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Abstract

We compare the hybrid, stochastic, and differential semantics for stochastic Concurrent Constraint Pro-
gramming, focussing on the exhibited behavior of models and their robustness. By investigating in detail
two case studies, a circadian clock model and the Repressilator, we comment on the effect of the intro-
duction of a limited amount of discreteness in the description of biological systems with hybrid automata.
Experimental evidence suggests that discreteness increases robustness of the models.

Keywords: Biological Modeling, Hybrid Systems, Robustness, Discreteness, Stochastic Noise.

1 Introduction

Mathematical modeling of biological networks [16] is dominated by two formalisms:
ordinary differential equations (ODE) and stochastic processes, mainly Continuous
Time Markov Chains (CTMC [22]). Differences are evident: ODEs describe the sys-
tems as continuous and deterministic, while CTMC are discrete and stochastic. An
approach standing somewhere in between consists in modeling biological systems us-
ing Hybrid Automata (HA [14,1]), a formalism having a mixed discrete/continuous
dynamics, or their stochastic counterpart, Stochastic Hybrid Automata (SHA [9]).
As one could expect, there is no a-priori correct formalism to use, but rather this
choice depends on the system under examination and on the properties one is in-
terested to check. Whatever is the choice, however, is important to keep in mind
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that even though CTMC models have firmer physical bases [12], their analysis is
very expensive from a computational point of view.

A further crucial issue in Systems Biology is the language used to describe sys-
tems, which should have features like compositionality and model reusability. Many
Stochastic Process Algebras (SPA) have been applied in systems biology [10,18].
Their semantics is defined classically in terms of CTMC and, more recently, also in
terms of ODEs [15].

In this paper we focus on a particular SPA, namely stochastic Concurrent Con-
straint Programming (sCCP [5]), which has already been applied successfully to
biological modeling [8]. In addition to the standard CTMC-based semantics, sCCP
has also an ODE based semantics [6], as well as a further one based on Hybrid Au-
tomata [7]. These three semantics associate different models to the same system,
with a varying degree of discreteness and continuity. This feature can be exploited
to study the interplay between discrete and continuous dynamics and its drawbacks
on modeling the behavior of the system. As a matter of fact, the relationship be-
tween discreteness and continuity raises several interesting philosophical questions:
Is discreteness an essential property of biological systems? If so, in which cases must
it be maintained as part of the description and when, instead, can it be safely contin-
uously approximated? Does maintaining a level of discreteness increase robustness?
And, finally, what is the role of stochasticity? We believe a better understanding
of these questions can lead to an improvement and a speed-up of the analysis of
models.

The purpose of this paper is to start the investigation of these issues exploiting
the above mentioned three different semantics of sCCP. In particular, we will focus
on two properties of models: one is the exhibited dynamical behavior and the other
is the robustness of the system. More specifically, we will concentrate on systems
that are expected to oscillate in alternating phases. Hence, we will investigate
if oscillations are (qualitatively) preserved when kinetic parameters governing the
dynamics are perturbed.

In the following we will discuss two case studies. The first is the well known
Repressilator [11], a synthetic regulatory network supposed to exhibit an oscillatory
behavior. We will compare the stochastic, differential, and hybrid sCCP models,
performing a robustness analysis of the latter. The second system is a simplified
model of the circadian clock [21]. In particular, we will be concerned with the
effect on the stability of oscillations caused by the introduction of a small degree of
discreteness and stochasticity.

The paper is organized as follows: Section 2 provides some background on sCCP
and hybrid automata. Sections 3 and 4 discuss the Repressilator and the circadian
clock, respectively. Conclusions and future perspectives are the content of Section 5.

2 Basics

In this section we review some concepts that are needed in the following. First we
present sCCP and its mapping to ODEs, then we introduce hybrid automata, and
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Def = ε | Def.Def | p:-M N = p | p ‖ N

π = [g(X) → u(X, X ′)]λ M = π.p | M + M

Table 1
Syntax of (a restricted version of) sCCP. Agents p ∈ Def are defined as simple summations prefixed by

basic actions π. Each of such actions is a guarded update of the form g(X) → u(X, X′), where g(X) is the
guard and u(X, X′) is the update predicate, a conjunction of basic constraints X′ = f(X), replacing the
current value of X with the value of its primed version X′. The stochastic duration of π is given by the

function λ.

finally we describe the hybrid semantics of sCCP.

2.1 Stochastic Concurrent Constraint Programming

Stochastic Concurrent Constraint Programming (sCCP [5]) is a process algebra ex-
tending CCP [20] in which agents interact by exchanging information in the form
of constraints through a shared store. We schematically introduce now a simplified
version of sCCP. The interested reader is referred to [5,8] for further details.
An sCCP program is a tuple N = (Def, N,X, init(X)). Def , defined according
to Table 1, consists of a collection of agents restricted to be sequential (i.e. not
containing any occurrence of the parallel operator ‖). N , instead, is the initial net-
work of the program, a parallel composition of agents of Def (cf. again Table 1).
The store consists only in a finite set of global variables X = {X1, . . . , Xn}, usually
taking integer values. 3 Finally, init(X) is a predicate on X of the form X = x0,
assigning an initial value to each store variable.
The basic actions π each agent can execute are guarded updates of store variables.
Such actions have a stochastic duration, given by an exponentially distributed ran-
dom variable with rate determined by a function λ : X → R

+, depending on the
state of the store. This results in a semantics of the language [5] given in terms of
a Continuous Time Markov Chain (CTMC [22]).

In the following we will make use of a graphical description of sCCP sequential
agents, defined in [6]. Consider the labeled multi-graph whose vertices correspond
bi-univocally to the different agents in Def , and whose edges are labeled by stochas-
tic actions π, connecting p to p′ if and only if p = π.p′ + M . The portion of this
graph reachable from the vertex corresponding to agent p is called the Reduced
Transition System (RTS) of p.

In [8] we showed how to use sCCP to model biological systems. In particular,
we exploited the functional form of rates to encode different chemical kinetics. As
an example, in Table 2 we show the model of a simple genetic regulatory network,
consisting of one gene self-repressing its own expression. We model the gene as

3 Here we consider only stream variables, i.e variables that can change value over time. Formally, they can
be represented as a growing list with an unbounded tail.
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geneon(X) :- [∗ → X ′ = X + 1]kp .geneon(X) + [X ≥ 1 → ∗]kbX .geneoff (X)
geneoff (X) :- [∗ → ∗]ku .geneon(X)

degrade(X) :- [X ≥ 0 → X ′ = X − 1]kdX .degrade(X)

Table 2
Model of a self-repressing genetic network. The model of the gene is essentially a neg-gate, cf. [3] and next
section. In sCCP code, ∗ is a shorthand for true, kp is the production rate of X, kb is the binding rate of

X to the gene, ku is the corresponding unbinding rate, and kd is the degradation rate of π.

a two-state agent (geneon and geneoff ), which can produce a transcript (and the
protein) when is active and can be switched off at a rate proportional to the amount
of its repressor. We also included an agent to account for degradation of the protein.
The RTS of these agents are shown in Figure 1(a).

A fluid-flow approximation [15] of the entire sCCP program can be defined
by treating variables as continuous and describing their time-evolution by means
of ODEs as in [6]. In fact, tarting from a sCCP program N , consider the set
Def of all defined sequential agents and associate a (fresh) continuous variable
to each of them. Such variables, together with all variables X of the store, will be
governed by differential equations. Differential equations can be introduced defining
an interaction matrix I of the sCCP-network. This matrix captures the effect of
each action of a sequential agent (i.e. of each edge in its RTS) on system’s variables:
it has as many rows as system’s variables and as many columns as the edges in the
RTS of all components, each entry I[X, e] storing the net variation on the variable
X caused by the update of edge e. In order to specify the (system of) ODEs, we
simply need to store in a vector r the (functional) rates of each transition (times
the variables associated to the exit state), following the same order used in the
interaction matrix, and compute the product I · r. For the example considered
above, there are three variables: X, G1 (associated to the agent geneon), and G0

(associated to the agent geneoff ).

I =

X

G1

G0

⎛
⎜⎜⎜⎝

1 0 0 −1

0 −1 +1 0

0 +1 −1 0

⎞
⎟⎟⎟⎠ r =

⎛
⎜⎜⎜⎜⎜⎜⎝

kpG1

kbXG1

kuG0

kdX

⎞
⎟⎟⎟⎟⎟⎟⎠

ode :

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ẋ = kpG1 − kdX

Ġ1 = kuG0 − kbXG1

Ġ0 = kbXG1 − kuG0

2.2 Hybrid Automata

Hybrid automata are dynamical systems presenting both discrete and continuous
evolution. Essentially, they are defined using a set of variables evolving contin-
uously in time, subject to instantaneous changes induced by the happening of
discrete control events. When discrete events happen, the automaton enters its
next mode, where the laws governing the flow of continuous variables may change.
The traces of the system are the time traces of the continuous variables. Hy-
brid automata are generally non-deterministic, hence there can be different traces
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starting from the same initial value. Therefore, the simulation of a hybrid au-
tomaton consists in the generation of (a set of) admissible traces. The reader is
referred to [14] for an introductory survey. Formally, a hybrid automaton is a tuple
H = (V,E,X, f low, init, inv, jump, reset), where:

• X = {X1, . . . , Xn} is a finite set of real-valued variables (the time derivative of
Xj is denoted by Ẋj , while the value of Xj after a change of mode is indicated
by X ′

j).
• G = (V,E) is a finite labeled graph, called control graph. Vertices v ∈ V are the

(control) modes, while edges e ∈ E are called (control) switches and model the
happening of a discrete event.

• Each vertex v ∈ V is associated with a set of ordinary differential equations 4 Ẋ =
flow(v) (referred to as the flow conditions). Moreover, init(v) and inv(v) are
two formulae on X specifying the admissible initial conditions and some invariant
conditions that must be true during the continuous evolution of variables in v

(forcing a change of mode to happen when violated).
• Edges e ∈ E of the control graph are labeled by jump(e), a formula on X stating

for what values of variables each transition is active (the so called activation re-
gion), and by reset(e), a formula on X∪X′ specifying the change of the variables’
values after the transition has taken place.

2.3 Hybrid Semantics for sCCP

The technique presented at the end of Section 2.1 constructs a system of differential
equations governing the entire network. In order to properly describe the dynamics
of the system, we were forced to introduce new variables, associated to all the states
of sequential agents. A different possibility is that of defining different sets of ODEs,
depending on the state of each agent. This leads directly to hybrid automata. More
specifically, the translation of a sCCP program N = (Def,N,X, init) to a hybrid
automaton proceeds in two phases: first, each sequential component pi of the initial
network N is converted into a hybrid automaton, then these hybrid automata are
”glued” together using a suitable product of automata construction. In the following
we sketch the definition of this hybrid semantics. More details can be found in [7].

The first part of the construction, namely the definition of hybrid automata
associated to sequential components of the network, is more or less direct: the
control graph coincides with the RTS of the component, after removing all looping
edges. Flows, instead, are obtained by localizing the general technique for fluid-flow
approximation to a single state of a sequential component, constructing interaction
matrix and rate vector, using only edges belonging to the RTS looping in that
state, and the variables X of the constraint store. The delicate point in this phase
is the definition of activation conditions on edges, with special care in correctly
capturing the timing of the associated sCCP transitions. Activation conditions are
defined introducing one variable Ye for each edge e, whose purpose is to control time

4 Other form of flow’s specification are possible (differential inclusions, first order formulae, etc.) but sets
of differential equations are sufficient for our purposes here.
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varying rates λ = λ(t). 5 The crucial observation is the fact that every transition,
when isolated from the context, constitute a non-homogeneous Poisson process [19].
Thus, we can define the cumulative rate function

Λ(t) =

t∫
t0

λ(s)ds,

which is a monotone function of t and use the fact, following from the theory of
non-homogeneous Poisson processes, that the number of firings at time t behaves
like a Poisson variable with rate equal to Λ(t). Hence, the average number of firings
of the transition at time t equals Λ(t). Therefore, we may activate the transition
whenever Λ(t) ≥ 1, corresponding to the happening of at least one firing on average.
This condition is expressed in the hybrid automaton as Ye ≥ 1, with the associated
transition variable Ye evolving according to

Ẏe =
dΛ(t)

dt
= λ(X).(1)

The above point is the kernel of the construction: in order to properly define
activation conditions reflecting stochastic behavior in a given interval of time, it
is sufficient to control cumulative rate functions. In addition, guards and resets
associated to edges of the RTS are added also to edges of the HA.

To complete the construction, hybrid automata associated to sequential compo-
nents have to be combined together to form the hybrid automaton H(N ) associated
to the network. The key point is that the same variable of the store must be allowed
to be modified by several agents concurrently. Hence, the product automaton must
superimpose fluxes, adding the right-hand side of the differential equations of each
component for all shared variables. An almost classical product of two hybrid au-
tomata can be carried out (see [14]), with the only difference of a special treatment
of fluxes for variables shared among the factors. Therefore, modes of the automaton
H(N ) are the combination of modes of the sequential components. The variables of
H(N ), instead, are the store variables X of the system, shared by all components,
for which fluxes are added, and the variables involved in the activation conditions
of transitions, which are local within each component. The hybrid automaton for
the simple genetic network of Section 2.1 is shown in Figure 1.

2.3.1 Non-determinism and Stochasticity
The discrete transitions of the hybrid automaton H(N ) associated to an sCCP
network N are, in the simplest case, urgent, meaning that they are executed when-
ever their guard becomes true. As a consequence, H(N ) is deterministic: it has a
unique temporal trace, determined by the initial conditions (assuming that no two
edges can fire at the same time). This rather strong requirement can be relaxed
in two ways. First of all, some form of non-determinism can be introduced in the
activation conditions substituting Ye ≥ 1 with Ye ∈ [μ1, μ2], for an interval [μ1, μ2]

5 Rates depend on store variables, which vary continuously over time. Hence, also rates are time-varying
functions.
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(a) Reduced Transition System (b) Hybrid Automaton

Fig. 1. (bf1(a)) Reduced Transition System for the agents of Table 2. (bf1(b)) Hybrid Automata obtained
from the agents of Table 2. Variables Zb and Zu are associated with the edge from geneon to geneoff and
from geneoff to geneon of the RTS.

containing 1. This approach is discussed in more detail in [7]. Another possibility,
instead, is to keep discrete transitions stochastic, associating to each edge of H(N )
a non-homogeneous exponential distribution, with cumulative distribution function
F (T ≤ t) = 1 − eΛ(t). This distribution can be simulated, using standard Monte
Carlo techniques [22], by drawing an uniform random variable U and solving for t

the equation F (T ≤ t) = U , leading to the condition Ye ≥ − log(U). The math-
ematical framework to study such stochastic systems is that of stochastic hybrid
automata (SHA [9]), although our treatment in this paper will be more informal.

3 Repressilator

The Repressilator [11] is a synthetic genetic regulatory network composed by three
genes expressing three proteins, tetR, λcI, and LacI. These proteins are tran-
scription factors, acting as repressors of their genes in a cyclic fashion, i.e. tetR
represses λcI, λcI represses LacI, and LacI represses tetR. The Repressilator,
which is expected to oscillate, has been extensively studied in literature, especially
in the context of general modeling approaches to genetic networks [4].
In [11], the authors study a mathematical model based on ODE with (cooperative)
Hill dynamics for gene production. Their model has either a stable limit cycle or a
stable stationary point, depending on the value of parameters.
In [4], instead, authors provide a stochastic model, described in π-calculus using
simple building block units, the gene gates. The model is extremely simplified, yet
it exhibits a clear oscillatory pattern. Specifically, in the model the protein pro-
duction is described as a single step action, while repression is modeled by collision
of a single repressor on the promoter region, instead of representing explicitly the
binding/unbinding mechanism. Clearly, this model abstracts away many biologi-
cal details, hence it can provide only a qualitative picture of the system dynamics.
Taking its biological significance for granted, we will encode it in sCCP and study
the relationships among the three different semantics at our disposal. The real bio-
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Neg(X, R) :- [∗ → X′ = X + 1]kp .Neg(X, R) + [R ≥ 1 → ∗]kbR.[∗ → ∗]ku .Neg(X, R)

Degrade(X) :- [X > 0 → X′ = X − 1]kdX .Degrade(X)
Neg(A, C) ‖ Neg(B, A) ‖ Neg(C, B) ‖ Degrade(A) ‖ Degrade(B) ‖ Degrade(C)

Table 3
sCCP code for the Repressilator. We are using three template processes (with template variables X for
the protein and R for the repressor) that are instantiated with the three global stream variables of the
system, namely A, B, C. In the code, kp is the production rate of each gene, kb and ku are the binding

and unbinding rates of the repressor, and kd is the degradation rate of each protein.

logical systems remains in the background: we know that it should oscillate, hence
we will deem good any model of Repressilator showing distinct oscillations. As
a matter of fact, in order to extract also quantitative information, more detailed
models should be considered, explicitly representing a cooperative mechanisms of
binding/unbinding [4,11]. An sCCP formalization of this model of Repressilator is
straightforward [8] and is given in Table 3. The hybrid automaton associated to
one neg-gate, i.e. one gene, is very similar to the one of Figure 1 (the gene agent of
the example of Section 2.1 is indeed a self-repressing neg-gate).
This hybrid model of Repressilator has been first introduced in [7], where it is used

to experimentally justify the definition of the hybrid semantics for sCCP. Actually,
looking at Figure 2, we can see that while the stochastic and the hybrid model
oscillate, the ODEs have a radically different behavior, converging to a stable state.
As a matter of fact, the key difference between the stochastic and hybrid models
on one side and the ODEs on the other is that the dynamics of gene activations
and deactivations is discrete for the former and continuous for the latter. This dis-
creteness is thus essential for the oscillations to exist at the level of detail of this
model.

In this section we will analyze the hybrid model of Repressilator, with partic-
ular attention to robustness of the oscillatory behavior with respect to parameter
changes. We will also compare the hybrid and the stochastic systems, trying to
see if stochasticity increases robustness of the model, or if discreteness of genes is
enough to produce oscillations. We perform this analysis following the suggestions
of [4], where a thorough analysis of the stochastic model has been presented. First
of all, what really matters are the ratios between parameters, hence we can fix one
of them, letting only the other three vary. We choose to fix the production rate kp

(cf caption of Table 3) to the nominal value of 1.0.
Analyzing the robustness for hybrid systems is a challenging task, as the tech-

niques available for ODEs are not applicable due to the discreteness of the dynamics.
In order to get an idea of what happens for Repressilator, we did an extensive ex-
perimental study, simulating the hybrid automaton for different combinations of
parameters and using this information to draw a coarse grained map of the pa-
rameter space. We use urgent transitions, guaranteeing that the dynamics of the
automaton is deterministic, so that a single (accurate) numerical simulation suf-
fices to understand dynamical properties. The results of this analysis are shown in
Figure 3, where we use color maps to describe the presence/absence of oscillations
and their amplitude relative to the maximum value attainable by proteins under
the combination of parameters considered (equal to kp/kd). As we can see, the
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(a) (b)

(c)

Fig. 2. 2(a) Stochastic time trace for the Repressilator system of Table 3. Parameters are kp = 1,
kd = 0.01, kb = 1, ku = 0.01. 2(b) Solution of the differential equations associated to the sCCP program of
Table 3. Parameters are the same as in stochastic simulation. 2(c) Trace of the hybrid automaton model
of Repressilator, using the same parameters as before.

oscillations are present for a wide area of the parameters space. Furthermore, we
can observe how the increase of the binding rate kb stabilizes the behavior of the
system, expanding the region of oscillations. Moreover, oscillations are present more
frequently if ku > kd. These results are in line with the behavior of the stochastic
system, cf. [4].

In order to compare the hybrid and the stochastic models, we consider param-
eter combinations near the boundary of the oscillatory region, comparing the two
systems. What happens is depicted in Figure 4: the hybrid system, when it oscil-
lates, has small and brief oscillations. The corresponding stochastic system, instead,
exhibits a very noisy oscillatory pattern, due to the small amount of molecules into
play. Actually, the low amplitude of oscillations should warn us of a potentially
disruptive effect of noise. However, the fact that the hybrid model oscillates and
that stochastic noise tends to disrupt this behavior tells us that the oscillations are
indeed induced by the discreteness of gene dynamics rather than by an effect of
stochasticity.

The hybrid model of Repressilator we just discussed is symmetric, as all three
genes share the same parameters. If the deterministic model starts from identical
initial conditions (i.e. A0 = B0 = C0), then the automaton has no way to break
this starting symmetry, hence it should not exhibit oscillations with alternating
peaks. This is indeed the case, as Figure 5(a) shows. Nevertheless, a little amount
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Fig. 3. 3(a)–3(d)Presence or absence of oscillations and their magnitude (relative to the maximum ampli-
tude kp/kd) in the ku-kd plane (unbinding rate, degradation rate, resp.), for various values of kb (binding
rate). ku and kd range from 0.001 to 1. The color map assigns light colors to bigger oscillations, thus white
points correspond to full oscillations, while black point denote absence of oscillations.

of non-determinism can be introduced according to Section 2.3.1, and its effect is
to break the initial symmetry, leading the automaton away from the (unstable)
solution of Figure 5(a) into the usual (stable) oscillatory pattern (cf. Figure 5(b)).
In simulating the non-deterministic automaton, we considered an uniform measure
on the set of admissible traces, generating one at random.

The Repressilator can be generalized by considering n instead of 3 genes, still
repressing cyclically [17]. It can be shown, for an ODE model using cooperative
Hill’s equations, that oscillations are possible if and only if n is odd. The same
effect can be observed also for the generalized hybrid Repressilator (results not
shown).

The experimental evidence presented shows that discreteness can have an impor-
tant role in stabilizing the dynamics of a system, hence it cannot always be ignored
safely in the modeling activity.
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(a) CTMC, oscillating (b) HA, oscillating

(c) CTMC, not oscillating (d) HA, not oscillating

Fig. 4. 4(a) Simulation of the stochastic system for kb = 10.0, kd = ku = 0.1. Oscillations are still present,
though extremely noisy. 4(b) Simulation of the hybrid system for kb = 10.0, kd = ku = 0.1. Oscillations
are still present, although with a small absolute amplitude (approximately equal to 10). 4(c) Simulation
of the stochastic system for kb = 0.01, kd = 0.5, and ku = 1.0. The behavior is extremely noisy. 4(d)
Simulation of the hybrid system for kb = 0.01, kd = 0.5, and ku = 1.0. The system does not present an
oscillatory behavior, but fluctuates around a steady state.

(a) Deterministic HA (b) Non-deterministic HA

Fig. 5. 5(a) Simulation of the deterministic hybrid Repressilator, with parameters as in Figure 2 and initial
conditions A0 = B0 = C0 = 0. 5(b) Simulation of the non-deterministic hybrid Repressilator with the
same parameters as above and with activation conditions Ye ∈ [0.9, 1.1].
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4 Circadian Clock

We investigate now the mass-action model of the circadian clock presented in [21],
where the authors show that both the ODE-based model and the stochastic model
exhibit regular oscillations (for suitable parameters’ values). However, the stochastic
model is more robust as if internal noise was exploited by Nature to increase stability
of function (i.e., for a clock, oscillations).

Fig. 6. Biochemical network for the circadian rhythm regulatory system. The figure is taken from [21], like
numerical values of rates. Rates are set as follows: αA = 50, α′

A = 500, αR = 0.01, α′
R = 50, βA = 50,

βR = 5, δMA = 10, δMR = 0.5, δA = 1, δR = 0.2, γA = 1, γR = 1, γC = 2, θA = 50, θR = 100.

The circadian system is schematically depicted in Figure 6. It is a simple ab-
straction of the machinery involved in the regulation of the circadian rhythm of
living beings, a typical mechanism for responding to environmental stimuli, in this
case the periodic change between light and dark. Basically, this system behaves
like a clock, expressing proteins A and R periodically with a stable period. We
stress that the stability of the period is an essential requirement for a circadian
clock model to be realistic.
The system consists of two genes, one expressing an activator protein A, the other
producing a repressor protein R. The transcription and the translation phases are
modeled explicitly. Protein A is an enhancer for both genes, meaning that it reg-
ulates positively their expression. Repressor R, instead, can capture protein A,
forming the complex AR and making A inactive. Proteins A and R are degraded at
a specific rate (see caption of Figure 6 for more details about the numerical values),
but R can be degraded only if it is not in complexed form, while A can be degraded
in any form. Notice that regulation activity of A is modeled by an explicit binding
to the gene, which remains stimulated until A unbinds.

We will focus on two main questions: What is the interplay between discreteness
and stochasticity in the increase of robustness? What are the key interactions that
should be kept discrete/stochastic? In order to tackle these questions, we first en-
code the model in sCCP, turning then to an experimental study of the relationships
among the three semantics at our disposal: stochastic, ODE-based, and hybrid.

The code of the sCCP program modeling the circadian clock [8] is straightfor-
ward: each reaction is associated to a single looping agent (similar to degradation
agents of Section 2.1 and Table 3), while genes are modeled by two-state agents,
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describing explicitly the binding and unbinding of the enhancer. The hybrid au-
tomaton obtained from the sCCP model has 4 states (it is the product of 2 two-state
automata and few one-state automata), corresponding to the possible combinations
of gene states (enhanced or normal).

(a) ODE (b) CTMC

(c) HA

Fig. 7. 7(a) Simulation of ODE-based model of the circadian clock, using parameters of Figure 6. 7(b)
Simulation of the CTMC-based model of the circadian clock. 7(c) Simulation of the HA-based model of
the circadian clock. The small cyan curve indicates a temporal density for the combination of gene states in
which A is in the enhanced state and R is in the normal state. Each point represents the fraction of time in
which genes are in this specific combination, for a 10 seconds long time-window, centered in the considered
instant. The curve is scaled by a factor of 1000.

In Figure 7 we show a comparison of stochastic, ODE, and hybrid models, for
the set of parameters given in [21] (cf. also caption of Figure 6): The behavior is
essentially the same for all three systems.

What are the interactions responsible for oscillations? Looking at the plots of
Figure 6, we can see that a peak of A is followed by a peak of AR and then by a
peak of R. Actually, an increase of the amount of A stimulates the transcription of
both genes A and R. However, the production of A is faster than the production of
R both in the normal and in the excited states. Therefore, for some time, R is not
able to saturate A by complexation, hence A increases. This effect is contrasted by
the much slower degradation of the mRNA of R and of the protein R itself, with
respect to the mRNA of A and the protein A. This makes the concentration of R
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grow so that A becomes present only in the complexed form, thus inhibiting the
enhancing of gene expression. This, in turn, makes R gradually decay, due to its
slow basic production rate. The cycle then starts again.

The previous discussion gives an idea of the complexity of this process, which is
the result of the interaction of many factors. However, one parameter that should
be important for the process is the translation rate of R. Increasing this parameter,
in fact, should decrease both duration and height of the peak of expression of A,
eventually making the oscillations disappear. This intuition is indeed confirmed
in Figures 8(a) and 8(b), where solutions of the ODEs are presented for βR equal
to 12 and 15, respectively. As we can see, the size of A’s peak decreases until it
disappears.

(a) ODE, βR = 12 (b) ODE, βR = 15

(c) HA, βR = 25 (d) HA, βR = 50

Fig. 8. 8(a) Simulation of the ODE-based model of the circadian clock with βR = 12 and all other
parameters as in the caption of Figure 6. 8(b) Simulation of the ODE-based model of the circadian clock
with βR = 15. 8(c) Simulation of the HA-based model of the circadian clock with βR = 25 and all other
parameters as in the caption of Figure 6. 8(d) Simulation of the HA-based model of the circadian clock
with βR = 50.

Now, this is the effect of βR on the system of differential equations, where
the state of the gene is represented by a variable taking values in [0, 1]. We may
wonder whether a discrete description of the gene dynamics will increase or decrease
robustness. Indeed, the oscillatory region is extended, as confirmed by Figures 8(c)
and 9(c), the first showing a plot of the hybrid model for βR = 25, the second
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comparing the stability between different formalisms.
However, the authors in [21] claim that it is internal noise that increases the sta-

bility of oscillations. As a matter of fact, the introduction of stochasticity increases
the interval of βR in which the system oscillates, as can be seen from Figures 9(a)
(showing a stochastic simulation for βR = 50) and 9(c). The question is now to
understand how much stochasticity is necessary: do we need to describe the whole
system as stochastic, or just a few transitions will suffice? In order to answer, we
considered the stochastic hybrid automaton model introduced in Section 2.3.1. The
only stochastic transitions of this automaton are the binding and unbinding of A

to the promoter region of the two genes. Its simulation for βR = 50, presenting an
oscillatory pattern, is shown in Figure 9(b).

(a) CTMC, βR = 50 (b) SHA, βR = 50

0 20 40 60 80 100

ODE

HA

SHA

CTMC

Oscillations with stable period 

Oscillations with unstable period 

(c) Stability w.r.t. βR

Fig. 9. 9(a) Simulation of the CTMC-based model of the circadian clock with βR = 50 and all other
parameters as in the caption of Figure 6. 9(b) Simulation of the SHA-based model of the circadian clock
with βR = 50. 9(c) Stability diagram for βR. The blue bar represents oscillations with stable period.
The red bar, instead, indicates the region of the parameter space with oscillations with variable period.
This region, for SHA and CTMC, extends well beyond 100. It is noteworthy that the region with stable
oscillations essentially coincides for HA, SHA, and CTMC.

The experimental tests presented suggest that discreteness is an important fac-
tor in increasing the robustness of the model. Actually, only a limited amount of
discreteness seems sufficient in this respect, namely the description of genes as two-
state automata.
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As a matter of fact, also stochasticity plays an important role: Treating the bind-
ing and unbinding of the enhancer as discrete and stochastic basically guarantees
the same behavior as the CTMC model. But how does stochasticity influence the
oscillations? Remember that oscillation starts with a peak of the free enhancer A.
This event corresponds to a situation in which gene A is enhanced but gene R is
in its normal state. Specifically, a peak in the amount of A is triggered whenever
this combination of gene states occurs for a sufficiently long time, as confirmed by
the small cyan curves in Figures 7(c), 8(c) representing a sort of “temporal density”
(cf. caption of Figure 7(c)). In the deterministic case, the increase of βR gradually
reduces this density below a critical threshold, under which oscillations disappear.
Fluctuations of the stochastic system, on the other hand, can still bring the density
over the threshold, and trigger an oscillation loop. Notice that, the bigger is βR,
the harder is for fluctuations to make the density overcome this threshold, hence
oscillations have no more a stable period.
Actually, as the diagram of Figure 9(c) shows, the stochastic models have the same
robustness as the deterministic HA if we consider only oscillations with a stable
period. This is another hint on the importance of being (a little bit) discrete.

5 Conclusions

In this paper we analyzed a model of Repressilator and a model of the circadian
clock, using as a key instrument the fact that we have at our disposal one description
language, sCCP, equipped with three different semantics. Thus, we described these
systems in sCCP and studied the hybrid automaton associated to them, comparing
its behavior with the one exhibited by the ODE and the CTMC models. Specifically,
we have seen that the hybrid Repressilator oscillates for a broad range of parameters,
similarly to the stochastic system. Hence, it is a robust model. We have also seen
how the introduction of a controlled amount of non-determinism can overcome some
rigidities connected with the deterministic evolution of the hybrid system.
The circadian clock is also stabilized by the introduction of discreteness. In this
case, however, stochasticity has a further stabilizing role. This effect is depending
on events that, even if inhibited by the deterministic evolution, can be still triggered
in the stochastic system due to its intrinsic variability.

We can then conclude that, at least in the two cases considered, robustness
is increased by the discrete treatment of gene repression or enhancement. All in
all, a small amount of discreteness can guarantee a more precise description (i.e.
qualitatively similar to the CTMC-based model), without increasing too much the
computational cost of simulation with respect to numerical integration of ODE.

From a philosophical point of view, the examples discussed suggest that, in cases
in which the stochastic systems are more robust than their ODE-bases counterpart,
the essential ingredient for robustness is the discreteness of dynamics, rather than
the stochasticity. Testing extensively this hypothesis requires a more refined hybrid
semantics for sCCP. In fact, the hybrid automata associated to sCCP programs
have a rigid degree of discreteness, determined by the logical structure of agents.
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Nevertheless, the mapping from sCCP to HA, however, can be generalized allowing
a variable level of discreteness, letting the user specify what transitions are to be
kept discrete and what transitions are to be approximated continuously. This will
associate to an sCCP program an entire lattice of hybrid automata, differing in the
degree of discreteness. An analysis of such lattice can identify the key discrete
transitions, thus refining the study of robustness presented here. In this direction
we are investigating an approach based on temporal logic. Essentially, we would like
to understand how satisfiability of certain temporal formulae (expressing dynamical
properties of interest) varies in the lattice, connecting patterns of satisfiability with
structural properties of the lattice. As a matter of fact, also stochasticity can be
introduced parametrically, associating to an sCCP program a lattice of SHA.

Our approach has also connections with hybrid simulation algorithms for multi-
scale systems, like [13]. In fact, it is not difficult to describe such algorithms as
simulations of a certain (stochastic) HA associated to the original system. Hence,
they may be described within the generalization of our formal framework in terms
of the lattice of (S)HA. This point of view can possibly provide new insights on
these methods.

Another direction that we wish to further investigate is the description of genetic
networks by hybrid gene gates, i.e. by the hybrid automata associated to gene
gates. An interesting feature of such systems is that the continuous dynamics of
proteins is decoupled: proteins influence each other expression only through discrete
transitions.
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