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We give a stochastic extension of the Brane Calculus, along the lines of recent work by Cardelli and
Mardare [8]. In this presentation, the semantics of a Brane process is a measure of the stochastic
distribution of possible derivations. To this end, we first introduce a labelled transition system for
Brane Calculus, proving its adequacy w.r.t. the usual reduction semantics. Then, brane systems
are presented as Markov processes over the measurable space generated by terms up-to syntactic
congruence, and where the measures are indexed by the actions of this new LTS. Finally, we provide
a SOS presentation of this stochastic semantics, which is compositional and syntax-driven.

1 Introduction

The Brane Calculus (BC) [7] is a calculus of mobile processes designed for modeling membrane in-
teractions within a cell. A process of this calculus represents a system of nested membranes, carrying
their active components on membranes, not inside them. Membranes interact according to three reaction
rules, corresponding to phagocytosis, endo/exocytosis, and pinocytosis.

In the original definition, reaction rules do not consider quantitative aspects like rates, volumes,
etc. However, it is important to address these aspects, e.g. for implementing stochastic simulations, or
for connecting Brane Calculus with quantitative models at lower abstraction levels (such as stochastic
π-calculus and κ-calculus for protein interactions).

In this paper, we introduce a stochastic semantics for the Brane Calculus. Clearly, a stochastic
calculus could be obtained just by adding rates to reaction rules; however, the resulting “pointwise”
rated reduction semantics is not fully satisfactory for several reasons. First, it is not compositional, i.e.,
reaction rates of a process are not given in terms of the rates of its components. Secondly, stochastic
reaction rules are not easy to deal with in presence of large populations of agents (as it is often the case
in biological systems), because we have to count large number of occurrences for calculating the effective
reaction rates. Third, it does not generalize easily to other quantitative (e.g. geometric) aspects.

To overcome these issues, we adopt a novel approach recently introduced by Cardelli and Mardare
[8], which is particularly suited when a measure of similarity of behaviours is important (similar ideas
have been proposed for probabilistic automata [10, 14], and Markov processes [9, 5, 12]). The main
point of this approach is that the semantics of a process is a measure of the stochastic distribution of
the possible outcomes. Thus, processes form a measurable space, and each process is given an action-
indexed family of measures on this space. For an action a, the measure µa associated to a process P
specifies for each measurable set S of processes, the rate µa(S)∈R+ of a-transitions from P to (elements
of) S. The resulting structures, called Markov processes (MPs), are not continuous-time Markov chains
because each transition is from a state to a possibly infinite class of states (closed to the congruence
relation over processes) and consequently cannot be described in a pointwise style. An advantage of
this approach is that we can apply results from measure theory for solving otherwise difficult issues,
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like instance-counting problems; moreover, process measures are defined compositionally, and can be
characterized also by means of operational semantics in GSOS form. Finally, other measurable aspects
of processes (e.g., volumes) can be dealt with along the same lines.

However, the approach of [8] has been applied to CCS only, and in order to adapt it to BC, we
have to solve some problems. First, in order to define systems of BC as Markov processes, we need
to define actions for brane systems, which corresponds to define a labelled transition system (LTS) for
BC. Defining correctly a labelled transition system for a complex calculus like BC is notoriously a
difficult task, because labels should describe precisely how a system can interact with the surrounding
environment. In our case, we have been inspired by the so-called IPO construction [11], following
the approach of [13, 3] for the case of Mobile Ambients. As a result, in Section 3 we introduce the first
labelled transition system for BC, and prove its adequacy with respect to the original reduction semantics.

A peculiar feature of this LTS is that after a transition, a system can yield a higher-order term, i.e.,
a system with “holes” (like π-calculus’ “abstractions”). This has several consequences on our work.
First, we have to define a suitable syntax for these higher-order terms; for this reason, in Section 2 we
introduce a simply typed version of brane calculus from the beginning, extended with metavariables, λ -
abstractions and applications. Well-formedness of terms is guaranteed by a suitable typing system; e.g.,
membranes and systems are represented by ground terms of type mem and sys, respectively. Secondly,
the bisimulation definition has to be accommodated in order to deal with transitions yielding higher-order
terms (Section 3). Finally, also the definition of Markov kernel is affected, as we will see in Section 4: the
kernel cannot be defined simply on the space of brane systems, but must consider also these higher-order
terms—in fact, the measure will be defined over all well-typed terms, also those higher-order.

After that these issues have been addressed and the Markov kernel has been defined, we can look for
a simpler presentation of the semantics of Markov processes. In Section 5 we present a SOS system for
processes, capturing the Markov kernel over processes: the stochastic bisimilarity induced by this SOS
semantics corresponds to the Markov bisimilarity defined in Section 4. Therefore, this semantics can be
fruitfully used for simulations, or for verifying system equivalences.

Some concluding remarks and directions for further work are in Section 6.

2 Brane Calculus

In this section we recall Cardelli’s Brane Calculus [7] focusing on its basic and finite version (without
communication primitives, molecular complexes and replication). Here we adopt an alternative presenta-
tion of the calculus: instead of the traditional term grammar of [7], we introduce an unstructured version
but equipped with a type system. Although typed terms may seem unnecessary now, they will be useful
in Section 3, where a labelled transition semantics will be introduced.

Syntax The grammars for terms and types are specified below.

(Terms) M ::= 0 | k | X | α.M | M|M | M mM | MhMi

α ::= Jn | JI
n (M) | Kn | KI

n | Gn(M)

(Types) t ::= sys | mem | act

The subscripted names n are taken from a countable set Λ, while term variables X are taken from a
countable set X , assumed to be disjoint from each other.



8 Measurable Stochastics for Brane Calculus

Γ(X) = t
Γ ` X : t

(var)
a ∈ {Jn,Kn,K

I
n}

Γ ` a : act
(act)

a ∈ {JI
n ,Gn} Γ `M : mem

Γ ` a(M) : act
(act-arg)

Γ ` 0 : mem
(zero)

Γ1 ` α : act Γ2 `M : mem

Γ1,Γ2 ` α.M : mem
(α-pref)

Γ1 `M : mem Γ2 ` N : mem

Γ1,Γ2 `M|N : mem
(par)

Γ ` k : sys
(void)

Γ1 `M : mem Γ2 ` N : sys
Γ1,Γ2 `MhNi : sys

(loc)
Γ1 `M : sys Γ2 ` N : sys

Γ1,Γ2 `M mN : sys
(comp)

Table 1: Typing system for Brane Calculus

Types are assigned to terms as usual. A type environment Γ is a finite map from term variables to
types. If Γ is an environment and X a variable not in the domain of Γ, we denote by Γ,X : t the environ-
ment which assigns type Γ(Y ) to each variable Y ∈ dom(Γ) and type t to X ; if Γ1 and Γ2 have disjoint
domains, Γ1,Γ2 denotes the environment which assigns type Γ1(X) to variables X ∈ dom(Γ1) and Γ2(Y )
to variables Y ∈ dom(Γ2). The type inference rules are given in Table 1. Notice that this type system ad-
mits only linear terms, that is, each variable can occur at most once. Indeed, in rules (α-pref), (par), (loc),
and (comp), the environment extension Γ1,Γ2 is defined only when Γ1 and Γ2 have disjoint domains.

In the rest of the paper we assume to work only with well-typed terms. The set of well-typed terms
will be denoted as T, while P and M denote the set of terms of type sys and mem, respectively. By
convention we shall use x, y . . . for variables of type mem, and X , Y . . . for variables of type sys. A
similar convention is used for base type terms: σ , τ , . . . are terms inM, while P, Q, . . . are terms in P.

Systems can be rearranged according to a structural congruence relation; the intended meaning is
that two congruent terms actually denote the same system. Structural congruence, ≡, is the smallest
equivalence relation on (possibly open) terms of the language which contains the axioms and rules listed
below. We write Γ `M ≡ N as shorthand for Γ `M : t and Γ ` N : t and M ≡ N. Notice that this notation
implicitly assumes that structural equivalent terms must be of the same type.

Γ ` PmQ≡ QmP Γ ` Pm (QmR)≡ (PmQ)mR Γ ` Pmk≡ P Γ ` 0hki≡ k

Γ ` σ |τ ≡ τ|σ Γ ` σ |(τ|ρ)≡ (σ |τ)|ρ Γ ` σ |0≡ σ

Γ ` P≡ Q
Γ ` PmR≡ QmR

Γ ` σ ≡ τ

Γ ` σ |ρ ≡ τ|ρ
Γ ` P≡ Q Γ ` σ ≡ τ

Γ ` σhPi≡ τhQi

Γ ` α ≡ β Γ ` σ ≡ τ

Γ ` α.σ ≡ β .τ

Γ ` σ ≡ τ

Γ ` G(σ)≡ G(τ)

Γ ` σ ≡ τ

Γ ` JI
n (σ)≡ JI

n (τ)

With respect to the structural congruence of [7], we have added the possibility of rearranging the sub-
membranes contained in co-phago and pino actions (the last three rules of the table above).

Reduction Semantics The dynamic behaviour of Brane Calculus is specified by means of a reduction
semantics, defined by means of a reduction relation (“reaction”) } ⊆ P×P, whose rules are listed in
Table 2. It is easy to see that subject reduction holds. Note that the presence of (red-equiv) makes this
not a structural presentation, since term structure can change according with ≡.
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JI
n (ρ).τ|τ0hQimJn.σ |σ0hPi} τ|τ0hρhσ |σ0hPiimQi

(red-phago)

KI
n .τ|τ0hKn.σ |σ0hPimQi}σ |σ0|τ|τ0hQimP

(red-exo)

G(ρ).σ |σ0hPi}σ |σ0hρhkimPi
(red-pino)

P}Q
σhPi}σhQi

(red-loc)
P}Q

PmR}QmR
(red-comp)

P≡ P′ P′}Q′ Q′ ≡ Q
P}Q

(red-equiv)

Table 2: Reduction semantics for the Brane Calculus.

3 A Labelled Transition Semantics for Brane Calculus

In this section we introduce a labeled transition system (LTS) for the Brane calculus, along the lines of
[13] where a LTS is outlined in the case of Mobile Ambients. A SOS style presentation of the semantics
will help in the definition of the stochastic semantics of Section 4.

We shall use a meta-syntax for simple syntactic manipulation of terms. The meta-syntax is a simply
typed λ -calculus and can be thought as a primitive system of higher order abstract syntax. We extend
the base types with function types, in order to type terms in the meta-syntax. We also add to the term
signature the λ -abstraction and application constructs, which should not be considered as a language
extension: their function is to allow for a structural definition of a labelled transition system, and as such
they have no computational meaning.

M ::= . . . | λX : t. M | M(M) t ::= . . . | t→ t

The λ -abstraction binds variables. Terms are taken up-to α-equivalence on bound variables.
Terms in the meta-language are typed using the standard typing rules for typed λ -terms, and the two

rules below are added to the set of of type rules of Table 1.

Γ,X : t `M : t ′

Γ ` λX : t. M : t→ t ′
(lambda)

Γ `M : t→ t ′ Γ ` N : t
Γ `M(N) : t ′

(app)

We consider terms to be syntactically equal up-to βη-equivalence, i.e., the smallest congruence
that contains the two axioms (λX : t. M)(N) = M{N/X} and λX : t. M(X) = M. Thus, for instance,
(λX : sys. σhXi)(P) and σhPi are the same term. In the remainder of the paper, when we write a
meta-syntax term of base type (sys, mem or act), we mean the term obtained by complete βη-reduction
(which exists because our metalanguage is a simply typed-λ calculus [2]). This assumption will ease the
description avoiding many technicalities which are out of the scope of the paper.

We extend structural congruence to meta-syntactic terms by adding the following rule.

Γ,X : t ` P≡ Q
Γ ` λX : t. P≡ λX : t. Q

Structural congruence is compatible with λ -terms evaluation in the following sense:

Lemma 3.1. If M ≡ N : t→ t ′ and T ≡ S : t then it follows that M(T )≡ N(S) : t ′.
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Jn.σ
Jn−→ σ

(J-pref)

JI
n (ρ).σ

JI
n (ρ)−−−→ σ

(JI-pref)

Gn(ρ).σ
Gn(ρ)−−−→ σ

(G-pref)

Kn.σ
Kn−→ σ

(K-pref)

KI
n .σ

KI
n−→ σ

(KI-pref)
σ

α−→ σ ′

σ |τ α−→ σ ′|τ
(L-par)

σ
α−→ σ ′

τ|σ α−→ τ|σ ′
(R-par)

σ
Jn−→ σ ′

σhPi
phagon−−−−→ λZ. Z(σ ′hPi)

(phago)
P

phagon−−−−→ F

PmQ
phagon−−−−→ λZ. (F(Z)mQ)

(Lm-phago)

σ
JI

n (ρ)−−−→ σ ′

σhPi
phagon−−−−→ λX . σ ′hρhXimPi

(phago)
P

phagon−−−−→ A

PmQ
phagon−−−−→ λX . (A(X)mQ)

(Lm-phago)

σ
Kn−→ σ ′

σhPi exon−−→ λXy. σ ′|yhXimP
(exo)

P exon−−→ S

PmQ exon−−→ λXy. S(X mQ)(y)
(Lm-exo)

P
phagon−−−−→ F Q

phagon−−−−→ A

PmQ id−→ F(A)
(id-phago-L)

P exon−−→ S σ
KI

n−→ σ ′

σhPi id−→ S(k)(σ ′)
(id-exo)

σ
Gn(ρ)−−−→ σ ′

σhPi id−→ σ ′hρhkimPi
(id-pino)

P id−→ P′

σhPi id−→ σhP′i
(id-loc)

P id−→ P′

PmQ id−→ P′ mQ
(Lm-id)

Table 3: Labelled transition system (LTS) for Brane Calculus. By convention F : (sys→ sys)→ sys,
A : sys→ sys and S : sys→ mem→ sys. Symmetric rules (Rm-phago), (Rm-phago), (Rm-exo), (Rm-id),
and (id-phago-R) are omitted.

We can now define a labelled transition system for the Brane Calculus, following [13]. This system
will be structural (i.e., in SOS format) and finitary branching; these features will allow to define smoothly
the stochastic semantics in Section 4. To our knowledge this is the first finitary structural operational
semantics for the Brane Calculus. (An LTS for Brane Calculus has been given in [1], but it was not
structural nor finitary branching.) The rules of our LTS are given in Table 3, and are organized into two
parts: rules for membrane terms and for system terms. In the definition we have omitted types since
the upper/lower case notation for sys/mem typed variables makes the presentation clearer. The only
exception to this notation is in (phago) and (L/Rm-phago) rules, where the variable Z has type (sys→ sys).

An example of how labelled transitions are derived using the rules in Table 3, is shown in Figure 1:
the derivation leads to the (red-phago) reaction of Table 2; note, in particular, how the (id-phago) rule
is applied. Similar derivations hold for all rules in Table 2 except for (red-equiv) (which makes the
reduction semantics “not structural”). Hence, it is easy to see that id−→⊆}. The converse follows by an
inductive analysis of the structure of the source processes of an id-transition.

Proposition 3.2. If P id−→ Q then P}Q. If P}Q then P id−→ Q′ for some Q′ ≡ Q.
Labelled transitions are compatible with structural congruence in the following sense:

Lemma 3.3. If P α−→ P′ and P≡ Q then there exists Q′ such that Q′ ≡ P′ and Q α−→ Q′.
The labelled transition systems, as usual, induces a bisimulation relation on terms. Due to the gen-

eralization to meta-syntactic terms, the canonical bisimulation considers also λ -terms. Since in Brane
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Jn.σ
Jn−→ σ

(J-pref)

Jn.σ |σ0
Jn−→ σ |σ0

(L-par)

Jn.σ |σ0hPi
phagon−−−−→ λZ. Z(σ |σ0hPi)

(phago)

JI
n (ρ).τ

JI
n (ρ)−−−→ τ

(JI-pref)

JI
n (ρ).τ|τ0

JI
n (ρ)−−−→ τ|τ0

(L-par)

JI
n (ρ).τ|τ0hQi

phagon−−−−→ λX . τ|τ0hρhXimQi

(phago)

Jn.σ |σ0hPimJI
n (ρ).τ|τ0hQi

id−→ τ|τ0hρhσ |σ0hPiimQi

(id-phago-L)

Figure 1: Derivation for the (red-phago) reaction.

Calculus the dynamics can happen only at the level of system terms P ∈ P, we specialize the definition
of bisimulation considering only labels in {id,phagon,phagon,exon | n ∈ Λ} as follows:

Definition 3.4 (Strong bisimulation). A bisimulation on Brane Calculus systems is an equivalence
relation R ⊆ P×P such that for arbitrary P,Q ∈ P, (P,Q) ∈R if and only if

– if P id−→ P′ then ∃Q′ such that Q id−→ Q′ and (P′,Q′) ∈R;

– if P
phago−−−→ F then ∃G such that Q

phagon−−−−→ G and (F(R),G(R)) ∈R for all σ ,ρ : mem and R′ : sys,
where R = λX . σhρhXimR′i;

– if P
phago−−−→ A then ∃B such that Q

phagon−−−−→ B and (A(R),B(R)) ∈R for all R : sys;

– if P exo−−→ T then ∃S such that Q exon−−→ S and (T (R)(ρ),S(R)(ρ)) ∈R for all R : sys and ρ : mem;

Two systems P,Q ∈ P are said bisimilar, written P ∼ Q, iff there exists a bisimulation relation R such
that (P,Q) ∈R.

In the definition above, when a transition yields a λ -abstracted term M, this term is instantiated
according to its form. The idea is to recover a bisimulation on only system terms by sufficiently instanti-
ating the λ -abstraction in order to recover a sys-typed term, hence a term in P. This definition is slightly
different from that in [13] for Ambient Calculus, where Rathke and Sobocinski prefer to add to the LTS
derivation rules for explicit instantiation. Although this design choice is equivalent from the point of
view of the resulting bisimulation relation, it leads to an infinitely-branching LTS, since they chose to
endow labels with the instantiation parameters. In the definition of the stochastic semantics for the Brane
Calculus we need the LTS to be finitely-branching, hence we do not add instantiation rules.

The next lemma follows directly from Lemma 3.3.

Lemma 3.5. For arbitrary P,Q ∈ P, if P≡ Q then P∼ Q.

This ensures that the structural equivalence ≡ is contained in ∼, but we can prove also a stronger
result, that is ≡  ∼. Let P = 0hJnhii; it is easy to see that P ∼ k, however P 6≡ k, hence structural
equivalence does not coincide with strong bisimulation, and in particular ∼ equates more terms than ≡.

4 A Stochastic Semantics for Brane Calculus

In this section we present a stochastic semantics for the Brane calculus, following the construction of
[8]. We assume the reader to be familiar with basic notions from measure theory (see Appendix A for a
brief summary of the used definitions). We start introducing the notation used hereafter and recalling the
definition of Markov process (MP) and stochastic bisimulation on them (more details are in [8]).
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For arbitrary sets A and B, 2A denotes the powerset of A, and both [A→ B] and BA will be used to
denote the class of functions from A to B. As usual N, Q, and R denote the sets of natural, rational, and
real numbers, and Q+ and R+ the sets of positive rational and real numbers (with zero), respectively.
Given a measurable space (M,Σ), the elements of Σ are called measurable sets and M the support-set.
Let ∆(M,Σ) be the class of measures µ : Σ→R+ on (M,Σ). From ∆(M,Σ) we distinguish two measures:
the null measure ω for which ω(A) = 0 for all A ∈ Σ, and, for a fixed r ∈ R+, the r-Dirac measure on
N, D(r,N), defined by D(r,N)(

⋃
i∈I Ni) = ∑i∈I fN(Ni), for N and Ni∈I elements of a base for (M,Σ) (thus⋃

i∈I Ni ∈ Σ), where fN(N′) = r if N′ = N, otherwise 0. Given two measurable spaces (M,Σ) and (N,Θ),
we use JM→ NK to denote the class of measurable functions f : M→ N from (M,Σ) to (N,Θ).
Definition 4.1 (Markov kernels and Markov processes). Let (M,Σ) be an measurable space, and A a
denumerable set of labels. An A-Markov kernel is a tuple M = (M,Σ,θ), with

θ : A→ JM→ ∆(M,Σ)K.

An A-Markov process of M with m ∈M as initial state, written (M ,m), is the tuple (M,Σ,θ ,m).
A MP involves a set A of labels which represent all possible interactions with the environment. If

α ∈ A is a label, m is the current state of the system, and N is a measurable set of states, the function
θ(α)(m) is a measure on the state space and θ(α)(m)(N) ∈ R+ represents the rate of an exponentially
distributed random variable characterizing the duration of the α-transition from m to arbitrary n ∈ N.

Given a binary relation R ⊆ M×M, we call a subset N ⊆ M R-closed iff R ∩ (N×M) ⊆ N×N.
Given (M,Σ) a measurable space and R ⊆M×M a binary relation over M, with Σ(R) we denote the
set of measurable R-closed subsets of M.
Definition 4.2 (Stochastic bisimulation). For an A-Markov kernel M = (M,Σ,θ) a rate-bisimulation
relation is an equivalence relation R ⊆M×M such that (m,n) ∈R iff for any C ∈ Σ(R) and α ∈ A,

θ(α)(m)(C) = θ(α)(n)(C).

Two Markov processes (M ,m) and (M ,n) are stochastic bisimilar, written m ∼M n, if m and n are
related by a rate-bisimulation relation.

In the rest of the section we define the analytic space of terms, and we show how it can be organized
as an A-Markov kernel. This will implicitly give a stochastic structural operational semantics such that
the canonical behavioral equivalence coincides with the bisimulation of MPs.

Let us define the measurable space of terms. The construction takes place at the level of the meta-
syntactic terms, hence we will assume to work with terms in T. Let T/≡ be the set of ≡-equivalence
classes on T. For arbitrary M ∈ T, we denote by [M]≡ the ≡-equivalence class of M. Note that T/≡ is a
denumerable partition of T, hence it is a generator for a σ -algebra on T.
Definition 4.3 (Measurable space of terms). The measurable space of terms (T,Σ) is the measurable
space on T where Σ is the σ -algebra on T generated by T/≡.

The measurable sets are (possibly denumerable) reunions of ≡-equivalence classes on T. In the
following we use T , S , . . . to denote arbitrary measurable sets of Σ.

In order to define an A-Markov kernel on (T,Σ) we first need to define the set of labels.
Definition 4.4 (Transition labels). The set of transition labels for (meta-syntactic) terms is given by the
pair (A, ι), where A, Asys∪Amem and

(SYSTEM LABELS) Asys , {phagon,phagon,exon | n ∈ Λ}
(MEMBRANE LABELS) Amem , {Jn,J

I
n (ρ),Kn,K

I
n ,Gn(ρ) | n ∈ Λ and ρ ∈M}
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The internal action label id is not in A; we extend A by defining A+ , A∪{id}. It is no accident
that the chosen labels are the same of the LTS of Section 3; indeed, the construction of the Markov kernel
will be guided by the derivation rules listed in Table 3.

Since we are defining the semantics of a stochastic calculus, we equip the set of actions Act =
{Jn,J

I
n ,Kn,K

I
n ,Gn | n ∈ Λ} with a weight function ι : Act→ Q+ \ {0}, which assigns to each action

the rate of an exponentially distributed random variable that characterizes the duration of the transition
induced by the execution of that particular action. The weight function is such that ι(Jn) = ι(JI

n ) and
ι(Kn) = ι(KI

n ); this characterizes the fact that two cooperating actions have the same execution rate.
Now, we aim to define the function θ : A+→ JT→ ∆(T,Σ)K, which will conclude the construction

of an A+-Markov process for (T,Σ). To this end, it is useful to give some operations on measurable sets,
which will ease the exposition of the inductive construction of θ . For arbitrary T ,S ∈ Σ and M ∈ T,

T (S),
⋃

M:t→t ′∈T
N:t∈S

[M(N)]≡ T |M ,
⋃

N|M∈T

[N]≡ T mM ,
⋃

NmM∈T

[N]≡ TMhi ,
⋃

MhNi∈T

[N]≡

The next definition constructs the function θ : A+→ JT→ ∆(T,Σ)K by induction on the structure of
terms. The intuition is that for arbitrary M ∈ T, M ∈ Σ and α ∈ A+, θ(α)(M)(M ) represents the total
rate of the α actions from M to (elements of) M .

Definition 4.5. Let θ : A+→ JT→ ∆(T,Σ)K be defined by induction on the structure of terms:

Case 0: For any a ∈ A+, let θ(a)(0) = ω .

Case α.M: For any a ∈ A+ let θ(a)(α.M) = D(ι(act(α)), [M]≡) if a = α , θ(a)(α.M) = ω otherwise.

Case M|N: For any a ∈ A+ let θ(a)(M|N)(T ) = θ(a)(N)(T |M)+θ(a)(M)(T |N).

Case λX .M: For any a ∈ A+, let θ(a)(λX . M) = ω .

Case k: For any a ∈ A+, let θ(a)(k) = ω .

Case MhNi: For any a ∈ Amem let θ(a)(MhNi) = ω . For all other labels in A+ \Amem

θ(phagon)(MhNi)(T ) = θ(Jn)(M)([{σ ∈M | λZ : sys→ sys. Z(σhNi) ∈ T }]≡)
θ(phagon)(MhNi)(T ) = ∑

ρ∈M
θ(JI

n (ρ))(M)({σ ∈M | λX . σhρhXimNi ∈ T }/≡)

θ(exon)(MhNi)(T ) = θ(Kn)(M)({σ ∈M | λXy. σ |yhXimN ∈ T }/≡)
θ(id)(MhNi)(T ) = θ(id)(N)(TMhi)+

n∈Λ

∑
ρ∈M

θ(Gn(ρ))(M)({σ ∈M | σhρhkimNi ∈ T }/≡)+

∑
S([k]≡)(T ′)⊆T

θ(exon)(N)(S) ·θ(JI
n )(M)(T ′)

ι(KI
n )
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Case M mN: For any a ∈ Amem let θ(a)(M mN) = ω . For all other labels in A+ \Amem

θ(phagon)(M mN)(T ) = θ(phagon)(N)({F : (sys→ sys)→ sys | λZ. (F(Z)mM) ∈ T )}/≡)+
θ(phagon)(M)({F : (sys→ sys)→ sys | λZ. (F(Z)mN) ∈ T )}/≡)

θ(phagon)(M mN)(T ) = θ(phagon)(N)({A : sys→ sys | λX . (A(X)mM) ∈ T )}/≡)+
θ(phagon)(M)({A : sys→ sys | λX . (A(X)mN) ∈ T )}/≡)

θ(exon)(M mN)(T ) = θ(exon)(N)({T : sys→mem→ sys | λXy. T (X mM)(y) ∈ T }/≡)+
θ(exon)(M)({T : sys→mem→ sys | λXy. T (X mN)(y) ∈ T }/≡)

θ(id)(M mN)(T ) = θ(id)(N)(T mM)+θ(id)(M)(T mN)+

n∈Λ

∑
F (A)⊆T

θ(phagon)(M)(F ) ·θ(phagon)(N)(A)

ι(Jn)
+

n∈Λ

∑
F (A)⊆T

θ(phagon)(N)(F ) ·θ(phagon)(M)(A)

ι(Jn)

The intuition behind this definition is that each summand corresponds to a derivation rule of the LTS
of Section 3. For example, in θ(id)(M mN)(T ) the last summand corresponds to (id-phago-R) rule.
Similarly, if there are no a-transitions for a term M in the LTS, θ(a)(M) = ω; this is the case of 0, k,
and λX . M. Note that for each σ ∈M, θ(a)(σ) 6= ω iff a ∈ act(σ). Consequently each infinitary sum
involved in Definition 4.5 has a finite number of non-zero summands.

In particular we have a correspondence between the LTS and the function θ in the following sense.

Proposition 4.6. For arbitrary M ∈ T and α ∈ A+
sys the following statements hold

1. if θ(α)(M)(T )> 0 then there exists M′ ∈ T such that M α−→M′,

2. if M α−→M′ then there exists M ∈Π such that M′ ∈ T and θ(α)(M)(T )> 0.

In the proposition above, (1) can be proven by induction on the structure of the term M (assumed
to be well-typed); while the prove for (2) is by induction on the derivation of M α−→ M′. Note that
Proposition 4.6 reflects the similarity between Definition 4.5 and the definition of the LTS of Section 3.

A direct consequence of Proposition 4.6 is the following.

Corollary 4.7. M α−→M′ iff θ(α)(M)([M′]≡)> 0.

The next theorem states that (T,Σ,θ) is an A+-Markov kernel. Proving this will implicitly show
the correctness of our construction, indeed it suffices to prove that for each M ∈ T and each α ∈ A+,
θ(α)(P) : Σ→ R+ is a measure on the measurable space (T,Σ).

Theorem 4.8 (Markov kernel for the measurable space of terms). (T,Σ,θ) is an A+-Markov kernel.

A consequence of this theorem is that for each M ∈ T, (T,Σ,θ ,M) is a Markov process, hence we
can define a stochastic bisimulation for Brane Calculus meta-syntactic terms, simply as the stochastic
bisimulation of Markov processes in (T,Σ,θ).

From the measurable space (T,Σ) we can recover the measurable subspaces (M,Θ) and (P,Π),
respectively for membrane and system terms. Indeed, if Θ is the σ -algebra generated from the base
M/≡, and Π the one generated from the base P/≡, both Θ and Π are contained in Σ, hence (M,Θ) and
(P,Π) are two subspaces of (T,Σ).
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One may be led to think that by a suitable restriction on θ we can also recover two A-Markov kernels
respectively on the sets Amem and A+

sys of labels. Of course, it is possible to define two Markov kernels
by letting θmem : A+

mem→ JM→ ∆(M,Θ)K and θ ′sys : A+
sys→ JP→ ∆(P,Π)K as

θmem(a)(σ)(M ) = θ(a)(σ)(M ) for all M ∈Θ

θ
′
sys(b)(P)(P ) = θ(b)(P)(P ) for all P ∈Π.

Although this definition works well for (M,Θ), it does not straightforwardly work for (P,Π). In fact
θ ′sys does not enjoy a result similar to Proposition 4.6, and moreover the stochastic bisimulation is
not the equivalence that one may expect. For example, it is easy to see that for all α ∈ A+

sys and
P ∈Π, θ(α)(Knhki)(P ) = 0. The same thing happen for Jmhki, that is, θ(α)(Jnhki)(P ) = 0, hence
(P,Π,θ ′sys,Knhki) and (P,Π,θ ′sys,Jmhki) are stochastic bisimilar. By a simple analysis on the structure
of Knhki and Jmhki, it is easy to see that

θ(exon)(Knhki)([λXy. 0|yhXimk)]≡) = θ(exon)(Knhki)([λXy. 0|yhXi)]≡) = ι(Kn)> 0

θ(phagom)(Jmhki)([λZ. Z(0hki)]≡) = θ(phagom)(Jmhki)([λZ. Z(k)]≡) = ι(Jm)> 0.

We can prove that θ(exon)(Knhki)(T ) > 0 iff λXy. 0|yhXi ∈ T , and θ(phagom)(Jmhki)(T ) > 0 iff
λZ. Z(k) ∈ T (remember that both θ(exon)(Knhki) and θ(phagom)(Jmhki) are measures). This ex-
ample points out the problem: the two measurable spaces “are not of the right type”. Indeed, in Definin-
tion 4.5 it easy to see that for labels in Asys (see cases MhNi and M mN) θ contributes to the rate with a
nonzero value only if the the measurable space given as (last) parameter contains terms of nonbase type.
In particular, for label phagon the type is (sys→ sys)→ sys, for label phagon is sys→ sys, and for label
exon is sys→mem→ sys.

This simple consideration induces the definition of another function:

Definition 4.9. Let θ̃sys : A+
sys→ JP→ ∆(P,Π)K be defined as follows, where P ∈ P and P ∈Π.

θ̃sys(id)(P)(P ) = θ(id)(P)(P )

θ̃sys(phagon)(P)(P ) = θ(phagon)(P)(F )

where F = {F : (sys→ sys)→ sys | ∃A : sys→ sys. F(A) ∈ P}/≡
θ̃sys(phagon)(P)(P ) = θ(phagon)(P)(A)

where A = {A : sys→ sys | ∃F : (sys→ sys)→ sys. F(A) ∈ P}/≡
θ̃sys(exon)(P)(P ) = θ(exon)(P)(S)

where S = {S : sys→mem→ sys | ∃Q ∈ P,σ ∈M. S(Q)(σ) ∈ P}/≡

Again (P,Σ, θ̃sys) is an A+
sys-Markov kernel, and in particular the stochastic bisimulation on Markov

processes is the one that we need. It is easy to see that (P,Π, θ̃sys,Knhki) and (P,Π, θ̃sys,Jmhki) are no
more stochastic bisimilar (assuming ι(K)n 6= ι(J)n).

However, the above definition is not defined inductively on the structure of terms. To this end, we
provide another function θsys : A+

sys→ JP→ ∆(P,Π)K, defined by induction on the structure of system
terms, and we prove that θsys is an alternative characterization of θ̃sys, i.e., θsys and θ̃sys coincide.

Definition 4.10. Let θsys : A+
sys→ JP→ ∆(P,Π)K be defined on the structure of P ∈ P, as follows.

Case P = k: For any α ∈ A+
sys, let θsys(α) = ω .
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Case P = σhQi: For any P ∈Π,

θsys(phagon)(σhQi)(P ) = θmem(Jn)(σ)({σ ′ | τhρhσ
′
hQiimRi ∈ P}/≡)

θsys(phagon)(σhQi)(P ) = ∑
ρ∈M

θmem(J
I
n (ρ))(σ)({σ ′ | σ ′hρhτhRiimQi ∈ P}/≡)

θsys(exon)(σhQi)(P ) = θmem(Kn)(σ)({σ ′ | σ ′|τhRimQ ∈ P}/≡)
θsys(id)(σhQi)(P ) = θsys(id)(Q)(Pσhi)+

n∈Λ

∑
ρ∈M

θmem(Gn(ρ))(σ)({σ ′ | σ ′hρhkimQi ∈ P}/≡)+

∑
n∈Λ

θmem(K
I
n )(σ)({σ ′ | σ ′|τhQimR ∈ P}/≡) ·θsys(exon)(Q)(P )

ι(Jn)

Case P = QmR: For all α ∈ Asys and P ∈Π

θsys(α)(QmR)(P ) = θsys(α)(R)(P mQ)+θsys(α)(Q)(P mR)

θsys(id)(QmR)(P ) = θsys(id)(R)(P mQ)+θsys(id)(Q)(P mR)+

∑
n∈Λ

θsys(phagon)(R)(P ) ·θsys(phagon)(Q)(P )
ι(Jn)

+

∑
n∈Λ

θsys(phagon)(Q)(P ) ·θsys(phagon)(R)(P )
ι(Jn)

The next theorem states that θsys precisely characterizes the function θ̃sys defined before.

Theorem 4.11. For all α ∈ A+
sys, P ∈ P, and P ∈Π, θsys(α)(P)(P ) = θ̃sys(α)(P)(P ).

A consequence of the previous theorem is that (P,Π,θsys) is an A+
sys-Markov kernel, and that the

stochastic bisimulation on Markov processes coincides with that induced by (P,Π, θ̃sys).

5 Stochastic Structural Operational Semantics and Bisimulation

In this section we introduce the stochastic structural operational semantics for the Brane Calculus, with
the aim of defining a behavioral equivalence on system terms that coincides with their bisimulation as
Markov processes on (P,Π,θsys). Notably, it is directly induced from the definition of the function θsys

(Definition 4.10), following the pattern of [8]. Since this is an unusual construction for a structural oper-
ational semantics, some preliminary discussions are needed. Typically, a structural operational semantics
for a stochastic process algebra associates a rate r with transitions: P α−→r P′. Instead, in [8] transitions
are not between two processes, but from a process to an infinite measurable set of processes. In order
to maintain “the spirit” of process algebras Cardelli and Mardare replace the classic rules of the form
P α−→ P′ with rules of the form P→ µ , where µ is a function from action labels to measures on the
measurable space of processes. Let us see how this construction can be applied to the Brane Calculus.

For simplifying the rules of the operational semantics, we first define some operations on the func-
tions in ∆(M,Θ)Amem and ∆(P,Π)A

+
sys , and analyze their properties. We say that a function µ ∈∆(P,Π)A

+
sys

has finite support if A+
sys \µ−1(ω) is finite or empty (recall that ω is the null measure).

Definition 5.1. Consider the following constants and operations on ∆(M,Θ)Amem defined as follows.
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• ωmem : Amem→ ∆(M,Θ) defined as ωmem(α) = ω , for arbitrary α ∈ Amem;

• For arbitrary a ∈ Amem and σ ,ρ ∈M, let ασ : Amem→ ∆(M,Θ) be defined by

[ε]σ (a) =

{
D(ι(ε), [σ ]≡) if a = ε

ω if a 6= ε
(for ε ∈ {Jn,Kn,K

I
n | n ∈ Λ})

[ε(ρ)]σ (a) =

{
D(ι(ε), [σ ]≡) if a = ε(ρ)

ω if a 6= ε(ρ)
(for ε ∈ {JI

n ,Gn | n ∈ Λ})

• For arbitrary µ,µ ′ ∈ ∆(M,Θ)Amem with finite support, a ∈ Amem, σ ,τ ∈M, and M ∈ Θ, let the
function µσ�τ µ ′Amem→ ∆(M,Θ) be defined by

(µσ�τ µ
′)(a)(M ) = µ(a)(Mτ)+µ

′(a)(Mσ )

Consider the following constants and operations on ∆(P,Π)A
+
sys and ∆(M,Θ)Amem defined as follows.

• ωsys : A+
sys→ ∆(P,Π) defined as ωsys(α) = ω , for arbitrary α ∈ A+

sys;

• For arbitrary µ ∈ ∆(P,Π)A
+
sys , µ ′ ∈ ∆(M,Θ)Amem with finite support, σ ∈M, P ∈ P, and P ∈Π let

the function µ@σ
P µ ′ : A+

sys→ ∆(P,Π) be defined by:

(µ@σ
P µ
′)(phagon)(P ) = µ

′(Jn)({σ ′ | τhρhσ
′
hPiimQi ∈ P}/≡)

(µ@σ
P µ
′)(phagon)(P ) = ∑

ρ∈M
µ
′(JI

n (ρ))({σ ′ | σ ′hρhτhQiimPi ∈ P}/≡)

(µ@σ
P µ
′)(exon)(P ) = µ

′(Kn)({σ ′ | σ ′|τhQimP ∈ P}/≡)

(µ@σ
P µ
′)(id)(P ) = µ(id)(Pσhi)+

n∈Λ

∑
ρ∈M

µ
′(Gn(ρ))({σ ′ | σ ′hρhkimQi ∈ P}/≡)+

∑
n∈Λ

µ ′(KI
n )({σ ′ | σ ′|τhPimQ ∈ P}/≡) ·µ(exon)(P )

ι(Jn)

• For arbitrary µ,µ ′ ∈ ∆(P,Π)A
+
sys with finite support, a∈Asys, P,Q∈ P, and P ∈Π, let the function

µP⊗Q µ ′ : A+
sys→ ∆(P,Π) be defined by

(µP⊗Q µ
′)(a)(P ) = µ(a)(PQ)+µ

′(a)(PP)

(µP⊗Q µ
′)(id)(P ) = µ(id)(PQ)+µ

′(id)(PP)+

∑
n∈Λ

(
µ(phagon)(P ) ·µ ′(phagon)(P )

)
+
(
µ(phagon)(P ) ·µ ′(phagon)(P )

)
ι(Jn)

Notice that since µ and µ ′ have finite support, each infinite sum involved in Definition 5.1 has a finite
number of nonzero summands. The next two lemmata prove that the definitions of σ�τ , P⊗Q, and @σ

P ,
for arbitrary σ ,τ ∈M and P,Q ∈ P are correct; they also state some basic properties of these operators.

Lemma 5.2. The following statements hold.

1. For arbitrary σ ,τ,ρ ∈M and µ ′,µ ′′,µ ′′′ ∈ ∆(M,Θ)Amem with finite support

(a) µ ′σ�τ µ ′′ = µ ′′τ�σ µ ′,
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0→ ωmem
(zero)

ε ∈ {Jn,Kn,K
I
n}

ε.σ → [ε]σ
(pref)

ε ∈ {JI
n ,Gn}

ε(ρ).σ → [ε(ρ)]σ
(pref-arg)

σ → µ ′ τ → µ ′′

σ |τ → µ ′σ�τ µ ′′
(par)

k→ ωsys
(void)

σ → ν P→ µ

σhPi→ µ@σ
P ν

(loc)
P→ µ ′ Q→ µ ′′

PmQ→ µ ′P⊗Q µ ′′
(comp)

Table 4: Structural operational semantics for Brane Calculus

(b) (µ ′σ�τ µ ′′)σ |τ�ρ µ ′′′ = µ ′σ�τ|ρ (µ
′′

τ�ρ µ ′′′),
(c) µ ′σ�0 ωmem = µ ′.

2. For arbitrary P,Q,R ∈ P and µ ′,µ ′′,µ ′′′ ∈ ∆(P,Π)A
+
sys with finite support

(a) µ ′P⊗Q µ ′′ = µ ′′Q⊗P µ ′,
(b) (µ ′P⊗Q µ ′′)P|Q⊗R µ ′′′ = µ ′P⊗Q|R (µ

′′
Q⊗R µ ′′′),

(c) µ ′P⊗k ωsys = µ ′.

3. ωsys@0
kωmem = ωsys.

Lemma 5.3. The following statements hold.

1. For arbitrary σ ,σ ′,τ,τ ′ ∈M and µ ′,µ ′′ : Amem→ ∆(M,Θ) with finite support

(a) for ε ∈ {Jn,Kn,K
I
n | n ∈ Λ}, σ ≡ τ implies [ε]σ = [ε]τ ,

(b) for ε ∈ {JI
n ,Gn | n ∈ Λ}, σ ≡ τ and ρ ≡ ρ ′ imply [ε(ρ)]σ = [ε(ρ ′)]τ ,

(c) σ ≡ σ ′ and τ ≡ τ ′ imply µ ′σ�τ µ ′′ = µ ′σ ′�τ ′ µ
′′.

2. For arbitrary P,P′,Q,Q′ ∈ P, σ ,τ ∈M, µ,µ ′,µ ′′ : A+
sys→ ∆(P,Π), and ν : Amem→ ∆(M,Θ) with

finite support

(a) P≡ Q and σ ≡ τ imply µ@σ
P ν = µ@τ

Qν ,
(b) P≡ P′ and Q≡ Q′ imply µ ′P⊗Q µ ′′ = µ ′P′⊗Q′ µ

′′.

The rules of the operational semantics are listed in Table 4. The operational semantics associates with
each membrane σ a mapping ν ∈ ∆(M,Θ)Amem , and with each system P ∈ P a mapping µ ∈ ∆(P,Π)A

+
sys .

For each ≡-closed set M ∈ Θ and each label α ∈ Amem, ν(α)(M ) ∈ R+ represents the total rate of an
α-transition of σ to some arbitrary element in M ; and for each set P ∈Π and label α ′ ∈ A+

sys, similarly
µ(α ′)(P ) ∈ R+ represents the total rate of an α ′-transition of P to some arbitrary element in P .

The next lemma guarantees the consistency of the stochastic transition relation→, and as a conse-
quence the consistency of the operational semantics.

Lemma 5.4 (Uniqueness of the measure). For each σ ∈M and P ∈ P:

1. there exists a unique µ ∈ ∆(M,Θ)Amem such that σ → µ; moreover, µ has finite support;

2. there exists a unique µ ∈ ∆(P,Π)Asys such that P→ µ; moreover, µ has finite support.

This operational semantics can be further used to define various pointwise semantics as, e.g.:

P
α,r−−→ Q iff P→ µ and µ(α)([Q]≡) = r

Example 5.5. Suppose ι(Jn) = r, and τ,ρ ∈M, Q ∈ P; it is easy to see that
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1. Jn.σhPi
phagon,r−−−−→ τhρhσhPiimQi

2. Jn.σhPimJn.σhPi
phagon,2r−−−−−→ τhρhσhPiimQimJn.σhPi

3. Jn.σhPimJnhki
phagon,r−−−−→ τhρhσhPiimQimJnhki

4. Jn.σhPimJnhki
phagon,r−−−−→ Jn.σhPim τhρhkimQi

5. Jn.σhPimJI
n (ρ).τhQi

id,r−−→ τhρhσhPiimQi

Note that in (1) the chosen τ , ρ , and Q are not relevant, indeed the “same” transition holds also
for different choices of them. At first sight (1) seems curious, but the intuition behind it is that it is
not important where a cell goes once it is phagocytized, but that eventually it could be phagocytized.
Examples 5.5 (2 – 4) show that the total rate is correctly summed up, while (5) exhibits an internal action
and how it influences the total rate.

The next lemma states that operational semantics does not distinguish structurally equivalent terms:

Lemma 5.6. Stochastic transitions are up-to structural equivalence:

1. if σ ≡ τ and σ → µ then τ → µ ,

2. if P≡ Q and P→ µ then Q→ µ .

Notice that the converse does not hold in general, that is, if for some P,Q ∈ P, P→ µ ′ and Q→ µ ′′,
and µ ′ = µ ′′, this does not imply that P≡ Q. For example, let P = 0hJnhii and Q = k, then

P→
(
µ1 = (ωsys@

Jn
k [Jn]0)@0

Jnhi
ω

mem
)

Q→
(
µ2 = ω

sys
)

It is trivial to verify that µ1 = µ2, however P 6≡ Q. In fact for each α ∈ Asys, µ1(α)(P ) = 0 (for all P ),
since µ1 is of the form µ ′1@ρ

Rωmem and its result depends only on ωmem. In order to prove µ1(id)(P ) = 0
it suffices to verify that (ωsys@

Jn
k [Jn]0)(id)(P 0hi) = 0, but again it is easy because the result depends

only on ωsys, hence µ1 = µ2.
Now, we introduce the stochastic bisimulation for the Brane Calculus as the stochastic bisimulation

on the Markov kernel (P,Π,θsys). We show that systems which are associated with the same function by
our SOS are bisimilar, and that the bisimulation extends the structural equivalence.

Lemma 5.4 shows that the operational semantics induces a function ϑ : P→ ∆(P,Π)A
+
sys defined by

ϑ(P) = µ iff P→ µ

The next lemma shows that there is a relation between ϑ and the function θsys that organizes P as a
Markov kernel. Indeed, it reflects the similarity between Definition 4.10 and Definition 5.1.

Lemma 5.7. If (P,Π,θsys) is the Markov kernel of system terms and ϑ : P→ ∆(P,Π)A
+
sys is the function

induced by the SOS, then for any P ∈ P, α ∈ A+
sys, and P ∈Π,

θsys(α)(P)(P ) = ϑ(P)(α)(P ).

A direct consequence of the previous lemma is that if our SOS assigns to different systems the same
function, then they are stochastic bisimilar with respect to the bisimulation on Markov processes.

Corollary 5.8. For arbitrary P,Q ∈ P, if P→ µ and Q→ µ , then P∼(P,Π,θsys) Q.



20 Measurable Stochastics for Brane Calculus

This guarantees that we can safely define the stochastic bisimulation for the Brane Calculus as the
stochastic bisimulation on (P,Π,θsys), as we do in the next definition.

Definition 5.9 (Stochastic bisimulation on systems). A rate-bisimulation relation on systems in an
equivalence relation R ⊆ P×P such that for arbitrary P,Q ∈ P with P→ µ and Q→ µ ′,

(P,Q) ∈R iff µ(α)(C) = µ
′(α)(C) for any C ∈Π(R) and any α ∈ A+

sys

Two systems P,Q ∈ P are stochastic bisimilar, written P≈ Q, iff there exists a rate bisimulation relation
R such that (P,Q) ∈R.

The next theorem provides a characterization of stochastic bisimulation stating that ≈ is the smallest
rate-bisimulation relation on P.

Theorem 5.10. The stochastic bisimulation relation ≈ is the smallest equivalence relation on P such
that for arbitrary P,Q ∈ P with P→ µ and Q→ µ ′,

P≈ Q iff µ(α)(C) = µ
′(α)(C) for any C ∈Π(≈) and any α ∈ A+

sys.

Example 5.11. For arbitrary σ ∈M
1. 0hσhkii≈ k

2. Gn(σ)|Gn(σ)hki 6≈ Gn(σ).Gn(σ)hki

3. JI
n (0)|KI

mhki≈ JI
n (0).KI

mhki≈ JI
n (0)hki

Examples 5.11(1) and (3) are peculiar to the Brane Calculus; (2) is interesting because in the seman-
tics without stochastic features the two processes are bisimilar: Gn(σ)|Gn(σ)hki∼ Gn(σ).Gn(σ)hki.

The next theorem shows that our stochastic bisimulation behaves correctly with respect to structural
equivalence; it is a direct consequence of Lemma 5.6 and Theorem 5.10.

Theorem 5.12. For arbitrary P,Q ∈ P, if P≡ Q, then P≈ Q.

In addition to to the result of the previous theorem, notice that ≈ is strictly larger then ≡, indeed
from Example 5.11(1) we have that, for any σ ∈M, 0hσhii≈ k, however 0hσhii 6≡ k.

6 Conclusions

In this paper we have presented a stochastic extension of the Brane Calculus; brane systems are inter-
preted as Markov processes over the measurable space generated by terms up-to syntactic congruence,
and where the measures are indexed by the actions of Brane Calculus. For finding the correct actions,
we have introduced a labelled transition system for Brane Calculus. Finally, we have provided a SOS
presentation of this stochastic semantics, which is compositional and syntax-driven.

Stochastic semantics for calculi of biological compartments (but not Brane Calculus) have been given
in literature; see [6, 4] for stochastic versions of BioAmbients and [15] for a stochastic π-calculus with
polyadic synchronisation. However, these semantics are “pointwise” and not structural, tailored for
stochastic simulations using Gillepie algorithm. As shown in Section 5, a “pointwise” semantics can be
readily obtained from the SOS given in this paper. An interesting future work is to investigate how these
simulation algorithms and techniques can be adapted to our setting.

There are several directions for further work. First, we would like to prove that the stochastic bisim-
ilarity (which corresponds to Markov bisimilarity) is a congruence. Then, we want to extend the theory
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to cover a notion of “approximate behaviour”, in order to measure how much two systems are bisimilar;
this is important in biological contexts, where usually we can compare only with approximate data (e.g.
coming from experiments).

We can consider also to add further constructs to the Brane Calculus, like “bind&release” and repli-

cation. For the latter, we should add rules like P◦!P
α−→P′

!P
α−→P′

to the LTS of Table 3; on the stochastic side,
these rules would lead to a new case in Definition 4.5, which we expect to be a fixed point equation to be
solved in a suitable domain (e.g., complete metric spaces).

Finally, we would like to apply the present approach to other measurable aspects; in particular,
geometric (e.g. volumes), physic (e.g. pressure, temperature) and chemical aspects are of great interest
in the biological domain.
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A Some measure theory

Given a set M, a family Σ of subsets of M is called a σ -algebra if it contains M and is closed under the
formation of complements and (infinite) countable unions:

1. M ∈ Σ;

2. A ∈ Σ implies Ac ∈ Σ, where Ac = M \A;

3. {Ai}i∈N ⊂ Σ implies
⋃

i∈NAi ∈ Σ.

Since M ∈Σ and Mc = /0, /0∈Σ, hence Σ is nonempty by definition. A σ -algebra is closed under countable
set-theoretic operations: is closed under finite unions (A,B ∈ Σ implies A∪B = A∪B∪ /0∪ /0∪ ·· · ∈ Σ),
countable intersections (by DeMorgan’s law A∩ B = (Ac ∪ Bc)c in its finite and inifite version), and
countable subtractions (A,B ∈ Σ implies A\B = A∩Bc ∈ Σ).

Definition A.1 (Measurable Space). Given a set M, and a σ -algebra on M, the tuple (M,Σ) is called a
measurable space, the elements of Σ measurable sets, and M the support-set.

A set Ω ⊆ 2M is a generator for the σ -algebra Σ on M if Σ is the closure of Ω under complement
and countable union; we write σ(Ω) = Σ and say that Σ is generated by Ω. A generator Ω for Σ is
a base of Σ if it has disjoin elements. Note that the σ -algebra generated by a Ω is also the smallest
σ -algebra containing Ω, that is, the intersection of all σ -algebras that contain Ω. In particular it holds
that a completely arbitrary intersection of σ -algebras is it self a σ -algebra. A σ -algebra generated by Ω,
denoted by σ(Ω), is minimal in the sense that if Ω⊂ Σ and Σ is a σ -algebra, then σ(Ω)⊂ Σ. Some facts
about a generators are that, if Ω is a σ -algebra then obviously σ(Ω) = Ω; if Ω is empty or Ω = { /0}, or
Ω = {M}, then σ(Ω) = { /0,M}; if Ω⊂ Σ and Σ is a σ -algebra, then σ(Ω)⊂ Σ.

A measure on a measurable space (M,Σ) is a function µ : Σ→ R+ such that

1. µ( /0) = 0;

2. for any disjoint sequence {Ni}i∈I ⊆ Σ with I ⊆ N, it holds µ(
⋃

i∈I Ni) = ∑i∈I µ(Ni).

The triple (M,Σ,µ) is called a measure space. A measure space (M,Σ,µ) is called finite if µ(M) is a
finite real number; it is called σ -finite if M can be decomposed into a countable union of measurable sets
of finite measure. A set in a measure space has σ -finite measure if it is a countable union of sets with
finite measure. Specifying a measure includes specifying its domain. If µ is a measure on a measurable
space (M,Σ) and Σ′ is a σ -field contained in Σ, then the restriction µ ′ of µ to Σ′ is also a measure, and in
particular a measure on (M′,Σ′), for some M′ ⊆M for which Σ′ is a σ -algebra on M′.
A notable measure is the Dirac measure. If Ω is a base for (M,Σ), N ∈Ω and r ∈ R+, then the function
f : Ω→ R+

f (N′) =

{
r if N′ = N
0 if N′ 6= N

can be extended, by f (
⋃

i∈I Ni) = ∑i∈I f (Ni), to a measure on (M,Σ) denoted by D(r,N) and called the
r-Dirac measure on N.

Let ∆(M,Σ) be the class of measures on (M,Σ). It can be organized as a measurable space by
considering the σ -algebra generated by the sets NS,r = {µ ∈ ∆(M,Σ) : µ(S)≥ r}, for arbitrary S ∈ Σ and
r > 0 (the support-set is ∆(M,Σ) and the σ -algebra is σ(

⋃
S∈Σ,r∈R+ NS,r)).

Given two measurable spaces (M,Σ) and (N,Θ) a mapping f : M → N is measurable if for any
T ∈Θ, f−1(T )∈ Σ. Measurable functions are closed under composition: given f : M→N and g : N→O
measurable functions then g◦ f : M→ O is also measurable.
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