apply the procedure of Theorem 2 to yfut and ymax
in order to guarantee that the ♦r-requests of all points (x,x), with x ∈ Z, are fulfilled. The resulting
compass structure G ′ = 〈PZ,L ′〉 is a fulfilling compass structure which features ϕ. 2

Theorem 5. Letϕ be an MPNL formula. If there exists a Z-compass generator G = (PD,L) that features
ϕ, then there exists a Z-compass generator G ′ = (PD ′ ,L ′), that features ϕ, with |D ′| 6

(
23|ϕ|+1 +8

)
·(

|ϕ|2

4 +
|ϕ|

2 +1
)23|ϕ|

+1.

Proof. Let G = (PD,L) be a Z-compass generator, that features ϕ, and let yfut and ypast ∈D satisfy
the conditions of Definition 7. We define a minimal set S = {y0, . . . ,ym} of elements in D such that
(i) y0 = ymin, (ii) yj < yj+1, for each 0 6 j < m, (iii) y2 = ypast, (iv) yj = 0, for some j > 2, and
for every (F,Ψ,h) ∈ AM

ϕ with Cypast > 0, there exists 2 6 l 6 j such that M(yl,0) = (F,Ψ,h), (v)
ym−1 = yfut, (vi) ym = ymax, and (vii) for every (F,Ψ,h) ∈ AM

ϕ , if Cyinf(F,Ψ,h) > 0, then there
exists yj 6 yl 6 ym−1 such that M(yl,yfut) = (F,Ψ,h). From the minimality requirement, it follows
thatm6 23|ϕ|+1 +9.

We build a finite sequence of Z-compass generators G0⊃G1⊃ . . .⊃Gn, whose last element is a small
enough Z-compass generator Gn. We start with G0 = G. Now, let Gi = (PDi ,Li) be the i-th compass
generator in the sequence and let Si = {y0, . . . ,ym} be the above-defined minimal set of elements in Di.
If there exist no y,y ′, with yj 6 y < y ′ < yj+1 for some 06 j < m, such that Cy ≡ Cy ′ , we terminate
the sequence and put n = i. Otherwise, as in Theorem 3, we apply (the construction of) Lemma 1 to y
and y ′ to obtain the compass generator Gi+1 = (PDi+1 ,Li+1), with |Di+1| = |Di|−(y ′−y).

At the end of the procedure, all the horizontal configurations in between two consecutive elements
yj,yj+1 ∈ S are pairwise non-equivalent. From this, it immediately follows that the final Z-compass

generator Gn = (PDn ,Ln) is such that |Dn|6
(
23|ϕ|+1 +8

)
·
(

|ϕ|2

4 +
|ϕ|

2 +1
)23|ϕ|

+1.
2

7 Decision procedure

In this section, we give a decision procedure that solves the satisfiability problem for MPNL interpreted
over the integers. Both the procedure for the finite case and that for the natural numbers can be easily
tailored from it. Given an MPNL formula, it is indeed possible to encode a finite model into Z by means
of the following formula:

ψfin = #all∧#∧2r¬#all2r2r¬#all∧2l¬#all2l2l¬#all∧

[G](#↔ #all∨♦r♦l#all∨♦l♦r#all∨ (♦r♦r♦l#all∧♦l♦l♦r#all))
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Under the assumption that #all and # do not appear in ϕ, this formula can be translated inductively as
follows: (i) if ϕ = p or ϕ = len<k, then tr(ϕ) = ϕ∧ #, (ii) if ϕ = ¬ψ, then tr(ϕ) = ¬# ∨¬tr(ψ),
(iii) if ϕ = ψ1 ∨ψ2, then tr(ϕ) = (ψ1 ∧ #) ∨ (ψ2 ∧ #), (iv) if ϕ = ♦rψ, then tr(ϕ) = ♦r(# ∧ψ),
(v) if ϕ = ♦lψ, then tr(ϕ) = ♦l(# ∧ψ). It is easy to prove that ϕ has a finite model if and only if
ψfin∧ tr(ϕ) has a model on Z. Moreover, ϕ has a model in the linear order of natural numbers if and
only if ψnat∧ tr(ϕ) has a model on Z, where ψnat is defined as follows:

#∧2l¬#∧2l2l¬#∧ [G]((¬#∧♦r#)→ (2r#∧2r2r#))

In Figure 7, the detailed code of a procedure for checking whether an MPNL formula ϕ is satis-
fiable is given. The procedure builds a candidate model for ϕ starting from ymin and exploring two
consecutive horizontal configurations at every step. Every configuration is represented using an expo-
nential number of counters, bounded by the maximum size of a Z-compass structure given in Theorem 5
(doubly exponential in the size of |ϕ|). However, assuming that the values of all counters are encoded in
binary, the maximum value for each counter takes an exponential storage space. The very same argument
can be used to give an exponential space bound for the steps counter. Moreover, the procedure needs to
keep track of a constant number of horizontal configurations only (Cmin,Cpast,C0,Cfut,Cmax,C,C,C ′,
Cright, and Cleft). Pairing this result with the EXPSPACE-hardness proved in [4], we can state the fol-
lowing theorem.

Theorem 6. The satisfiability problem for MPNL interpreted over (any subsets of) the integers is EXP-
SPACE-complete.
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proc GUESSCONFIGURATION ()

for all (F,Ψ,h)∈AM
ϕ , C(F,Ψ,h)← 0;

let Sr ⊆ {ψ∈Cl(ϕ | ♦rψ∈Cl(ϕ))};
let Sl ⊆ {ψ∈Cl(ϕ | ♦lψ∈Cl(ϕ))};
for all 16 i < kϕ

let F an atom s.t. Reqr(F) = Sr and Len(F) = i;
letΨ⊆ {ψ∈Cl(ϕ) | ♦rψ∈Cl(ϕ))};
C(F,Ψ,i)← 1;

for all (F,Ψ,kϕ)∈AM
ϕ s.t. Reqr(F) = Sr{

let 06 i6 kϕ, C(F,Ψ,h)← i
return C;

proc MERGE (C,C ′)
for all (F,Ψ,h)∈AM

ϕ{
C(F,Ψ,h)←C(F,Ψ,h)+C ′(F,Ψ,h);

return C;

proc LEN (F)if ∃16h<kϕ s.t. ¬len<h ∈ F∧len<h+1 ∈ F
then return h
else returnkϕ

proc NC MINTOPAST
(
Ccurrent

)

let Sr ⊆ {ψ∈Cl(ϕ | ♦rψ∈Cl(ϕ))};
let Sl ⊆ {ψ∈Cl(ϕ | ♦lψ∈Cl(ϕ))};

let Fπ an atom with len<1 ∈ Fπ, Reqr(Fπ) = Sr,
and Reql(Fπ) = Sl ;

for all (F,Ψ,h)∈AM
ϕ C(F,Ψ,h)← 0;

C(Fπ,Reqr(F)\Fπ,1)← 1;
for all (F,Ψ,h)∈AM

ϕ

for (16 i6Ccurrent(G,Ψ,h))

if h= kϕ
then k← kϕ
else k←h+1

let G s.t. Len(G) = k, Reqr(G) = Sr,
and Reql(G) = Reql(F);

C(G,Ψ\G,k)←C ′(G,Ψ\G,k)+1;
return C;

proc NC LEFTRIGHT
(
Cleft,Cright

)

let Sr ⊆ {ψ∈Cl(ϕ | ♦rψ∈Cl(ϕ))};
let Sl ⊆ {ψ∈Cl(ϕ | ♦lψ∈Cl(ϕ))};

let Fπ an atom with len<1 ∈ Fπ, Reqr(Fπ) = Sr,
and Reql(Fπ) = Sl

;

for all (F,Ψ,h)∈AM
ϕ C

right
(F,Ψ,h)← 0;

for all (F,Ψ,h)∈AM
ϕ C

left
(F,Ψ,h)← 0;

C
right

(Fπ,Reqr(F)\Fπ,1)← 1;
for all (F,Ψ,h)∈AM

ϕ

for (16 i6Cright(G,Ψ,h))

if h= kϕ
then k← kϕ
else k←h+1

let G s.t. Len(G) = k, Reqr(G) = Sr,
and Reql(G) = Reql(F);

C
right

(G,Ψ\G,k)←C
right

(G,Ψ\G,k)+1;
for (16 i6Cleft(G,Ψ,h))

if h= kϕ
then k← kϕ
else k←h+1

let G s.t. Len(G) = k, Reqr(G) = Sr,
and Reql(G) = Reql(F);

C
left

(G,Ψ\G,k)←C
left

(G,Ψ\G,k)+1;

if

(
∃ψ∈ Sl s. t. ∀(F,Ψ,h)∈AM

ϕ withψ∈A
we have C

left
(F,Ψ,h) = C

right
(F,Ψ,h) = 0

)
then return false ;

return (C
left

,C
right

);

proc NC ZEROTOFUT
(
Ccurrent

)

let Sr ⊆ {ψ∈Cl(ϕ | ♦rψ∈Cl(ϕ))};
let Sl ⊆ {ψ∈Cl(ϕ | ♦lψ∈Cl(ϕ))};

let Fπ an atom with len<1 ∈ Fπ, Reqr(Fπ) = Sr,
and Reql(Fπ) = Sl ;

for all (F,Ψ,h)∈AM
ϕ C(F,Ψ,h)← 0;

C(Fπ,Reqr(F)\Fπ,1)← 1;
for all (F,Ψ,h)∈AM

ϕ

for (16 i6Ccurrent(G,Ψ,h))

if h= kϕ
then k← kϕ
else k←h+1

let G s.t. Len(G) = k, Reqr(G) = Sr,
and Reql(G) = Reql(F);

C(G,Ψ\G,k)←C(G,Ψ\G,k)+1;

if
(
∃ψ∈ Sl s. t. ∀(F,Ψ,h)∈AM

ϕ withψ∈A
we have C(F,Ψ,h) = 0

)
then return false ;

return C;

proc MPNL-INTEGER-SAT(ϕ)

let Sr ⊆ {ψ∈Cl(ϕ | ♦rψ∈Cl(ϕ))};
let Sl ⊆ {ψ∈Cl(ϕ | ♦lψ∈Cl(ϕ))};

let Fπ an atom with len<1 ∈ Fπ, Reqr(Fπ) = Sr,
and Reql(Fπ) = Sl ;

for all (F,Ψ,h)∈AM
ϕ , Cmin(F,Ψ,h)← 0;

Cmin(Fπ,Reqr(F)\Fπ,1)← 1;
Cpast←GuessConfiguration();
C←Cmin;
steps← 0;
while (C 6≡Cpast)

if steps>BOUND MIN PAST
then return false

C←NC MinToPast(C);
steps← steps+1;

C0←C;
Cleft←C;
for all (F,Ψ,h)∈AM

ϕ , Cright(F,Ψ,h)← 0;
steps← 0;
while (Cright 6≡C0)

if steps>BOUND PAST ZERO
then return false

(Cleft,Cright)←NC LeftRight(Cleft,Cright);
steps← steps+1;

Cfut←GuessConfiguration();
C←Merge(Cleft,Cright);
steps← 0;
while (C 6≡Cfut)

if steps>BOUND ZERO FUT
then return false

C←NC ZeroToFut(C);
steps← steps+1;

Cmax←C;
Cleft←C;
for all (F,Ψ,h)∈AM

ϕ , Cright(F,Ψ,h)← 0;
steps← 0;

while

 Merge(Cleft,Cright) 6≡C0∨
∃(F,Ψ,h)∈AM

ϕ

with Cleft(F,Ψ,h)> 0∧Ψ 6= ∅


if steps>BOUND FUT MAX

then return false
(Cleft,Cright)←NC LeftRight(Cleft,Cright);
steps← steps+1;

return true ;

Figure 3: The procedure for checking the satisfiability of φ over the integers.
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