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Abstract: This paper addresses the problem of computing minimum risk paths by taking as objective the
expected accident cost. The computation is based on a dynamic programming formulation which can be
considered an extension of usual dynamic programming models: path costs are recursively computed via
functions which are assumed to be monotonic. A large part of the paper is devoted to analyze in detail this
formulation and provide some new results. Based on the dynamic programming model a linear programming
model is also presented to compute minimum risk paths. This formulation turns out to be useful in solving
a biobjective version of the problem, in which also expected travel length is taken into consideration. This
leads to define nondominated mixed strategies. Finally it is shown how to extend the basic updating device
of dynamic programming in order to enumerate all nondominated paths.

Keywords: routing, risk analysis, dynamic programming, multiple objective programming, hazardous ma-
terials.

1. INTRODUCTION

The travelling of hazardous materials has raised the problem of computing paths minimizing not only

the length (cost or time) but also the risk of damages caused by accidents. Defining the length of a path

and computing a minimal path length is clearly a standard issue. On the contrary there are various ways of

defining and computing the “risk” of a path. The paper by Erkut and Verter (1998) reviews in detail the

various approaches suggested in the literature and tests them on a real example.

We summarize the relevant facts. Two quantities are typically involved in assessing the risk: the

probability of accident occurrence on a certain path edge and the incurred cost in case of accident on that

path edge. Although it is not straightforward how to measure the cost, we assume that numbers ce, related

to the accident costs, are available for each path edge e.

Two simple ways of taking care of the risk consider just one of the two quantities. For instance we may

consider that accident costs are high on any path edge and consequently we want to minimize the probability

of an accident along a path P . If pe is the probability of an accident on the edge e, we have to compute
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minimal length paths with ‘length’ given by
∑

e∈P − log(1− pe). Alternatively we may consider that sooner

or later an accident will occur by repeated travelling and therefore we may find more appropriate to minimize

either
∑

e∈P ce or maxe∈P ce. The two quantities can also be considered together as a bicriterion problem

(i.e. considering efficient solutions of minimizing at the same time both the accident probability and the

cost).

Furthermore, accident probabilities and costs can be combined to evaluate the expected cost of an

accident. This is the so called path risk (Erkut and Verter (1998)). The expected cost on path P =

{e1, e2, . . . , em} is defined as

c(P ) := p1 c1 + (1 − p1) p2 c2 + (1 − p1) (1 − p2) p3 c3 + (1 − p1) (1 − p2) (1 − p3) p4 c4 + . . . (1)

where it is explicitly taken into account the fact that once an accident has occurred on path edge ek no

further transportation will take place on the subsequent path edges eh, h > k.

This paper has been first motivated by the attempt to compute paths according to this expression

without simplifying it. Erkut and Verter (1998) disregard higher order terms in (1) thus arriving to the

following simple linear expression for the path expected cost:
∑

e∈P pe ce. They find this approximation

both realistic given the small probability values in real life problems and also convenient because (1) is

otherwise computed by resorting to a complex nonlinear integer programming problem or to a larger linear

integer programming problem.

We want to show in this paper that dynamic programming can be easily used to compute minimal paths

according to (1) in polynomial time. Although it can be practical to simplify such a cumbersome expression,

we think that it is worthwhile facing the problem directly. The first observation is that (1) can be more

compactly written recursively (in backward form)

c(P ) := p1 c1 + (1 − p1) c(P\e1) (2)

This particular definition of path cost is particularly suited to dynamic programming. However, the dynamic

programming formulation we need is slightly more general than the one found in the literature and we need

to address in detail this issue in Section 2. As we shall see, there are some subtle points connected to this

formulation. There are some strong connections between the path cost definition introduced in this paper

and the generalized path algebra introduced by Gondrand and Minoux (1979). In this paper we investigate

the link between dynamic programming principles and techniques and a general path cost definition and

provide new results.

In Section 3 we apply the dynamic programing techniques to solve (2) and discuss the solution. There

are similarities between (2) and Markov decision processes (for a general reference to MDP see for instance

Puterman (1994)). The difference is that in MDP paths are random, i.e. they are not known in advance,

whereas here paths are deterministic (except for the possible interruption caused by an accident). We will

show also a linear programming formulation of the problem.
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With respect to the problem of finding the ‘best’ path for the travelling of hazardous materials it is

certainly more interesting to address the problem as a bicriterion one. In Section 4 we consider bicriterion

minimal paths and introduce the idea, borrowed from MDP and game theory, of using mixed strategies,

that is using alternative paths with random selection (for the concept of mixed strategies refer for instance

to Luce and Raiffa (1957)). The linear programming formulation turns out to be naturally suited to this

approach. If mixed strategies cannot be considered we present a biobjective version of the basic updating

mechanism of dynamic programming algorithms.

2. EXTENDING THE SCOPE OF DYNAMIC PROGRAMMING

Let G = (N,E) be a directed graph (let n = |N | and m = |E|) and s a distinguished node of G. We

consider directed paths starting from s. This corresponds to a forward dynamic programming model. In

case of a backward model we have a distinguished node t and consider directed paths ending in t. We present

only one model since the results can be easily reformulated for the other model. Although the problem we

consider in this paper requires a backward model we present the results for the forward model because it is

slightly more intuitive.

We adopt the following notation: if P is a generic path (starting from s as we always assume in the

forward model) and j is a node in P we denote by Pj the restriction of P from s to j. We may also emphasize

the fact that a path ends in node i by writing Pi.

The extension of dynamic programming we propose consists in the particular definition of a path cost

V (P ). For each arc (ij) a function fij : R → R is defined. The cost of the path Ps consisting only of the

source s is defined as V̄s. For all other paths the cost of reaching j from s along the path P is defined by

V (Pj) = fij(V (Pi))

with i the node immediately preceding j on Pj . Note that the cost V (Pj) depends (via the function fij)

only on the cost of the path Pi and not on the path itself. Hence a path cost is recursively defined by

V (Ps) := V̄s, V (Pj) := fij(V (Pi)) ∀(i, j) ∈ P (3)

so that the cost of P : s → i → j . . . → k → h is given by

V (P ) := fkh(. . . ( fij( fsi(V̄s))))

The objective consists in finding for each node j a path P j minimizing (or maximizing) V (P j).

In most cases V̄s = 0 and the functions fij are additive, i.e.

fij(V ) = cij + V ∀(i, j) ∈ E (4)
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This is indeed the case considered in the literature. The functions we consider in this paper are more general

although not arbitrary. As we shall see, the functions must exhibit some form of monotonicity. The most

important assumption is that the functions are increasing (i.e. f(a) > f(b) for any a > b). In case they

are only nondecreasing (i.e. f(a) ≥ f(b) for any a > b) some important properties are retained if they are

in addition superlinear (i.e. f(a) ≥ a) for minimum problems or sublinear (i.e. f(a) ≤ a) for maximum

problems.

As already said, path cost generalizations have been proposed in the literature. We want to mention the

generalized path algebra by Gondrand and Minoux (1979), which extends the additive case to more general

algebraic binary operators. In particular they consider a further extension of their model in which arcs are

associated to cost functions fulfilling an algebraic property. This property turns out to be a monotonicity

property (but not strict monotonicity). There is a strong similarity between this path cost definition and

the one adopted in this paper. However, there does not seem to be in the literature a careful investigation

of the links between dynamic programming ideas and this kind of path cost generalizations, as we are going

to do in this section.

We may wonder whether considering generic (increasing or nondecreasing functions) fij(V ) instead of

usual additive functions V +cij is worth the added mathematical complication. Actually, beside the dynamic

programming model we need for the problem addressed in this paper, there may be other practical problems

for which we do need generic functions fij(V ). Here we provide a few examples.

Example 1. (see also Halpern and Priess (1974) and Minoux (1976)). A station s must send a message

to a station t. The message is routed via a satellite network. Two given satellites can exchange messages

only during certain time windows. If a time window is not available the message is stored in the satellite

and is sent with a delay. Knowing in advance the time windows for all satellite pairs, which is the fastest

route for the message (taking into account only storage delays)? We may model the problem by defining

the length V (Pi) of a path Pi as the time needed by the message to reach the node (satellite) i. Then the

function fij(V ) is defined as

fij(V ) =
{
V if V is within a time window
W if V is not in a time window and W > V is the start of the next available time window

This function is nondecreasing and superlinear. In the cited papers storage time windows are also considered.

Example 2. (see also Cooke and Halsey (1966) and Halpern (1977)). This is an extension of the

previous example. Let us suppose that the travelling time of a road depends on the particular time of the

day one enters the road. Modeling a road as an arc (i, j) we define the travelling time as Tij(V ) with V the

time of the day. Hence entering the road at time V means leaving the road at time V +Tij(V ). So we define

functions fij(V ) := V + Tij(V ). These functions are clearly superlinear. We may assume that entering

the road earlier means also leaving the road not later, no matter how the traffic condition is. In other
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words two identical drivers will never pass each other. With this assumption the functions are nondecreasing

(possible stops along the road make the functions non strictly increasing). Dropping the assumption makes

the problem more difficult and optimal paths may include cycles (see the cited papers).

Example 3. We have already mentioned that finding a path minimizing the failure probability can

be solved by transforming probabilities to their logarithms and solving a normal shortest path problem.

However, we can also approach the problem directly by defining V̄s = 1 and fij(V ) := V · pij (with pij

probability of no failure) and finding a maximum path. The functions f are sublinear and increasing.

As we shall see later, we can efficiently compute the optimal paths of these three examples by a slightly

modified Dijkstra algorithm.

Example 4. Bottleneck problems can be framed within dynamic programming by taking functions (for

minimum problems) fij(V ) := max {V, cij}, which are nondecreasing and superlinear. An example can be

found in the paper by Baker et al. (1983) where n tasks have to be scheduled on one machine. The scheduling

of task j is measured by a penalty function ϕj(Cj) of the completion time Cj of task j. The functions ϕj

are assumed to be nondecreasing. The cost of scheduling is defined as maxj ϕj(Cj). The processing time of

task j is pj . We define a directed layered graph whose nodes correspond to subsets J of {1, 2, . . . , n}. In

particular the source s corresponds to the empty set and the sink t to {1, 2, . . . , n}, and the arcs are defined

from any subset J to any subset J ∪ k, with k /∈ J . Then each path s → t corresponds to a permutation of

{1, 2, . . . , n}. The function fij associated to the arc (ij) is

f(J,J∪k)(V ) = max{V ; ϕk(
∑

i∈J∪k

pi)}

(this definition is justified by the property of the functions ϕj). Although the graph has an exponential

number of nodes an optimal path can be found in polynomial time with respect to the number of tasks.

Assuming functions f more general than additive ones requires a review of the dynamic programming

concepts. This will cast a new light to known properties and will also provide new results. Toward the goal

of finding optimal paths we state the well known optimality principle (however stated as a definition and

not as a theorem):

Definition 1: An optimal path P̂ satisfies the optimality principle if, for every node k on P̂ , P̂k is optimal

among all paths ending in k.

The optimality principle does not necessarily hold for all possible functions fij . The following theorem

is straightforward:

Theorem 2: If the functions fij are increasing the optimality principle holds for any optimal path.
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If the functions are only nondecreasing there may be optimal paths not satisfying the optimality prin-

ciple. For instance V̄s = 0, fs1(V ) = V + 3, fs2(V ) = V + 2, f12(V ) = min {V, 1}, f21(V ) = 2. There are

four simple paths, namely P 1 : s → 2 → 1, P 2 : s → 1 → 2 and their restrictions P 1
2 : s → 2, P 2

1 : s → 1.

All other (nonsimple) paths are obtained by looping around the cycle 1 → 2 → 1. We have V (P 1) = 2,

V (P 2) = 1, V (P 1
2 ) = 2, V (P 2

1 ) = 3. Any other (nonsimple) path ending in 2 has cost 1 and any other path

ending in 1 has cost 2. Hence there are infinite minimal paths ending in 2 with value 1. For these paths

take the restriction consisting of the single arc (s, 1) with value 3 which is not optimal among the paths

ending in 1. So no optimal path from s to 2 satisfies the optimality principle. In order to investigate the

role of the optimality principle with nondecreasing functions f we need two preliminary lemmas. The first is

straightforward and is based on the observation that superlinearity rules out paths with cycles in searching

for minimal paths.

Lemma 3: If the functions fij are superlinear (sublinear) there exists a minimum (maximum) path to any

node k.

Lemma 4: If the functions fij are nondecreasing and superlinear (sublinear), then for each node k in

a minimum (maximum) simple path P j, there exists a minimum (maximum) path P k not containing the

node j.

Proof: (for minimum problems) The proof is by contradiction. Let us suppose that paths not containing j

are not minimal. Then a minimum path P k contains j and V (P k) < V (P j
k ). Let us denote V j := V (P j),

V k := V (P k), Vk := V (P j
k ) and Vj := V (P k

j ). So V k < Vk.

By definition we have V j = Fkj(Vk) (with Fkj composition of the fij from k to j along P j) and

V k = Fjk(Vj) (with Fjk composition of the fij from j to k along P k). By optimality V j ≤ Vj and V k ≤ Vk.

By superlinearity Vk ≤ Fkj(Vk) and Vj ≤ Fjk(Vj). Therefore

V j ≤ Vj ≤ Fjk(Vj) = V k ≤ Vk ≤ Fkj(Vk) = V j

from which V k = Vk contradicting the hypothesis.

Theorem 5: If the functions fij are nondecreasing and superlinear (sublinear), then there exists, for each

node j, a minimum (maximum) path P̂ j for which the optimality principle holds.

Proof: Given an optimal path P̂ j let k be the node preceding j on P̂ j . Let P̂ k be an optimal path not

containing j. Such a path exists by the previous lemma. Now redefine P̂ j as the path P̂ k ∪ (k, j). Let us

now consider the node h preceding k on the new path P̂ j . By the lemma there exists an optimal path P̂h

containing neither k nor j. Let us redefine P̂ j as P̂h ∪ (h, k)∪ (k, j). By proceeding recursively there are no

repeated nodes by the lemma and so we must reach s. The claimed path is given by the final P̂ j .
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As is well known the importance of the optimality principle consists in the possibility of exploiting the

following recursive equation (generally referred to in the literature as ‘Bellman’s equation’) in the variables

V1, . . . , Vn, which, for minimum problems is

Vj = min
i∈δ−(j)

fij(Vi) Vs = V̄s (5)

and for maximum problems

Vj = max
i∈δ−(j)

fij(Vi) Vs = V̄s (6)

with δ−(j) := {i ∈ N : (i, j) ∈ E}.
A direct consequence of (5) and the monotonicity property is that, for each node i and any cycle C from

i, the solutions of the Bellman’s equation for minimum problems must satisfy Vi ≤ FC(Vi) (for maximum

problems Vi ≥ FC(Vi)), where FC is the composition of the f along the cycle C.

Theorem 6: If the optimality principle holds for at least one optimal path P̂ j, for each node j, then the

optimal values Vj := V (P̂ j) satisfy the Bellman’s equation.

Proof: (for minimum problems) Let k be the node preceding j in the optimal path P̂ j for which we assume

the optimality principle holds. Then Vj = fkj(Vk) (by the optimality principle). Let i be any predecessor

node of j and let P̂ i be the optimal path from s to i with optimal value Vi. By extending P̂ i up to j one

has that fij(Vi) ≥ Vj by optimality of Vj and the thesis follows.

It is interesting to note that the Bellman’s equation is satisfied by the optimal values even if the opti-

mality principle does not hold (see the previous example). It is enough that the functions are nondecreasing.

Theorem 7: If the functions fij are nondecreasing and there exist optimal paths P̂ j for each node j, then

the optimal values Vj satisfy the Bellman’s equation.

Proof: (for minimum problems) Let k be node preceding j on P̂ j . Then we have Vk ≤ V (P̂ j
k ) by optimality

and, since the functions are nondecreasing, fkj(Vk) ≤ fkj(V (P̂ j
k )) = Vj . For every predecessor i of j let us

consider the paths P̂ i∪ (i, j) whose costs are fij(Vi). By optimality fij(Vi) ≥ Vj for every i and in particular

fkj(Vk) ≥ Vj . From the preceding inequality fkj(Vk) = Vj and the Bellman’s equation is satisfied.

We may wonder whether the Bellman’s equation may be satisfied by the inf (sup) of the path costs

when optimal paths do not exist and the problem is bounded. This can happen if the graph has cycles and

looping around the cycles improves the path cost. For instance the problem of computing minimum risk

paths may present such a situation (see next section). We have the following theorem.

Theorem 8: If the functions fij are nondecreasing and continuous and the path costs are bounded, then

the inf (sup) of the path costs satisfy the Bellman’s equation.

Proof: (for minimum problems) Let P̂h
j be a sequence of paths s → . . . k → j such that limh→∞ V (P̂h

j ) = Vj .

There always exists a node k such that a sequence of that type exists. Let P̄h
k be a sequence of paths s → . . . k
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such that limh→∞ V (P̄h
k ) = Vk. By restricting every path P̂h

j to k, one has Vk ≤ V (P̂h
jk). Then, since the

functions are nondecreasing, fkj(Vk) ≤ fkj(V (P̂h
jk)) = V (P̂h

j ) for every h. Hence by taking the limit,

fkj(Vk) ≤ Vj . Let i be any predecessor node of j and let P̄h
i be a generic sequence of paths convergng to the

value Vi. By extending every path P̄h
i up to j one has, by optimality of the limiting values, fij(V (P̄h

i )) ≥ Vj .

By taking the limit and by continuity one has fij(Vi) ≥ Vj for every i and in particular Vj = fkj(Vk).

The continuity assumption is necessary. Just consider V̄s = 0, fs1(V ) = V + 2, f12(V ) =
√
V , f23(V ) =

√
V , f31(V ) =

√
V , f24(V ) = V if V > 1 and f24(V ) = V − 1 if V ≤ 1. Then infP V (P4) = 1 but the

solution of the Bellman’s equation is V1 = V2 = V3 = 1, V4 = 0.

The previous results show that optimal path values can be computed by solving the Bellman’s equation.

However, we may wonder whether there are solutions of the Bellman’s equation not related to optimal

path values. Indeed this may happen. Just consider (with all additive functions!): V̄s = 0, fs1(V ) := V + 3,

fs2(V ) := V +2, fs3(V ) := V +2, f12(V ) := V , f23(V ) := V , f31(V ) := V , f24(V ) := V +1, f34(V ) := V +1.

There are infinite solutions of the Bellman’s equation (minimum), i.e.: Vs = 0, V1 = V2 = V3 = α, V4 = 1+α,

for any α ≤ 2. Only the values with α = 2 correspond to optimal path values. The spurious solutions are

due to the cycle 1 → 2 → 3 → 1 for which the composition of the fij is the identity.

Another interesting example is the following: V̄s = 0, fs1(V ) := V +3, fs2(V ) := V +2, fs3(V ) := V +2,

f12(V ) := V 2/4, f23(V ) := V +
√
V /2, f31(V ) := V + 1/2, f24(V ) := V + 1, f34(V ) := V + 1. We see that

FC(V ) := f31(f23(f12(V ))) = V 2/4 + V/4 + 1/2 and that FC(V ) = V for V = 1 and V = 2. The Bellman’s

equation is satisfied by three different solutions: Vs = 0, V1 = 1, V2 = 1/4, V3 = 1/2, V4 = 5/4, or Vs = 0,

V1 = 2, V2 = 1, V3 = 3/2, V4 = 2, or Vs = 0, V1 = 5/2, V2 = 25/16, V3 = 2, V4 = 41/16. Of the three

solutions only the last one corresponds to optimal path values. Also note that FC(3/2) < 3/2. Hence there

may be cycles C and values V such that FC(V ) < V , and yet the Bellman’s equation is feasible (as remarked

FC(Ṽ ) < Ṽ is excluded for the solutions V̄ of the Bellman’s equation).

In both examples the solutions of the Bellman’s equation corresponding to optimal values are the ones

with largest values and the spurious solutions are related to the presence of cycles C and values V such that

FC(V ) = V . By excluding this possibility we get rid of the spurious solution.

Theorem 9: If FC(V ) > V (FC(V ) < V ) for all cycles C and the functions fij are nondecreasing, then

the solutions of the Bellman’s equation (5) ((6)) correspond to minimum (maximum) path values.

Proof: (for minimum problems) Let Ṽ be a solution of the Bellman’s equation. Let k(j) be the node for

which the minimum is achieved in the expression

Ṽj = min
i:(ij)∈E

fij(Ṽi) = fk(j)j(Ṽk(j)) (7)

(break ties arbitrarily). Let us define the set of arcs

Ẽ := {(k(j), j) : j ∈ N \ s}
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We claim that Ẽ is a tree rooted in s. Let us suppose there is a cycle C in Ẽ. If not all arcs in C have the

same orientation, then at least one node in C must have two entering arcs, but this case is excluded because

in Ẽ all nodes different from s have exactly one entering arc and the source has none. Therefore all arcs in

C have the same orientation. Then (7) implies Ṽh = FC(Ṽh) with h a node on the cycle, contradicting the

hypothesis.

Therefore the sequence of nodes j, k(j), k(k(j)), . . ., ends in s for each j, implying that Ẽ is is a tree

rooted in s and Ṽj is the length of the unique path in Ẽ from s to j. We now show that these paths are

optimal.

Let P be any path in E. For each arc (i, j) ∈ P let us assume the induction hypothesis that V (Pi) ≥ Ṽi.

Then the nondecreasing property and (7) imply

V (Pj) = fij(V (Pi)) ≥ fij(Ṽi) ≥ Ṽj

i.e. the property is true also at node j. Since V (Ps) = Ṽs = V̄s, the thesis is true for all nodes of the path P

implying optimality of the solutions Ṽj .

Lemma 10: Let P̂ be a minimum (maximum) path with values V̂i := V (P̂i) and let Ṽ be a solution of the

Bellman’s equation. Then Ṽi ≤ V̂i ( Ṽi ≥ V̂i ) for every i ∈ P̂ if the functions fij are nondecreasing.

Proof: (for minimum problems) The proof goes by induction. One has Ṽs ≤ V̂s (in fact Ṽs = V̂s = V̄s). Let

i and j be two adjacent nodes in P̂ and suppose Ṽi ≤ V̂i. Then

Ṽj = min
k∈δ−(j)

fkj(Ṽk) ≤ fij(Ṽi) ≤ fij(V̂i) = V̂j

The spurious solutions may be eliminated by transforming the Bellman’s equation into the following

optimization problem (for minimum problems)

max
∑
i

Vi

Vj ≤ fij(Vi) ∀(i, j) ∈ E

Vs = V̄s

(8)

Theorem 11: The optimal solutions of (8) satisfy the Bellman’s equation and correspond to the minimum

path values.

Proof: Let Vi be a feasible solution in (8). If there exists a node j such that Vj < fij(Vi) for each i ∈ δ−(j),

then there exists another feasible solution V ′, with V ′
i := Vi if i �= j and V ′

j := mini∈δ−(j) fij(Vi) > Vj . Since

the functions f are nondecreasing we are guaranteed that V ′ is feasible, because V ′
k = Vk ≤ fjk(Vj) ≤ fjk(V ′

j )

for each (j, k) ∈ E. Hence V cannot be optimal and necessarily V̂j := mini∈δ−(j) fij(V̂i) for every optimal

solution. Moreover every solution of the Bellman’s equation is feasible in (8). From Lemma 10 the optimum

is the solution corresponding to the optimal paths.
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The monotonicity property of the functions is therefore fundamental in order to compute optimal paths

by exploiting the optimality principle. If a problem can be modeled such that the monotonicity assumption

is satisfied, the problem is “well behaved” and dynamic programming can be applied. If the monotonicity

assumption is weakly satisfied because the functions are only nondecreasing there may be technical problems

(like the spurious solutions) but dynamic programming can still be applied. In these cases the situation can

be improved by assuming also superlinearity. However, the fundamental property is monotonicity because,

if it fails to be true for just one arc, as in the example below, finding an optimal path may be NP-hard (and

the Bellman’s equation is useless because the optimality principle does not hold).

Theorem 12: Finding an optimal path according to (3) is NP-hard for generic functions fij.

Proof: Let us consider an instance of the Partition problem with values a1, . . . , an (let b :=
∑

i ai/2)

and build the following directed graph N = {0, 1, 2, . . . , n, n + 1} and arcs e0
i = (i − 1, i), e1

i = (i − 1, i),

i := 1, . . . , n, e∗ = (n, n+ 1) (this is actually a multigraph, but the proof can be carried out also on a graph,

just insert a node in the arcs e0
i ). Let

fe0
i
(V ) := V fe1

i
(V ) := V + ai fe∗(V ) := |V − b|

It is immediate to see that there exists a minimal zero cost path if and only if the Partition instance is

feasible (each path uses either the arc e1
i or e0

i and this corresponds to either choosing the i-th number or

not, so that the path cost in the node n is equal to the sum of the chosen numbers, and the last arc ‘decides’

that the best path is the one partitioning best the numbers).

It is immediate to check that the optimality principle does not hold for the example in the proof.

Moreover, superlinearity could not play any role in restoring a well behaviour. If we change the cost of the

last arc from |V − b| to |V − b| + b the proof remains valid and all functions are superlinear. Just note

incidentally that the Partition problem can indeed be solved via Dynamic Programming but with a different

formulation, one for which the functions are additive and the optimality principle does hold.

In the backward model we consider directed paths P from a node i to t and the cost of P is defined

through functions gij(V ) as

V (P i) = gij(V (P j))

with P i the restriction of P from i to t. Hence the recursive computation for the backward model is

V (P t) := V̄ t, V (P i) := gij(V (P j)) ∀(i, j) ∈ P

All the previous results can be translated almost verbatim for the backward model. We point out that

forward and backward model may represent the same problem only in special cases. By “representing the

same problem” we mean that any path P : s → t can be split into two parts Pk (from s to k) and P k from k

to t and the cost of P can be computed as V (Pk)+V (P k) with V (Pk) the cost in the forward model, V (P k)

10



the cost in the backward model, for any k on P . If this is possible then, not surprisingly, the functions f

and g are additive with same data, i.e. fij(V ) = V + cij and gij(V ) = V + cij (actually we could extend the

definition to commutative groups but we prefer not to dwell with such aspects here). This is shown by the

following result.

Theorem 13: Let s and t be two distinguished nodes and let P be a generic path P : s → t. Then the

condition V (Pk) + V (P k) = V (Pt) = V (P s) is satisfied by any k in P if and only if fij(V ) = V + cij and

gij(V ) = V + cij.

Proof: Sufficiency is trivial. To show the necessity let us suppose that V (Pi)+V (P i) = V (Pj)+V (P j) with

(i, j) an arc of P . Then V (Pi) + gij(V (P j)) = fij(V (Pi)) + V (P j), i.e. fij(V (Pi)) = V (Pi) + gij(V (P j)) −
V (P j). The function fij cannot depend on the path following node j and so the expression gij(V (P j))−V (P j)

must be invariant with respect to P j and depend only on the arc (i, j), i.e. gij(V (P j)) − V (P j) =: c′ij .

Similarly fij(V (Pi)) − V (Pi) =: c′′ij and, by comparing the expressions, c′ij = c′′ij =: cij .

The Bellman’s equation, viewed as a fixed point equation, suggests the algorithm known as the Bellman-

Ford algorithm (sometimes also as the Bellman-Ford-Moore algorithm, see Bellman (1958), Ford (1956) and

Moore (1957)), where for each arc (i, j) the basic updating assignment Vj := min {Vj ; fij(Vi)} is computed

and this assignment sequence is repeated at most n times starting from the initial values Vs := V̄s, Vj := ∞.

We have:

Theorem 14: If the functions fij are increasing the Bellman-Ford algorithm finds all optimal paths or

establishes that there are no optimal paths in time O(nm).

Proof: (for minimum problems) Let V k
j be the value of Vj after the k-th iteration of the algorithm (V 0

j is

the initial value). If V k+1
j < V k

j , then there exists a node i such that V k+1
j = fij(V k

i ). From the algorithm

V k
j ≤ fij(V k−1

i ) for k ≥ 1. The three relations imply fij(V k
i ) < fij(V k−1

i ), from which, since the functions

are increasing (in fact to be nondecreasing is enough) V k
i < V k−1

i . By applying recursively this reasoning

there exists a sequence of nodes i0, i1, . . . such that V k−h+1
ih

< V k−h
ih

. If k > n there must be at least a

repeated node in the sequence, say r := ip−q = ip, for which we have

V k−p+q+1
r < V k−p+q

r ≤ V k−p+1
r < V k−p

r

The nodes ip, ip−1, . . . , ip−q form a directed cycle C. Let us denote by FC the compostion of the functions f

along the cycle. So we have FC(Vr) < Vr. FC is increasing as well and therefore FC(FC(Vr)) < FC(Vr) < Vr.

Consequently there exists a sequence of paths Pr(q) each one traversing q times the cycle C and such that

V (Pr(q)) < V (Pr(q − 1)). Therefore there is no optimal solution. However the sequence V (Pr(q)) could be

bounded and tend to a finite limit.

Therefore if there exists an optimal solution the values Vj cannot be updated after the n-th iteration.

The computational complexity statement is proved. However, it remains to prove that the computed values
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Vj are indeed optimal. What we have proved is only that they satisfy the Bellman’s equation. By using

an induction argument let us suppose that at a generic iteration step the values V k
j satisfy the inequalities

V k
j ≥ V̂j with V̂j optimal values. Then we have

V k+1
j = min

{
V k
j ; fij(V k

i )
}
≥ min

{
V̂j ; fij(V̂i)

}
= V̂j

where we have exploited the fact that the functions are increasing and the optimal values satisfy the Bellman’s

equation. Hence the inductive hypothesis is true at the next step as well and since it is true at the initial

step it must be always true. Then from Lemma 10 the thesis follows.

By weakening the assumption of increasing functions to nondecreasing functions the algorithm might re-

quire a higher number of iterations to find an optimal solution. For instance for fst(V ) := max {V − 1,−3K},
ft1(V ) := V − 1, f1s(V ) := V − 1, the optimum is found after Kn iterations (a pseudopolynomial value).

However, if we assume superlinearity the algorithm works well.

Theorem 15: If the functions fij are nondecreasing and superlinear (sublinear) the Bellman-Ford algorithm

finds minimum (maximum) paths s → i, for each i, in time O(nm).

Proof: (for minimum) The proof goes as in the previous theorem up to the inequality FC(Vr) < Vr. But in

this case the superlinearity assumption rules out the inequality.

However, in the hypothesis of the previous theorem, the Bellman-Ford algorithm is computationally too

expensive and we may instead resort to the faster Dijkstra algorithm (Dijkstra (1959)).

Theorem 16: If the functions fij are nondecreasing and superlinear (sublinear) the Dijkstra algorithm

finds minimum (maximum) paths s → i, for each i, in time O(n2) or O(m log n).

Proof: (for minimum) We just sketch the proof assuming the Dijkstra algorithm is well known. At a generic

iteration a set S of nodes (s ∈ S) is known and values Vi, i ∈ N , are computed such that for i ∈ S the

values Vi are the optimal path values from s to i and for i /∈ S the values Vi are the optimal path values of

paths from s to i which use only nodes in S (beside i). The node k achieving the minimum Vi for i /∈ S is

added to S and the values Vi, i /∈ S, are updated. Since Vk ≤ Vi, i /∈ S, and the functions are nondecreasing

fik(Vk) ≤ fik(Vi). Since the functions are superlinear Vk ≤ fik(Vk) and therefore

Vk ≤ fik(Vk) ≤ fik(Vi)

i.e. the value Vk is the final optimal path value for k and the correctness of the algorithm follows. The

statement on the complexity is the usual one and depends on the implementation.

For the sake of completeness we state the following known and straigthforward result.

Theorem 17: If the graph is acyclic the Bellman’s equation can be solved in O(m) time.
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3. MINIMUM EXPECTED COST PATHS

According to the results of the previous section a path of minimum expected cost can be computed via

the backward Bellman-Ford algorithm with functions (derived from the expression (2))

ge(V ) := pe ce + (1 − pe)V

and initial value V̄ t = 0. These functions are increasing, so the optimality principle holds. However, since

they are not superlinear, there may be no optimal solutions. For any cycle C the composition gC along the

cycle is a function of the type

gC(V ) = K + V
∏
e∈C

(1 − pe)

with K > 0. Hence there is always a value V̄ such that

V < gC(V ) if V < V̄ , V̄ = gC(V̄ ), V > gC(V ) if V > V̄

If there are paths P i : i → t, i ∈ C, such that V (P i) > V̄ , then the values V i are updated as V i := gC(V i)

and converge at linear rate to V̄ . So there are no optimal solutions because it is more convenient for a

path to fold infinitely often on C, where the expected cost is (with probability one within the infinite time

horizon) gC(V̄ ) = V̄ and better than the expected cost V (P i). The value V̄ is close but not equal to the

average cost on the circuit ∑
e∈C pe ce∑
e∈C pe

Indeed the expression gC(V̄ ) = V̄ made explicit is

k∑
i=1

pi ci

i−1∏
j=1

(1 − pj) + V̄

k∏
j=1

(1 − pj) = V̄

having numbered 1, . . . , k, the arcs of the circuit (conventionally
∏

j∈∅(1 − pj) = 1). Hence

V̄ =

∑k
i=1 pi ci

∏i−1
j=1(1 − pj)

1 −
∏k

j=1(1 − pj)
(9)

Let us write

Φi := 1 −
i∏

j=1

(1 − pj) = 1 −
i−1∏
j=1

(1 − pj) + pi

i−1∏
j=1

(1 − pj) = Φi−1 + pi

i−1∏
j=1

(1 − pj), with Φ0 = 0

from which we see that Φk =
∑k

i=1 p̄i with p̄i := pi
∏i−1

j=1(1 − pj). Hence

V̄ =
∑k

i=1 p̄i ci∑k
i=1 p̄i

(10)

For small probability values p̄i ≈ pi and therefore in this case

V̄ ≈
∑

e∈C pe ce∑
e∈C pe
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The expression (10) can be viewed as a conditional risk, since it represents the expected cost along the circuit

given that the accident has occurred. Indeed by repeating for ever the circuit the accident will occurr with

probability one.

Note that (10) is not symmetric in the circuit data, in the sense that the values p̄i depend on the node

from which the path enters the cycle. As apparent from the definition of p̄, it is more biased toward the first

arcs of the cycle (this is very similar to the bias in infinite horizon average cost Markov decision processes).

Moreover, the values V̄ are different on the various nodes of the circuit. Therefore “optimal paths” will move

to the node of the cycle with smallest V̄ value and loop for ever in the cycle. The intuitive explanation of

this behaviour is clear: if the last part of a trip has a high expected cost (say we have to cross a mine field),

the best thing to do is to never get there!

As apparent from (10) the value V̄ is a convex combination of costs. Then this anomalous behaviour

cannot happen if the probability values are sufficiently low. In this case we normally expect that V (P i) < V̄

and the Bellman-Ford algorithm can be implemented without problems.

Alternatively optimal paths can be computed via linear programming as

max V s

V i − (1 − pij)V j ≤ pij cij ∀(i, j) ∈ E

V t = 0

(11)

with dual
min

∑
ij

pij cij xij∑
j∈δ+(s)

xsj = 1

∑
j∈δ+(k)

xkj −
∑

i∈δ−(k)

(1 − pik)xik = 0 k �= s, k �= t

−
∑

i∈δ−(t)

(1 − pit)xit + y = 0

xij ≥ 0

(12)

As can be immediately seen from the constraints in (12), xij represents the probability of entering the

arc (ij). The last equation is actually redundant, but it is useful because the quantity

y =
∑

i∈δ−(t)

(1 − pit)xit

is the probability of reaching the final destination. Let us just note that if we change in (12) the objective

function into max y, the primal of this new problem is

min V s

V i ≥ (1 − pij)V j ∀(i, j) ∈ E

V t = 1
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with V i the maximum probability of reaching the final destination starting from i. This is the linear

programming formulation of the problem shown in the Example 3 in backward form.

4. COMPUTING PARETO OPTIMA

In this section we suppose that along with the objective of minimizing the environmental impact cost

we wish at the same time to minimize the travel distance. Hence we need to find nondominated (i.e. Pareto

optimal) paths with respect to two objectives. The model (12) cannot be used because the path lengths

cannot be expressed through the xij variables which represent path probabilities rather than paths.

We shall see later that a direct approach to the problem of finding Pareto optima is indeed possible.

However, we want to investigate now if we can still make use of (12) after possibly changing our approach to

the problem. If dij is the length of the edge (ij), the quantity
∑

(ij)∈E dij xij is the expected path length.

Are we allowed to take into account expected lenghts instead of actual lengths? On one hand we expect,

optimistically, to finish each travel without accidents and we are therefore inclined to consider actual lengths.

On the other hand we do consider the possibility of an accident when we use expected costs to decide the

path to be taken. So considering expected path lenghts is consistent with the modelling of expected path

costs.

Hence, given a path P , its expected cost c(P ) is computed from (1) and its expected distance is similarly

computed as

d(P ) := d1 + (1 − p1) d2 + (1 − p1) (1 − p2) d3 + . . . = d1 + (1 − p1) d(P\e1) (13)

Let K be the convex hull in R
2 of the sets {(u1, u2) : u1 ≥ c(P ), u2 ≥ d(P )}. Given two paths P and P ′,

P is said to dominate P ′ if c(P ) ≤ c(P ′) and d(P ) < d(P ′) or c(P ) < c(P ′) and d(P ) ≤ d(P ′). The Pareto

optima are by definition those paths which are not dominated by any other path. The Pareto optima can

be scanned by solving minP c(P ) subject to the constraint d(P ) ≤ D for different values of D. Among the

Pareto optima found this way there are those which do not lie on the boundary of K.

It is tempting to add to (12) a constraint of the type
∑

(ij)∈E dij xij ≤ D and change D in order to

explore alternative Pareto optima. It should be clear however that exploring the Pareto set this way is

different from minimizing c(P ) subject to the constraint d(P ) ≤ D. The linear programming model
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min
∑
ij

pij cij xij∑
j∈δ+(s)

xsj = 1

∑
j∈δ+(k)

xkj −
∑

i∈δ−(k)

(1 − pik)xik = 0 k �= s, k �= t

−
∑

i∈δ−(t)

(1 − pit)xit + y = 0

∑
ij

dij xij ≤ D

xij ≥ 0

(14)

computes only Pareto optima on the boundary of K and their convex combinations as is clear from its dual

where arc costs are linear combinations of expected cost and distance (compare with (11)):

max V s −DW

V i − (1 − pij)V j − dij W ≤ pij cij ∀(i, j) ∈ E

V t = 0

(15)

Solving (14) does not necessarily yield solutions xij which are positive only along a path and therefore

identify uniquely a path. There can be nodes with two or more outgoing arcs with positive xij values

and the fact that a unique path cannot be identified seems a drawback. However, if we agree that paths

can be chosen randomly, we may decide the actual path by selecting the outgoing arc from a node with

probability proportional to xij . The expected cost and the expected distance of this random path are indeed∑
ij pij cij xij and

∑
ij dij xij respectively. The idea of selecting a solution randomly and considering its

expected values is very similar to the concept of mixed strategies in game theory (see Luce and Raiffa

(1957)) and also to Markov decision processes with constraints across the states (see Puterman (1994)).

Mixed solutions of this type can dominate pure Pareto optima. Let us consider a simple example. There

are four nodes (s, 1, 2, t) and arcs (s, 1), (1, t), (s, 2), (2, t), (s, t). So there are three paths from s to t, namely

P 1 = s → 1 → t, P 2 = s → 2 → t and P 3 = s → t. The data are

d c p

(s, 1) 20 10 0.1

(1, t) 20 10 0.1

(s, 2) 10 20 0.1

(2, t) 10 20 0.1

(s, t) 30 30 0.1

from which we directly compute d(P 1) = 38, c(P 1) = 1.9, d(P 2) = 19, c(P 2) = 3.8, d(P 3) = 30, c(P 3) = 3.

All three paths are Pareto optima and (d(P 3), c(P 3)) is inside K. If we solve (14) setting D := 28.5 we find

the solution

xs1 = 0.5, x1t = 0.45, xs2 = 0.5, x2t = 0.45, xst = 0, y = 0.81
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with expected cost 2.85 and expected distance obviously 28.5. This solution dominates P 3. We observe

incidentally that pure solutions giving raise to a mixed solution are not necessarily arc disjoint (in the

example just add one arc in front of the three parallel paths).

We may also consider that if the transportation of hazardous materials has to be repeated in time we

might be more interested in finding sets of alternative paths rather than just one path and changing path

each time according to some rule. Changing paths may be perceived by the public opinion as less dangerous

than using always the same path because it spreads and decreases the risk of accident on a larger area. Then

instead of selecting randomly arcs we may think of switching paths in accordance with the xij values. For

instance the solution of the previous example can be implemented by switching between P 1 and P 2 for each

travel.

The possibility of having explicit the value y can be used to control also the probability of reaching

destination without accidents. For instance we might add the constraint y ≥ q to (14). If we do so for the

previous example and set y ≥ 0.85 we obtain

xs1 = 0.242, x1t = 0.218, xs2 = 0.313, x2t = 0.281, xst = 0.445, y = 0.85 (16)

with expected cost 2.98 and expected distance 28.5. Here the paths P1, P2 and P3 are selected with

probabilities 0.242, 0.313, 0.445 respectively.

Furthermore, once we have accepted the idea that alternative paths may be used, we may consider

important also to keep low, uniformly for each arc e, some measure of risk. For instance we might impose

xe ≤ K, meaning that each arc will be used not more than a certain percentage of times. Alternatively we

may either impose pe xe ≤ K, lowering the accident probability on each arc, or pe ce xe ≤ K, reducing the

expected cost of damage on each arc. In all cases the effect will be of spreading the travelling on more arcs

(however at higher global cost and distance).

If on the contrary we want to consider paths (and not path probabilities) and their actual lengths, we

have to take another approach. The problem of computing all nondominated paths for bicriterion problems

has been addressed by Hansen (1980). As noted by Hansen (1980) computing all nondominated paths is

difficult in general for the simple reason that there can be exponentially many nondominated solutions.

However, as shown in Serafini (1987), even finding one nondominated biobjective path is NP-hard (in the

sense of finding solutions not worse than stated goals). The problem can be solved in pseudopolynomial time

(as proposed by Hansen (1980) and Serafini (1987)) by making D copies of the graph (with D := n max de)

with nodes labeled as (i, k) (k-th copy of node i) and arcs (i, k) → (j, k − dij) for each original arc (i, j)

(backward model). Then the min expected cost paths are computed from (s, k) to (t, 0), (one run of a

dynamic programming algorithm) and the nondominated solutions are found among these paths. Since

the multiple graph is acyclic the algorithm has complexity O(mD) and therefore is pretty fast if the edge

distances can be coarsely discretized.

Alternatively we may think of using the fundamental updating step of the dynamic programming ap-
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proach and adapting it to the bicriterion case. Let us suppose that in each node i a list of temporary

nondominated values are stored. This list consists of pairs of values (V i
1 (k), V i

2 (k)) with V i
j (k) the value of

the objective j of the k-th path i → t in the list). The list can be sorted in order of increasing values V i
1 (k),

what implies that the values V i
2 (k) are sorted as well in reverse order (otherwise they would be dominated).

Updating this list means merging it with the list (g1
ij(V

j
1 (h)), g2

ij(V
j
2 (h))) and discarding the dominated

paths. This can be done with time linear in the list lengths (just one scan).

We have to be careful that a path can be present in both lists. If we discard also solutions which

share the same objective values of a previously found solution then repeated solutions are automatically

eliminated. One might argue that this way we loose track of interesting solutions. However, this point

of view is consistent with the usual situation in single objective optimization where only one solution is

produced among possibly many optimal solutions.

The complexity of this approach depends on the number of nondominated solutions. Let S be an

upper bound on the number of nondominated solutions for each node i. Then, since we use the Bellman-

Ford algorithm, the complexity is O(nmS). We may note that S ≤ D and therefore this approach is

recommended with respect to the previous one only if S << D or it is not possible to discretize the distance

values.

We must also reconstruct the paths at the end of the algorithm. Simple pointers to the nodes are not

enough. We must also point to the element in the list. Therefore the list has more information and in node i

we have to store four values for the k-th path of the list, namely (V i
1 (k), V i

2 (k), pi(k), qi(k)) where pi(k) is

the successor node of i of the k-th path in the list of node i and qi(k) is the element of the list in node pi(k)

corresponding to the k-th path. The h-th nondominated path s → t can therefore be reconstructed as

P := {s}; r := s; k := h; while r �= pr(k) do {r := pr(k); k := qr(k); P := P ∪ r}
The algorithm is initialized with empty lists except node t where we have only one element, namely

(V̄ t
1 , V̄

t
2 , t, 1) (never updated unless there are improving cycles).

5. CONCLUSION

We have addressed two main issues. The first is an extension of dynamic programming needed to model

a larger class of problems. The study of the link between the dynamic programming principles and the path

cost generalization is novel and casts a new light on the way dynamic programming works. These ideas

have been applied to the problem of finding the minimum expected cost of an accident for the travelling

of hazardous materials. It has been shown that there could be no optimal solution with high accident

probability values. In case of existence of optimal solutions a linear programming formulation, derived from

the dynamic programming model, can be fruitfully used to model also a biobjective version of the problem.

This formulation has suggested the implementation of mixed strategies in the selection of optimal paths. If

mixed strategies cannot be considered a special dynamic biobjective algorithm has been proposed.
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