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Abstract

We tackle the problem of relating models of systems (mainly biological systems) based on stochastic process
algebras (SPA) with models based on differential equations. We define a syntactic procedure that trans-
lates programs written in stochastic Concurrent Constraint Programming (sCCP) into a set of Ordinary
Differential Equations (ODE), and also the inverse procedure translating ODE’s into sCCP programs. For
the class of biochemical reactions, we show that the translation is correct w.r.t. the intended rate semantics
of the models. Finally, we show that the translation does not generally preserve the dynamical behavior,
giving a list of open research problems in this direction.

Keywords: Stochastic Concurrent Constraint Programming, stochastic modeling, ordinary differential
equations, biological systems.

1 Introduction

In the last decade there has been a remarkable interest of the computer science
community in systems biology [18], i.e. the branch of biological sciences concerned
with the study of living beings under a systemic light. The key issue is that of
understanding how the observable features of life emerge as the consequence of the
complex interactions among its basic (molecular) constituents, like proteins and
genes. In this activity a key role is played by the mathematical modeling of bio-
logical systems and the computational analysis of these models [6,17]. There are,
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broadly, two different classes of modeling formalisms used, the first based on the con-
tinuous and deterministic mathematics of differential equations, the second based
on the theory of stochastic processes. Computer science enters this game at different
levels: it provides the numerical routines for solving differential equations, it fur-
nishes virtual environments where graphically building and analyzing models, and,
above all, it lends to systems biology a class of formal languages, namely stochastic
process algebras, that can be used to describe elegantly and precisely the systems of
interest [22]. This is probably the most important contribution, as it goes towards
the definition of a formally specified language, designed to tackle the intrinsic com-
plexity of living systems. Process algebras used in biology are generally equipped
with a stochastic semantics, resulting in a continuous-time Markov Chain (CTMC
for short) [19]. Remarkably, when process algebras are used to describe biochemical
reactions, the CTMC given by their semantics coincides with the one constructed
when using classical stochastic simulation procedures, like the celebrated Gillespie
algorithm [14].

When biochemical reactions are considered, the coexistence of Gillespie method
and of a different modeling technique, based on ordinary differential equations
(ODE), must be faced. Notably, both these methods are justified using the same
fundamental principle, i.e. the law of mass action [14,24]. It is also important to
recall that the relation between deterministic and stochastic models of biochem-
ical reactions has been analytically studied in detail, leading to the development
of hybrid modeling approaches to chemical kinetics, using, for instance, stochastic
differential equations (the Chemical Langevin Equation [12]).

In this paper we focus on the problem of defining procedures translating a
stochastic model written using a process algebra, specifically stochastic Concurrent
Constraint Programming (sCCP [2]), into a set of ordinary differential equations
(ODEs), and viceversa. The definition of translations between models of biological
systems built using stochastic process algebras ad models written with differential
equations can be motivated by different reasons. First, numerically solving differen-
tial equations is a computational task generally easier than the stochastic simulation
or the state-based analysis of stochastic systems: if we can get a set of ODEs that
describes the same behavior of a stochastic process, we may be able to analyze the
model more efficiently. Viceversa, process algebra models are constructed taking
into account the interaction patterns among entities of the model, while differential
equations hide these interactions in numerical relations among variables: if, starting
from a set of ODE’s, we can build an equivalent SPA model, we may be able to
recover part of the structure of these interaction patterns.

What properties should we expect to hold between models obtained applying
such translations? Ideally, we would like them to have an equivalent dynamical
behavior. Equivalence can be qualitative, meaning that the dynamics in the two
models has the same characterizing features, or even quantitative, with an agree-
ment also in numerical values. However, even the precise definition of a notion of
equivalence is a difficult task, because stochastic systems have a noisy dynamics,
hence noise must be removed (or ignored) when comparing them with differential
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systems. A simple possibility is to consider the average trace of the stochastic model
as a representative of its characteristic dynamics; unfortunately, fluctuations can-
not be ignored so easily, as sometimes they rule the behavior of the system. For
instance, many stochastic systems exhibit an oscillatory behavior that is induced by
stochastic fluctuations, while their average does not fluctuate at all; this is the case,
for instance, for the stochastic model of the Lotka-Volterra prey-predator system,
see [14,24] and the last section. Weaker notions of equivalence may be considered
and defined; we give further comments on this problem in the conclusions. Defining
translations preserving the behavior is also a difficult matter; in fact, the transla-
tions presented in this paper are not behaviorally invariant in general. However,
when we restrict the attention to biochemical systems, they possess a simpler but
interesting property.

Biochemical networks are modeled by biologists giving the list of reactions in
which the molecules of the system are involved. Given such list, we can construct
easily a model in sCCP; in addition, there is a canonical way to associate a set
of ODEs to such list. It is thus reasonable to ask that the ODEs obtained from
the sCCP model of a list of biochemical reactions coincide with the usual ODEs.
This property has been called preservation of rate semantics in [9]. In the paper,
we show that the translation methods for sCCP do satisfy this property. Unfortu-
nately, preservation of rate semantics tells nothing about preservation of dynamical
behavior, which can be different between the sCCP model and the associated ODEs.

Recently, there has been some work in this area, developing techniques asso-
ciating sets of differential equations to programs written in PEPA [16] or in π-
calculus [8]. The basic idea of these methods is to approximate the number of
syntactic terms of a certain kind, present in parallel in the system, with a real
number, and then derive the variation of the number of such terms by a syntactic
inspection of their structure and their communication patterns. Hence, transitions
involving these terms will contribute with a negative flux, while transitions creat-
ing copies of these terms will give a positive flux. These translations satisfy the
coherency condition staten above: for instance, if we write a process algebra model
of biochemical reactions using mass action kinetics (which is always the case for
π-calculus or PEPA), then the derived set of differential equations is exactly the
set of mass action ODE associated to the biochemical reactions under examination,
see [9] for a formal proof. The inverse direction, i.e. associating a stochastic process
algebra model to a set of ODE’s, has received less attention in the literature, the
only example known to us being [5], where the authors use as process algebra a
stochastic version of concurrent constraint programming, sCCP [2].

In this paper, after recalling the basics of sCCP (Section 2), we extend the
work done in [5], showing a method to associate ordinary differential equations
to sCCP programs written with a restricted syntax (Section 3) and a translation
of ODE’s into sCCP programs (Section 4). We then study the relations between
the defined translation, showing that they preserve rate semantics when applied to
sCCP agents describing biochemical reactions [4]. In practice, we show that the
ODE’s associated to sCCP agents modeling biochemical reactions, as defined in [4],
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are the usual ODE’s describing the intended kinetics. In the conclusions (Section 5)
we comment more on behavioral invariance, giving a list of open research problems.

2 Stochastic Concurrent Constraint Programming

Concurrent Constraint Programming (CCP [23]) is a process algebra having two
distinct entities: agents and constraints. Constraints are interpreted first-order
logical formulae, stating relationships among variables (e.g. X = 10 or X + Y <

7). Agents in CCP, instead, have the capability of adding constraints (tell) into
a “container” (the constraint store) and checking if certain relations are entailed
by the current configuration of the constraint store (ask). The communication
mechanism among agents is therefore asynchronous, as information is exchanged
through global variables. In addition to ask and tell, the language has all the
basic constructs of process algebras: non-deterministic choice, parallel composition,
procedure call, plus the declaration of local variables.

The stochastic version of CCP (sCCP [2,4]) is obtained by adding a stochastic
duration to all instructions interacting with the constraint store C, i.e. ask, tell.
Each instruction has an associated random variable, exponentially distributed with
rate given by a function associating a real number to each configuration of the
constraint store: λ : C → R

+. This is a unusual feature in traditional stochastic
process algebras like PEPA [15] or stochastic π-calculus [20], and it will be a crucially
used in the translation mechanisms, cf. below.

The underlying semantic model of the language (defined via structural opera-
tional semantic, cf. [2]) is a CTMC, as each configuration of the system in sCCP
consists of the current set of processes and of the current configuration of the con-
straint store. Thus in every node of the transition graph all rate functions are
evaluated. Therefore, as in stochastic π-calculus [20] or PEPA [15], we have a race
condition between all active instructions such that the fastest one is executed.

In the language we allow also tell instructions with infinite rate, which are
executed instantaneously whenever encountered by an agent. To deal with this
kind of instructions and with procedure calls, we need to define two transitions
relations: one instantaneous and one stochastic. These transitions are applied in
an interleaved fashion: the instantaneous relation is applied until possible, then one
step of the stochastic one is executed. Restrictions on the syntax guarantee that the
instantaneous transition is confluent and becomes quiescent after a finite number of
steps, hence the stochastic semantics is well defined, see [3] for further details.

Variables used in the definition of rate functions need to store a single value that
may vary over time. Such variables, for technical reasons, are conveniently modeled
as variables of the constraint store, which are rigid (over time). To deal with this
problem we store time varying parameters as growing lists with an unbounded tail
variable. We will, however, use a natural notation where X=X+1 has the intended
meaning of: “extract the last ground element n in the list X, consider its successor
n + 1 and add it to the list (instantiating the old tail variable as a list containing
the new ground element and a new tail variable)”. We refer to such variables as
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stream variables.
We have also developed an interpreter for the language that can be used for

running simulations. This interpreter is written in Prolog and uses standard con-
straint solver on finite domains as manager for the constraint store, cf. [3] for further
details. All simulations of sCCP shown in the paper are performed with it.

2.1 Modeling Biological Systems in sCCP

In [3,4] we argued that sCCP can be conveniently used for modeling biological
systems. In fact, while maintaining the compositionality of process algebras, the
presence of a customizable constraint store and of variable rates gives a great flex-
ibility to the modeler, so that different kinds of biological systems can be easily
described within this framework. In [4], we showed that biochemical reactions and
genetic regulatory networks are easily dealt by sCCP. In [3] we added to this list
also formation of protein complexes and the process of folding of a protein, whose
description requires the knowledge about spatial position of amino acids constitut-
ing the protein (a kind of information easily added exploiting the potentiality of the
constraint store).

To simplify the task of modeling, in [4] we defined a library of agents correspond-
ing to different types of biochemical reactions. Notably, the presence of non-constant
rates allows to describe reactions that have a chemical kinetics different from the
standard mass action one. This is not possible, for instance, in π-calculus, given the
fact that global rates are defined there using a mass action principle: essentially,
the number of possible communications on a channel are multiplied by the basic
rate of that communication. In Table 1, we present an extract of the library defined
in [4], where two different typologies of reactions are considered: the first one has
the classical mass action kinetics, while the second represents a catalyzed transfor-
mation of S into P (thanks to the action of enzyme E) and has a Michaelis-Menten
kinetics (its rate is computed using the expression at the bottom of the table, corre-
sponding to the format of the Michaelis-Menten differential equation for enzymatic
kinetics [10]; formal justification of these rates in stochastic modeling can be found
in [21]).

3 sCCP to Ordinary Differential Equations

In this section we define a translation machinery that associates a set of ordinary
differential equations to an sCCP program. This translation applies to a restricted
version of the language, both in the constraint store and in the syntax. Despite
these restrictions, this sub-language is sufficient to deal with biochemical reactions
and genetic regulatory networks. After defining this translation, we show that
it preserves the rate semantics, i.e. essentially the chemical kinetic, as defined
in [9]. Practically, we take the sCCP agents used in modeling biochemical reactions
(Table 1), and show that the associated ODE is the one describing their kinetics [10],
i.e mass action for simple reaction agents and Michaelis-Menten equations for agents
with Michaelis-Menten rate.
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R1 + . . . + Rn →k P1 + . . . + Pm

reaction(k, [R1, . . . , Rn], [P1, . . . , Pm]) : −
askrMA(k,R1,...,Rn)

`Vn
i=1(Ri > 0)

´
.

tell∞(
Vn

i=i(Ri − 1) ∧ Vm
j=i(Pj + 1)).

reaction(k, [R1, . . . , Rn], [P1, . . . , Pm])

S �→E
K,V0

P

mm reaction(K, V0, S, P ) : −
askrMM (K,V0,S)(S > 0).

(tell∞(S − 1 ∧ P + 1)) .

mm reaction(K, V0, S, P )

where

rMA(k, X1, . . . , Xn) = k · X1 · · · Xn; rMM (K, V0, S) =
V0S
S+K

;

Table 1
Translation into sCCP of different biochemical reaction types, taken from [4]. The reaction process models

a mass-action-like reaction, while the second arrow corresponds to a reaction with Michaelis-Menten
kinetics. In the code, X − 1 stands for X = X − 1, while X + 1 stands for X = X + 1.

The language is restricted both in the admissible constraints of the store and in
the syntax of the agents. All the variables of the constraint store are required to
be stream variables, and only equalities and inequalities constraints can be asked.
In addition, the possible updates of variables in the store are confined to a very
special class of constraints, of the form X = X +k, where k is a positive or negative
constant. Note that these are the kind of updates we use in biological modeling,
see Table 1. The syntax of the restricted language is given in Table 2. First,
only sequential agents are allowed, and the number of agents in parallel in a global
configuration of the system, called also a network, is constant and fixed from the
beginning. Sequential agents are agents not containing any parallel operator, hence
they cannot fork new agents at run-time. In addition, the possibility of defining local
variables is disallowed: all variables used by agents must be global. Therefore, there
is no need to pass parameters in the procedure call, supposing that all procedures
know the name of the global variables they must act on. 3 These restrictions are
in the spirit of those introduced in [16]: we are forbidding an infinite unfolding
of agents and we are considering only global interactions, forcing the speed of each
action to depend on the whole state of the system. Indeed, also in [8] we find similar
restrictions, though the comparison with sCCP is subtler. First of all, the version
of π-calculus presented in [8] does not allow the use of the restriction operator,
meaning that interactions have a global scope. However, agents in the π-calculus
of [8] are not sequential, as each process is associated to a single molecule, and the
production of new molecules is essentially achieved by forking processes at run-time.
This is not necessary in sCCP, as sCCP-agents model reactions, while molecules are
identified by variables of the system. Finiteness in the π-calculus of [8], however,
corresponds to the property that the number of different syntactical terms that can
be present in a system is always finite.

The translation from restricted sCCP programs to ODE proceeds in several
steps, illustrated in the following paragraphs.

3 Sometimes parameter passing is used to reutilize the same code on different global variables. In this case,
we need to define different procedures, one for each set of global variables we are interested in.
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Program = D.N

D = ε | D.D | p : −A

π = tellλ(c) | askλ(c) M = π.G | M + M

G = 0 | tell∞(c).G | p | M A = 0 | M

N = A | A ‖ N

Table 2
Syntax of the restricted sCCP.

Step 1: Reduced Transition Systems.
The first step consists in associating a labeled graph to each sequential agent

composing the network, the so called reduced transition system [3]. In order to
illustrate this procedure, we show its functioning on the following simple sCCP
agent:

RWX :-
tell1(X = X − 1).RWX

+ tell1(X = X + 2).RWX) f(X) = 1
X2+1

+ askf(X)(true).( tell1(X = X − 2).RWX

+ tell1(X = X + 1).RWX )

This agent performs a sort of random walk in one variable, increasing or de-
creasing its value by 1 or 2 units, depending on its inner state.
Each sequential agent, as defined in Table 2, can be of three different types: a
stochastic choice, an instantaneous tell or a procedure call. Specifically, each branch
of a stochastic choice begins with a timed ask or tell, followed by zero o more in-
stantaneous tell, followed again by a procedure call or by another stochastic choice.
The first operation to perform is to collapse the timed instruction opening a stochas-
tic branch (i.e. askλ or tellλ) with all the instantaneous tell∞ following it, re-
placing them with a predicate of the form action(c, d, λ), where c is a guard that
must be entailed by the store for the branch to be enabled, d is the constraint that
will be posted to the store and λ is the stochastic rate of the branch. After this
replacement, there are only two possible agent types left: stochastic branches and
procedure calls. We denote by collapsed(A) the agent A after this replacement.
For example, the agent collapsed(RWX) simply is:

collapsed(RWX) :-
action(true,X = X − 1, 1).RWX

+ action(true,X = X + 2, 1).RWX

+ action(true, true, f(X)).( action(true,X = X − 2, 1).RWX

+ action(true,X = X + 1, 1).RWX )
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Fig. 1. Steps in the creation of the reduced transition system for RWX . The graph on the left is the one
obtained from the agent collapsed(RWX), while the graph on the right is its reduced transition system.
In these graphs, the asterisk * denotes the constraint true.

We can now associate to each agent collapsed(A) a graph where nodes corre-
spond to stochastic choices (labeled with “+”) and procedure calls (labeled by the
name of the called procedure) of collapsed(A), while edges correspond to instruc-
tions action(c, d, λ), and are labeled by the triple (c, d, λ). The structure of the
graph mirrors the structure of the agent collapsed(A). The entering node of such
graph is the node corresponding to the first instruction of collapsed(A) (which
is always a summation). The graph for the agent collapsed(RWX) is shown in
Figure 1 (left).

We can now process the initial configuration of the network, A1 ‖ . . . ‖ An,
acting separately on each sequential component Ai. Consider the graph associated
to collapsed(Ai): we want to remove the procedure call nodes. We do this by a
kind of unfolding, using at most one copy of the graph of each different procedure
(recall that we have a finite number of them). Consider a node corresponding to a
procedure, say p, with p :- A. If the graph associated to collapsed(A) is not present
in the graph we are manipulating, then we substitute the node for p with the graph
of collapsed(A), otherwise we remove the node for p and we redirect its incoming
edges to the entering node of the graph of collapsed(A). In Figure 1 (right) we
show the result for the agent collapsed(RWX).

The resulting graph for each component of the network is called reduced tran-
sition system (RTS), as it contains all possible actions and all possible states of
that component. We remark that an RTS for an agent of restricted sCCP is always
finite. This property is a consequence of the fact that we disallowed the generation
of local variables and the passing of parameters in procedure calls. Therefore, each
called procedure executes always the same operations on the same (global) vari-
ables, hence its graph needs to be added in the RTS of a component only once. As
the number of definable procedures is finite, so are the possible nodes of an RTS.

Step 2: the interaction matrix.
Consider a restricted sCCP program, composed by several agents in parallel.

Once we have converted all of them into their RTS representation, we number each
state and each transition of all such graphs. Successively, we need to identify the
variables of the system of differential equations. All variables of the store used by
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the agents will have a syntactic counterpart in a variable of the ODE system. In
the following, we denote such variables by X1, . . . , Xn. In addition, we associate a
variable to each state of the reduced transition systems, of the form Pi, where P is a
name never used for a variable of the store, and i is the index assigned to the node.
Consider a transition indexed by j; we indicate with exitj the variable labeling
the exiting node of edge j, with ratej(X1, . . . , Xn) its rate function (labeling the
corresponding edge in the RTS) and with guardj(X1, . . . , Xn) the indicator function
of its guard, returning 1 if the guard is satisfied, 0 otherwise.

We are now ready to define the interaction matrix. This matrix has one row for
each variable X1, . . . , Xn, P1, . . . , Pm (we suppose to have m states in total in the
RTS of sCCP agents), and one column for each transition. Column j is constructed
in the following way: if edge j goes from the node identified by Pi to a node identified
by Ph, we put a -1 in correspondence to row Pi and a +1 in correspondence of row
Ph (if i = h, we simply put a zero). Then, for each update instruction of edge j of
the form Xl = Xl + δ, we put δ in correspondence of row Xl. All other entries of
the column are set to 0. We denote the interaction matrix by I and the element
corresponding to the row associated to variable Y and to column j by I(Y, j).

For the example introduced above, the resulting interaction matrix is:

X −1 +2 0 −2 +1

P0 0 0 −1 +1 +1

P1 0 0 +1 −1 −1

(1)

Writing ODE’s.
Once we have the interaction matrix, writing the set of ODE’s is very simple.

We associate an equation to each row of the matrix, expressing the variation of the
corresponding variable. The equation for a variable Y is the following (k indicates
the number of columns in the matrix):

Ẏ =
k∑

j=1

(
I(Y, j) · guardj(X1, . . . , Xn) · ratej(X1, . . . , Xn) · exitj

)
(2)

For instance, the set of ODE’s associated to the agent of our example is
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ẋ = P0 − P1

Ṗ0 = − 1
X2+1

P0 + 2P1

Ṗ1 = 1
X2+1

P0 − 2P1

3.1 ODE’s for Biochemical sCCP Agents

In Table 1 we have presented part of the library of sCCP agents describing the main
biochemical reactions. Each agent in that list corresponds to a reaction having a spe-
cific kinetics. We considered here only mass action kinetics and Michaelis-Menten
kinetics, theories usually presented by means of differential equations [10]. In this
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section we show that if we apply the translation just defined to these agents, we
obtain exactly the differential equations corresponding to their kinetics. Therefore,
we can say that our translation preserves the rate semantics, in the sense of [9]. This
result is presented here for the sCCP-encoding of one single reaction; extending it to
a set of reactions is simply achieved exploiting compositionality, see [3] for further
details.

Mass action kinetics.
Consider the sCCP encoding (Table 1) of a biochemical reaction with mass

action kinetics, indicated by the arrow X1 + . . . + Xn →k Y1 + . . . + Ym. First of
all, note that the expression of the rate function allows us to remove the condition
in the ask guard. In fact, whenever one of the Xi variables is zero, the function
rMA is also zero, hence the term in the ODE will give no contribution. The reduced
transition system for the agent reactionk,X1,...,Xn,Y1,...,Ym is the following

Applying the translation method defined, we obtain the following set of ODE:

Ẋ1 = −kX1 · · ·Xn Ẏ1 = kX1 · · ·Xn

...
... Ṗ = 0

Ẋn = −kX1 · · ·Xn Ẏm = kX1 · · ·Xn

This is exactly the form of Mass Action ODE for this reaction: its speed is
proportional to the concentration of the reagents, via the constant k.

Michaelis-Menten kinetics.
Let’s consider a reaction based on Michaelis-Menten kinetics, represented in

Table 1 by the chemical arrow X �→E
K,V0

Y .
To generate the corresponding set of ODE’s, we first have to build its reduced

transition system, having the form:

Note that also in this case we dropped the guard condition in the ask instruction,
as the form of the rate function subsumes it. Building the interaction matrix, we can
derive the corresponding set of ODE, taking the desired form of classic Michaelis-
Menten equation [10]:

Ẏ = VmaxX
K+X Ẋ = −VmaxX

K+X Ṗ = 0
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4 Ordinary Differential Equations to sCCP

In this section we define a transformation that associates an sCCP process to a
generic set of ordinary differential equation. Then, we show that the transformation
behaves well, in the sense that the set of ODE associated to the derived sCCP agent,
using the method of the previous section, is exactly the initial set of ODE. Finally,
we give an example.

Consider a system of first order ODE with n variables X1, . . . , Xn; we write it
separating positive and negative addends in each equation:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ẋ1 =
∑h1

j=1 f1j(X1, . . . , Xn) − ∑k1
j=1 g1j(X1, . . . , Xn)

...

Ẋn =
∑h1

j=1 f1j(X1, . . . , Xn) − ∑k1
j=1 g1j(X1, . . . , Xn)

(3)

In order to keep the presentation simple, we impose that fij(X1, . . . , Xn) ≥ 0
and gij(X1, . . . , Xn) ≥ 0. 4 The translation to sCCP simply proceeds associating an
agent to each differential equation of (3), defined by

manXi :- ∑hi
j=1 tellfij(X1,...,Xn)(Xi = Xi + δ).manXi

+
∑hi

j=1 tellgij(X1,...,Xn)(Xi = Xi − δ).manXi

Here δ denotes the unitary basic increment. Notably, if we apply the transfor-
mation defined in the previous section, associating a set of ODE to our sCCP agent,
we can easily see that we obtain exactly the initial set of ODE. Before showing this
in more detail, we want to spend some words on the functional rates. This is a
feature different from common process algebras, where rates are real numbers and
the final speed of an action is determined from this basic rate in a mass action style,
i.e. summing all rates of enabled transitions of a certain type. As a result, the ODE
format that can be generated from these process algebras coincide with the set of
mass action equations, like those of Section 3.1. On the contrary, functional rates
are somehow more expressive, as they allow to encode, at least syntactically, every
possible ODE, without restrictions. Essentially, we are using non-constant rates to
hide the logical interaction mechanism that is usually modeled explicitly in common
process algebras.

To generate a set of ODE from the agents manXi , we have first to obtain their
reduced transition system. It is easy to see that it has the form

4 The definition of the sCCP agents in the general case is straightforward: we simply need to check if the
value of a function, say f is positive or negative and act accordingly, using its absolute value as the rate.
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If we consider the interaction matrix that is derived from these RTS, we observe
that the row corresponding to variable Xi has non-zero entries only relatively to
the transitions of the RTS for manXi , each entry being equal to δ or −δ. The
corresponding ODE therefore is

Ẋi =
hi∑

j=1

δfij(X1, . . . , Xn)Pi −
ki∑

j=1

δgij(X1, . . . , Xn)Pi.(4)

Now, we can perform two simplifications: first, δ is the unitary increment, and we
can set it equal to 1. Secondly, the equation for Pi, the variable denoting the only
state of agent manXi , has equation Ṗi = 0, hence Pi is constant. As we have just
one agent manXi , Pi is equal to one. Therefore, equation (4) boils down to

Ẋi =
hi∑

j=1

fij(X1, . . . , Xn) −
ki∑

j=1

gij(X1, . . . , Xn),(5)

which is exactly the starting equation for Xi.
Note that as basic step in the translation from ODE to sCCP we are using a

generic δ, determining the size of the basic increment or decrement of variables of
the system. In sCCP, we are not forced to use integer variables, but we can let
them vary, for instance, on a grid of rational numbers, where the basic distance can
be set equal to δ. Varying the size of δ, we can calibrate the effect of the stochastic
fluctuations, reducing or increasing it. This is evident in the following example,
where we compare solutions of ODE’s and the simulation of the corresponding
sCCP processes.

Let’s consider the following system of equations, representing a model of the
repressilator, a synthetic genetic network having an oscillatory behavior (see [11]):

Ẋ1 = α1X
−1
3 − β1X

0.5
1 , α1 = 0.2

Ẋ2 = α2X
−1
1 − β2X

0.5
2 , α2 = 0.2

Ẋ3 = α3X
−1
2 − β3X

0.5
3 , α3 = 0.2.

(6)

The values of β are here parameters; their value has a severe impact on the behavior
of the system, that for some values of β oscillates (as expected from repressilator)
while for some other values does not oscillate at all (see Figure 2). The corresponding
sCCP process is

manX1 ‖ manX2 ‖ manX3 ,(7)

where

manX1 : −(tell[α1X−1
3 ](X1 = X1 + δ) + tell[β1X0.5

1 ](X1 = X1 − δ)).manX1

manX2 : −(tell[α2X−1
1 ](X2 = X2 + δ) + tell[β2X0.5

2 ](X2 = X2 − δ)).manX2

manX3 : −(tell[α3X−1
2 ](X3 = X3 + δ) + tell[β3X0.5

3 ](X3 = X3 − δ)).manX3

In Figure 2 we compare numerical solutions of S-Systems and simulations of the
corresponding sCCP process, for different values of β (αs have the value defined
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Fig. 2. Numerical solutions of the system of equations for the repressilator (left column), and the numerical
simulation of the corresponding sCCP program (right column), for β = 0.01 (top) and β = 0.001 (bottom)

in equation (6)) and fixed δ, equal to 0.01. As we can see, not only the general
qualitative behavior is respected, but also the quantitative information about con-
centrations is preserved. Probably, one of the main ingredients guaranteeing this
reproducibility is the fact that variables take values in a finer grid than integers,
meaning that the effect of stochastic fluctuations is less remarkable, as they relative
magnitude is smaller. This is essentially the same as working with a sufficiently high
number of molecules in Gillespie’s algorithm [14,13]. Interestingly, though there is
a strong qualitative accordance between the deterministic and stochastic kinetics,
the graphs differ in the time scale. This can be explained by noting that in (4) δ

plays the role of a scaling factor in the differential equation, resulting in a stretching
of the temporal axis of a factor 1

δ .

5 Future Work and Conclusions

In the paper we focused on the problem of relating stochastic models written with
process algebras and with differential equations. Even though our interest is mainly
in biological systems and examples are drawn from this field, the problem is gen-
eral and these methods can be applied to a broad range of systems, like computer
networks. Here we focused in the definition of translation procedures associating
sets of differential equations to process algebraic models, and stochastic process
algebra programs to differential equations. The process algebra we used is sCCP,
a stochastic version of CCP; some of its features, functional rates above all, play
an important role in this translation procedure. In particular, they enabled us to
define a “well-behaving” translation from general differential equations, in the sense
that applying the (inverse) transformation from sCCP programs we obtain again
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Fig. 3. Stochastic simulation of the Lotka Volterra model in sCCP (solid line) compared with the solution
of associated ODE’s (dotted line), for initial conditions E0 = 20 and C0 = 50. Predators are shown in blue
and preys are shown in red.

our initial equations.
These translation procedures work at the syntactic level and in the paper we

showed that, at least when applied to models of biochemical reactions, they pre-
serve the intended chemical kinetics. Staten otherwise, the models obtained with
this translation procedure are coherent with the notion of chemical kinetics used.
However, there is no theoretical guarantee that the transformed model shows a dy-
namical behavior that is equivalent to the one of the initial model. For instance,
consider the sCCP program for the set of reactions describing a simple population
dynamics, the so-called Lotka-Volterra model (C is the predator and E is the prey),
C →2, E →5 2E and C +E →0.1 2C. The set of ODE obtained with the translation
method defined above are Ċ = 0.1EC − 2C and Ė = 5E − 0.1EC. If we set the
initial conditions of the system to E0 = 20 and C0 = 50, the ODE’s are in equilib-
rium, and their solution is a straight line. Instead, the stochastic system shows no
equilibrium at all: the number of preys and predators oscillates until they both go
extinct, see Figure 3.
In other cases, the ODE’s associated to a sCCP program perfectly capture the be-
havior of the system, see [7] for examples in this sense. However, the Lotka-Volterra
example is one of many where associated ODE fail in doing this: we are far from hav-
ing defined a procedure translating stochastic process algebra programs into ODE’s
in a semantically correct way. We consider this as the main open problem in this re-
search area. Indeed, there are other questions worth considering. First of all, we lack
a reasonable definition of behavioral equivalence between stochastic processes and
differential equations. Considering the average behavior of the stochastic process is
not the best solution, as there are cases where the stochastic model exhibits strong
oscillations, though the average value of the systems does not oscillate at all [3,5].
Therefore, a different approach, aiming at capturing qualitative aspects more than
quantitative information, should be adopted. A direction we are currently investi-
gating is to use formulae written in a suitable temporal logic, expressing qualitative
features of the dynamics, stating two models equivalent whenever they satisfy the
same set of formulae.
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Another open question concerns the characterization of a class of sCCP programs
for which the associated ODE’s works well also from a behavioral viewpoint. For
these systems, the syntactic transformation we have defined is safe. A further inter-
esting point is that of seeing if and where hybrid systems, like hybrid automata [1],
can enter the picture. In fact, while passing to ODE’s we are dropping any form of
non-determinism (which is, instead, present in stochastic systems under the form of
race conditions); hybrid automaton, on the other hand, while having a continuous
time evolution governed by ODE’s, have also discrete states and non-deterministic
transitions among them.
Finally, we need to characterize in a mathematically more precise sense what hap-
pens in the translation from ODE’s to sCCP. Specifically, it would be important
to understand how a variation of the step’s value δ influences the behavior of the
stochastic process w.r.t. the one of the ODE. Our conjecture is that in the limit
of δ → 0, the average of the stochastic behavior coincides with the solution of the
ODE (modulo a suitable time re-scaling), at least if the ODE’s trajectories are not
too sensitive from initial conditions, for the particular initial values chosen.
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