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Introduction

Since their introduction (see, e.g., [1]), hybrid automata have initiated
a new tradition, promising powerful tools for modeling and reasoning about
complex engineered or natural systems (see, e.g., [2, 3]).

Intuitively, a hybrid automaton consists of a finite graph, whose nodes
are called locations, together with a set of continuous variables which evolve
according to continuous laws, called dynamics, characterising each discrete
location. The continuous evolution of the hybrid automaton may change from
location to location. Moreover, each location is characterised by an invariant
condition which defines the allowed values for the continuous variables inside
the location. Finally, each graph’s edge is labelled by both an activation
condition and a reset map. The edge can be crossed only if the continuous
variables satisfy the activation condition and after crossing it the continuous
variables are set accordingly to the reset map. The double nature, both
discrete and continuous, of hybrid automata make them particularly suitable
in the modeling of systems exhibiting a mixed behaviour which cannot be
characterised in a proper way using either discrete or continuous formalisms.

In this context, one of the basic problems is the reachability one which
requires to decide whether it is possible to move from a state (a pair consisting
of a location together with a set of values for the continuous variables) to
another.

Unfortunately, the flexibility and expressive power of hybrid automata
soon lead to undecidability and complexity results [4] which cast doubts on
their suitability as a general tool that can be algorithmized and efficiently
implemented.

In order to control both undecidability and complexity one can either
impose syntactic conditions and concentrate on classes of hybrid automata
or define semantic approximation techniques.

In [5] the class of semi-algebraic hybrid automata has been introduced.
The invariants, dynamics, activations, and resets of semi-algebraic automata
have to be first-order formulæ over the theory of (R, 0, 1,+, ∗, <). On the one
hand, such formulæ are decidable [6] and tools such as Qepcad b [7] can be
used to manage them. On the other hand, Taylor polynomials allow to use
semi-algebraic formulæ to approximate with arbitrary precision any smooth
function. As a consequence of the expressive power of semi-algebraic hybrid
automata, the undecidability of the reachability problem for such class can
be proved [8]. In particular, in this case, undecidability is a consequence
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of the fact that we cannot a-priori bound the number of edges we need to
cross. Hence, we can see “the glass half full” saying that bounded (w.r.t.
edge crossing) reachability is computable. Unfortunately, as noticed in [9]
such computation results to be too time/space consuming due to the high
computational complexity of semi-algebraic decomposition.

In this paper we start from the considerations presented in [9] concern-
ing the effectiveness of bounded reachability computation on semi-algebraic
hybrid automata and we show on some examples which kind of approxima-
tions are necessary to keep complexity under control. As done in [9] we
may distinguish space and time discretizations in our work. As far as space
discretizations are concerned, instead of implementing an ad-hoc algorithm,
we try to exploit tools which allow approximate computations over the reals
such as RSolver [10] and ECLiPSe [11]. Unfortunately, this is not enough:
space approximations which separate the continuous variables are necessary.
We notice that time discretization and Taylor polynomials are essential in-
gredients in our approach.

The paper is organized as follows. In Section 1 we quickly overview the
state of the art. Some basic notions about semi-algebraic hybrid automata
and reachability find place in Section 2, while Section 3 is the core part of
our work. In Section 4 we present SAHA-Tool, a software based on our
approximated methods. In Section 5 we apply our analysis to the Repressi-
lator and the Delta-Notch protein signaling case studies. Some conclusions
are drawn in Section 6.

1. Related Works

As mentioned in the introduction, we can control undecidability and com-
plexity on hybrid automata in two ways: imposing syntactic constraints
which limit the expressive power or introducing semantic approximation tech-
niques.

In [12] Alur et al. introduced multirate automata as an extensions of timed
automata [13]. Such hybrid automata are characterised by resets which are
either identity or constant function zero. Moreover, their continuous variables
evolve like clocks with rational rates. In the same work it has been proved
that the reachability problem over multirate automata is not decidable in gen-
eral. However, imposing a restriction on dynamics called simplicity condition,
decidability for reachability problem and finite bisimulation are proved. Puri
and Varaiya in [14] introduced rectangular hybrid automata whose dynamics
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can be characterised by a differential inclusion. They showed that, under a
condition called initialized condition, reachability can be decided. Lafferriere,
Pappas and Sastry introduced o-minimal hybrid automata in [15]. Such class
of hybrid automata guarantee finite bisimulation quotient imposing both con-
stant reset condition to all the edges and a unique o-minimal dynamic from
each state. In [16] it has been proved that reachability is still decidable on
semi-algebraic o-minimal automata when the conditions on the dynamics are
relaxed allowing many possible continuous evolutions. Unfortunately, all the
above mentioned classes have restrictions on both dynamics and resets and
thus they are not suitable to verify properties of many interesting hybrid
systems.

As far as approximation techniques are concerned, in [17] Halbwachs et
al. suggested convex approximations as a way to verify linear hybrid sys-
tems, Dang and Maler proposed to verify hybrid automaton properties via
face lifting in [18], Chutinan and Krogh showed in [19] how evolutions of
polyhedral-invariant hybrid automata can be approximated using polyhedra,
Asarin et al. gave in [20] a technique to approximate reachability analysis
of piecewise-linear dynamical systems, Kurzhanski and Varaiya introduced
ellipsoidal techniques in [21], Alur et al. proposed in [22] predicate abstraction
as a technique to perform reachability analysis. Many tools, based on such
techniques, have been developed in the last years. In particular, we can recall
HyTech [23], d/dt [24], Checkmate [25], UPPAAL [26], and KRONOS [27].
Unfortunately, all these approximation methods and tools are again defined
on restricted classes of hybrid automata. Such classes are clearly larger than
the classes on which decidability has been proved. However, it is still neces-
sary to check that the model satisfies all the required conditions before the
method can be applied.

Semi-algebraic hybrid automata introduced in [5] intrinsically combine
syntactic restrictions and semantics approximations. On the one hand Taylor
polynomials can be used to approximate a large class of hybrid automata with
semi-algebraic ones. In [28] Lanotte and Tini proposed an approximation
technique for hybrid automata that exploits Taylor polynomials to obtain
from an hybrid automaton H a polynomial hybrid automaton H ′ that over-
approximate H. On the other hand, cylindrical algebraic decomposition
(CAD) algorithms (see, e.g., [29, 30, 31, 32]) can be used to reason on semi-
algebraic hybrid automata. Such considerations are also at the basis of the
abstractions and analysis techniques presented in [3].

The tool Qepcad b [7] efficiently implements Collins’ CAD-based al-
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gorithm [29] for quantifier elimination, transforming any given first-order
semi-algebraic formula into an equivalent quantifier-free one and it can easily
become the engine of a step-by-step reachability algorithm for semi-algebraic
automata. Unfortunately, the computational cost is still too high. Qepcad
b is not the only tool which can be used to manage constraints over the re-
als. In particular, we recall: RSolver [10], a program for solving quantified
inequality constraints over the reals based on a branch-and-prune algorithm;
ECLiPSe [11], a software system for the development and deployment of
constraint programming applications that contains a general interval propa-
gation solver which can be used to solve problems over both integer and real
variables; Redlog [33], a package that extends the computer algebra system
reduce to a system that provides algorithms for the symbolic manipulation
of first-order formulæ with some syntactic restrictions on the quantified vari-
ables; clp(rl) [34], a constraint solving system, implemented on top the
computer logic system Redlog, where the admissible constraints are arbi-
trary first-order formulæ.

2. Reachability in Semi-Algebraic Hybrid Automata

In this section we introduce the standard syntax and semantics of hybrid
automata and describe the reachability problem on semi-algebraic hybrid
automata.

We start with some notations and conventions we use on hybrid automata.
Capital letters Z1, Z2,. . . , Zm, Z ′1,. . . , Z ′m,. . . , denote variables ranging over
R. Analogously, Z denotes the vector of variables 〈Z1, . . . , Zd〉 and Z ′ denotes
the vector 〈Z ′1, . . . , Z ′d〉. The temporal variables T, T ′, T ′′, . . . model time and
range over R≥0. We use the small letters p, q, r, s, . . . to denote d-dimensional
vectors of real numbers. Occasionally, we may use the notation ϕ[X1, . . . ,
Xm] to stress the fact that the set of free variables of the first-order formula
ϕ is included in the set of variables {X1, . . ., Xm}. By extension, if {Z1, . . .,
Zn} is a set of variable vectors, ϕ[Z1, . . ., Zn] indicates that the free variables
of ϕ are included in the set of components of Z1, . . ., Zn. Moreover, given a
formula ϕ[Z1, . . ., Zi, . . ., Zn] and a vector p of the same dimension as the
variable vector Zi, the formula obtained by component-wise substitution of
Zi with p is denoted by ϕ[Z1, . . ., Zi−1, p, Zi+1, . . ., Zn]. When in ϕ the
only free variables are the components of Zi, after the substitution we can
determine the truth value of ϕ[p].
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Hybrid automata have a mixed discrete and continuous behaviour. The
discrete component is represented by a graph, while the continuous one is
given as a set of continuous variables. For each node of the discrete graph we
have an invariant condition and a dynamic law over the continuous variables.
The dynamic law may depend on the initial conditions, i.e., on the values of
the continuous variables at the beginning of the evolution in the state. The
jumps from one discrete state to another are regulated by activation and
reset conditions on the continuous variables.

Definition 1 (Hybrid Automata - Syntax). A hybrid automaton H =
(Z , Z ′, V, E, Inv , Dyn, Act , Res) of dimension d consists of the following
components:

1. Z = 〈Z1, . . ., Zd〉 and Z ′ = 〈Z1
′, . . ., Zd

′〉 are two vectors of variables
ranging over the reals R;

2. 〈V, E〉 is a graph. Each element of V will be dubbed location.

3. Each vertex v ∈ V is labeled by the formulæInv(v)[Z] and
Dyn(v)[Z,Z ′, T ] ≡ Z ′ = fv(Z, T ), where fv : Rd × R≥0 −→ Rd;

4. Each edge e ∈ E is labeled by the formulæ Act(e)[Z ] and Res(e)[Z,Z ′].

The semantics of hybrid automata regulates the time evolution of the con-
tinuous variables.

Definition 2 (Hybrid Automata - Semantics). A state ` of H is a pair
〈v, r〉, where v ∈ V is a location and r = 〈r1, . . . , rd〉 ∈ Rd(H) is an assignment
of values for the variables of Z . A state 〈v, r〉 is said to be admissible if
Inv(v)[r] is true.

The continuous reachability transition relation
t−→C , with t > 0 is the

transition elapsed time, between admissible states is defined as follows:

〈v, r〉 t−→C 〈v, s〉 iff it holds that s = fv(r, t), and for each t′ ∈ [0, t] the
formula Inv(v)[fv(r, t

′)] is true.
The discrete reachability transition relation

e−→D between admissible states
is defined as follows:
〈v, r〉 e−→D 〈u, s〉 iff both Act(e)[r] and Res(e)[r, s] are true.

We use the notation `→ `′ to denote that either `
t−→C `

′ or `
e−→D `′, for

some t ∈ R≥0, e ∈ E.
A trace is a sequence of continuous and discrete transitions. A point s is

reachable from a point r if there is a trace starting from r and ending in s.
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Definition 3 (Hybrid Automata - Reachability). A trace of H is a se-
quence of admissible states [`0, `1, . . . , `i, . . . , `n] such that `i−1 → `i holds for
each 1 ≤ i ≤ n.

The automaton H reaches a point s ∈ Rd (in time t) from a point r ∈ Rd if
there exists a trace tr = [`0, . . . , `n] of H such that `0 = 〈v, r〉 and `n = 〈u, s〉,
for some v, u ∈ V (and t is the sum of the continuous transitions elapsed
times). In such a case, we also say that s is reachable from r in H.

A path ph over a graph G is a sequence [v0, . . . , vn] of nodes of G such
that for each 1 ≤ i ≤ n there is an edge from vi−1 to vi. Given a hybrid
automaton H and trace, tr, of H, a corresponding path of tr is a path ph
obtained by considering the discrete transitions occurring in tr.

We are interested in the reachability problem for hybrid automata, to be
specific, given a hybrid automaton H, an initial set of points I ⊆ Rd, and a
final set of points F ⊆ Rd we wish to decide whether there exists a point in
I from which a point in F is reachable.

An interesting class of hybrid automata is the class of semi-algebraic
hybrid automata [5].

Definition 4 (Semi-Algebraic Automata). A hybrid automaton is
semi-algebraic if Dyn(v), Inv(v), Act(e), and Res(e) are formulæ belonging
to the first-order theory of (R, 0, 1,+, ∗, <) [6], also known as the theory of
semi-algebraic sets.

Moreover, we say that H is continuous if ∀v ∈ V fv(Z, T ) is continuous
on Rd × R≥0 and fv(r, 0) = r, for each r ∈ Rd.

In the rest of this paper we concentrate on continuous semi-algebraic hy-
brid automata, avoiding all the technical problems concerning the existence,
uniqueness and continuity of dynamics (see [16] for more details).

The reachability problem for such class of automata is semi-decidable and
it can be reduced to the satisfiability of a numerable disjunction of formulæ
of the form Reach(ph)[Z,Z ′] [16]. In particular, if H is a semi-algebraic
automaton, then q ∈ Rd is reachable from p ∈ Rd in H through a trace
whose corresponding path is ph if and only if the formula Reach(ph)[p, q]
holds. Unfortunately, as proved in [8], the reachability problem for semi-
algebraic automata remains undecidable even if we consider computational
models over the reals.
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Now let us have a closer look at the first-order formulæ involved in the
reachability computation. Inside a discrete location v the following formula
expresses that Z reaches Z ′:

Reach(v)[Z,Z ′] ≡ Inv(v)[Z] ∧ ∃T ≥ 0(Z ′ = fv(Z, T )∧
∀0 ≤ T ′ ≤ T (Inv(v)[fv(Z, T

′)]))

On the other hand, when we cross an edge 〈v, u〉 we have to consider the
formula:

Reach(〈v, u〉)[Z,Z ′] ≡ Inv(v)[Z] ∧ Act(〈v, u〉)[Z]∧
Res(〈v, u〉)[Z,Z ′] ∧ Inv(u)[Z ′]

Combining the above formulæ, for each path ph we can easily construct the
formula Reach(ph)[Z,Z ′]. For instance if we have the path ph = [v, u], then:

Reach([v, u])[Z,Z ′] ≡ ∃Z ′′, Z ′′′(Reach(v)[Z,Z ′′]∧
Reach(〈v, u〉)[Z ′′, Z ′′′]∧
Reach(u)[Z ′′′, Z ′])

Example 1. Let H1 = (Z , Z ′, V, E, Inv , Dyn, Act , Res) where:

• Z , Z ′ are variables over R,

• V = {v, u} and E = {e}, where e goes from v to u,

• Inv(v)[Z ] ≡ 1 ≤ Z ≤ 10 and Inv(u)[Z ] ≡ 10 ≤ Z ≤ 20,

• Dyn(v)[Z,Z ′, T ] ≡ Z ′ = Z + (2Z2 + Z)T and
Dyn(u)[Z,Z ′, T ] ≡ Z ′ = Z + (3Z2 + Z)T ,

• Act(e)[Z ] ≡ Z = 10,

• Res(e)[Z,Z ′] ≡ Z ′ = Z .

The formula for the path ph = [v, u] is the following:

Reach([v, u])[Z,Z ′] ≡ ∃Z ′′, Z ′′′
(

Inv(v)[Z ]∧
∃T ≥ 0

(
Z ′′ = Z + (2Z2 + Z)T∧

∀0 ≤ T ′ ≤ T (Inv(v)[Z + (2Z2 + Z)T ′])
)
∧

Inv(v)[Z ′′] ∧ Act(e)[Z ′′] ∧ Res(e)[Z ′′, Z ′′′]∧
Inv(u)[Z ′′′] ∧ ∃T ′′ ≥ 0

(
Z ′ = Z ′′′ + (3Z ′′′2+

Z ′′′)T ′′ ∧ ∀0 ≤ T ′′′ ≤ T ′′

(Inv(u)[Z ′′′ + (3Z ′′′2 + Z ′′′)T ′′′])
))
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3. Solving the Reachability Problem

In this section we describe some approximation methods for the reachabil-
ity problem on semi-algebraic hybrid automata. All the computations have
been performed on a Dual Core AMD OpteronTM Processor 275, 2205.042
MHz with 4 GB RAM, running CentOS.

The complexity of the reachability formulæ presented in Section 2 in-
creases with the length of the discrete path. In particular, we can notice
that the degree of the involved polynomials and the quantifier alternation
remains bounded, while the number of variables linearly increases.

Since the first-order theory of (R, 0, 1,+, ∗, <) admits the quantifier elim-
ination, we can try to bound the number of variables in each formulæ. When
we apply the quantifier elimination procedure to Reach(ph)[Z,Z ′] we obtain
an equivalent first-order formula φ[Z,Z ′] involving only the variables Z and
Z ′. If we now add a step to the path ph = [v1, . . . , vn], i.e., we consider the
path ph′ = [v1, . . . , vn, vn+1], we only have to apply quantifier elimination to
the formula:

∃Z ′′, Z ′′′(φ[Z,Z ′′] ∧ Reach(〈vn, vn+1〉)[Z ′′, Z ′′′] ∧ Reach(vn+1)[Z
′′′, Z ′])

Proceeding in this way, it seems that we can keep under control the complex-
ity of our method. Unfortunately, if we try to apply it, exploiting Qepcad
b to obtain quantifier free formulæ at each step, we cannot go far enough, as
shown by the following example.

Example 2. Consider the following hybrid automaton.
H2 = (Z , Z ′, V, E, Inv , Dyn, Act , Res) where:

• Z = 〈Z1, Z2〉 and Z ′ = 〈Z1
′, Z2

′〉, where Z1, Z2, Z1
′, Z2

′ variables over
R,

• V = {v, u} and E = {e}, where e goes from v to u,

• Inv(v)[Z ] ≡ 1 ≤ Z1 ≤ 10 ∧ 1 ≤ Z2 ≤ 10 and
Inv(u)[Z ] ≡ 10 ≤ Z1 ≤ 20 ∧ 10 ≤ Z2 ≤ 20,

• Dyn(v)[Z,Z ′, T ] ≡ Z1
′ = Z1 + (2Z2

1 + Z1)T ∧ Z2
′ = Z2 + (2Z2

2 + Z2)T
and
Dyn(u)[Z,Z ′, T ] ≡ Z1

′ = Z1 + (3Z2
1 +Z1)T ∧Z2

′ = Z2 + (3Z2
2 +Z2)T ,

• Act(e)[Z ] ≡ Z1 = 10 ∧ Z2 = 10,
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• Res(e)[Z,Z ′] ≡ Z1
′ = Z1 ∧ Z2

′ = Z2.

Suppose we want to apply the method described above with ph = [v, u]. First,
we use Qepcad b to compute a quantifier free formula φ[Z,Z ′] equivalent
to the formula Reach(v)[Z,Z ′]. Then we construct the formula:

∃Z ′′, Z ′′′(φ[Z,Z ′′] ∧ Reach(〈v, u〉)[Z ′′, Z ′′′] ∧ Reach(u)[Z ′′′, Z ′])

When we try to compute an equivalent quantifier free formula with Qepcad
b we find out that we cannot obtain any result within 20 minutes of CPU
time.

Using this method we are able to limit the number of variables in our
formulæ, but we have an increasing number of polynomials and constraints
in the computed quantifier free formulæ. This is one of the problems of
this method, since the complexity of the new constructed formulæ strongly
depends on the number of polynomials and constraints occurring in computed
quantifier free formulæ. Another problem of the method is that Qepcad b
could not give any result in reasonable time when used on formulæ of the
form Reach(v)[Z,Z ′], i.e., the reachability problem inside a location could
be already too complex.

At this point the only possibility we have is that of introducing approxi-
mations. A first approximated approach to the reachability problem consists
in the application of the above method exploiting RSolver instead of Qep-
cad b. Acting in this way we hope to solve both the problems mentioned in
Example 2. Unfortunately, this approach is less effective than the previous
one.

Example 3. Consider the hybrid automaton H2 of example 2. RSolver
on the formula Reach(v)[Z,Z ′] gives the following result:
True, volume ~[ 0., 0.]

False, volume ~[ 5905.08179397, 5905.08179397]
...
Unknown:
...

Since the True set is empty we do not know which values of Z and Z ′

satisfy the formula Reach(v)[Z,Z ′] and we cannot procede with the next
step.
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RSolver on formulæ of the form Reach(v)[Z,Z ′] gives results that are
too approximated for being used. However, we can use it to try to solve the
problem related to the number of polynomials and constraints appearing in
computed quantifier free formulæ. To do this we apply the previous method
exploiting Qepcad b with the add of an intermediate step that involves the
use of RSolver.

More precisely, consider the path ph′ = [v1, . . . , vn, vn+1] and suppose
we have already computed a quantifier free formula φ[Z,Z ′] equivalent to
Reach(ph)[Z,Z ′], where ph = [v1, . . . , vn]. Using RSolver we compute an
approximation of the set of values for Z and Z ′ that satisfy φ[Z,Z ′], then we
construct a first-order formula γ[Z,Z ′] defining such approximation. Finally,
we apply the quantifier elimination procedure to the formula:

∃Z ′′, Z ′′′(γ[Z,Z ′′] ∧ Reach(〈vn, vn+1〉)[Z ′′, Z ′′′] ∧ Reach(vn+1)[Z
′′′, Z ′])

It is still not enough, as shown by the following example.

Example 4. Consider again the hybrid automaton H2 of Example 2. Let
φ[Z,Z ′] be the quantifier free formula equivalent to Reach(v)[Z,Z ′] com-
puted by Qepcad b. RSolver on the formula φ[Z,Z ′] gives the following
result:
True, volume ~[ 0., 0.]

False, volume ~[ 5904.9114008, 5904.91140081]
...
Unknown:
...

As in Example 3 we obtain an empty True set and we cannot procede
with the next step.

Another approximated approach that we can consider consists in the ap-
plication of this last described method using ECLiPSe instead of RSolver
to compute the set of values that satisfy a quantifier free formula obtained
with Qepcad b.

Given a quantifier free formula we can define a constraint satisfaction
problem with constraint on reals that can be solved by ECLiPSe through
constraint propagation and search techniques. An answer to a problem on
reals is called conditional solution. The number of conditional solutions
returned vary according to the level of precision in the search procedure. For
instance, given the problem defined from the formula φ[Z,Z ′] of Example 4
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and using the predicate locate/2 with final precision 1.0 ECLiPSe returns
51 answers, if we reduce the final precision to 0.1 we obtain more than 102
answers. Even if we find a way to use the values computed by ECLiPSe

to construct the formula for the successive step, the method would not be
effective, because we still have the problem that Qepcad b could not give
any result when used on formulæ of the form Reach(v)[Z,Z ′].

All the above discussed methods share one problem: the high cost in
terms of computation time that has to be afforded to compute a quantifier
free formula from a formula of the form Reach(v)[Z,Z ′] using Qepcad b.
We have to find an approximation strategy to solve this problem in order
to obtain an effective method to compute approximated solutions for the
reachability problem.

To achieve this goal we studied a method to over-approximated the set of
values reachable inside a discrete location of an automaton with independent
dynamics.

Definition 5 (Hybrid Automata with Independent Dynamics). Let
H be a continuous semi-algebraic hybrid automaton, let Z = 〈Z1, . . . , Zd〉
and Z ′ = 〈Z1

′, . . . , Zd
′〉. H has independent dynamics if ∀v ∈ V the formula

Dyn(v)[Z,Z ′, T ] is of the form:

Z1
′ = fv,1(Z1, T ) ∧ Z2

′ = fv,2(Z2, T ) ∧ . . . ∧ Zd′ = fv,d(Zd, T )

Example 5. The automaton H2 of Example 2 is a continuous semi-algebraic
hybrid automaton with independent dynamics.

Given a discrete location v of an automaton with independent dynamics,
we over-approximate the set of values Z ′ that can be reached inside v after
time δ from values Z satisfying Inv(v)[Z ] applying the quantifier elimination
procedure to the following formula

ReachApprox(v)[Z ′] ≡ ∃Z(Inv(v)[Z ] ∧ Z ′ = fv(Z, δ) ∧ Inv(v)[Z ′])

This is an over-approximation of the sets of points reachable at time δ, since
we did not check that at each time T ′ between 0 and δ the invariant is satisfied
by fv(Z, T

′). Notice also that we can replace the condition Inv(v)[Z ] with
a stronger one if we are interested in a subset of starting points. Using this
formula many times we can compute an over-approximation of all the values
Z ′ that can be reached with δ-time steps from values Z satisfying Inv(v)[Z ].
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After each step of duration δ we can consider the following formula to check
if the edge 〈v, u〉 can be crossed:

ReachApprox(〈v, u〉)[Z ′] ≡ ∃Z(φ[Z ] ∧ Act(〈v, u〉)[Z]∧
Res(〈v, u〉)[Z,Z ′] ∧ Inv(u)[Z ′])

where φ[Z ′] is a quantifier free formula equivalent to ReachApprox(v)[Z ′].
We apply the quantifier elimination procedure to this formula. If it results to
be false, we increase the value of δ to compute another quantifier free formula
φ[Z ′]. Otherwise, we obtain a quantifier free formula ψ[Z ′] and we can move
to the discrete location u where we can apply this procedure considering the
formula:

ReachApprox(u)[Z ′] ≡ ∃Z(ψ[Z ] ∧ Z ′ = fu(Z, δ) ∧ Inv(u)[Z ′])

Proceeding in this way we can keep under control the complexity of our
formulæ, avoiding increases in the number of variables and polynomials. Ex-
ploiting Qepcad b to apply this method on the automaton H2 of Example
2 we can prove that the discrete location u can be reached from v. The
result is obtained in 30 milliseconds. Using this method we are able to find
approximated solutions for the reachability problem also on automata with
independent dynamics with more continuous variables and more complex
formulæ than the ones occurring in H2.

The method can be applied also to automata with non-independent dy-
namics, but it does not help us, as shown by the following example.

Example 6. Consider the following hybrid automaton which dynamics are
non-independent. H3 = (Z , Z ′, V, E, Inv , Dyn, Act , Res) where:

• Z = 〈Z1, Z2〉 and Z ′ = 〈Z1
′, Z2

′〉, where Z1, Z2, Z1
′, Z2

′ variables over
R,

• V = {v, u} and E = {e}, where e goes from v to u,

• Inv(v)[Z ] ≡ 1 ≤ Z1 ≤ 10 ∧ 1 ≤ Z2 ≤ 8 and
Inv(u)[Z ] ≡ 8 ≤ Z1 ≤ 50 ∧ 7 ≤ Z2 ≤ 30,

• Dyn(v)[Z,Z ′, T ] ≡ Z1
′ = Z1+(2Z2

1 +Z1Z2)T∧Z2
′ = Z2+(7Z2

2 +Z2Z1)T
and
Dyn(u)[Z,Z ′, T ] ≡ Z1

′ = Z1 + (3Z2
1 + Z1Z2)T ∧ Z2

′ = Z2 + (4Z2
2 +

Z2Z1)T ,
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• Act(e)[Z ] ≡ Z1 ≥ 8 ∧ Z2 ≥ 7,

• Res(e)[Z,Z ′] ≡ Z1
′ = Z1 ∧ Z2

′ = Z2.

Suppose we want to apply the method to find out if the discrete location
u is reachable from v. First, we have to apply the quantifier elimination
procedure to the formula ReachApprox(v)[Z ′] with a fixed value δ. When
we try to do this using Qepcad b we are not able to obtain any result
within 20 minutes of CPU time because of the presence of non-independent
dynamics.

To find approximated solution for the reachability problem on automata with
non-independent dynamics, we have to introduce further approximations in
our last method. Let H be an automaton with non-independent dynamics.
We have that ∀v ∈ V the formula Dyn(v)[Z,Z ′, T ] is of the form:

Z1
′ = fv,1(Z, T ) ∧ Z2

′ = fv,2(Z, T ) ∧ . . . ∧ Zd′ = fv,d(Z, T )

Given the formula ReachApprox(v)[Z ′] and δ > 0, we compute ∀ = 1, . . . , d
the minimum value (mini(v)) and the maximum value (maxi(v)) that the
function fv,i(Z, δ) assume in the set defined by the formula Inv(v)[Z ]. In
order to determine an approximation of the values Z ′ that can be reached
after time δ from values Z satisfying Inv(v)[Z ], we evaluate the following
formula: ∧

i=1,...,d

mini(v) ≤ Zi
′ ≤ maxi(v) ∧ Inv(v)[Z ′]

If, in the previous method, we use this procedure instead of the quantifier
elimination procedure to obtain from a formula ReachApprox(v)[Z ′] a for-
mula φ[Z ′], we have a new method that can find approximated solution to the
reachability problem even in presence of non-independent dynamics. We call
this method minimum-Maximum Reachability Approximation (miM-ra).

Example 7. Consider the hybrid automaton of Example 6. Suppose we
want to apply the miM-ra method exploiting Qepcad b to find out if the
discrete location u can be reached from v. First, we compute a formula φ[Z ′]
using the procedure based on the calculus of minimum and maximum of each
function in Dyn(v)[Z,Z ′, T ] described above. Then we apply the quantifier
elimination procedure to the formula:

∃Z(φ[Z ] ∧ Act(〈v, u〉)[Z] ∧ Res(〈v, u〉)[Z,Z ′] ∧ Inv(u)[Z ′])
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We obtain a quantifier free formula representing the values for Z1
′ and Z2

′

in the discrete location u that can be reached starting from v. We succeed
in proving the desired property (result obtained in 55 milliseconds).

We notice that solutions computed with the miM-ra method are neither
over nor under approximations.

Exploiting the miM-ra method together with Qepcad b, we could not
be able to obtain results on some automata. In particular, on automata
whose dynamics are either very complex or not representable in Qepcad b,
e.g., functions where non integer or negative exponents appear. We can solve
this problem introducing a further approximation to our method.

Consider a formula Dyn(v)[Z,Z ′, T ] ≡
∧
i=1,...,d Z

′
i = fv,i(Z, T ). Instead

of computing the maximum and the minimum of fv,i(Z, δ) in the set defined
by the formula Inv(v)[Z ], we can compute the maximum and the minimum
of the linearization of fv,i that is the Taylor polynomial of degree one:

Z ′i(δ) = fv,i(Z(0), 0) +
dfv,i
dT

(Z(0), 0)δ +R

where R is the reminder term. In order to compute the maximum and the
minimum at time δj (where δ0 = δ and δj > δj−1) we consider the following
expression:

Z ′(δj) = Z ′(δj−1) +
dfv,i
dT

(Z(0), δj−1)δj +R

Notice that the derivative dfv,i/dT has not to be computed for every time
interval. Once computed we can obtain a function that can be used to
calculate the values of the derivative for all the different δj.

4. SAHA-Tool

In this section we present SAHA-Tool, a software for computing ap-
proximated solution to the reachability problem in semi-algebraic automata
based on the miM-ra method. and it is implemented in Objective Caml [35].

The reachability problem in semi-algebraic automata is undecidable even
if we consider computational models over the reals, as pointed out in Section
2. However, imposing temporal restriction on traces we can define a reach-
ability problem with time bounds for which we can compute approximated
solutions using the miM-ra method. The time bounded reachability problem
can be defined as follows: given a hybrid automaton H = (Z , Z ′, V, E,
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Inv , Dyn, Act , Res) of dimension m, a start location v, a set of start points
defined by the formula ϕv[Z], a end location u, a set of end points defined by
the formula %u[Z], a time bound T ∈ R≥0 and a value δ ∈ R>0, we want to
determine if it exists a state 〈u, s〉, where s belongs to the set of end points,
that is reachable from a state 〈v, r〉, where r belongs to the set of start points,
through a trace in which each continuous transition has duration equal to
kδ, where k ∈ N, and such that the sum of continuous transition durations
is less than or equal to T .

Approximated solutions to the time bounded reachability problem in con-
tinuous semi-algebraic automata with independent or non-independent dy-
namics can be computed using Algorithm 1. Starting from input data this
algorithm return a Boolean value, represented by the variable reached, and
a set of points defined by the formula ϑ[Z]. If the value of reached is False
then none of the states 〈u, s〉 with s belonging to the set defined by %u is
reachable from states 〈v, r〉 with r belonging to the set defined by ϕv.
Otherwise, if the value of reached is True all the states 〈u, s′〉 with s′ be-
longing to the set defined by ϑ are reachable.

To compute reachable states Algorithm 1 uses a First In First Out queue
whose elements are tuples of the form 〈l, t, ϕ, al〉, where l is a location of H,
t ∈ R is the remaining time for continuous transitions in l, ϕ is a formula
defining a set of points, al is the array of locations adjacent to l. Initially this
queue contains the tuple formed by the start location v, the value T , the for-
mula ϕv and the array of locations adjacent to v. For each element 〈l, t, ϕ, al〉
of the queue Algorithm 1 computes the states reachable through continuous
transitions of duration d = 0, δ, 2δ, . . . , kδ, . . ., until d is less than or equal
to the remaining time. To do this it uses the functions reachable and
minimumMaximum. The function minimumMaximum computes a formula
ψmin−max[Z

′] of the form∧
i=1,...,m

mini(l) ≤ Z ′i ≤ maxi(l)

where mini(l) and maxi(l) are the minimum value and the maximum value
assumed by the function fl,i(Z, d) within the set defined by the formula ϕ,
respectively. The function reachable evaluates the formula

ψmin−max[Z
′] ∧ Inv(l)[Z ′]

and returns the formula ψreached[Z] representing the set of points reached after
time d within the location l. After having computed the points reachable
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Algorithm 1 Time bounded reachability, independent or non-independent
dynamics.

Input: H = (Z, Z ′, V, E , Inv, Dyn, Act, Res), v ∈ V, ϕv, u ∈ V, %u, T ∈ R≥0,
δ ∈ R>0

Output: reached ∈ {True,False}, ϑ
reached← False
adjLocationsv ← adjacentLocations(v, V, E)
computationQueue← createQueue( )
enqueue(computationQueue, (v, T, ϕv, adjLocationsv))
while emptyQueue(computationQueue) = False and reached = False do

(currentLoc, t, γ, adjLocations)← dequeue(computationQueue)
outInv ← False; d← 0
while t ≥ d and reached = False and outInv = False do

ψmin−max ← minimumMaximum(Z ′, Z, Dyn(currentLoc), d, γ)
ψreached ← reachable(Z, Z ′, ψmin−max, Inv(currentLoc))
if ψreached ≡ ⊥ then

outInv ← True
else

if currentLoc = u and ψreached ∧ %u 6≡ ⊥ then
reached← True; ϑ← ψreached ∧ %u

else
n← length(adjLocations); i← 0
while (i < n and reached = False) do

l← adjLocations[i]; e← 〈locCorrente, l〉
ψedge ← edge(Z, Z ′, ψreached, Act(e), Res(e), Inv(l))
if ψedge 6≡ ⊥ then

if l = u and ψedge ∧ %u 6≡ ⊥ then
reached← True; ϑ← ψedge ∧ %u

else
lal ← adjLocations(l, V, E)
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if length(lal) > 0 or l = u then
t′ ← t− d
enqueue(computationQueue,(l, t′, ψedge, lal))
i← i+ 1

else
i← i+ 1

end if
end if

else
i← i+ 1

end if
end while
d← d+ δ

end if
end if

end while
end while

through a continuous transition, if none of the end states has been reached,
Algorithm 1 evaluates for each edge e = 〈l, l′〉, where l′ is a location adjacent
to l, the formula

∃Z(ψreached[Z] ∧ Act(e)[Z] ∧Res(e)[Z,Z ′] ∧ Inv(l′)[Z ′])

using the function edge that returns the formula ψedge representing the set of
point reached within l′ after the discrete transition. If ψedge is not equivalent
to⊥ then the edge can be crossed, if the location l′ has adjacent locations then
the tuple 〈l′, t′, ψedge, al′〉, where t′ = t − d and al′ is the array of locations
adjacent to l′, is enqueued. Algorithm 1 terminates when end states are
reached or the queue is empty. Theorem 1 and Theorem 2 holds for Algorithm
1.

Theorem 1. Let H = (Z , Z ′, V, E, Inv, Dyn, Act, Res) be a semi-algebraic
hybrid automaton on which Algorithm 1 works. Let d be the dimension of H,
n = |V|, T the time bound and δ the value used to determine the duration of
continuous transitions. We use Q to indicate the complexity of the formulæ
resolver and we assume that in each location of the automaton at least time
δ elapses before a discrete transition occurs. The complexity of Algorithm 1
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as a function of Q is

O
(
n(bT/δc+1)bT/δc(d+ 1)Q

)
Theorem 2. Algorithm 1 is correct with respect to the miM-ra method.

The time bounded reachability problem can also be considered in hybrid
automata whose dynamics are defined by systems of autonomous differential
equations. In this case approximated solutions can be computed approxi-
mating the solutions of differential equations with the corresponding Taylor
polynomial of a certain degree in order to obtain a continuous semi-algebraic
automaton, and using a slightly variation of Algorithm 1 that exploit the
fact that continuous transitions are transitive when dynamics are defined by
systems of autonomous differential equations.

Algorithm 1 and its variation have been implemented in the software
SAHA-Tool (Semi Algebraic Hybrid Automata Tool). SAHA-Tool is a
software for computing approximated solution to the time bounded reacha-
bility problem in continuous semi-algebraic automata and in automata whose
dynamics are defined by systems of autonomous differential equations (for
solving the problem in this type of automata it approximates the solutions
of differential equations with the corresponding Taylor polynomial of degree
one). This software has been implemented using Objective Caml and it uses
Qepcad b to evaluate formulæ and to compute the minimum and the max-
imum value of a function. To evaluate the quality of the result produced by
SAHA-Tool we compared it with HSolver [36], a software for the verifi-
cation of safety properties of hybrid automata. HSolver uses a method of
constraint propagation based abstraction refinement and it is implemented
on the top of RSolver. The comparison showed that the results computed
by SAHA-Tool are in line with the ones computed by HSolver.

5. Case Studies

As a simple yet very interesting examples, we consider the Repressilator
system and the Delta-Notch protein signaling mechanism.

5.1. The Repressilator Case Study

The Repressilator system constructed by Elowitz and Leibler [37]. It
consists of three proteins, namely lacI, tetR, and cI, and the corresponding
genes. The protein lacI represses the gene which expresses tetR, tetR represses

19



the gene which expresses cI, whereas cI represses the gene which expresses lacI,
thus completing a feedback system. The dynamics of the network depend
on the transcription rates, translation rates, and decay rates. Depending on
the values of these rates the system might converge to a stable limit circle or
become unstable.

We apply our method to compare the behaviour of two oscillating models
proposed for the Repressilator.

First, we consider the hybrid automaton proposed in [38] to model the
Repressilator. This hybrid automaton has 8 discrete locations, correspond-
ing to all the possible combinations of genes being either on or off, and 9
variables. Three of them, A, B, C, represent the quantity of proteins in the
system, the other six, YX,on, YX,off, where X ∈ {A,B,C}, control activation
and deactivation of genes. For each discrete location v, Inv(v) ≡ true.

The differential equations governing proteins concentrations in each dis-
crete location are decoupled: for instance, when gene A is on its dynamics
is Ȧ = kp − kdA, where kp and kd are costant parameters of the system.

The interactions between repressors and genes are confined to the acti-
vation conditions of the automaton transitions. Consider again gene A and
suppose to be in a discrete location of the automaton where it is on. Then,
the differential equation for ẎA,off is ẎA,off = kbC, the transition switching
this gene off has an activation condition equal to YA,off ≥ 1 ∧ C ≥ 1 and
a reset condition equal to YA,on = 0 ∧ YA,off = 0. The transition that turns
gene A on, instead, has a constant rate ku, hence its activation condition
is YA,on ≥ 1, ẎA,on = ku is the differential equation for ẎA,on and the reset
condition is equal to YA,on = 0 ∧ YA,off = 0, where kb and ku are costant
parameters of the system.

In order to obtain a continuous semi-algebraic automaton from this hybrid
automaton, we have only to define for each discrete location v a formula
Dyn(v) satisfying the conditions of Definition 4. To this aim we approximate
the solutions of the differential equations in each discrete location with the
corresponding Taylor polynomial of degree two. Consider, for instance, the
differential equations for A, YA,off, and YA,on in a discrete location where gene
A is on, we approximate their solution with the following polynomials:

A′ = A+ (kp − kdA)T + (−kdkp + k2
dA)T 2/2

Y ′A,off = YA,off + (kbC)T + (−kbkdC)T 2/2 if geneC is off
Y ′A,off = YA,off + (kbC)T + (kbkp − kbkdC)T 2/2 if geneC is on
Y ′A,on = YA,on + kuT
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The solution of the differential equation for A in a discrete location where
the gene A is off is approximated with the following polynomial:

A′ = A+ (−kdA)T + (k2
dA)T 2/2

The automaton we obtain has non-independent dynamics (see, e.g., the
equation for Y ′A,off), hence we analyse it using the miM-ra method. Starting
from the discrete location where only gene A is active and with fixed values for
proteins concentrations we succeed in simulating the automaton and observe
an oscillatory behaviour (Figure 1).

Figure 1: Time trace of the hybrid automata with 8 discrete locations. Parameters are
kp = 1, kd = 0.01, kb = 1, ku = 0.01.

The second hybrid automata we consider is the one that can be con-
structed from the following model for the repressilator written in the S-
System equations formalism [39] (see [40])

Ẋ1 = α1X
−1
3 − β1X

0.5
1 , α1 = 0.2, β1 = 1,

Ẋ2 = α2X
−1
1 − β2X

0.578151
2 , α2 = 0.2, β2 = 1,

Ẋ3 = α3X
−1
2 − β3X

0.5
3 , α3 = 0.2, β3 = 1.

From this model we obtain an hybrid automaton with only one discrete
location, no transitions and three variables, X1, X2, X3, representing proteins
concentrations. For the unique discrete location v we have Inv(v) ≡ true,
the dynamics in v are defined by the differential equations of the S-System
model.
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As in the previous case, to obtain a continuous semi-algebraic automaton
we approximate the solutions of the differential equations in the discrete
location with the corresponding Taylor polynomial of degree two. Consider
for instance the differential equation for X1, we approximate its solution with
the following polynomial:

X ′1 = X1 + (0.2X−1
3 −X0.5

1 )T+
(−0.04X−2

3 X−1
2 + 0.2X−1.5

3 − 0.1X−0.5
1 X−1

3 + 0.5)T 2/2

The automaton we obtain has non-independent dynamics with real expo-
nents, hence we analyse it using the approximated method based on the
computation of minimum and maximum values of the linearization of the
functions defining the dynamics. We succeed in the simulation of the au-
tomaton, but we do not obtain any interesting result.

The analysis of the two models shows that the one obtained from the
S-System does not permit to observe the oscillatory behaviour of the repres-
silator, this because of the approximations introduced for simulation. The
other model, instead, results to be less sensitive to approximation and sim-
ulating it we can observe the oscillations in proteins concentrations. This
points out that in order to define robust models for biological systems it is
important to distinguish from the beginning the discrete from the continuous
parts of the systems. Hybrid automata allow to do this and hence to obtain
simpler dynamics in each discrete location. Such dynamics are less sensible
to the approximations which are necessary to carry out formal analysis.

5.2. The Delta-Notch Protein Signaling

Cellular differentiation, the process by which cells acquire their special-
ization, such as heart cells, muscle cells, skin cells, and brain cells, is a well
studied phenomenon. It occurs numerous times during the development of
a multicellular organism as the organism changes from a single zygote to a
complex system of tissues and cell types. Genes control cell fate by control-
ling the type and amount of proteins made in a cell. Proteins in turn affect
gene activity by turning “on” or “off” gene expression thereby affecting the
production of proteins themselves. Hence, differential gene activity is con-
sidered the key to cell differentiation [41] and protein concentrations in a cell
are a good measure of gene activity. The idea that lateral signaling between
cells through the Delta-Notch protein pathway is responsible for same cell
fate decisions has gained wide acceptance.
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Delta and Notch are both transmembrane proteins that actively signal
only when cells are in direct contact, in a densely packed epidermal layer.
Delta is a ligand that binds and activates its receptor Notch in neighboring
cells. The activation of Notch in a cell affects the production of Notch lig-
ands (i.e. Delta) both in itself and its neighbors, thus forming a feedback
control loop. In the case of lateral inhibition, high Notch levels suppress
ligand production in the cell and thus a cell producing more ligands force its
neighboring cells to produce less.

We apply our method to the hybrid automaton developed in [42] to model
the Delta-Notch protein signaling mechanism, and compare our results to the
ones reported in [42] and [43].

To model the regulation of intercellular Delta and Notch protein concen-
trations through the feedback network, experimentally observed rules gov-
erning the biological phenomenon have to be implemented. First, cells have
to be in direct contact for Delta-Notch signaling to occur. This implies that
a cell is directly affected by, and directly affects in turn, only immediate
neighbors. Second, Notch production is turned on by high Delta levels in
the immediate neighborhood of the cell and Delta production is switched on
by low Notch concentrations in the same cell. Third, at steady state, a cell
with high Delta level must have low Notch level and vice versa. Finally, both
Delta and Notch protein concentrations decay exponentially.

In [42] each biological cell is modeled as a hybrid automaton defined by:
a set of global invariant conditions which must be always true; a complete
graph with four states capturing the property that Notch and Delta protein
production can be individually switched on or off at any given time; for each
state, a set of local invariant conditions and a set of differential equations de-
termining the flow of the two variables representing Delta and Notch protein
concentrations, respectively. Differential equations, invariant conditions and
edge activation and reset conditions effectively implement the experimentally
observed rules described above.

The hybrid automaton representing the evolution of two cells presented in
[42] is the composition of two single cell automata. It is an automaton with
four continuous variables and sixteens discrete location, it has the following
set of global invariant conditions

0 ≤ d1, d2 ≤ RD/λD ∧ 0 ≤ n1, n2 ≤ RN/λN
∧ −RN/λN ≤ hD ≤ 0 ∧ 0 ≤ hN ≤ RD/λD

The variables d1 and d2 represent the concentration of the Delta protein
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in the first and in the second cell, respectively. The variables n1 and n2

represent the concentration of the Notch protein in the first and in the second
cell, respectively. RD and RN are constants representing Delta and Notch
production rates, respectively. λD and λN are the Delta and Notch protein
decay constants, respectively. hD is an unknown switching threshold which
determines the Delta protein production. hN , similar to hD, is an unknown
switching threshold which determines the Notch protein production.

A possible equilibrium for the system is given by the point d∗1 = 0, n∗1 =
RN/λN , d∗2 = RD/λD, n∗2 = 0, which belongs to the discrete location v
characterized by the following invariant conditions

0 ≤ d1 ≤ hN ∧ −hD ≤ n1 ≤ RN/λN ∧ hN ≤ d2 ≤ RD/λD ∧ 0 ≤ n2 ≤ −hD

and by the following differential equations determining the flows of continu-
ous variables

ḋ1 = −λDd1, ṅ1 = RN − λnn1, ḋ2 = RD − λDd2, ṅ2 = −λNn2

In [42] the hybrid automaton representing the evolution of two cells has
been studied using the predicate abstraction methods presented in [44], the
analysis performed proved that each point satisfying the condition d1 < d2 ∧
n1 > n2 reaches the equilibrium state belonging to the discrete location
v. In [43] the authors applied the method they developed to the analysis
of admissible location reachable from v, and found a point in a location u
satisfying the condition d1 > d2 ∧n1 > n2 that with RN = RD = λN = λD =
1.0 and −hD = hN = 0.5 reaches a point in v such that d1 < d2 ∧ n1 > n2,
i.e. able to converge to the equilibrium state in v. The result obtained in
[43] does not contradict the result presented in [42], it proves that the two
different methods can be combined to obtain better approximations of the
set of points from which the equilibrium state in v is reachable.

In order to obtain a continuous semi-algebraic hybrid automaton from the
automaton representing the evolution of two cells described in [42], we ap-
proximate the solutions of the differential equations in each location with the
corresponding Taylor polynomial of degree three, and define for each loca-
tion w a formula Dyn(w) satisfying the condition of Definition 4. Consider,
for instance, the differential equation for n1 in the location v cited above,
ṅ1 = RN − λNn1, we approximate its solution with the following polynomial

n′1 = n1 + (RN − λN)T + (−λNRN + λ2
Nn1)T

2/2 + (λ2
NRN − λ3

Nn1)T
3/6
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The automaton we obtain is the composition of two semi-algebraic automata
for one cell and has independent dynamics, hence we analyze it using the
approximated method presented for automata with independent dynamics.
Using this method we can prove that each point satisfying the following
condition

d1 < d2 ∧ n1 < n2 ∧ d2 − d1 > 4/5 ∧ n2 − n1 < 1/50

belonging to the discrete location q characterized by the following invariant
conditions

0 ≤ d1 ≤ hN ∧ −hD ≤ n1 ≤ RN/λN ∧ hN ≤ d2 ≤ RD/λD ∧ −hD ≤ n2 ≤ 1

reaches points satisfying d1 < d2 ∧ n1 > n2 in the location v when RN =
RD = λN = λD = 1.0 and −hD = hN = 0.5, that are points from which the
equilibrium state in v is reachable. Our result, which does not contradict the
one presented in [42], nonetheless proves that with our method it is possible
to find more points from which the equilibrium state in v is reachable.

6. Conclusions

In this paper we presented some experimental results on the reachability
problem in semi-algebraic hybrid automata. Our results suggest that even if
we try to exploit different techniques and powerful tools, we cannot go far
enough, without introducing approximations.

However, it is easy to apply some standard, basic, approximation tech-
niques. We showed on the repressilator case study that the approximated
results are coherent with the expected behaviour, even when we limit our ap-
proximations to the first and second degree, provided that intrinsic discrete
nature of the system has been explicitly modeled. In particular, the approxi-
mations on the 8-states automaton show the oscillations, while this is not the
case if we directly apply our method to the system of differential equations.
Intuitively, the system of differential equations implicitly models the discrete
nature of the system exploiting more complex dynamics whose simulation re-
quires more sophisticated techniques. The hybrid automaton allows to keep
the dynamics more simple and more robust to approximations.
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