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Abstract

We consider the reachability problem on semi-algebraic hybrid automata. In particular, we deal with the
effective cost that has to be afforded to solve reachability through first-order satisfiability.
The analysis we perform with some existing tools shows that even simple examples cannot be efficiently
solved. We need approximations to reduce the number of variables in our formulae: this is the main source
of time computation growth. We study standard approximation methods based on Taylor polynomials and
ad-hoc strategies to solve the problem and we show their effectiveness on the repressilator case study.
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Introduction

Since their introduction (see, e.g., [5]), hybrid automata have initiated a new tradi-

tion, promising powerful tools for modeling and reasoning about complex engineered

or natural systems (see, e.g., [1,21]).

Intuitively, a hybrid automaton consists of a finite graph, whose nodes are called

locations, together with a set of continuous variables which evolve according to con-

tinuous laws, called dynamics, characterising each discrete location. The continuous

evolution of the hybrid automaton may change from location to location. Moreover,

each location is characterised by an invariant condition which defines the allowed

values for the continuous variables inside the location. Finally, each graph’s edge

is labelled by both an activation condition and a reset map. The edge can be

crossed only if the continuous variables satisfy the activation condition and after

crossing it the continuous variables are set accordingly to the reset map. The double

nature, both discrete and continuous, of hybrid automata make them particularly
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suitable in the modeling of systems exhibiting a mixed behaviour which cannot be

characterised in a proper way using either discrete or continuous formalisms.

In this context, one of the basic problems is the reachability one which requires

to decide whether it is possible to move from a state (a pair consisting of a location

together with a set of values for the continuous variables) to another.

Unfortunately, the flexibility and expressive power of hybrid automata soon lead

to undecidability and complexity results [25] which cast doubts on their suitability

as a general tool that can be algorithmized and efficiently implemented.

In order to control both undecidability and complexity one can either impose

syntactic conditions and concentrate on classes of hybrid automata or define seman-

tic approximation techniques.

In [31] the class of semi-algebraic hybrid automata has been introduced. The

invariants, dynamics, activations, and resets of semi-algebraic automata have to

be first-order formulæ over the theory of (R, 0, 1,+, ∗, <). On the one hand, such

formulæ are decidable [37] and tools such as Qepcad b [13] can be used to manage

them. On the other hand, Taylor polynomials allow to use semi-algebraic formulæ

to approximate with arbitrary precision any smooth function. As a consequence

of the expressive power of semi-algebraic hybrid automata, the undecidability of

the reachability problem for such class can be proved [30]. In particular, in this

case, undecidability is a consequence of the fact that we cannot a-priori bound the

number of edges we need to cross. Hence, we can see “the glass half full” saying

that bounded (w.r.t. edge crossing) reachability is computable. Unfortunately, as

noticed in [29] such computation results to be too time/space consuming due to the

high computational complexity of semi-algebraic decomposition.

In this paper we start from the considerations presented in [29] concerning the ef-

fectiveness of bounded reachability computation on semi-algebraic hybrid automata

and we show on some examples which kind of approximations are necessary to keep

complexity under control. As done in [29] we may distinguish space and time dis-

cretizations in our work. As far as space discretizations are concerned, instead of

implementing an ad-hoc algorithm, we try to exploit tools which allow approximate

computations over the reals such as RSolver [33] and ECLiPSe [7]. Unfortunately,

this is not enough: space approximations which separate the continuous variables

are necessary. We notice that time discretization and Taylor polynomials are essen-

tial ingredients in our approach.

The paper is organized as follows. In Section 1 we quickly overview the state of

the art. Some basic notions about semi-algebraic hybrid automata and reachability

find place in Section 2, while Section 3 is the core part of our work. In Section 4

we apply our analysis to the Repressilator case study. Some conclusions are drawn

in Section 5.

1 Related Works

As mentioned in the introduction, we can control undecidability and complexity

on hybrid automata in two ways: imposing syntactic constraints which limit the

expressive power or introducing semantic approximation techniques.

In [2] Alur et al. introduced multirate automata as an extensions of timed au-
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tomata [4]. Such hybrid automata are characterised by resets which are either

identity or constant function zero. Moreover, their continuous variables evolve like

clocks with rational rates. In the same work it has been proved that the reachability

problem over multirate automata is not decidable in general. However, imposing

a restriction on dynamics called simplicity condition, decidability for reachability

problem and finite bisimulation are proved. Puri and Varaiya in [32] introduced

rectangular hybrid automata whose dynamics can be characterised by a differen-

tial inclusion. They showed that, under a condition called initialized condition,

reachability can be decided. Lafferriere, Pappas and Sastry introduced o-minimal

hybrid automata in [27]. Such class of hybrid automata guarantee finite bisimula-

tion quotient imposing both constant reset condition to all the edges and a unique

o-minimal dynamic from each state. In [14] it has been proved that reachability is

still decidable on semi-algebraic o-minimal automata when the conditions on the

dynamics are relaxed allowing many possible continuous evolutions. Unfortunately,

all the above mentioned classes have restrictions on both dynamics and resets and

thus they are not suitable to verify properties of many interesting hybrid systems.

As far as approximation techniques are concerned, in [23] Halbwachs et al. sug-

gested convex approximations as a way to verify linear hybrid systems, Dang and

Maler proposed to verify hybrid automaton properties via face lifting in [17], Chuti-

nan and Krogh showed in [15] how evolutions of polyhedral-invariant hybrid au-

tomata can be approximated using polyhedra, Asarin et al. gave in [9] a technique to

approximate reachability analysis of piecewise-linear dynamical systems, Kurzhan-

ski and Varaiya introduced ellipsoidal techniques in [26], Alur et al. proposed in [3]

predicate abstraction as a technique to perform reachability analysis. Many tools,

based on such techniques, have been developed in the last years. In particular, we

can recall HyTech [24], d/dt [8], Checkmate [35], UPPAAL [11], and KRONOS [18].

Unfortunately, all these approximation methods and tools are again defined on re-

stricted classes of hybrid automata. Such classes are clearly larger than the classes

on which decidability has been proved. However, it is still necessary to check that

the model satisfies all the required conditions before the method can be applied.

Semi-algebraic hybrid automata introduced in [31] intrinsically combine syntac-

tic restrictions and semantics approximations. On the one hand Taylor polynomials

can be used to approximate a large class of hybrid automata with semi-algebraic

ones. In [28] Lanotte and Tini proposed an approximation technique for hybrid

automata that exploits Taylor polynomials to obtain from an hybrid automaton H

a polynomial hybrid automaton H ′ that over-approximate H. On the other hand,

cylindrical algebraic decomposition (CAD) algorithms (see, e.g., [16,22,34,10]) can

be used to reason on semi-algebraic hybrid automata. Such considerations are also

at the basis of the abstractions and analysis techniques presented in [21].

The tool Qepcad b [13] efficiently implements Collins’ CAD-based algorithm [16]

for quantifier elimination, transforming any given first-order semi-algebraic formula

into an equivalent quantifier-free one and it can easily become the engine of a

step-by-step reachability algorithm for semi-algebraic automata. Unfortunately,

the computational cost is still too high. Qepcad b is not the only tool which can

be used to manage constraints over the reals. In particular, we recall: RSolver

[33], a program for solving quantified inequality constraints over the reals based on
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a branch-and-prune algorithm; ECLiPSe [7], a software system for the development

and deployment of constraint programming applications that contains a general in-

terval propagation solver which can be used to solve problems over both integer

and real variables; Redlog [19], a package that extends the computer algebra sys-

tem reduce to a system that provides algorithms for the symbolic manipulation

of first-order formulæ with some syntactic restrictions on the quantified variables;

clp(rl) [36], a constraint solving system, implemented on top the computer logic

system Redlog, where the admissible constraints are arbitrary first-order formulæ.

2 Reachability in Semi-Algebraic Hybrid Automata

In this section we introduce the standard syntax and semantics of hybrid automata

and describe the reachability problem on semi-algebraic hybrid automata.

We start with some notations and conventions we use on hybrid automata.

Capital letters Z1, Z2,. . . , Zm, Z ′1,. . . , Z ′m,. . . , denote variables ranging over R.

Analogously, Z denotes the vector of variables 〈Z1, . . . , Zd〉 and Z ′ denotes the

vector 〈Z ′1, . . . , Z ′d〉. The temporal variables T, T ′, T ′′, . . . model time and range

over R≥0. We use the small letters p, q, r, s, . . . to denote d-dimensional vectors

of real numbers. Occasionally, we may use the notation ϕ[X1, . . . , Xm] to stress

the fact that the set of free variables of the first-order formula ϕ is included in the

set of variables {X1, . . ., Xm}. By extension, if {Z1, . . ., Zn} is a set of variable

vectors, ϕ[Z1, . . ., Zn] indicates that the free variables of ϕ are included in the set

of components of Z1, . . ., Zn. Moreover, given a formula ϕ[Z1, . . ., Zi, . . ., Zn] and

a vector p of the same dimension as the variable vector Zi, the formula obtained

by component-wise substitution of Zi with p is denoted by ϕ[Z1, . . ., Zi−1, p, Zi+1,

. . ., Zn]. When in ϕ the only free variables are the components of Zi, after the

substitution we can determine the truth value of ϕ[p].

Hybrid automata have a mixed discrete and continuous behaviour. The discrete

component is represented by a graph, while the continuous one is given as a set

of continuous variables. For each node of the discrete graph we have an invariant

condition and a dynamic law over the continuous variables. The dynamic law may

depend on the initial conditions, i.e., on the values of the continuous variables at

the beginning of the evolution in the state. The jumps from one discrete state to

another are regulated by activation and reset conditions on the continuous variables.

Definition 2.1 [Hybrid Automata - Syntax] A hybrid automaton H = (Z , Z ′, V,

E, Inv , Dyn, Act , Res) of dimension d consists of the following components:

(i) Z = 〈Z1, . . ., Zd〉 and Z ′ = 〈Z1
′, . . ., Zd

′〉 are two vectors of variables ranging

over the reals R;

(ii) 〈V, E〉 is a graph. Each element of V will be dubbed location.

(iii) Each vertex v ∈ V is labeled by the formulæInv(v)[Z] and Dyn(v)[Z,Z ′, T ] ≡
Z ′ = fv(Z, T ), where fv : Rd × R≥0 −→ Rd;

(iv) Each edge e ∈ E is labeled by the two formulæ Act(e)[Z ] and Res(e)[Z,Z ′].

The semantics of hybrid automata regulates the time evolution of the continuous

variables.
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Definition 2.2 [Hybrid Automata - Semantics] A state ` of H is a pair 〈v, r〉, where

v ∈ V is a location and r = 〈r1, . . . , rd〉 ∈ Rd(H) is an assignment of values for the

variables of Z . A state 〈v, r〉 is said to be admissible if Inv(v)[r] is true.

The continuous reachability transition relation
t−→C , with t > 0 is the transition

elapsed time, between admissible states is defined as follows:

〈v, r〉 t−→C 〈v, s〉 iff it holds that s = fv(r, t), and for each t′ ∈ [0, t] the formula

Inv(v)[fv(r, t′)] is true.

The discrete reachability transition relation
e−→D between admissible states is

defined as follows:

〈v, r〉 e−→D 〈u, s〉 iff both Act(e)[r] and Res(e)[r, s] are true.

We use the notation ` → `′ to denote that either `
t−→C `′ or `

e−→D `′, for some

t ∈ R≥0, e ∈ E.

A trace is a sequence of continuous and discrete transitions. A point s is reach-

able from a point r if there is a trace starting from r and ending in s.

Definition 2.3 [Hybrid Automata - Reachability] A trace of H is a sequence of

admissible states [`0, `1, . . . , `i, . . . , `n] such that `i−1 → `i holds for each 1 ≤ i ≤ n.

The automaton H reaches a point s ∈ Rd (in time t) from a point r ∈ Rd if

there exists a trace tr = [`0, . . . , `n] of H such that `0 = 〈v, r〉 and `n = 〈u, s〉, for

some v, u ∈ V (and t is the sum of the continuous transitions elapsed times). In

such a case, we also say that s is reachable from r in H.

A path ph over a graph G is a sequence [v0, . . . , vn] of nodes of G such that for

each 1 ≤ i ≤ n there is an edge from vi−1 to vi. Given a hybrid automaton H and

trace, tr, of H, a corresponding path of tr is a path ph obtained by considering the

discrete transitions occurring in tr.

We are interested in the reachability problem for hybrid automata, namely,

given a hybrid automaton H, an initial set of points I ⊆ Rd, and a final set of

points F ⊆ Rd we wish to decide whether there exists a point in I from which a

point in F is reachable.

An interesting class of hybrid automata is the class of semi-algebraic hybrid

automata [31].

Definition 2.4 [Semi-Algebraic Automata] A hybrid automaton is semi-algebraic

if Dyn(v), Inv(v), Act(e), and Res(e) are formulæ belonging to the first-order theory

of (R, 0, 1,+, ∗, <) [37], also known as the theory of semi-algebraic sets.

Moreover, we say that H is continuous if ∀v ∈ V fv(Z, T ) is continuous on

Rd × R≥0 and fv(r, 0) = r, for each r ∈ Rd.

In the rest of this paper we concentrate on continuous semi-algebraic hybrid

automata, avoiding all the technical problems concerning the existence, uniqueness

and continuity of dynamics (see [14] for more details).

The reachability problem for such class of automata is semi-decidable and it

can be reduced to the satisfiability of a numerable disjunction of formulæ of the

form Reach(ph)[Z,Z ′] [14]. In particular, if H is a semi-algebraic automaton, then

q ∈ Rd is reachable from p ∈ Rd in H through a trace whose corresponding path is

ph if and only if the formula Reach(ph)[p, q] holds. Unfortunately, as proved in [30],
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the reachability problem for semi-algebraic automata remains undecidable even if

we consider computational models over the reals.

Now let us have a closer look at the first-order formulæ involved in the reacha-

bility computation. Inside a discrete location v the following formula expresses that

Z reaches Z ′:

Reach(v)[Z,Z ′] ≡ Inv(v)[Z] ∧ ∃T ≥ 0(Z ′ = fv(Z, T )∧

∀0 ≤ T ′ ≤ T (Inv(v)[fv(Z, T ′)]))

On the other hand, when we cross an edge 〈v, u〉 we have to consider the formula:

Reach(〈v, u〉)[Z,Z ′] ≡ Inv(v)[Z] ∧Act(〈v, u〉)[Z] ∧ Res(〈v, u〉)[Z,Z ′] ∧ Inv(u)[Z ′]

Combining the above formulæ, for each path ph we can easily construct the formula

Reach(ph)[Z,Z ′]. For instance if we have the path ph = [v, u], then:

Reach([v, u])[Z,Z ′] ≡ ∃Z ′′, Z ′′′(Reach(v)[Z,Z ′′] ∧ Reach(〈v, u〉)[Z ′′, Z ′′′]∧

Reach(u)[Z ′′′, Z ′])

Example 2.5 Let H1 = (Z , Z ′, V, E, Inv , Dyn, Act , Res) where:

• Z , Z ′ are variables over R,

• V = {v, u} and E = {e}, where e goes from v to u,

• Inv(v)[Z ] ≡ 1 ≤ Z ≤ 10 and Inv(u)[Z ] ≡ 10 ≤ Z ≤ 20,

• Dyn(v)[Z,Z ′, T ] ≡ Z ′ = Z + (2Z2 + Z )T and

Dyn(u)[Z,Z ′, T ] ≡ Z ′ = Z + (3Z2 + Z )T ,

• Act(e)[Z ] ≡ Z = 10,

• Res(e)[Z,Z ′] ≡ Z ′ = Z .

The formula for the path ph = [v, u] is the following:

Reach([v, u])[Z,Z ′] ≡ ∃Z ′′, Z ′′′
(

Inv(v)[Z ] ∧ ∃T ≥ 0
(
Z ′′ = Z + (2Z2 + Z )T∧

∀0 ≤ T ′ ≤ T (Inv(v)[Z + (2Z2 + Z )T ′])
)
∧

Inv(v)[Z ′′] ∧Act(e)[Z ′′] ∧ Res(e)[Z ′′, Z ′′′] ∧ Inv(u)[Z ′′′]∧

∃T ′′ ≥ 0
(
Z ′ = Z ′′′ + (3Z ′′′2 + Z ′′′)T ′′∧

∀0 ≤ T ′′′ ≤ T ′′(Inv(u)[Z ′′′ + (3Z ′′′2 + Z ′′′)T ′′′])
))

3 Solving the Reachability Problem

In this section we describe some approximation methods for the reachability problem

on semi-algebraic hybrid automata. All the computations have been performed on

a Dual Core AMD OpteronTM Processor 275, 2205.042 MHz with 4 GB RAM,

running CentOS.
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The complexity of the reachability formulæ presented in Section 2 increases with

the length of the discrete path. In particular, we can notice that the degree of the

involved polynomials and the quantifier alternation remains bounded, while the

number of variables linearly increases.

Since the first-order theory of (R, 0, 1,+, ∗, <) admits the quantifier elimination,

we can try to bound the number of variables in each formulæ. When we apply

the quantifier elimination procedure to Reach(ph)[Z,Z ′] we obtain an equivalent

first-order formula φ[Z,Z ′] involving only the variables Z and Z ′. If we now add a

step to the path ph = [v1, . . . , vn], i.e., we consider the path ph′ = [v1, . . . , vn, vn+1],

we only have to apply quantifier elimination to the formula:

∃Z ′′, Z ′′′(φ[Z,Z ′′] ∧ Reach(〈vn, vn+1〉)[Z ′′, Z ′′′] ∧ Reach(vn+1)[Z ′′′, Z ′])

Proceeding in this way, it seems that we can keep under control the complexity of

our method. Unfortunately, if we try to apply it, exploiting Qepcad b to obtain

quantifier free formulæ at each step, we cannot go far enough, as shown by the

following example.

Example 3.1 Consider the following hybrid automaton.

H2 = (Z , Z ′, V, E, Inv , Dyn, Act , Res) where:

• Z = 〈Z1, Z2〉 and Z ′ = 〈Z1
′, Z2

′〉, where Z1, Z2, Z1
′, Z2

′ variables over R,

• V = {v, u} and E = {e}, where e goes from v to u,

• Inv(v)[Z ] ≡ 1 ≤ Z1 ≤ 10 ∧ 1 ≤ Z2 ≤ 10 and

Inv(u)[Z ] ≡ 10 ≤ Z1 ≤ 20 ∧ 10 ≤ Z2 ≤ 20,

• Dyn(v)[Z,Z ′, T ] ≡ Z1
′ = Z1 + (2Z2

1 + Z1)T ∧ Z2
′ = Z2 + (2Z2

2 + Z2)T and

Dyn(u)[Z,Z ′, T ] ≡ Z1
′ = Z1 + (3Z2

1 + Z1)T ∧ Z2
′ = Z2 + (3Z2

2 + Z2)T ,

• Act(e)[Z ] ≡ Z1 = 10 ∧ Z2 = 10,

• Res(e)[Z,Z ′] ≡ Z1
′ = Z1 ∧ Z2

′ = Z2.

Suppose we want to apply the method described above with ph = [v, u]. First,

we use Qepcad b to compute a quantifier free formula φ[Z,Z ′] equivalent to the

formula Reach(v)[Z,Z ′]. Then we construct the formula:

∃Z ′′, Z ′′′(φ[Z,Z ′′] ∧ Reach(〈v, u〉)[Z ′′, Z ′′′] ∧ Reach(u)[Z ′′′, Z ′])

When we try to compute an equivalent quantifier free formula with Qepcad b we

find out that we cannot obtain any result within 20 minutes of CPU time.

Using this method we are able to limit the number of variables in our formulæ,

but we have an increasing number of polynomials and constraints in the computed

quantifier free formulæ. This is one of the problems of this method, since the com-

plexity of the new constructed formulæ strongly depends on the number of poly-

nomials and constraints occurring in computed quantifier free formulæ. Another

problem of the method is that Qepcad b could not give any result in reasonable

time when used on formulæ of the form Reach(v)[Z,Z ′], i.e., the reachability prob-

lem inside a location could be already too complex.

At this point the only possibility we have is that of introducing approximations.
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A first approximated approach to the reachability problem consists in the applica-

tion of the above method exploiting RSolver instead of Qepcad b. Acting in this

way we hope to solve both the problems mentioned in Example 3.1. Unfortunately,

this approach is less effective than the previous one.

Example 3.2 Consider the hybrid automaton H2 of example 3.1. RSolver on

the formula Reach(v)[Z,Z ′] gives the following result:

True, volume ~[ 0., 0.]

False, volume ~[ 5905.08179397, 5905.08179397]
...

Unknown:
...

Since the True set is empty we do not know which values of Z and Z ′ satisfy

the formula Reach(v)[Z,Z ′] and we cannot procede with the next step.

The results obtained with RSolver on formulæ of the form Reach(v)[Z,Z ′] are

too approximated for being used. However, we can use it to try to solve the problem

related to the number of polynomials and constraints appearing in computed quan-

tifier free formulæ. To do this we apply the previous method exploiting Qepcad b

with the add of an intermediate step that involves the use of RSolver.

More precisely, consider the path ph′ = [v1, . . . , vn, vn+1] and suppose we have

already computed a quantifier free formula φ[Z,Z ′] equivalent to Reach(ph)[Z,Z ′],

where ph = [v1, . . . , vn]. Using RSolver we compute an approximation of the set

of values for Z and Z ′ that satisfy φ[Z,Z ′], then we construct a first-order formula

γ[Z,Z ′] defining such approximation. Finally, we apply the quantifier elimination

procedure to the formula:

∃Z ′′, Z ′′′(γ[Z,Z ′′] ∧ Reach(〈vn, vn+1〉)[Z ′′, Z ′′′] ∧ Reach(vn+1)[Z ′′′, Z ′])

It is still not enough, as shown by the following example.

Example 3.3 Consider again the hybrid automaton H2 of Example 3.1. Let

φ[Z,Z ′] be the quantifier free formula equivalent to Reach(v)[Z,Z ′] computed by

Qepcad b. RSolver on the formula φ[Z,Z ′] gives the following result:

True, volume ~[ 0., 0.]

False, volume ~[ 5904.9114008, 5904.91140081]
...

Unknown:
...

As in Example 3.2 we obtain an empty True set and we cannot procede with

the next step.

Another approximated approach that we can consider consists in the application

of this last described method using ECLiPSe instead of RSolver to compute the

set of values that satisfy a quantifier free formula obtained with Qepcad b.

Given a quantifier free formula we can define a constraint satisfaction problem

with constraint on reals that can be solved by ECLiPSe through constraint propa-

gation and search techniques. An answer to a problem on reals is called conditional
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solution. The number of conditional solutions returned vary according to the level

of precision in the search procedure. For instance, given the problem defined from

the formula φ[Z,Z ′] of Example 3.3 and using the predicate locate/2 with final

precision 1.0 ECLiPSe returns 51 answers, if we reduce the final precision to 0.1 we

obtain more than 102 answers. Even if we find a way to use the values computed

by ECLiPSe to construct the formula for the successive step, the method would not

be effective, because we still have the problem that Qepcad b could not give any

result when used on formulæ of the form Reach(v)[Z,Z ′].

All the above discussed methods share one problem: the high cost in terms

of computation time that has to be afforded to compute a quantifier free formula

from a formula of the form Reach(v)[Z,Z ′] using Qepcad b. We have to find an

approximation strategy to solve this problem in order to obtain an effective method

to compute approximated solutions for the reachability problem.

To achieve this goal we studied a method to over-approximated the set of values

reachable inside a discrete location of an automaton with independent dynamics.

Definition 3.4 [Hybrid Automata with Independent Dynamics] LeH be a continu-

ous semi-algebraic hybrid automaton, let Z = 〈Z1, . . . , Zd〉 and Z ′ = 〈Z1
′, . . . , Zd

′〉.
H has independent dynamics if ∀v ∈ V the formula Dyn(v)[Z,Z ′, T ] is of the form:

Z1
′ = fv,1(Z1, T ) ∧ Z2

′ = fv,2(Z2, T ) ∧ . . . ∧ Zd
′ = fv,d(Zd, T )

Example 3.5 The automaton H2 of Example 3.1 is a continuous semi-algebraic

hybrid automaton with independent dynamics.

Given a discrete location v of an automaton with independent dynamics, we

over-approximate the set of values Z ′ that can be reached inside v after time δ from

values Z satisfying Inv(v)[Z ] applying the quantifier elimination procedure to the

following formula

ReachApprox(v)[Z ′] ≡ ∃Z (Inv(v)[Z ] ∧ Z ′ = fv(Z, δ) ∧ Inv(v)[Z ′])

This is an over-approximation of the sets of points reachable at time δ, since we did

not check that at each time T ′ between 0 and δ the invariant is satisfied by fv(Z, T ′).

Notice also that we can replace the condition Inv(v)[Z ] with a stronger one if we

are interested in a subset of starting points. Using this formula many times we

can compute an over-approximation of all the values Z ′ that can be reached with

δ-time steps from values Z satisfying Inv(v)[Z ]. After each step of duration δ we

can consider the following formula to check if the edge 〈v, u〉 can be crossed:

ReachApprox(〈v, u〉)[Z ′] ≡ ∃Z (φ[Z ] ∧Act(〈v, u〉)[Z]∧

Res(〈v, u〉)[Z,Z ′] ∧ Inv(u)[Z ′])

where φ[Z ′] is a quantifier free formula equivalent to ReachApprox(v)[Z ′]. We apply

the quantifier elimination procedure to this formula. If it results to be false, we

increase the value of δ to compute another quantifier free formula φ[Z ′]. Otherwise,

we obtain a quantifier free formula ψ[Z ′] and we can move to the discrete location

9
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u where we can apply this procedure considering the formula:

ReachApprox(u)[Z ′] ≡ ∃Z (ψ[Z ] ∧ Z ′ = fu(Z, δ) ∧ Inv(u)[Z ′])

Proceeding in this way we can keep under control the complexity of our formulæ,

avoiding increases in the number of variables and polynomials. Exploiting Qepcad

b to apply this method on the automaton H2 of Example 3.1 we can prove that the

discrete location u can be reached from v. The result is obtained in 30 milliseconds.

Using this method we are able to find approximated solutions for the reachabil-

ity problem also on automata with independent dynamics with more continuous

variables and more complex formulæ than the ones occurring in H2.

The method can be applied also to automata with non-independent dynamics,

but it does not help us, as shown by the following example.

Example 3.6 Consider the following hybrid automaton with non-independent dy-

namics. H3 = (Z , Z ′, V, E, Inv , Dyn, Act , Res) where:

• Z = 〈Z1, Z2〉 and Z ′ = 〈Z1
′, Z2

′〉, where Z1, Z2, Z1
′, Z2

′ variables over R,

• V = {v, u} and E = {e}, where e goes from v to u,

• Inv(v)[Z ] ≡ 1 ≤ Z1 ≤ 10 ∧ 1 ≤ Z2 ≤ 8 and

Inv(u)[Z ] ≡ 8 ≤ Z1 ≤ 50 ∧ 7 ≤ Z2 ≤ 30,

• Dyn(v)[Z,Z ′, T ] ≡ Z1
′ = Z1 + (2Z2

1 + Z1Z2)T ∧ Z2
′ = Z2 + (7Z2

2 + Z2Z1)T and

Dyn(u)[Z,Z ′, T ] ≡ Z1
′ = Z1 + (3Z2

1 + Z1Z2)T ∧ Z2
′ = Z2 + (4Z2

2 + Z2Z1)T ,

• Act(e)[Z ] ≡ Z1 ≥ 8 ∧ Z2 ≥ 7,

• Res(e)[Z,Z ′] ≡ Z1
′ = Z1 ∧ Z2

′ = Z2.

Suppose we want to apply the method to find out if the discrete location u is

reachable from v. First, we have to apply the quantifier elimination procedure to

the formula ReachApprox(v)[Z ′] with a fixed value δ. When we try to do this using

Qepcad b we are not able to obtain any result within 20 minutes of CPU time

because of the presence of non-independent dynamics.

To find approximated solution for the reachability problem on automata with

non-independent dynamics, we have to introduce further approximations in our last

method. Let H be an automaton with non-independent dynamics. We have that

∀v ∈ V the formula Dyn(v)[Z,Z ′, T ] is of the form:

Z1
′ = fv,1(Z, T ) ∧ Z2

′ = fv,2(Z, T ) ∧ . . . ∧ Zd
′ = fv,d(Z, T )

Given the formula ReachApprox(v)[Z ′] and δ > 0, we compute ∀ = 1, . . . , d the

minimum value (mini(v)) and the maximum value (maxi(v)) that the function

fv,i(Z, δ) assume in the set defined by the formula Inv(v)[Z ]. In order to determine

an approximation of the values Z ′ that can be reached after time δ from values Z

satisfying Inv(v)[Z ], we evaluate the following formula:∧
i=1,...,d

mini(v) ≤ Zi
′ ≤ maxi(v) ∧ Inv(v)[Z ′]

10



Campagna and Piazza

If, in the previous method, we use this procedure instead of the quantifier elimination

procedure to obtain a formula φ[Z ′] from formula ReachApprox(v)[Z ′], we have a

new method that can find approximated solution to the reachability problem even

in presence of non-independent dynamics.

Example 3.7 Consider the hybrid automaton of Example 3.6. Suppose we want

to apply the approximated method described above exploiting Qepcad b to find

out if the discrete location u can be reached from v. First, we compute a formula

φ[Z ′] using the procedure based on the calculus of minimum and maximum of

each function in Dyn(v)[Z,Z ′, T ] described above. Then we apply the quantifier

elimination procedure to the formula:

∃Z (φ[Z ] ∧Act(〈v, u〉)[Z] ∧ Res(〈v, u〉)[Z,Z ′] ∧ Inv(u)[Z ′])

We obtain a quantifier free formula representing the values for Z1
′ and Z2

′ in the

discrete location u that can be reached starting from v. We succeed in proving the

desired property (result obtained in 55 milliseconds).

We notice that solutions computed with this method are neither over nor under

approximations.

Exploiting this last method together with Qepcad b, we could not be able to

obtain results on some automata. In particular, on automata whose dynamics are

either very complex or not representable in Qepcad b, e.g., functions where non

integer or negative exponents appear. We can solve this problem introducing a

further approximation to our method.

Consider a formula Dyn(v)[Z,Z ′, T ] ≡
∧

i=1,...,d Z
′
i = fv,i(Z, T ). Instead of com-

puting the maximum and the minimum of fv,i(Z, δ) in the set defined by the formula

Inv(v)[Z ], we can compute the maximum and the minimum of the linearization of

fv,i that is the Taylor polynomial of degree one:

Z ′i(δ) = fv,i(Z(0), 0) +
dfv,i
dT

(Z(0), 0)δ +R

where R is the reminder term. In order to compute the maximum and the minimum

at time δj (where δ0 = δ and δj > δj−1) we consider the following expression:

Z ′(δj) = Z ′(δj−1) +
dfv,i
dT

(Z(0), δj−1)δj +R

Notice that the derivative dfv,i/dT has not to be computed for every time interval.

Once computed we can obtain a function that can be used to calculate the values

of the derivative for all the different δj .

4 The Repressilator Case Study

As a simple yet very interesting example, we consider the Repressilator system

constructed by Elowitz and Leibler [20]. It consists of three proteins, namely lacI,
tetR, and cI, and the corresponding genes. The protein lacI represses the gene which

expresses tetR, tetR represses the gene which expresses cI, whereas cI represses the
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gene which expresses lacI, thus completing a feedback system. The dynamics of

the network depend on the transcription rates, translation rates, and decay rates.

Depending on the values of these rates the system might converge to a stable limit

circle or become unstable.

We apply our method to compare the behaviour of two oscillating models pro-

posed for the Repressilator.

First, we consider the hybrid automaton proposed in [12] to model the Repres-

silator. This hybrid automaton has 8 discrete locations, corresponding to all the

possible combinations of genes being either on or off, and 9 variables. Three of

them, A, B, C, represent the quantity of proteins in the system, the other six,

YX,on, YX,off, where X ∈ {A,B,C}, control activation and deactivation of genes.

For each discrete location v, Inv(v) ≡ true.
The differential equations governing proteins concentrations in each discrete lo-

cation are decoupled: for instance, when gene A is on its dynamics is Ȧ = kp−kdA,

where kp and kd are costant parameters of the system.

The interactions between repressors and genes are confined to the activation

conditions of the automaton transitions. Consider again gene A and suppose to

be in a discrete location of the automaton where it is on. Then, the differential

equation for ẎA,off is ẎA,off = kbC, the transition switching this gene off has an

activation condition equal to YA,off ≥ 1 ∧ C ≥ 1 and a reset condition equal to

YA,on = 0∧YA,off = 0. The transition that turns gene A on, instead, has a constant

rate ku, hence its activation condition is YA,on ≥ 1, ẎA,on = ku is the differential

equation for ẎA,on and the reset condition is equal to YA,on = 0 ∧ YA,off = 0, where

kb and ku are costant parameters of the system.

In order to obtain a continuous semi-algebraic automaton from this hybrid au-

tomaton, we have only to define for each discrete location v a formula Dyn(v)

satisfying the conditions of Definition 2.4. To this aim we approximate the solu-

tions of the differential equations in each discrete location with the corresponding

Taylor polynomial of degree two. Consider, for instance, the differential equations

for A, YA,off, and YA,on in a discrete location where gene A is on, we approximate

their solution with the following polynomials:

A′ = A+ (kp − kdA)T + (−kdkp + k2
dA)T 2/2

Y ′A,off = YA,off + (kbC)T + (−kbkdC)T 2/2 if geneC is off

Y ′A,off = YA,off + (kbC)T + (kbkp − kbkdC)T 2/2 if geneC is on

Y ′A,on = YA,on + kuT

The solution of the differential equation for A in a discrete location where the gene

A is off is approximated with the following polynomial:

A′ = A+ (−kdA)T + (k2
dA)T 2/2

The automaton we obtain has non-independent dynamics (see, e.g., the equation

for Y ′A,off), hence we analyse it using the approximated method based on the com-

putation of minimum and maximum values of the functions defining the dynamics.
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Starting from the discrete location where only gene A is active and with fixed values

for proteins concentrations we succeed in simulating the automaton and observe an

oscillatory behaviour (Fig. 1).

Fig. 1. Time trace of the hybrid automata with 8 discrete locations. Parameters are kp = 1, kd = 0.01,
kb = 1, ku = 0.01.

The second hybrid automata we consider is the one that can be constructed

from the following model for the repressilator written in the S-System equations

formalism [38] (see [6])

Ẋ1 = α1X
−1
3 − β1X

0.5
1 , α1 = 0.2, β1 = 1,

Ẋ2 = α2X
−1
1 − β2X

0.578151
2 , α2 = 0.2, β2 = 1,

Ẋ3 = α3X
−1
2 − β3X

0.5
3 , α3 = 0.2, β3 = 1.

From this model we obtain an hybrid automaton with only one discrete location, no

transitions and three variables, X1, X2, X3, representing proteins concentrations.

For the unique discrete location v we have Inv(v) ≡ true, the dynamics in v are

defined by the differential equations of the S-System model.

As in the previous case, to obtain a continuous semi-algebraic automaton we

approximate the solutions of the differential equations in the discrete location with

the corresponding Taylor polynomial of degree two. Consider for instance the differ-

ential equation for X1, we approximate its solution with the following polynomial:

X ′1 = X1+(0.2X−1
3 −X

0.5
1 )T+(−0.04X−2

3 X−1
2 +0.2X−1.5

3 −0.1X−0.5
1 X−1

3 +0.5)T 2/2

The automaton we obtain has non-independent dynamics with real exponents, hence

we analyse it using the approximated method based on the computation of minimum

and maximum values of the linearization of the functions defining the dynamics. We

succeed in the simulation of the automaton, but we do not obtain any interesting

result.

The analysis of the two models shows that the one obtained from the S-System

does not permit to observe the oscillatory behaviour of the repressilator, this because

of the approximations introduced for simulation. The other model, instead, results

to be less sensitive to approximation and simulating it we can observe the oscillations
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in proteins concentrations. This points out that in order to define robust models

for biological systems it is important to distinguish from the beginning the discrete

from the continuous parts of the systems. Hybrid automata allow to do this and

hence to obtain simpler dynamics in each discrete location. Such dynamics are less

sensible to the approximations which are necessary to carry out formal analysis.

5 Conclusions

In this paper we presented some experimental results on the reachability problem

in semi-algebraic hybrid automata. Our results suggest that even if we try to

exploit different techniques and powerful tools, we cannot go far enough, without

introducing approximations.

However, it is easy to apply some standard, basic, approximation techniques.

We showed on the repressilator case study that the approximated results are coher-

ent with the expected behaviour, even when we limit our approximations to the first

and second degree, provided that intrinsic discrete nature of the system has been

explicitly modeled. In particular, the approximations on the 8-states automaton

show the oscillations, while this is not the case if we directly apply our method to

the system of differential equations. Intuitively, the system of differential equations

implicitly models the discrete nature of the system exploiting more complex dynam-

ics whose simulation requires more sophisticated techniques. The hybrid automaton

allows to keep the dynamics more simple and more robust to approximations.
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