
24 June 2024

Università degli studi di Udine

Original

A graph-theoretic approach to map conceptual designs to XML schemas

Publisher:

Published
DOI:10.1145/2445583.2445589

Terms of use:

Publisher copyright

(Article begins on next page)

The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Availability:
This version is available http://hdl.handle.net/11390/865357 since 2016-11-29T18:04:17Z

A

A graph-theoretic approach to map conceptual designs to XML
schemas

MASSIMO FRANCESCHET, University of Udine
DONATELLA GUBIANI, University of Udine
ANGELO MONTANARI, University of Udine
CARLA PIAZZA, University of Udine

We propose a mapping from a database conceptual design to a schema for XML that produces highly con-
nected and nested XML structures. We first introduce two alternative definitions of the mapping, one mod-
eling entities as global XML elements and expressing relationships among them in terms of keys and key
references (flat design), the other one encoding relationships by properly including the elements for some en-
tities into the elements for other entities (nest design). Then, we provide a benchmark evaluation of the two
solutions showing that the nest approach, compared to the flat one, leads to improvements in both query and
validation performances. This motivates us to systematically investigate the best way to nest XML struc-
tures. We identify two different nesting solutions: a maximum depth nesting, that keeps low the number of
costly join operations that are necessary to reconstruct information at query time using the mapped schema,
and a maximum density nesting, that minimizes the number of schema constraints used in the mapping of
the conceptual schema, thus reducing the validation overhead. On the one hand, the problem of finding a
maximum depth nesting turns out to be NP-complete and, moreover, it admits no constant ratio approxima-
tion algorithm. On the other hand, we devise a graph-theoretic algorithm, NiduX, that solves the maximum
density problem in linear time. Interestingly, NiduX finds the optimal solution for the harder maximum
depth problem whenever the conceptual design graph is either acyclic or complete. In randomly generated
intermediate cases of the graph topology, we experimentally show that NiduX finds a good approximation of
the optimal solution.

Categories and Subject Descriptors: H.2.1 [Database Management]: Logical Design

General Terms: Conceptual Modeling, Logical Design, XML Schema

Additional Key Words and Phrases: Entity-Relationship model, graph theory, computational complexity

1. INTRODUCTION
In the information age we are living, an increasing share of information is by nature
unpredictable, hierarchical, and hybrid. Unpredictable information defies regular pat-
terns: it is unstructured or, at most, semistructured. Semistructured data has a loose
structure (schema): a core of attributes are shared by all objects, but many individ-
ual variants are possible. Hierarchical information is structured as complex entities
which, recursively, might embed other complex entities. There is no limit to the nest-
ing level of information. Hybrid information mixes both data and text alike.

Many advocated the use of Extensible Markup Language (XML) to represent infor-
mation of this nature. This ignited the development of XML databases to store very
large data in XML format and to retrieve them with universal and efficient query
languages. An XML database is a data persistence software that allows one to store
data in XML format. XML databases can be partitioned into two major classes: XML-
enabled databases, which map XML data to a traditional database (such as a relational
database), and native XML databases, which define a logical model for an XML docu-
ment and store and retrieve documents according to it.

The design of any database follows a consolidated methodology comprising concep-
tual, logical, and physical modeling of the data. This paper is a contribution toward
the development of design methodologies and tools for native XML databases. Specif-
ically, we propose a mapping from conceptual designs to logical schemas for native
XML databases. We adopt the well-known Entity-Relationship (ER) model extended
with specialization (specialization is particularly relevant in the design of semistruc-

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 M. Franceschet et al.

tured data), as the conceptual model for native XML databases, and we opt for W3C
XML Schema Language (XML Schema for short) as the schema language for XML. The
main alternative to XML Schema is Document Type Definition (DTD) language, but
the latter is strictly less expressive than the former. In particular, it lacks expressive
means to specify integrity constraints, which are fundamental in database design.

In general, the same ER conceptual schema can be mapped in different XML
schemas. We take into consideration two alternative ways of mapping ER conceptual
schemas into XML: a flat relational-style design methodology and a nesting approach.
The former never nests (the element for) an entity into (the element for) another entity
(in analogy to relational databases that feature a distinct table for each entity); the lat-
ter nests entities as much as possible. Making use of the well-known XML benchmark
XMark running on both native and XML-enabled databases, we provide an experimen-
tal evaluation and comparison of these two mapping mechanisms over large datasets.
The results of such an experimentation show that both validation and query process-
ing are globally more efficient with nested schemas than with flat ones. This outcome
motivates the theoretical problem of finding the best possible nesting for the design. In
the search for a solution to this problem, we must take into account at least two differ-
ent criteria: highly connected XML schemas minimize the number of schema integrity
constraints, thus reducing the validation overhead, while highly nested XML schemas
reduce the number of expensive join operations that are necessary to reconstruct in-
formation at query time, thus decreasing the query evaluation time.

The main contribution of the paper is an original graph-theoretic approach to the
problems of finding highly connected and highly nested XML schemas corresponding to
entities and relationships of the ER schema. First, we define a conceptual design graph
whose nodes are the conceptual entities of the ER schema and whose edges represent
functional relationships among these entities. Then, given a conceptual design graph,
we study the problems of finding the maximum density spanning forest, that is, the
structure with the highest level of connectedness, which corresponds to the nesting
that optimizes the validation process, and the maximum depth spanning forest, that
is, the structure with the highest level of nesting, which represents the nesting that
optimizes the query evaluation task. It turns out that the maximum depth problem
is computationally hard, while the maximum density problem is tractable. We thus
propose NiduX, an efficient algorithm that solves the maximum density problem in
its generality as well as the maximum depth problem whenever the conceptual design
graph is at two extremes of the graph topology: either acyclic or complete. Moreover,
we show that, on randomly generated graphs lying at intermediate cases with respect
to these extremes, NiduX performs surprisingly well, finding approximated solutions
for the maximum depth problem that are worth, on average, four-fifth of the optimal
solution.

The paper is organized as follows. Section 2 illustrates different ways of mapping
conceptual designs into XML schemas, which are evaluated in Section 3 using a bench-
mark approach. In Section 4 we theoretically investigate the problems of finding the
XML schemas with the highest level of connectedness and with the highest level of
nesting, and we describe the embedding algorithm NiduX. Section 5 evaluates the ef-
fectiveness of NiduX with respect to the hard problem of finding the structure with
the highest nesting level. Related work is extensively discussed in Section 6, while
conclusions are drawn in Section 7.

2. MAPPING CONCEPTUAL DESIGNS TO XML SCHEMAS
As we already pointed out, the XML data model is both hierarchical and semistruc-
tured: XML elements may be simple elements containing character data or they may
nest other child elements, generating a tree-like structure; moreover, elements of the

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A graph-theoretic approach to map conceptual designs to XML schemas A:3

same type may have different structures, e.g., some child elements may be absent or re-
peated an arbitrary number of times. In the XML encoding of the ER conceptual model
we are going to describe, we shall deeply exploit the hierarchical and semistructured
nature of the XML data model.

2.1. XML schema notation
Representing an XML schema in XML Schema requires substantial space and the
reader (and sometimes the developer as well) gets lost in the implementation details.
For this reason, we embed ER schemas into a more succinct XML schema notation
(XSN) whose expressive power lies between DTD and XML Schema1. Moreover, for
the sake of simplicity, all pieces of information are encoded using XML elements and
the use of XML attributes is avoided.

XSN allows one to specify sequences and choices of elements as in DTD. As an exam-
ple, the sequence definition author(name, surname) specifies an element author with
two child elements name and surname; the choice definition contact(phone | email)
specifies that the element contact has exactly one child element which is either phone
or email. The sequence and choice operators can be combined and nested. For instance,
to state that an author can be described either by name, surname, and affiliation
or by id and affiliation, we may use the expression author(((name, surname) | id),
affiliation).

XSN extends DTD with the following three constructs (it can be easily shown that
each of them can be encoded in XML Schema):

— Occurrence constraints. They specify the minimum and maximum number of occur-
rences of an item. The minimum constraint is a natural number; the maximum con-
straint is a natural number or the character N denoting an arbitrarily large natural
number. The notation is item[x,y], where x is the minimum constraint, y is the max-
imum constraint, and item is a single element, a sequence, or a choice. Consider, for
instance, the case of a national soccer team participating in an international compe-
tition like the European soccer championship. Each team has a trainer, a physician,
one or more physical therapists, and at least 11 and at most 23 players. This last
constraint can be expressed as player[11,23]. We shall use the following shortcuts
borrowed from DTD:

1. when both x and y are equal to 1, the occurrence constraint may be omitted,
that is, the definition item equals item[1,1];
2. when x = 0 and y = 1, the occurrence constraint may be abbreviated as ?, that
is, the definition item? equals item[0,1];
3. when x = 0 and y = N, the occurrence constraint may be abbreviated as *, that
is, the definition item* equals item[0,N];
4. when x = 1 and y = N, the occurrence constraint may be abbreviated as +, that
is, the definition item+ equals item[1,N].

— Key constraints. If A is an element and KA is a child element of A, then the notation
KEY(A.KA) means that KA is a key for A. Keys consisting of more than one element
are allowed. For instance, in KEY(A.K1, A.K2) the pair (K1, K2) is a key for A. More-
over, it is possible to define keys over the union of different elements. For instance,
the constraint KEY(A.K | B.K | C.K) means that the element K must be unique over
the union of the domains identified by the elements A, B, and C.

1We would like to make it clear that we are not interested in the notation XSN per se. In particular, we are
not interested in providing a precise characterization of its expressive power. We view XSN as a convenient
notation to describe in a succinct way the XML Schema constructs that are exploited in the translation of
ER schemas.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 M. Franceschet et al.

— Foreign key constraints. If A is an element with key KA, B is an element, and FKA is
a child element of B, then KEYREF(B.FKA --> A.KA) means that FKA is a foreign key
of B referring to the key KA of A.

In key and keyref definitions, if A.KA is ambiguous, that is, if there exists another
element A with a child element KA in the database, then KA can be prefixed by an
unambiguous path to element A in the XML tree.

It is worth noticing that DTD only allows the specification of [0,1], [0,N], and [1,N]
occurrence constraints; moreover, it offers a limited key/foreign key mechanism by
using ID-type and IDREF-type attributes, which turns out to be not expressive enough
for our needs. For instance, it is not possible to restrict the scope of uniqueness for ID
attributes to a fragment of the entire document and only individual attributes can be
used as keys.

As an example of XSN schema, suppose we want to specify that a bibliography con-
tains authors and papers. An author has a name and possibly an affiliation. An affil-
iation is composed of an institute and an address. A paper has a title, a publication
source, a year, and one or more authors. Moreover, name and title are the keys for ele-
ments author and paper, respectively, and the author child element of paper is a foreign
key referring to the name child element of author. Relevant information is captured by
the following concise XSN definition:
bibliography((author | paper)*)

author(name, affiliation?)
affiliation(institute, address)

paper(title, source, year, author+)
KEY(author.name), KEY(paper.title)
KEYREF(paper.author --> author.name)

The mapping of XSN into XML Schema is straightforward: sequence and choice con-
structs directly correspond to sequence and choice XML Schema elements; occurrence
constraints are implemented with minOccurs and maxOccurs XML Schema attributes;
key and foreign key constraints are captured by key and keyref XML Schema elements,
respectively.

2.2. Mapping ER to XSN
An ER schema basically consists of entities and relationships between them [Elmasri
and Navathe 2010]. Both may have attributes, which can be either simple or com-
pound, single-valued or multi-valued. Some entities are weak and are identified by
owner entities through identifying relationships. General entities may be specialized
into more specific ones. Specializations may be partial or total, and disjoint or over-
lapping. Relationships may involve two or more entities. Each entity participates in
a relationship with a minimum and a maximum cardinality constraint. Integrity con-
straints associated with an ER schema comprise multi-valued attribute occurrence
constraints, relationship participation and cardinality ratio constraints, specialization
constraints (sub-entity inclusion, partial/total, and disjoint/overlapping constraints),
as well as key constraints.

The problem of mapping ER conceptual schemas into XML ones is definitely not a
new one (a detailed analysis of related work is given in Section 6). Nevertheless, a fully
satisfactory solution has not been achieved yet. In this paper, we address and work out
the main difficulties of the translation problem. In the present section, we introduce a
set of rules for the translation of ER constructs into XSN. The mapping rules for some
constructs of the ER model, namely, entities and their attributes, are straightforward
and well-established; those for other constructs, namely, relationships and specializa-
tions, are more complex and controversial. We shall provide alternative definitions

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A graph-theoretic approach to map conceptual designs to XML schemas A:5

of the mapping rules for ER relationships and specializations, that share their basic
features, but differ from each other in some significant respects. As an example, all
mapping rules for binary relationships include (the element for) the relationship in
(the element for) one of the participating entities, but they differ for the inclusion or
not of (the element for) the other entity into (the element for) the relationship. In the
former case, the mapping rules produce a “nested” schema; in latter one, they generate
a “flat” schema. In the following, we shall systematically analyze and compare these
two approaches.

2.2.1. The database element. The first step of the translation is the creation of a
database element. This is a container for all unnested entity elements of the schema
and it corresponds to the document element in an XML instance of the schema. It is
defined as an unbounded choice among all unnested entity elements. An instance is
the bibliography element in the bibliographic example above.

2.2.2. Entities. Each entity is mapped to an element with the same name. Entity at-
tributes are mapped to child elements. The encoding of compound and multi-valued at-
tributes exploits the flexibility of the XML data model: compound attributes are trans-
lated by embedding the sub-attribute elements into the compound attribute element;
multi-valued attributes are encoded using suitable occurrence constraints. As opposed
to the relational mapping, no restructuring of the schema is necessary.

2.2.3. Relationships. Each binary relationship has two cardinality constraints of the
form (x, y), where x is a natural number, that specifies the minimum cardinality (or
participation) constraint, and y is a positive natural number or the special character
N (which represents an arbitrarily large natural number), that specifies the maximum
cardinality (or cardinality ratio) constraint. In the following, we shall restrict our at-
tention to the cases in which x is either 0 or 1, and y is either 1 or N (24 = 16 possible
combinations), as cardinality constraints of the form (x, y), with x > 1, can be ba-
sically dealt with as the cardinality constraint (1, N) (later, we shall briefly explain
what changes are needed).

Let us consider two entities A, with key KA, and B, with key KB, and a binary re-
lation R between A (conventionally, the left entity) and B (the right entity) with left
cardinality constraint (x1, y1) and right cardinality constraint (x2, y2). We denote such
a case with the notation A (x1,y1)

←→ R (x2,y2)
←→ B. We define the mapping of binary rela-

tionships case-by-case according to the following order: first one-to-one relationships
(Table I); then, one-to-many ones (Table II); finally, many-to-many ones (Table III).
We distinguish between flat and nest encodings, and, for each of them, between the
mapping that includes R into A and the one that includes R into B.
Table I. In case 1, the choice of including R into A and that of including R into B are
equivalent in terms of number of used constraints. Moreover, since no one of the two
entities is constrained to participate in the relationship (both of them have minimum
cardinality constraint equal to 0), including B into A (resp., A into B) would lead to
the loss of all B (resp., A) elements which are not associated with any A (resp., B)
element. To prevent it, one must not include one entity into the other, and thus flat
and nest mappings coincide. Notice that the constraint KEY(R.KB) in the left mapping
captures the right maximum cardinality constraint by forcing the elements KB of R to
be unique, that is, each B element is assigned to at most one A element by the rela-
tionship R. Similarly for the constraint KEY(R.KA) in the right mapping. Attributes of
the relationship R (if any) are included in the element R that represents the relation-
ship. In case 2, maximum nesting is achieved by embedding element B into element
A. In such a case (nest mapping on the left), no foreign key constraint is necessary
and the right minimum cardinality constraint holds by construction. The right max-

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 M. Franceschet et al.

Table I. Mapping of one-to-one relationships.

n. relationships R into A R into B

1 A (0,1)
←→ R (0,1)

←→ B fla
t

A(KA,R?) B(KB,R?)
R(KB) R(KA)

B(KB) A(KA)
KEY(A.KA),KEY(B.KB),KEY(R.KB) KEY(B.KB),KEY(A.KA),KEY(R.KA)
KEYREF(R.KB-->B.KB) KEYREF(R.KA-->A.KA)

ne
st The same as in the flat case. The same as in the flat case.

2 A (0,1)
←→ R (1,1)

←→ B
fla

t

A(KA,R?) B(KB,R)
R(KB) R(KA)

B(KB) A(KA)
KEY(A.KA),KEY(B.KB),KEY(R.KB) KEY(A.KA),KEY(B.KB),KEY(R.KA)
KEYREF(R.KB-->B.KB) KEYREF(R.KA-->A.KA)
KEYREF(B.KB-->R.KB)

ne
st

A(KA,R?)

The same as in the flat case.R(B)
B(KB)

KEY(A.KA),KEY(B.KB)

3 A (1,1)
←→ R (1,1)

←→ B

fla
t

A(KA,R) B(KB,R)
R(KB) R(KA)

B(KB) A(KA)
KEY(A.KA),KEY(B.KB),KEY(R.KB) KEY(B.KB),KEY(A.KA),KEY(R.KA)
KEYREF(R.KB-->B.KB) KEYREF(R.KA-->A.KA)
KEYREF(B.KB-->R.KB) KEYREF(A.KA-->R.KA)

ne
st

A(KA,R) B(KB,R)
R(B) R(A)

B(KB) A(KA)
KEY(A.KA),KEY(B.KB) KEY(B.KB),KEY(A.KA)

4 A (1,1)
←→ R (0,1)

←→ B inverse of 2

imum cardinality constraint is captured by KEY(B.KB). In case we include R into B,
the embedding of A into B is not possible, as the left minimum cardinality constraint
is 0, and thus flat and nest mappings coincide. An additional key constraint, to cap-
ture the left maximum cardinality constraint, and an extra foreign key constraint are
needed. In case 3, the two nest (resp., flat) solutions are fully symmetric. In the nest
case, the element for one entity can be fully embedded in the element for the other
one. In the flat case, besides the standard key constraints for entities A and B, three
additional constraints are needed. Consider the flat mapping on the left. The foreign
key constraint KEYREF(R.KB --> B.KB) is used to restrict participation in R to B el-
ements only, as usual. Moreover, the right maximum cardinality constraint is coded
with KEY(R.KB). Finally, the foreign key constraint KEYREF(B.KB --> R.KB) captures
the right minimum cardinality constraint, which forces each B element to appear in-
side an R element of A, that is, each B element must be associated with at least one
A element. Notice that such a foreign key constraint can be forced since R.KB is a key
(in XML Schema, a foreign key cannot refer to something that is not a key). Case 4 is
the inverse of case 2, that is, the mappings for case 4 are exactly the same as those for
case 2, provided that we substitute B for A, and vice versa.
Table II. As in case 1 (both minimum cardinality constraints are equal to 0), in case 5
there is no way to include one entity into the other, and thus flat and nest mappings
coincide. The mappings on the right use the extra constraint KEY(R.KA) to capture the
left maximum cardinality constraint. Case 6 is the inverse of case 5. Once more, there
is no way to include one entity into the other in case 7. On the one hand, A cannot be
included into B as this option would lead to the loss of all A elements which are not
associated with any B; on the other hand, B cannot be included into A as this option
would introduce data redundancy and would violate the key constraint KEY(B.KB) (in

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A graph-theoretic approach to map conceptual designs to XML schemas A:7

Table II. Mapping of one-to-many relationships.

num. relationships R into A R into B

5 A (0,1)
←→ R (0,N)

←→ B fla
t

A(KA,R?) B(KB,R*)
R(KB) R(KA)

B(KB) A(KA)
KEY(A.KA),KEY(B.KB) KEY(B.KB),KEY(A.KA),KEY(R.KA)
KEYREF(R.KB-->B.KB) KEYREF(R.KA-->A.KA)

ne
st The same as in the flat case. The same as in the flat case.

6 A (0,N)
←→ R (0,1)

←→ B inverse of 5

7 A (0,1)
←→ R (1,N)

←→ B fla
t

A(KA,R?) B(KB,R+)
R(KB) R(KA)

B(KB) A(KA)
KEY(A.KA),KEY(B.KB) KEY(B.KB),KEY(A.KA),KEY(R.KA)
KEYREF(R.KB-->B.KB) KEYREF(R.KA-->A.KA)
CHECK(B.KB --> R.KB)

ne
st The same as in the flat case. The same as in the flat case.

8 A (1,N)
←→ R (0,1)

←→ B inverse of 7

9 A (1,1)
←→ R (0,N)

←→ B

fla
t

A(KA,R) B(KB,R*)
R(KB) R(KA)

B(KB) A(KA)
KEY(A.KA),KEY(B.KB) KEY(B.KB),KEY(A.KA),KEY(R.KA)
KEYREF(R.KB-->B.KB) KEYREF(R.KA-->A.KA)

KEYREF(A.KA-->R.KA)

ne
st The same as in the flat case.

B(KB,R*)
R(A)

A(KA)
KEY(B.KB),KEY(A.KA)

10 A (0,N)
←→ R (1,1)

←→ B inverse of 9

11 A (1,1)
←→ R (1,N)

←→ B

fla
t

A(KA,R) B(KB,R+)
R(KB) R(KA)

B(KB) A(KA)
KEY(A.KA),KEY(B.KB) KEY(B.KB),KEY(A.KA),KEY(R.KA)
KEYREF(R.KB-->B.KB) KEYREF(R.KA-->A.KA)
CHECK(B.KB --> R.KB) KEYREF(A.KA-->R.KA)

ne
st The same as in the flat case.

B(KB,R+)
R(A)

A(KA)
KEY(B.KB),KEY(A.KA)

12 A (1,N)
←→ R (1,1)

←→ B inverse of 11

general, no embedding of B into A is possible whenever the right maximum cardinality
constraint is greater than 1). Flat and nest mappings thus coincide also in this case.
The mappings on the right capture the left maximum cardinality constraint by means
of the constraint KEY(R.KA) (as it happens in the right mappings of case 5). The left
mappings do not capture the right minimum cardinality constraint B.KB --> R.KB,
that requires each B instance to be associated with at least one A instance. Such a
constraint must be dealt with by an ad hoc validation procedure. The translation rule
keeps track of these constraints by properly annotating the generated XML schema
and it delegates their verification to an external validation library. The annotation
consists of a clause of the form CHECK(constraint), which specifies the constraint to be
externally checked. In the considered case, it takes the form CHECK(B.KB --> R.KB).
Notice that, to force such a missing constraint, one may be tempted to add the foreign
key KEYREF(B.KB --> R.KB). Unfortunately, as we already pointed out, a foreign key
is allowed in XML Schema only if it refers to a key and R.KB cannot be a key: the

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 M. Franceschet et al.

same B instance can be associated with more than one A instance and thus there may
exist repeated B instances under A, a situation that clearly violates the key constraint.
The generalization of the mappings on the right to the case of cardinality constraints
(x2, y2), with x2 > 1 is straightforward: if suffices to replace R+ by R[x2,y2]. As for the
mapping on the left, we must distinguish between y2(≥ x2) ∈ N and y2 = N . In the
first case, we must pair CHECK(B.KB-->R.KB) with CHECK(A.KA-->R.KA), while in the
other case, the mappings remain unchanged. Case 8 is the inverse of case 7. In case 9,
the nest mapping on the right exploits the full nesting of elements. On the contrary,
the nest mapping on the left cannot include B into R, and thus it coincides with the
flat mapping, which makes use of an extra keyref constraint. Case 10 is the inverse of
case 9. Finally, in case 11, the mappings on the right are exactly the same as those for
case 9, apart from the replacement of B(KB,R*) by B(KB,R+), and the mappings on the
left are exactly the same as those for case 7, apart from the replacement of A(KA,R?)
by A(KA,R). Case 12 is the inverse of case 11.
Table III. Nesting of the element for one entity into the element for the other one is
never possible in the mappings of many-to-many relationships, and thus nest and flat
mappings coincide in cases 13-16. Two symmetric mappings are defined in case 13.
Since both minimum cardinality constraints are equal to 0, no external checks are
needed. In case 14, the left mapping needs an ad hoc validation procedure to check the
right minimum cardinality constraint. Case 15 is the inverse of case 14. Finally, case
16 is the only case in the mapping of binary relationships where, whatever solution
we adopt, we have to resort to external validation procedure to check one of the two
minimum cardinality constraints. An alternative bi-directional solution is the one that
pairs the two described mappings:

A(KA,R1+)
R1(KB)
B(KB,R2+)
R2(KA)
KEY(A.KA), KEY(B.KB), KEYREF(R1.KB-->B.KB), KEYREF(R2.KA-->A.KA)
CHECK("inverse relationship constraint")

Such a solution captures all integrity constraints specified at conceptual level.
However, it imposes the verification of an additional inverse relationship constraint,
namely, if an instance x of A is inside an instance y of B, then y must be inside x in
the inverse relationship. Such a constraint is not expressible in XML Schema. Inverse
relationship constraints can be formalized in hybrid logic as circular backward con-
straints (see [Franceschet and de Rijke 2006], page 301). Since this is not a solution
we actually take into consideration, we do not believe it necessary to explicitly report
its formalization in hybrid logic.

A general translation pattern for binary relationships, that minimizes the number of
constraints to be imposed on the resulting XML schemas, can be drawn from the above
nest mappings. It can be summarized as follows. The cardinality constraint associated
with the entity whose corresponding element includes the element for the relationship,
say A, can be forced by occurs constraints, while the way in which the cardinality con-
straint associated with the other entity, say B, is imposed depends on its specific form.
Inclusion of the element for B into the element for R suffices for the cardinality con-
straint (1, 1). Such a solution cannot be exploited in the other three cases. All of them
require the addition of a keyref constraint of the form KEYREF(R.KB-->B.KB). In ad-
dition, the cardinality constraint (0, 1) needs a key constraint of the form KEY(R.KB),
while an ad hoc validation procedure must be used to check the minimum of the cardi-
nality constraint (1, N) (we keep track of these constraints to be externally checked by
means of the clauses CHECK(B.KB --> R.KB) or CHECK(A.KA-->R.KA)).

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A graph-theoretic approach to map conceptual designs to XML schemas A:9

Table III. Mapping of many-to-many relationships.

num. relationships R into A R into B

13 A (0,N)
←→ R (0,N)

←→ B fla
t

A(KA,R*) B(KB,R*)
R(KB) R(KA)

B(KB) A(KA)
KEY(A.KA),KEY(B.KB) KEY(B.KB),KEY(A.KA)
KEYREF(R.KB-->B.KB) KEYREF(R.KA-->A.KA)

ne
st The same as in the flat case. The same as in the flat case.

14 A (0,N)
←→ R (1,N)

←→ B fla
t

A(KA,R*) B(KB,R+)
R(KB) R(KA)

B(KB) A(KA)
KEY(A.KA),KEY(B.KB) KEY(B.KB),KEY(A.KA)
KEYREF(R.KB-->B.KB) KEYREF(R.KA-->A.KA)
CHECK("B.KB --> R.KB")

ne
st The same as in the flat case. The same as in the flat case.

15 A (1,N)
←→ R (0,N)

←→ B inverse of 14

16 A (1,N)
←→ R (1,N)

←→ B fla
t

A(KA,R+) B(KB,R+)
R(KB) R(KA)

B(KB) A(KA)
KEY(A.KA),KEY(B.KB) KEY(B.KB),KEY(A.KA)
KEYREF(R.KB-->B.KB) KEYREF(R.KA-->A.KA)
CHECK(B.KB --> R.KB) CHECK(A.KA-->R.KA)

ne
st The same as in the flat case. The same as in the flat case.

It is worth pointing out that, thanks to its hierarchical nature, the XML logical
model allows one to capture a larger number of constraints specified at conceptual
level than the relational one. For all cardinality constraints of the form (1, N), indeed,
there is no way to preserve the minimum cardinality constraint 1 in the mapping of
ER schemas into relational ones (as we shall see later on, the same happens with
specializations [Elmasri and Navathe 2010]).

The rules to translate binary relationships can be generalized to relationships of
higher degree. For instance, let R be a ternary relationship among A, B, and C, where A
participates in R with constraint (1, N), B with constraint (0, 1), and C with constraint
(1, 1). A mapping that minimizes the number of constraints is as follows:

A(KA,R+)
R(KB,C)

C(KC)
B(KB)
KEY(A.KA), KEY(B.KB), KEY(C.KC), KEY(R.KB), KEYREF(R.KB-->B.KB)

As a general rule, the translation of a relationship R of degree n, with n > 2, that
minimizes the number of constraints to be imposed on the resulting XML schemas, has
the following structure: the outermost element corresponds to an entity that partici-
pates in R with cardinality constraint (1, N). If there is not such an entity, we choose
an entity that participates with cardinality constraint (0, 1). If even such an entity does
not exist, we choose one that participates with cardinality constraint (0, N). If all en-
tities participate with cardinality constraint (1, 1), we shall choose one of them. Then,
the element corresponding to R is nested in the outermost element and it includes the
elements, or the references to the elements, corresponding to all the other entities.
Such a translation avoids whenever possible the addition of external constraints and
it minimizes the number of internal constraints.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 M. Franceschet et al.

Table IV. Mapping of different types of specialization.

type of specialization nest mapping flat mapping
A(KA,attA,B?,C?) A(KA,attA)

partial B(attB) B(KA,attB)
overlapping C(attC) C(KA,attC)

KEY(A.KA) KEY(A.KA),KEY(B.KA),KEY(C.KA)
KEYREF(B.KA-->A.KA)
KEYREF(C.KA-->A.KA)

A(KA,attA, (B|C)?) A(KA,attA)
partial B(attB) B(KA,attB)
disjoint C(attC) C(KA,attC)

KEY(A.KA) KEY(A.KA),KEY(B.KA|C.KA)
KEYREF(B.KA-->A.KA)
KEYREF(C.KA-->A.KA)

A(KA,attA, ((B,C?) | C)) B(KA,attA,attB)
total B(attB) C(KA,attA,attC)

overlapping C(attC) KEY(B.KA),KEY(C.KA)
KEY(A.KA)
A(KA,attA, (B|C)) B(KA,attA,attB)

total B(attB) C(KA,attA,attC)
disjoint C(attC) KEY(B.KA|C.KA)

KEY(A.KA)

It goes without saying that, as an alternative, we can preliminarily apply reification
to replace every relationship of higher degree by a corresponding entity related to each
participating entity by a suitable binary relationship, and then exploit the translation
rules for binary relationships.

2.2.4. Weak entities and identifying relationships. A weak entity always participates in the
identifying relationship with cardinality constraint (1,1). Hence, depending on the
form of the second cardinality constraint, one of the above cases applies. The key of
the element for the weak entity is obtained by composing the partial key with the key
of the owner entity; moreover, the owner key in the element for the weak entity must
match the corresponding key in the element for the owner entity. For instance, suppose
we have A (0,N)

←→ R (1,1)
←→B, where B is weak and owned by A. The translation is:

A(KA,R*)
R(B)
B(KB, KA)

KEY(A.KA), KEY(B.KB, B.KA)
CHECK(B.KA=A.KA)

It is worth emphasizing that the use of an external validation procedure to check the
constraint B.KA=A.KA cannot be avoided. Indeed, suppose we remove the owner key KA
from the element for the weak entity B, thus obtaining:

A(KA,R*)
R(B)
B(KB)

KEY(A.KA), KEY(B.KB,A.KA)

Unfortunately, the key constraint KEY(B.KB, A.KA) cannot be expressed in XML
Schema. On the one hand, if we point the selector of the key schema element at the
level of A, then the field pointing to KB is not valid, since it selects more than one
node (A may be associated with more than one B element when the relationship is
one-to-many). On the other hand, if we point the selector at the level of B, then the
field referring to KA is not valid as well, since it must use the parent or ancestor axes

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A graph-theoretic approach to map conceptual designs to XML schemas A:11

to ascend the tree, but such axes are not admitted in the XPath subset supported by
XML Schema2.

Such a translation can be generalized to weak entities with identifying relationship
of degree greater than 2 and with more than one identifying relationships.

2.2.5. Specialization. The hierarchical nature of the XML data model can be success-
fully exploited in the mapping of specializations. We distinguish four cases: partial-
overlapping, partial-disjoint, total-overlapping, and total-disjoint specializations. Let
us consider first consider simple specializations with a parent entity A, with key KA
and attributes attA, and two child entities B and C with attributes attB and attC,
respectively. Nest and flat mappings are described in Table IV.
If the specialization is partial, the nest solution, that embeds both element B and
element C inside element A, is definitely more compact. Neither key nor foreign key
constraints are necessary for B and C. The overlapping constraint is captured by using
the occurrence specifiers: A may contain any subset of {B, C}. The disjoint constraint
is expressed by means of a choice: A may contain either B or C. In the flat solution,
disjointness is forced by the key constraint KEY(B.KA|C.KA): the value for KA must
be unique across the union of B and C domains. If the specialization is total, the flat
solution, unlike the nest one, discards the entity A. This results in a more compact
mapping, but, being attA included in both element B and element C, redundancy arises
in case of disjoint specializations.

The generalization to specializations involving n > 2 child entities is immediate in
all cases except for the nest mapping of total-overlapping specializations. Let a1, . . . , an
be the child entities of a total-overlapping specialization. We indicate with ρ(a1, . . . , an)
the regular expression allowing all non-empty subsets of child entities. Such an expres-
sion can be recursively defined as follows:

ρ(a1, ..., an) =

{
a1 if n = 1
(a1, a2?, ..., an?)|ρ(a2, ..., an) if n > 1

The size of the expression ρ(a1, . . . , an) is n · (n + 1)/2. Furthermore, the regular
expression is deterministic, in the sense that its standard automata-theoretic transla-
tion is a deterministic automaton. This is relevant since both DTD and XML Schema
content models must be deterministic.

As in the case of higher-degree relationships, we can actually replace specialization
of a parent entity into k child ones by k total functional binary identifying relation-
ships (one for each child entity), and then apply translation rules for weak entities and
identifying relationships.

So far we have discussed simple specializations: each child entity inherits from ex-
actly one parent entity. In multiple specializations, a child entity may have more than
one parent entity. Multiple specializations break the above nesting strategy. If only
simple specializations are used, the resulting structure is a tree that can be naturally
embedded in the tree-like XML data model. On the contrary, that for multiple special-
izations is a directed acyclic graph, which cannot be directly dealt with such a data
model. However, to encode multiple specializations, we can use a flat encoding similar
to the relational mapping [Elmasri and Navathe 2010]. This approach uses key and
foreign key constraints to encode the inclusion constraints between child and parent
entities and it avoids key duplications in the child entity when the parent entities have
a common ancestor in the specialization lattice.

2Apparently, the authors of [Liu and Li 2006] repeatedly missed this point.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 M. Franceschet et al.

author publication

article book publisher

journal conference

0:M 1:Mauthorship

cites 0:M

isCitedBy 0:M

reference

0:1

1:M

publishing

name
1:M

affiliation

insitute address

title

citation
year

ISBN

pages

abstract

name address

name

volume

name

place

contribution

Fig. 1. A citation-enhanced bibliographic database.

publication(title, year, citations, reference*, authorship+, (article | book)?)
reference(title)
authorship(name, contribution)
article(pages, abstract, (journal | conference))
journal(name, volume)

conference(name, place)
book(ISBN)

publisher(name, address, publishing+)
publishing(title)

author(name, affiliation+)
affiliation(institute, address)

KEY(publication.title), KEY(publisher.name)
KEY(author.name), KEY(publishing.title)
KEYREF(reference.title --> publication.title)
KEYREF(authorship.name --> author.name)
KEYREF(publishing.title --> publication.title)

Fig. 2. The mapping of the citation-enhanced bibliographic database.

We conclude the section with a simple example: the mapping of the ER schema
given in Figure 1 (we borrow the notation from ChronoGeoGraph, a software frame-
work for the conceptual and logical design of spatio-temporal databases [Gubiani and
Montanari 2007]), which describes a citation-enhanced bibliography (a typical semi-
structured data instance), is reported in Figure 2.

3. BENCHMARK EVALUATION OF THE MAPPING
In Section 2, we presented different ways to map the same conceptual information
into an XML structure. They can be brought back to the following two alternative
mechanisms to encode conceptual relationships and specializations:

— the reference mechanism, in which the entities involved in relationships and special-
izations are translated as global XML elements, that is, as immediate children of the
database XML element, and the relationships between them are encoded using the

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A graph-theoretic approach to map conceptual designs to XML schemas A:13

ITEM

OPENAUCTION

CLOSEDAUCTION

CATEGORY PERSON

0:1

open

0:Minclusion

relate0:1

closed

0:M

0:M

watch

0:M

sellOpen

0:M

0:M

bid

0:M

buy

0:M

sellClosed

0:M 0:Minterest

1:M

stamp

date increase

time

id
id

id

id

id

location

quantity

payment

shipping

name description

name emailaddress

0:1

phone

0:1 address

street

city

country0:1

provincezipcode0:1

homepage
0:1

creditcard

0:1

watches

0:1

profile

initial

0:1 reserve

current
0:1

privacy
quantity

type

price

date

quantity

type

0:M 0:M

Fig. 3. The XMark conceptual schema.

mechanism of keys and key references (this mechanism is well known to the rela-
tional database world);

— the embedding mechanism, in which relationships and specializations are encoded by
properly including some entities into other ones.

The embedding mechanism produces a hierarchical XML structure, the reference
mechanism generates flat structures. Moreover, the latter introduces more integrity
constraints (keys and key references) than the former.

The goal of this experimental section is to understand the practical impact of these
two translation mechanisms with respect to validation and query processing. The prin-
cipal hypothesis we are going to test is that both validation and query processing are
more efficient on XML structures generated with the embedding mechanism.

The experimental setup is as follows. We ran the experiments on a 2.53 GHz machine
with 2.9 GB of main memory running Ubuntu 9.10 operating system. We make use
of the well-known XML benchmark XMark [Schmidt et al. 2002]. XMark models an
Internet auction web site in which people watch ongoing open auctions, bidding for the
items on sale. People may also sell and buy items, and they may declare their interests
with respect to categories of items. When an item is sold in an auction, the auction is
declared closed with a given price. A (simplified) ER schema for XMark is depicted in
Figure 3 (as a matter of fact, our simplified ER schema includes all meaningful entities
and relationships of the original XMark design).

Starting from the XMark conceptual design, we obtained two schemas: a nested,
hierarchical-style XMark schema (Figure 4), which exploits the embedding of XML
elements as much as possible, and a flat, relational-like XMark schema (Figure 5), in
which each entity of the conceptual design is encoded as a global XML element and con-
ceptual relationships are mapped using the key and key reference mechanisms (the re-
sulting XMark flat schema is very close to the original DTD for XMark). Both schemas
contain the same information and capture all conceptual integrity constraints.

The XMark benchmark includes a scalable data generator that produces well-
formed, meaningful XML documents that are valid with respect to the XMark schema.
The user can control the size of the generated document using a scaling parameter,

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 M. Franceschet et al.

// element definitions
site((Category | Person)*)
Category(id, inclusion*, relate*)

relate(categoryref)
inclusion(Item)
Item(id, open?, closed?)
open(OpenAuction)
OpenAuction(id, sellOpen, bid*)
sellOpen(personref)
bid(personref, stamp)
stamp(date, time, increase)

closed(ClosedAuction)
ClosedAuction(id, buy, sellClosed)
buy(personref)
sellClosed(personref)

Person(id, interest*, watch*)
interest(categoryref)
watch(openauctionref)

// key constraints
KEY(Category.id)
KEY(Item.id)
KEY(OpenAuction.id)
KEY(ClosedAuction.id)
KEY(Person.id)
// foreign key constraints
KEYREF(sellOpen.personref --> Person.id)
KEYREF(bid.personref --> Person.id)
KEYREF(buy.personref --> Person.id)
KEYREF(sellClosed.personref --> Person.id)
KEYREF(interest.categoryref --> Category.id)
KEYREF(watch.openauctionref --> OpenAuction.id)
KEYREF(relate.categoryref --> Category.id)

Fig. 4. A nested XMark schema in XSN.

where scale 1 corresponds to a document of 100 MB. We used the data generator to
produce XML instances of increasing size and mapped these XML instances into cor-
responding instances for the nested and flat designs. We generated XMark documents
from 5 MB to 1 GB corresponding to the following scaling parameters: 0.05, 0.1, 0.5, 1,
5, and 10.

As for validation, we measured the validation time of the generated XML instances,
with respect to both the flat and nested XMark schemas, using the validation package
included in the Java API for XML Processing. The resulting elapsed times, expressed
in seconds, are shown in Figure 6. Validating nested designs is more efficient than
validating flat schemas. The reason is that, thanks to the hierarchical structure, the
nested design has fewer constraints (5 keys and 7 foreign keys) compared to the flat
schema (7 keys and 10 foreign keys)3.

As for query performance, we used the following XQuery benchmark, which is par-
tially borrowed from the XMark benchmark:

— Q1: Categories and the items they contain.

3Incidentally, we noticed that expressing constraints using the child axis (/) instead of the descendant axis
(//) in the selector XPath expression of the key and keyref constraints of the schema makes validation faster
on hierarchical schemas, while the effect is negligible on flat designs. This might be a useful guidance for
database designers.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A graph-theoretic approach to map conceptual designs to XML schemas A:15

// element definitions
site((Category|Item|Person|OpenAuction|ClosedAuction)*)
OpenAuction(id, open, sell, bid*)
open(itemref)
sellOpen(personref)
bid(personref, stamp)

stamp(date, time, increase)
ClosedAuction(id, closed, buy, sell)
closed(itemref)
buy(personref)
sellClosed(personref)
Item(id, inclusion)
inclusion(categoryref)
Category(id, relate*)
relate(categoryref)

Person(id, interest*, watch*)
interest(categoryref)
watch(openauctionref)

// key constraints
KEY(OpenAuction.id)
KEY(ClosedAuction.id)
KEY(open.itemref)
KEY(closed.itemref)
KEY(Item.id)
KEY(Category.id)
KEY(Person.id)
// foreign key constraints
KEYREF(open.itemref --> Item.id)
KEYREF(closed.itemref --> Item.id)
KEYREF(inclusion.categoryref --> Category.id)
KEYREF(relate.categoryref --> Category.id)
KEYREF(interest.categoryref --> Category.id)
KEYREF(watch.openauctionref --> OpenAuction.id)
KEYREF(sellOpen.personref --> Person.id)
KEYREF(bid.personref --> Person.id)
KEYREF(buy.personref --> Person.id)
KEYREF(sellClosed.personref --> Person.id)

Fig. 5. A flat XMark schema in XSN.

— Q2: Categories and the open auctions bidding items belonging to these categories.
— Q3: The open and corresponding closed auctions.
— Q4: People and the items they bought.
— Q5: The number of pieces of prose present in the database.
— Q6: People and the closed auctions bidding items bought by them.
— Q7: People and the number of items they bought.
— Q8: The number of sold items that cost more than 40.

Notice that queries Q4, Q5, Q7, and Q8 above correspond to queries Q9, Q7, Q8, and
Q5 in XMark, respectively. Each query is encoded in two instances, a flat version for the
flat XMark schema, and a nested version, that works over the nested XMark schema.
Queries Q1, Q2, and Q3 have been designed to fully exploit the hierarchical structure
of the XML documents as much as possible. The nested version of these queries uses
an unfolding technique to join related information: the linked information is just few
steps away from in the XML tree, and hence it can be retrieved by unfolding few XML
elements and directly accessing their content. On the other hand, the flat version of

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 M. Franceschet et al.

0.2 0.4 0.6 0.8 1.0

0
20

40
60

80

Scaling factor (size of the database)

V
al

id
at

io
n

tim
e

(s
ec

on
ds

)

flat
nest

Fig. 6. Validation times of nested and flat XML instances against nested and flat XML schemas.

the queries uses a product approach to combine information that is far away in the
XML tree, alighted on different immediate sub-trees of the database element, in a
relational-style manner. We reasonably expect that the nested version of these queries
is evaluated more efficiently than the corresponding flat version.

On the contrary, queries from Q5 to Q8 have been designed to favor flat instances
over nested ones. The flat version of these queries accesses elements which are imme-
diate children of the root of the XML document, hence superficial elements that are
immediately reachable. On the other hand, the nested version of these queries locates
elements that are arbitrarily nested below the root of the XML document. We believe
that the flat version of these queries is evaluated more efficiently than the correspond-
ing nested version.

Finally, query Q4 is hybrid. It contains two joins; the nested version uses both the
above described unfolding and product techniques to solve them, accessing elements
that are significantly nested below the tree root. The flat version uses the product ap-
proach for both joins, but it accesses superficial elements that are immediately reach-
able from the tree root. We refer to queries from Q1 to Q4 as pro-nest queries, while
queries from Q5 to Q8 are pro-flat queries. By way of example, we show both the flat
and nested versions of queries Q2, Q4, and Q6 of our benchmark.

Q2. Categories and the open auctions bidding items belonging to these categories. The flat
version of this query performs two joins: a first join between categories and items,
and a second one between items and open auctions:

let $doc := doc("xmark.xml")
for $category in $doc/site/Category
let $item := for $i in $doc/site/Item

where $i/inclusion/categoryref = $category/id
return $i

for $auction in $doc/site/OpenAuction
where $auction/open/itemref = $item/id

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A graph-theoretic approach to map conceptual designs to XML schemas A:17

return <result> {$category/id} {$auction/id} </result>

The nested version fully exploits the hierarchical structure of the nested instances
in which open auctions are embedded inside items, which are in turn nested inside
categories:
let $doc := doc("xmark.xml")
for $category in $doc/site/Category
for $auction in $category/inclusion/Item/open/OpenAuction
return <result> {$category/id} {$auction/id} </result>

Q4. People and the items they bought. The flat version of this query performs two joins:
a first join between people and closed auctions, and a second one between closed
auctions and items:
let $auction := doc("xmark.xml")
for $p in $auction/site/Person
let $auc := $auction/site/ClosedAuction[buy/personref = $p/id]
let $item := $auction/site/Item[id = $auc/closed/itemref]
return <person id="{$p/id}">

<items>{$item}</items>
</person>

The nested version partially exploits the hierarchical structure of the nested in-
stances in which closed auctions are embedded inside items. However, people and
closed auctions are on different subtrees of the nested schema, hence a traditional
join is necessary to related these two entities:
let $auction := doc("xmark.xml")
for $p in $auction/site/Person
let $item := $auction/site/Category/inclusion/Item

[closed/ClosedAuction/buy/personref = $p/id]
return <person id="{$p/id}">

<items>{$item}</items>
</person>

Q6. People and the closed auctions bidding items they bought. The flat instance of the
query makes a join between people and closed auctions, which are both unnested,
immediately accessible elements:
let $doc := doc("xmark.xml")
for $people in $doc/site/Person
for $auction in $doc/site/ClosedAuction
where $auction/buy/personref = $people/id
return <result> {$category/id} {$auction/id} </result>

The nested version makes a similar join between people and closed auctions. The
unfolding technique cannot be exploited in this case, and a relational-style join is
necessary. Moreover, the elements involved in the query must be located in the hier-
archy before the join operation can start.
let $doc := doc("xmark.xml")
for $people in $doc//Person
for $auction in $doc//ClosedAuction
where $auction/buy/personref = $people/id
return <result> {$category/id} {$auction/id} </result>

We tested the devised benchmark on three open-source XML query engines: BaseX
(version 6.1) [DBIS Research Group 2011], Saxon (home edition 9.4 for Java) [Kay
2011], and MonetDB/XQuery (release 4) [Boncz et al. 2011]. BaseX is a native XML

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 M. Franceschet et al.

0.2 0.4 0.6 0.8 1.0

0
5

10
15

BaseX

Scaling factor (size of the database)

Q
ue

ry
 ti

m
e

(s
ec

on
ds

)

Q1−Q8 (nest)
Q1−Q8 (flat)
Q1−Q4 (nest)
Q1−Q4 (flat)
Q5−Q8 (nest)
Q5−Q8 (flat)

Fig. 7. Query benchmark performance for BaseX. The six lines refer to the nested and flat version of all
benchmark queries (Q1-Q8), of pro-nest queries (Q1-Q4), and of pro-flat queries (Q5-Q8).

0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

MonetDB/XQuery

Scaling factor (size of the database)

Q
ue

ry
 ti

m
e

(s
ec

on
ds

)

Q1−Q8 (nest)
Q1−Q8 (flat)
Q1−Q4 (nest)
Q1−Q4 (flat)
Q5−Q8 (nest)
Q5−Q8 (flat)

Fig. 8. Query benchmark performance for MonetDB/XQuery. The six lines refer to the nested and flat ver-
sion of all benchmark queries (Q1-Q8), of pro-nest queries (Q1-Q4), and of pro-flat queries (Q5-Q8).

database, Saxon is a native processor for XSLT and XQuery, and MonetDB/XQuery is
a XML-enabled database which maps XML into the relational data model. It is worth
stressing that our goal here is to compare query performance on different designs, and

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A graph-theoretic approach to map conceptual designs to XML schemas A:19

0.2 0.4 0.6 0.8 1.0

0
20

0
40

0
60

0
80

0
10

00

Saxon

Scaling factor (size of the database)

Q
ue

ry
 ti

m
e

(s
ec

on
ds

)

Q1−Q8 (nest)
Q1−Q8 (flat)
Q1−Q4 (nest)
Q1−Q4 (flat)
Q5−Q8 (nest)
Q5−Q8 (flat)

Fig. 9. Query benchmark performance for Saxon. The six lines refer to the nested and flat version of all
benchmark queries (Q1-Q8), of pro-nest queries (Q1-Q4), and of pro-flat queries (Q5-Q8).

0.
0

0.
5

1.
0

1.
5

2.
0

Query

E
va

lu
at

io
n

tim
e

ra
tio

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

BaseX
MonetDB/XQuery
Saxon

Fig. 10. Query performance ratio between the nested and flat version of the benchmark queries for the
three engines.

not query performance on different engines. We are benchmarking schema designs,
not query processors. We built no indexes to speed up query processing and we ran all
queries with a warm cache.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 M. Franceschet et al.

Figures 7, 8, and 9 show the query benchmark performance (the total time for the
evaluation of the benchmark), expressed in seconds of elapsed time, for the three
benchmarked engines. BaseX evaluates the nested version of the pro-nest benchmark
more efficiently than the corresponding flat version, while there is no significant dif-
ference between the two versions of queries in the pro-flat benchmark. Overall, nested
queries on nested documents are processed by BaseX faster than flat queries on flat
documents. The picture is very similar when MonetDB/XQuery is chosen as query
engine. Saxon also evaluates the nested version of pro-nest queries quicker than the
corresponding flat version. However, as for pro-flat queries, the flat version is clearly
faster than the nested one. Overall, there is a tie between the two versions of queries
and documents when Saxon is used as query engine.

We noticed that the query evaluation times computed with Saxon have a high vari-
ability (they significantly deviate from the mean evaluation time), while the times for
the other query engines are more stable. It follows that, for Saxon, benchmark per-
formance is dominated by few time demanding queries. Hence, we also computed the
query evaluation time ratio between the nested and flat version of the benchmark
queries. This ratio does not depend on the absolute query evaluation times. Figure 10
shows the query performance ratio between the nested and flat version of the bench-
mark queries for the three engines. For each query, the ratio is computed as the evalu-
ation time of the nested version of the query divided by the evaluation time of the flat
version of the query, averaged over all document sizes. Hence, a ratio below 1 means
that the nested version is evaluated more efficiently than the flat one, a ratio above
1 indicates that the flat version is evaluated faster than the nested one, while a ratio
close to 1 corresponds to similar evaluation times. Our interpretation of the experi-
mental results is summarized in the following:

(1) in case of pro-nest queries (Q1-Q4), the nested version is evaluated more efficiently
than the corresponding flat version. The mean query performance ratio between
the nested and flat version of pro-nest queries is 0.63 for BaseX, 0.62 for Mon-
etDB/XQuery, and 0.50 for Saxon. In particular, the genuine pro-nest queries Q1,
Q2, and Q3 are well below the unity threshold for all engines. As for the hybrid
query Q4, it is slightly below unity for BaseX and MonetDB/XQuery and a little
above unity for Saxon;

(2) the nested and flat versions of queries are evaluated approximately in the same
time in case of pro-flat queries (Q5-Q8), with the exceptions of Q6 and Q7 for
Saxon, for which the flat version is faster than the nested one. The mean query
performance ratio between the nested and flat version of pro-flat queries is 1.00 for
BaseX, 1.02 for MonetDB/XQuery, and 1.15 for Saxon;

(3) considering the whole benchmark (Q1-Q8), which has been designed to balance
between pro-nest and pro-flat queries, the nested version of queries and schemas
has still a computational advantage over the flat version. Indeed, the mean query
performance ratio between the nested and flat version of all queries is 0.82 for
BaseX, 0.82 for MonetDB/XQuery, and 0.83 for Saxon.

In summary, the experimental results tell us that, on the benchmarked queries and
engines, the nested version of pro-nest queries is more efficient than the corresponding
flat version, while the nested and flat versions of pro-flat queries have similar evalu-
ation times. The message is that hierarchical designs make query evaluation more
efficient when the queries exploit the hierarchy of the design, while the penalty is not
severe, compared to a corresponding flat design, when the queries cannot make use
of this hierarchy. Since validation is also more efficient on hierarchical designs, we
conclude that nesting the design in XML schemas (and formulating hierarchy-aware
queries) is computationally appealing. This outcome motivates the theoretical problem

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A graph-theoretic approach to map conceptual designs to XML schemas A:21

of finding the best possible nesting for the design, an issue investigated in the following
section.

4. THE XML NESTING PROBLEM
In the following, we present an algorithm that maps ER schemas into highly-nested
XML Schema documents. To keep the algorithm as simple as possible, we preliminar-
ily restructure the ER schema by removing higher-degree relationships and specializa-
tions. Every relationship R with degree k greater than 2 is replaced by a corresponding
entity ER and k total functional binary relationships linking ER to the entities partici-
pating in R. Every specialization of a parent entity E into k child entities E1, . . . , Ek is
replaced by k total functional binary (identifying) relationships linking E to the (weak)
entities E1, . . . , Ek.

Then, translation rules described in the previous section are applied to the elements
of the restructured ER schema according to the embedding approach. For each ER
construct, the choice of the specific translation rule to apply depends on the way in
which the construct occurs in the schema. Indeed, we do not translate ER constructs
in isolation, but an ER schema including a number of related constructs. Consider, for
instance, the case of an entity E that participates in two relationships R1 and R2 with
cardinality constraints (1, 1). As the element for E cannot be included both in the ele-
ment for R1 and in that for R2, the embedding translation rule can be applied to one of
the relationships only, while for the other relationship we must resort to the alterna-
tive (reference) translation rule. As we shall see, in order to select the relationship to
which the embedding translation rule must be applied, the proposed algorithm takes
into account the effects of the different choices on the nesting degree of the resulting
XML structure.

According to the rules for the translation of binary relationships given in Section 2,
nesting comes into play in the translation of total functional relationships only, that
is, relationships such that (at least) one of the participating entities has cardinality
constraint (1, 1). As a general policy, the translation algorithm introduces a nesting
whenever possible. However, as we already pointed out, a conflict arises when an entity
participates in two or more relationships with cardinality constraint (1, 1) (nesting con-
fluences). In addition, nesting loops may occur. Both nesting confluences and nesting
loops must be broken to obtain a hierarchical nesting structure. We call the problem
of finding the best nesting structure that eliminates nesting confluences and nesting
loops the XML nesting problem. In the following, we provide a graph-theoretic formal-
ization of such a problem and we propose and contrast possible solutions to it. We
introduce two problems over graphs: maximum depth and maximum density. The first
one consists of the search for the structure with the highest level of nesting (maximum
depth spanning forest), the second one consists of the search for the structure with
the highest level of connectedness (maximum density spanning forest). Unfortunately,
while the second problem (maximum density) can always be solved in linear time, the
first one turns out to be NP-complete and not even approximable in the general case.
However, we show that the two problems are strongly related: the linear time algo-
rithm for maximum density can be used (i) to solve maximum depth on acyclic graphs
and on complete graphs, and (ii) to approximate it on graphs with strongly connected
components of bounded size. In the last part of the section, we generalize such results
allowing the translation to force some relationships to be maintained.

4.1. Maximum Density and Maximum Depth Problems
Let S be the restructured ER schema. We build a directed graph (digraph for short)
G = (V,E), whose nodes are the entities of S that participate in some total functional

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 M. Franceschet et al.

E5

E3 E1

E7

E2

E6

E4

1:1

1:1

1:1

1:1

1:1

1:1

1:1 1:1

1:1
E0

1:1

1:1

R04

R06

R34

R43

R45

R23

R32

R12

R21

R56 R67

Fig. 11. An ER schema. We assume that each entity Ei has a key attribute ki and the missing cardinality
constraints are different from (1, 1).

binary relationship and (A,B) ∈ E if there is a total functional relationship R relating
entities A and B such that B participates in R with cardinality constraint (1, 1). The
direction of the edges models the entity nesting structure, that is, (A,B) ∈ E if (the
element for) entity A contains (the element for) entity B. For instance, the ER schema
given in Figure 11 generates the graph depicted in Figure 12. We call G the nesting
graph of S. A nesting confluence corresponds to a node in the graph with more than
one predecessor and a nesting loop is a graph cycle.

A spanning forest is a sub-digraph F of G such that: (i) F and G share the same node
set; (ii) in F , each node has at most one predecessor; (iii) F has no cycles. A root in a
forest is a node with no predecessors. The depth of a node in a forest is the length of the
unique path from the root of the tree containing the node to the node (every root has
thus depth 0). The depth of a forest is the sum of the depths of its nodes. The nesting
problem can be formalized in terms of the following two problems.

Definition 4.1. Given a digraph G the maximum depth problem over G consists in
finding a spanning forest F of G whose depth is maximum with respect to all the
spanning forests ofG. Given a digraphG the maximum density problem overG consists
in finding a spanning forest F of G whose number of edges is maximum with respect
to all the spanning forests of G.

Both problems always admit a solution, which is not necessarily unique. The reader
might wonder if a spanning forest with maximum depth is also a spanning forest with
maximum density. Unfortunately, the answer in negative, as shown by the example
depicted in Figure 12.

As we already pointed out in the introduction, maximum depth and maximum den-
sity spanning forests are the nestings that optimize the query evaluation task and the
validation process, respectively. As shown in the mapping of conceptual schemas into
XML schemas (see, for instance, case 2 in Table I), each total functional relationship
in the conceptual schema, when translated using the embedding strategy, saves some
integrity constrains (keys and foreign keys). Indeed, the topological inclusion of one
element into another in the XML document captures, by itself, some cardinality con-
straints of the conceptual relationship that otherwise need to be specified with KEY
and KEYREF mechanisms. Since a total functional relationship corresponds to an edge
of the spanning forest, the larger is the number of edges in the spanning forest, the
lower is the number of constraints in the resulting schema. Hence, the maximum den-
sity spanning forest corresponds to the nesting structure that minimizes the number
of key and foreign key constraints of the schema, and hence, ultimately, the validation
time. On the other hand, the maximum depth spanning forest minimizes the num-
ber of relational-style join operations that are necessary to reconstruct information at
query time. Indeed, the deeper a node in the spanning forest is, the larger the number
of ancestor nodes of that node is. Combining information between two nodes belonging
to the same path (descendant-ancestor nodes) can be done by simply following the path

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A graph-theoretic approach to map conceptual designs to XML schemas A:23

4 1

5 6 7

2 3 0

Fig. 12. A maximum density spanning forest for the given digraph is obtained by removing edges (1,2),
(2,3), (3,4), and (0,6). It consists of one tree, with 7 edges, and the sum of node depths is 19. A maximum
depth spanning forest is the simple path from node 1 to node 7 plus node 0. It consists of 2 trees, with 6
edges in total, and the sum of node depths is 21. Both solutions are unique.

between the two nodes (an operation that is highly optimized in XML databases), and,
in particular, it does not require a costly relational-style join operation.

4.2. The Complexity of Maximum Depth
Let us first consider the maximum depth problem. It is not difficult to see that it is
close to the Hamiltonian path problem. Given a (directed) graph G, the Hamiltonian
path problem over G is the problem of deciding whether there exists a path in G that
visits each node exactly once. The Hamiltonian path problem is NP -complete (see,
e.g., [Papadimitriou 1995]). We first show that the Hamiltonian path problem can be
reduced to the maximum depth one. From the NP -completeness of the former, it im-
mediately follows that the latter is hard and, unless P = NP , there exists no efficient
algorithm that solves it.

THEOREM 4.2. Let G be a digraph. The maximum depth problem for G is NP -
complete.

PROOF. Let us introduce some notations. Given a digraph G and a spanning forest
F for G, we denote by SF the sum of node depths in F . We say that F is a chain if
|V | − 1 nodes in F have one child (successor) and 1 node is a leaf.

We first prove that given a digraph G and a spanning forest F for G, it holds that:

(1) SF ≤ |V |·(|V |−1)2 ;
(2) if F is not a chain, then SF < |V |·(|V |−1)

2 .

Let n = |V |. Depths of nodes in F range from 0 to n − 1, and thus we may partition
F nodes as follows: k0 nodes at depth 0, k1 nodes at depth 1, . . ., kn−1 nodes at depth
n− 1, where

∑n−1
j=0 kj = n and

∑n−1
j=0 kj · j = SF .

We prove by induction on the depth i ∈ [0, n− 1] that if SF is the maximum possible
value over all the graphs having n nodes, then ki = 1.

Base Case (i = 0). Nodes at depth 0 do not contribute to SF . Hence, it is convenient
to have the minimum possible number of such nodes. Since there must be at least one
root in F , the value for k0 which maximizes SF is 1. By contradiction, suppose that G is
the complete digraph over n nodes. If F is a spanning forest with more than one node
at depth 0, then we can find F ′ such that SF ′ > SF as follows: we choose one of the
nodes at depth 0 and we add to F all the edges going from that node to the other nodes
at depth 0.

Inductive Step (0 < i ≤ n − 1). We assume that k0 = k1 = . . . = ki−1 = 1, and we
prove that ki = 1. By inductive hypothesis, there is one node at depth i− 1. Moreover,
since i ≤ n−1, by the inductive hypothesis, it also holds that

∑i−1
j=0 kj ≤ n−1. Since we

cannot have nodes at depth greater than i without having at least one node at depth
i, we can conclude that there is at least one node at depth i. Let G be the complete
digraph over n nodes. If F is a spanning forest with more than one node at depth i,
say, vi1, . . . , vik, then we can find F ′ such that SF ′ > SF as follows: we choose one node

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 M. Franceschet et al.

at depth i, say vi1, we remove from F all the edges connecting the (only) node at depth
i − 1 to vi2, . . . , vik, and we add all the edges going from vi1 to vi2, . . . , vik. In such a way,
vi2, . . . , v

i
k, as well as all their descendants, increase their depth by 1 and there are not

nodes whose depth is decreased. This allows us to conclude that, in order to maximize
SF , ki must be equal to 1.

It immediately follows that SF ≤
∑n−1

j=0 1 · j = n·(n−1)
2 (item (1)).

Item (2) easily follows as well. We have shown that, in order to get the maximum
possible value for SF , that is, n·(n−1)

2 , there must be exactly one node at depth i, for
each i from 0 to n− 1, which amounts to say that F must be a chain. Hence, if F is not
a chain, we get SF < n·(n−1)

2 (item (2)).
We now prove that, given a digraph G, the following problems are equivalent:

(i). G has an Hamiltonian path;
(ii). every solution F of the maximum depth problem for G is such that SF =
|V |·(|V |−1)

2 ;
(iii). every solution F of the maximum depth problem for G is a chain.

In order to prove the equivalence, we show that (i) implies (ii), (ii) implies (iii), and
(iii) implies (i).
(i) implies (ii). If G has an Hamiltonian path H, then H is a spanning forest for G.
Moreover, since H is a chain, SH = |V |·(|V |−1)

2 . As, by item (1), |V |·(|V |−1)2 is an upper
bound over all the possible spanning forests, it follows that H is a solution of the
maximum depth problem, and thus all the solutions have sum of depths |V |·(|V |−1)2 .
(ii) implies (iii). It immediately follows from item (2) (by contraposition).
(iii) implies (i). If every solution of the maximum depth problem is a chain, then we
can extract at least one chain from G, and any such chain is an Hamiltonian path for
G.

Hence, we have that G has an Hamiltonian path if and only if SF = |V |·(|V |−1)
2 for

every solution F of the maximum depth problem for G. As SF can be computed from F
in polynomial time, it immediately follows that the maximum depth problem for G is
NP -hard.

To conclude, let us consider the problem of deciding whether a digraph has a span-
ning forest of depth k. It is easy to see that such problem is in NP , since given a
spanning forest F , SF can be computed in polynomial time. As SF has an upper bound
which is polynomial in the size of the digraph (item 1), the corresponding optimization
problem, that is, the maximum depth problem for G, is in NP .

As a matter of fact, the maximum depth problem is close to various other problems
studied in the literature. As an example, the problem of finding a spanning tree whose
maximum out-degree (number of children of a node) is minimum is a generalization
of the Hamiltonian path problem and different approximation algorithms have been
proposed to solve it (see, e.g., [Krishnan and Raghavachari 2001; Yao et al. 2008]).
One may expect a spanning forest with minimum out-degree to be a maximum depth
spanning forest, and vice versa. Unfortunately, this is not the case, as shown by the
digraph in Figure 13.

In [Karger et al. 1997], it has been shown that, given an undirected graph, the prob-
lem of finding a longest path is not constant ratio approximable4 in polynomial time,

4We recall that a maximization problem is constant ratio approximable if there exists an algorithm such
that, independently of the input, the ratio σ/σ∗ between the cost σ of the approximated solution found by
the algorithm and the cost σ∗ of the optimal solution of the problem is bounded by a positive constant.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A graph-theoretic approach to map conceptual designs to XML schemas A:25

1 5 4 6

0
2

3

7 8

Fig. 13. A maximum depth spanning forest for the given digraph can be obtained by removing edge (1,0). It
consists of one tree, whose sum of node depths is 23. Its maximum out-degree is 3. A minimum out-degree
spanning forest can be obtained by removing edge (0,1). It consists of one tree whose sum of node depths is
20 and maximum out-degree is 2.

unless P = NP . In [Bazgan et al. 1999], such a result is extended to the case of cubic
Hamiltonian graphs. In [Galbiati et al. 1997], the above results are exploited to prove
that, given an undirected graph, the problem of finding a spanning tree with maximum
sum of distances from a specified root is not constant ratio approximable in polynomial
time, unless P = NP . The maximum depth problem we are interested in differs from
such a problem in three respects: (i) it refers to digraphs, (ii) spanning forests, instead
of spanning trees, are considered, and (iii) there is not an input root. However, the
result in [Galbiati et al. 1997] can be easily generalized to the case in which the graph
is connected and the root is not given in input, as it builds on the results reported in
[Bazgan et al. 1999], where the graphs are Hamiltonian (and, thus, connected) and
there is not an input root. Hence, it holds that, given a connected undirected graph,
the problem of finding a rooted spanning tree which has maximum sum of distances
from its root (undirected maximum depth problem) is not constant ratio approximable
in polynomial time, unless P = NP . Theorem 4.4 shows that such a result can actually
be tailored to digraphs.

As a preliminary step, we prove a property of a subclass of digraphs. The idea is to
prove Theorem 4.4 by using the standard mapping from connected undirected graphs
to directed ones, which replaces an undirected edge with two directed ones. The di-
graphs we obtain applying such a mapping are such that each of their maximum depth
forests consists of one tree. The strongly connected components of a digraph are maxi-
mal sets of mutually reachable nodes. In the general case, the number of strongly con-
nected components of a digraph ranges from 1 to |V |. A digraph is strongly connected
if it consists of one strongly connected component.

LEMMA 4.3. Let G = (V,E) be a strongly connected digraph such that (u, v) ∈ E if
and only if (v, u) ∈ E. It holds that if F is a maximum depth spanning forest for G, then
F is a tree (i.e., it has a unique root).

PROOF. Let us assume, by contradiction, that F consists of n trees T1, . . . , Tn, with
n > 1. Since G is strongly connected, there is at least one node r in T1 which reaches at
least one node s belonging to Tj , for some j 6= 1, that is, (r, s) ∈ E. Let h be the depth of r
in T1, k be the depth of s in Tj , Sr be the subtree of T1 rooted at r, and Ss be the subtree
of Tj rooted at s. If h ≥ k, then we can remove Ss from Tj and add it to T1 using the
edge (r, s). In such a way, we get a new forest where the depths of the nodes belonging
to Ss are increased, while all the other depths remain unchanged. This contradicts
the assumption that F is a maximum depth spanning forest. Otherwise (h < k), from
(r, s) ∈ E, it immediately follows that (s, r) ∈ E as well. Hence, the same argument
can be applied: we remove Sr from T1 and add it to Tj using the edge (s, r). Again, this
contradicts the assumption that F is a maximum depth spanning forest.

THEOREM 4.4. Unless P = NP , there is no polynomial-time constant ratio approx-
imation algorithm for the maximum depth problem.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 M. Franceschet et al.

PROOF. Let µ be the function that maps any undirected graph G into a correspond-
ing digraph µ(G) such that, for all u, v ∈ V , there exists a pair of edges (u, v) and (v, u)
in µ(G) if (and only if) there exists an edge between u and v in G. Moreover, let π be the
function that maps any undirected rooted tree T into a corresponding directed rooted
tree π(T) such that, for all u, v ∈ V , there exists an edge (u, v) in π(T) if (and only
if) there exists an edge between u (the parent) and v (the child) in T . Clearly, π is a
bijection. Let G be an undirected graph and T be a rooted spanning tree for G with
sum of depths equal to t. We have that π(T) is a rooted spanning tree for µ(G) with
sum of depths equal to t. Moreover, if S is a rooted spanning tree for µ(G) with sum of
depths equal to s, then π−1(S) is a rooted spanning tree for G with sum of depths equal
to s. Finally, if G is connected, then µ(G) is strongly connected and hence, by Lemma
4.3, each maximum depth spanning forest for µ(G) consists of a single tree. Hence, the
existence of a constant ratio approximation algorithm for the maximum depth prob-
lem would imply the existence of a constant ratio approximation algorithm for the
undirected maximum depth problem, and this last may exist only if P = NP .

We now focus our attention on the relationships between maximum depth and max-
imum density problems. We start with the case of Directed Acyclic Graphs (DAG). As
a matter of fact, the digraph depicted in Figure 4.2, showing that maximum density
spanning forests are in general different from maximum depth ones, is not a DAG. We
can ask ourselves whether the same may happen with DAGs. It is easy to show that
there exist maximum density spanning forests which do not maximize the sum of node
depths even if the graph is a DAG. Nevertheless, the next theorem shows that, for any
DAG, a maximum depth spanning forest is also a maximum density spanning forest.

THEOREM 4.5. Let G = (V,E) be a DAG and let F be a maximum depth spanning
forest for it. Then, F is a maximum density spanning forest for G.

PROOF. If F is a tree, then the thesis immediately follows. Let F consist of n > 1
trees T1, . . . , Tn with roots r1, . . . , rn, respectively. Suppose, by contradiction, that F
does not maximize density. Then, there exists a spanning forest F ′ consisting of m
trees S1, . . . , Sm, with m < n. By the pigeonhole principle, there exist i, j ≤ n and
k ≤ m such that both ri and rj belong to Sk. Hence, at least one between ri and rj is
not the root of Sk. Without loss of generality, we may assume that ri is not the root of
Sk. Let p be the predecessor of ri in Sk. The edge (p, ri) is in Sk and hence in G. Since
G is a DAG and (p, ri) is an edge of G, p does not belong to the tree Ti of F rooted at
ri. Hence, if we add to the forest F the edge (p, ri), we get a new forest F ′′ with n − 1
trees. In F ′′, each node belonging to F \Ti has the same depth as in F , while each node
belonging to Ti increases his depth by depthF (p) + 1, where depthF (p) is the depth of p
in F . Hence, F ′′ has a depth greater than F , which contradicts the hypothesis that F
is a maximum depth spanning forest.

4.3. A Linear Time Solution for Maximum Density
In the following, we provide a linear time algorithm, called NiduX, that solves the
maximum density problem for digraphs as well as the maximum depth problem for
DAGs. As a preliminary step, we introduce a suitable notion of rank that allows us to
partition the nodes of a DAG into different strata (see, e.g., [Dovier et al. 2004]).

Definition 4.6. Let G = (V,E) be a DAG. For each v ∈ V , we define rankG(v) as
follows:

rankG(v) =

{
0 if v is a leaf
max{rankG(u) + 1 | (v, u) ∈ E} otherwise

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A graph-theoretic approach to map conceptual designs to XML schemas A:27

Let G = (V,E) be a digraph.

(1) compute the graph H of the strongly connected components of
G (let C = {C1, . . . , Cn} be the set of nodes of H);

(2) compute a maximum density spanning forest K = (C,EK) for H
as follows:
(i) compute H−1 and, for each node Ci, the rank rankH−1(Ci);

(ii) for each node Ci in H, if Ci is not a root node in
H, then pick a node Cj such that (Cj , Ci) is in H and
rankH−1(Cj) = rankH−1(Ci) − 1 and add the edge (Cj , Ci) to
EK;

(3) compute a set of edges E′ as follows: for each edge (Cj , Ci) ∈
Ek, pick an edge (u, v) such that (u, v) ∈ E, u ∈ Cj and v ∈ Ci

and add (u, v) to E′;
(4) for each strongly connected component Ci of G,

(a) if there is an edge (u, v) in E′ with v in Ci, then compute
a tree Ti = (Ci, Ei) rooted at v and spanning Ci (using a
depth-first visit);

(b) else pick a node v in Ci and compute a tree Ti = (Ci, Ei)
rooted at v and spanning Ci (using a depth-first visit);

(5) output the forest F = (V,E′ ∪ E1 ∪ E2 ∪ . . . ∪ En).

Fig. 14. The algorithm NiduX.

According to Definition 4.6, the rank of a node v is the length of the longest path from v
to a leaf. Now, given a DAG G, let G−1 be the DAG obtained by reversing all the edges
of G. For all v ∈ G, rankG−1(v) is the length of the longest path in G from a root to v.
Hence, rankG−1(v) can be viewed as the maximum depth at which we can push v in a
spanning forest for G.

The algorithm NiduX is provided in Figure 14. Given a digraph G, it first computes
a graph H, whose nodes are the strongly connected components of G and whose edges
(Cj , Ci) are defined as follows: (Cj , Ci) is an edge of H if (and only if) there exist u ∈ Cj

and v ∈ Ci such that (u, v) is an edge in G. H is always a DAG. NiduX operates on it
by exploiting the notion of rank.

The main steps of the execution of NiduX on the digraph in Figure 12 are graphically
depicted in Figure 15. Step 1 generates the graph H of the strongly connected compo-
nents consisting of 5 nodes, namely, C1 = {0}, C2 = {4, 3, 2, 1}, C3 = {5}, C4 = {6},
and C5 = {7} (we associate with each C1 the set of nodes of the original digraph it
includes). Step 2 computes a maximum density spanning forest for it consisting of one
tree, rooted at C1, with edges (C1, C2), (C2, C3), (C3, C4), and (C4, C5). At step 3, these
edges are replaced by edges (0, 4), (4, 5), (5, 6), and (6, 7). Next, at step 4, a tree T2,
rooted at node 4, spanning C2 is computed, which contains the edges (4, 3), (3, 2), and
(2, 1). The trees T1, T3, T4, and T5 consist of a single node. Step 5 returns a maximum
density spanning forest consisting of a single tree, where the sum of node depths is 19.
The XSN schema corresponding to the computed maximum density spanning forest is
shown in Figure 16 (assuming all missing cardinality constraints in Figure 11 to be of
the form [0,N]).

LEMMA 4.7. The spanning forest K generated by step 2 of the algorithm NiduX is
a maximum depth spanning forest for H.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 M. Franceschet et al.

(1) (2)

4 1

5 6 7

2 3 0

(3) (4)

5 6 7

0

(5)

4 1

5 6 7

2 3 0

Fig. 15. Execution of NiduX on the graph in Figure 12.

SCHEMA(E0*)
E0(k0,R04*)
R04(E4)
E4(k4,R34,R43*,R45*)

R34(E3ref)
R43(E3)
E3(k3,R23,R32*)
R23(E2ref)
R32(E2)
E2(k2,R12,R21*)
R12(E1ref)
R21(E1)
E1(k1)

R45(E5)
E5(k5,R56*)
R56(E6)
E6(k6,R06,R67*)
R06(E0ref)
R67(E7)
E7(k7)

KEY(E0.k0), KEY(E1.k1), KEY(E2.k2), KEY(E3.k3)
KEY(E4.k4), KEY(E5.k5), KEY(E6.k6), KEY(E7.k7)
KEYREF(R34.E3ref-->E3.k3), KEYREF(R23.E2ref-->E2.k2)
KEYREF(R12.E1ref-->E1.k1), KEYREF(R06.E0ref-->E0.k0)

Fig. 16. Mapping of the ER schema represented in Figure 11.

PROOF. Let Ci be a node in C. By Definition 4.6, if Ci is not a root, then there exists
at least one node Cj such that (Cj , Ci) is in H and rankH−1(Cj) = rankH−1(Ci) − 1.
Moreover, K is a spanning forest for H, since, for each node Ci of H, it contains at
most one incoming edge (Cj , Ci). We show that K maximizes the depth by proving
that for each node Ci of H, Ci has maximum depth in K, that is, its depth is equal to
rankH−1(Ci). We proceed by induction on rankH−1(Ci). If rankH−1(Ci) = 0, then Ci is a
leaf in H−1 and a root in H. In such a case, the maximum depth for Ci in any spanning
forest for H is 0, as it has no incoming edges in H. Hence, Ci is a root in K, that is, it

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A graph-theoretic approach to map conceptual designs to XML schemas A:29

is at depth 0 in K, and thus the thesis holds. Let us assume that the thesis holds for
all nodes of rank at most h and let rankH−1(Ci) = h+ 1. At step 2, NiduX picks a node
Cj such that (Cj , Ci) is in H and rankH−1(Cj) = h. By the inductive hypothesis, Cj is
at depth h in K, and thus Ci is at depth h+ 1 in K.

Since H is a DAG, from Theorem 4.5, it follows that K is also a maximum density
spanning forest for H.

THEOREM 4.8. Let G be a digraph. The algorithm NiduX computes a maximum
density spanning forest for G in linear time.

PROOF. First, we observe that, given a spanning forest F , every root in F has no
incoming edges and any node in F which is not a root has exactly one incoming edge.
Hence, given a digraph G with n nodes, a spanning forest F for G has n − k edges if
and only if it has k roots. It immediately follows that the maximum density problem
is equivalent to the problem of finding a spanning forest with the minimum number
of roots. We prove the thesis by induction on the number of strongly connected compo-
nents of G.

Basic case. If G has one strongly connected component only, then H has one node
and no edges, and thus K has no edges and E′ is empty. NiduX picks a node v of G
and it computes a tree T rooted at v and spanning G. Hence, NiduX outputs the tree
T , which is a maximum density spanning forest.

Inductive step. Let us assume the thesis to be true for digraphs with n strongly con-
nected components and let G be a digraph with n + 1 strongly connected components
C1, . . . , Cn+1. Since H is a DAG, at least one node in H is a leaf. Without loss of gener-
ality, we assume C1 to be a leaf. Let G \C1 be the subgraph of G obtained by removing
all nodes in C1 and all edges involving nodes in C1. Since C1 is a leaf in H, its removal
does not affect the computation, that is, the forest F is a possible output of NiduX on
G if and only if the forest F \ C1, obtained by removing all nodes in C1 and all edges
involving nodes in C1, is a possible output of NiduX on G\C1. By the inductive hypoth-
esis, the thesis holds for G \ C1. Let k be the number of roots of the maximum density
spanning forest for G \ C1 computed by NiduX (which is also a spanning forest with
the minimum number of roots). Two cases are possible:

(a) in G there exists an edge (u, v) with u 6∈ C1 and v ∈ C1;
(b) there exist no such edges in G.

In case (a), since C1 is a leaf and it is reachable from at least one (other) strongly
connected component, a maximum density spanning forest for G is a spanning forest
for G having k roots. In this case, by Lemma 4.7, we have that the spanning forest K
for H generated by step 2 of the algorithm is a maximum depth one, and thus C1 is not
a root of K. Hence, the execution of step 3 of the algorithm adds an edge (u, v) to E′ for
some v ∈ C1. Then, at the subsequent step, the algorithm computes a tree T1, rooted
at v, which spans C1. By the inductive hypothesis, NiduX is correct on G\C1, and thus
(V \C1, (E

′ \ {(u, v)})∪E2 ∪ . . .∪En+1) has k roots. Since (u, v) is in E′ and T1 is rooted
at v, (V,E′ ∪ E1 ∪ E2 ∪ . . . ∪ En+1) has k roots, that is, NiduX is correct on G.
In case (b), since C1 is an isolated node in H, a maximum density spanning forest for
G is a spanning forest for G having k + 1 roots. In this case, NiduX picks a node v in
C1 and it computes a tree T1, rooted at v, which spans C1. By inductive hypothesis,
NiduX is correct on G \ C1, and thus (V \ C1, E

′ ∪ E2 ∪ . . . ∪ En+1) has k roots. Hence,
(V,E′ ∪ E1 ∪ E2 ∪ . . . ∪ En+1) has k + 1 roots, that is, NiduX is correct on G.

To prove that NiduX has a linear time complexity, it suffices to observe that: (i)H can
be computed in linear time by exploiting Tarjan’s algorithm; (ii) H−1 can be computed
in linear time by exploiting a visit over H; (iii) all ranks over H−1 can be computed in

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 M. Franceschet et al.

1 4 3 2 0 5

Fig. 17. A graph on which NiduX performs increasingly worse with respect to the maximum depth problem
as the size of the graph grows.

linear time by a DFS-visit over H−1 (see [Dovier et al. 2004]); (iv) the edges of K can
be chosen in linear time by exploiting a visit over H; (v) each edge (Cj , Ci) of K can be
replaced by a suitable edge (u, v) in constant time, by keeping pointers to the edges of
G; and (vi) since a spanning tree of Ci can be computed in time linear in the size of Ci,
the time required to compute T1, . . . , Tn is linear in the size of G.

4.4. Applying NiduX to Maximum Depth
By Theorems 4.2 and 4.4, we know that, in general, there is no guarantee about the
goodness of the spanning forest computed by NiduX with respect to the maximum
depth problem. This is mainly due to (i) the use of the acyclic graph of strongly con-
nected components, and (ii) the problem of determining a maximum depth spanning
tree for any given strongly connected component.

Since the maximum depth problem is not constant ratio approximable in polynomial
time, and since NiduX is a polynomial algorithm, there must exist a graph Gn with n
nodes such that, as n goes to infinity, the value of the solution computed by NiduX, that
is, the depth of the maximum density spanning forest, diverges from the value of the
optimal solution for the problem, that is, the depth of the maximum depth spanning
forest. An example of such a graph, with n = 6, is depicted in Figure 17. The maximum
density spanning forest computed by NiduX is the tree {(0, 1), (1, 2), (1, 3), (1, 4), (1, 5)},
whose depth, in case of n nodes, is σn = 1 + 2(n − 2) = O(n). On the other hand, the
maximum depth spanning forest is the path {(5, 4), (4, 3), (3, 2), (2, 1)}, whose depth, in
general, is σ∗n = (n− 2)(n− 1)/2 = O(n2). Clearly, as n grows, the approximation ratio
σn/σ

∗
n vanishes.

Nevertheless, in the following we show that NiduX finds the optimal solution if the
input graph is acyclic or if it is complete. Moreover, we show that, in general, the good-
ness of the solution computed by NiduX with respect to the maximum depth problem
can be estimated in terms of the size of the largest strongly connected component of
the graph.

THEOREM 4.9. Let G be a DAG. The algorithm NiduX computes a maximum depth
spanning forest for G in linear time.

PROOF. Since G is a DAG, each strongly connected component of G consists of a
single node and thus G is isomorphic to H. Hence, from Lemma 4.7, it immediately
follows that NiduX computes a maximum depth spanning forest for G.

On complete graphs, NiduX performs equally well: it always finds the optimal solu-
tion. This because it uses a depth-first search to span the SCCs of the graph (step 4 of
the algorithm), that clearly finds an Hamiltonian path of the graph, hence the optimal
solution, if the graph is complete.

Furthermore, for the general case, we have the following result about the effective-
ness of NiduX as an approximation algorithm for the maximum depth problem.

THEOREM 4.10. Let G = (V,E) be a digraph, F be the spanning forest computed by
NiduX on G, SF be the depth of F , and S be the maximum depth of a spanning forest

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A graph-theoretic approach to map conceptual designs to XML schemas A:31

for G. If each strongly connected component of G contains at most k nodes, then

S

2k
≤ SF ≤ S

PROOF. Let H = (C,EH) be the graph of the strongly connected components of
G, let {0, 1, . . . , h} be the set of ranks in H−1, and let r0 be the number of strongly
connected components of rank 0 in H−1. Moreover, for i ∈ {0, 1, . . . , h}, let ni be the
number of nodes belonging to a strongly connected component of rank i. Finally, let
m1 = n1 + n0 − r0 and let mi = ni, for i ∈ {2, . . . , h}.

We first provide a lower bound to SF . Let us consider all the nodes belonging to the
strongly connected components of rank 0. There are n0 nodes ranging over r0 strongly
connected components. NiduX puts r0 nodes at depth 0, while the remaining n0 − r0
nodes are at least at depth 1. Moreover, NiduX puts the n1 nodes belonging to the
strongly connected components of rank 1 at least at depth 1. Hence, m1 nodes are at
least at depth 1. Similarly, NiduX puts the m2 (= n2) nodes belonging to the strongly
connected components of rank 2 at depth at least 2. In the general case, NiduX puts
the mi (= ni) nodes belonging to the strongly connected components of rank i at depth
at least i. Hence, we have that

SF ≥
h∑

i=1

mi · i

Now, we over-approximate S by maximizing the depth of each node. In G, there are r0
strongly connected components of rank 0. These components have no incoming edges
from other strongly connected components, and thus in each spanning forest for G,
there is at least one root from each of them, that is, in each spanning forest for G,
there are at least r0 nodes at depth 0. Since each strongly connected component of G
has at most k nodes, in each spanning forest for G, each of the remaining n0− r0 nodes
belonging to a strongly connected component of rank 0 is at most at depth k − 1. As
far as the nodes belonging to strongly connected components of rank 1 are concerned,
in each spanning forest for G, each of them is at most at depth 2 · k − 1. Each of them,
indeed, can be at most at the end of a chain crossing one strongly connected component
of rank 0 and one strongly connected component of rank 1, that is, each of them can be
at most at the end of a chain involving 2 · k nodes. By over-approximating, we can say
that, in each spanning forest for G, there are m1 nodes at depth at most 2 ·k. Similarly,
we can say that, in each spanning forest for G, the m2 (= n2) nodes belonging to the
strongly connected components of rank 2 are at depth at most 3 ·k. In the general case,
we can say that, in each spanning forest for G, the mi (= ni) nodes belonging to the
strongly connected components of rank i are at most at depth (i+1) ·k. Hence, we have
that

S ≤
h∑

i=1

mi · (i+ 1) · k ≤ 2 · k ·
h∑

i=1

mi · i

Since
∑h

i=1mi · i ≤ SF , we can conclude that S ≤ 2 · k · SF .

It follows that the approximation ratio σ/σ∗ between the approximated solution com-
puted by NiduX and the optimal solution of the maximum depth problem is always
bigger than or equal to 1/2k, with k the size of the largest strongly connected compo-
nent of the graph. Hence, the maximum depth problem is constant ratio approximable
on the class of graphs for which the size of the largest strongly connected component
is bounded by a constant.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 M. Franceschet et al.

0 1

2 3

Fig. 18. Different solutions to the maximum density problem for the given digraph exist, each one consisting
of 1 tree with 3 edges. None of them contains the edge (3,2). A maximum density spanning forest containing
the edge (3,2) necessarily consists of 2 trees with 1 edge each.

4.5. The Constrained Case
To make the translation algorithm more flexible, we introduce a constrained variant
of the considered problems that gives the designer the possibility to impose the ap-
plication of the nesting translation rules to some relationships, e.g., those involved in
frequently asked/dominant queries (see Section 6). Formally, this amounts to force the
maintenance of some edges of the original digraph. The constrained variants of the
maximum density and maximum depth problems are defined as follows.

Definition 4.11. Let G = (V,E) be a digraph and C ⊆ E be a set of edges. The con-
strained maximum depth problem over G and C is the problem of finding a spanning
forest F of G containing all edges in C and whose depth is maximum with respect to
all the spanning forests of G which contain all the edges in C. The constrained maxi-
mum density problem over G and C is the problem of finding a spanning forest F of G
containing all edges in C and whose number of edges is maximum with respect to all
the spanning forests of G which contain all the edges in C.

Obviously, the constrained versions of the problems may lack a solution. As an exam-
ple, if the edges in C form a loop, then there is not a solution. Moreover, the solution of
the constrained version does not necessarily coincide with that of the original problem,
as shown in Figure 18.

As a preliminary step, we identify the conditions which ensure the existence of a
solution. Let C be a set of edges, a confluence in C is a pair of edges of C with the same
target node, that is, a pair of edges (u, v) and (w, v), for some u, v, w in G.

LEMMA 4.12. Let G = (V,E) be a digraph and C ⊆ E. The constrained maximum
density (resp., depth) problem has a solution if and only if neither loops nor confluences
occur in C.

PROOF. On the one hand, it is easy to check that if C contains a loop or a confluence,
then there exists no forest F including all edges in C. On the other hand, if neither
loops nor confluences occur in C, the digraph G′ = (V,C) is a spanning forest for G,
and thus the problems have a solution.

The complexity of the constrained maximum depth problem is the same of its uncon-
strained version.

COROLLARY 4.13. Let G = (V,E) be a digraph and C ⊆ E. The constrained maxi-
mum depth problem for G and C is NP -complete. Moreover, unless P = NP , there is no
polynomial-time constant ratio approximation algorithm for it.

PROOF. NP -hardness immediately follows from Theorem 4.2 (take C = ∅). To show
that it is in NP , consider the problem of deciding whether a digraph has a spanning
forest of depth k containing all edges in C. Such a problem is in NP , since given a
spanning forest F , both computing its depth and checking that it contains all edges
in C can be done in polynomial time. Hence, since the depth of F has an upper bound
which is polynomial in the size of the graph size (see the proof of Theorem 4.2), it fol-

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A graph-theoretic approach to map conceptual designs to XML schemas A:33

Let G = (V,E) be a digraph and let C ⊆ E.
(1) check that C contains neither loops nor confluences;

otherwise, stop with failure (it has no solution);
(2) compute the set of target nodes T = {v | ∃(u, v) ∈ C} in C;
(3) compute the graph G = (V,E) such that (u, v) ∈ E iff (u, v) ∈ C ∨

(v 6∈ T ∧ (u, v) ∈ E);
(4) apply NiduX to G (let F be the output it produces);

(5) for each edge (u, v) ∈ C, if (u, v) 6∈ F, then let (r, s) be an edge

on the path from v to u in F such that (r, s) 6∈ C; replace (r, s)
by (u, v) in F;

(6) output the forest F.

Fig. 19. The algorithm ConstrainedNiduX.

lows that the corresponding optimization problem, that is, the constrained maximum
depth problem, is in NP . The last part of the thesis is an immediate consequence of
Theorem 4.4 (take C = ∅).

We now show that the constrained maximum density problem can be effectively re-
duced to the maximum density one. Let ConstrainedNiduX be the algorithm in Figure
19, which takes a digraph G = (V,E) and a set C ⊆ E as input.

THEOREM 4.14. Let G = (V,E) be a digraph and let C ⊆ E. ConstrainedNiduX
solves the constrained maximum density problem for G and C in linear time.

PROOF. First, by Lemma 4.12, we have that the algorithm terminates before step 4
if and only if the problem has no solution. Second, since G is a subgraph of G with the
same set of nodes as G, the spanning forest F computed by step 4 is a spanning forest
for G as well. Third, step 5 does not modify the number of edges.

Let F be the output of the algorithm. We show that (i) F is a spanning forest for
G, and (ii) it is a maximum density spanning forest for G under the constraint that it
must include all edges in C.

As far as item (i) is concerned, let F be the spanning forest computed by step 4 and
let (u, v) ∈ C be such that (u, v) 6∈ F . We prove that v is a root of F and u belongs to
the tree rooted at v. By contradiction, suppose that v is not a root of F . Hence, v has a
predecessor in F . Since (u, v) is the only edge in G entering v, the predecessor of v in F
must be u, against the hypothesis that (u, v) 6∈ F (contradiction). Now, again by contra-
diction, suppose that u does not belong to the tree rooted at v. Let F ′ be F ∪{(u, v)}. The
addition of (u, v) to F introduces neither confluences (v has no predecessors in G, and
thus in F , different from u) nor cycles (there is not a path from v to u in F), and thus
F
′ is a spanning forest for G with more edges than F , which is a maximum density

spanning forest for G (contradiction). The existence of an edge (r, s) 6∈ C in the path
from v to u immediately follows from the fact that we execute step 5 only if C has no
cycles. Hence, each iteration of the for-loop in step 5 replace a spanning forest for G by
another one with the same number of edges.

As far as item (ii) is concerned, suppose, by contradiction, that there exists a span-
ning forest F ′ for G containing all edges in C with a number of edges greater than the
spanning forest F returned by the algorithm. Since F ′ contains all edges in C, F ′ is
also a spanning forest for G. Hence, there exists a spanning forest for G with a number

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 M. Franceschet et al.

of edges greater than the number of edges of the spanning forest produced by step 4
(contradiction).

As for the complexity, NiduX works in linear time and all the other steps have linear
time complexity. Hence, ConstrainedNiduX has linear time complexity.

We conclude the section by showing that in the case of DAGs, ConstrainedNiduX
also computes a constrained maximum depth spanning forest.

LEMMA 4.15. Let G = (V,E) be a DAG and C ⊆ E which does not contain
confluences. Let T = {v | ∃(u, v) ∈ C} and G = (V,E) be such that (u, v) ∈ E iff
(u, v) ∈ C ∨ (v 6∈ T ∧ (u, v) ∈ E). If F is a solution of the maximum depth problem
for G, then F is also a solution of both the constrained maximum depth problem and
the constrained maximum density problem for G and C.

PROOF. Since G is a DAG, G is a DAG. Moreover, each spanning forest for G is a
spanning forest for G. We show that all edges (u, v) ∈ C belong to F . By contradiction,
suppose that there exists (u, v) ∈ C such that (u, v) 6∈ F . Since (u, v) is the only edge
entering v in G and (u, v) 6∈ F , v is a root of F . Now, let Tv be the tree of F rooted at v.
Since (u, v) ∈ E and G is a DAG, u does not belong to Tv. Hence, F ′ = F ∪ {(u, v)} is a
spanning forest for G and its depth is greater than that of F , against the hypothesis
that F is a maximum depth spanning forest for G (contradiction).

We prove now that F has maximum depth over all spanning forests for G containing
all edges in C. By contradiction, suppose that there exists a spanning forest F for G,
containing all edges in C, whose depth is greater than that of F . F is also a spanning
forest for G, against the hypothesis that F is a maximum depth spanning forest for G
(contradiction).

Finally, we show that F has maximum density over all spanning forests for G con-
taining all edges in C. By contradiction, suppose that there exists a spanning forest
F for G containing all edges in C, whose density is greater than that of F . F is also a
spanning forest for G. However, since F is a maximum depth spanning forest for G, by
Theorem 4.5, F is also a maximum density spanning forest for G (contradiction).

THEOREM 4.16. Let G = (V,E) be a DAG and let C ⊆ E. The algorithm Con-
strainedNiduX solves the constrained maximum depth problem for G and C in linear
time.

PROOF. If G is a DAG, then also G is a DAG. Hence, by Theorem 4.9, NiduX com-
putes a maximum depth spanning forest for G. By Lemma 4.15, the output of step 4 is
also a solution to the constrained maximum depth problem for G and C (it contains all
edges in C). Hence, step 5 does nothing and the output of ConstrainedNiduX is also a
maximum depth spanning forest for G.

We would like to conclude by emphasizing that complexity results and algorithms
we provided in this section are original. As for the maximum depth problem, we al-
ready pointed out that an undirected rooted version of it has been studied in [Galbiati
et al. 1997], where the authors show that it is not constant ratio approximable in poly-
nomial time, unless P = NP . However, as witnessed by many important problems in
graph theory, small differences in the definition of the problem may lead to important
differences in terms of complexities. As an example, undirected reachability has been
recently proved to be solvable in logarithmic space (L), while directed reachability is
in non-deterministic logarithmic space (NL), and by proving that it is in L one could
conclude that L = NL. As far as the maximum density problem is concerned, we de-
fined NiduX exploiting a set theoretical notion of rank. In graph theory, the term rank
usually refers to the rank of the adjacency matrix. The set theoretical notion of rank

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A graph-theoretic approach to map conceptual designs to XML schemas A:35

Table V. Evaluation of the approximation of NiduX relative to the maximum depth problem. The meaning of columns
is the following: n is the number of nodes of the graph, m is the number of edges, scc is the number of SCCs, k is
the size of the largest SCC, r is the inter-component density, σ∗ is the exact solution, and σ is the approximated
solution computed by the algorithm. The last two columns represent the approximation ratio σ/σ∗ ∈ [1/2k, 1] and
the theoretical lower bound of the approximation ratio 1/2k.

n m scc k r σ∗ σ σ/σ∗ 1/2k
7 8 5 2 0.15 6 4 0.67 0.25
7 9 5 3 0.15 10 10 1.00 0.17
8 10 5 2 0.10 7 5 0.71 0.25

10 17 5 3 0.10 17 13 0.76 0.17
12 25 5 4 0.15 24 15 0.62 0.12
14 21 10 2 0.10 15 15 1.00 0.25
15 25 10 2 0.15 38 30 0.79 0.25
17 40 5 4 0.10 70 50 0.71 0.12
19 33 10 3 0.15 28 24 0.86 0.17
19 32 15 2 0.15 26 21 0.81 0.25
21 38 10 3 0.10 63 52 0.83 0.17
21 37 15 2 0.10 34 27 0.79 0.25
27 47 20 2 0.10 36 36 1.00 0.25
30 55 20 2 0.15 69 68 0.99 0.25
35 63 20 3 0.10 71 55 0.77 0.17

200 415 1 200 0 19900 15487 0.78 2.5 · 10−3

400 860 1 400 0 79800 69243 0.87 1.2 · 10−3

600 983 1 600 0 179700 143379 0.80 8.3 · 10−4

800 2826 1 800 0 319600 283568 0.89 6.2 · 10−4

1000 3192 1 1000 0 499500 367330 0.74 5.0 · 10−4

we used has been exploited in [Dovier et al. 2004] to define efficient bisimulation al-
gorithms. However, the problems we considered in this paper have no correlation with
bisimulation. Finally, both the relationships we established between maximum depth
and maximum density solutions with respect to the size of the largest strongly con-
nected components and the constrained analysis are not only new, but clearly tailored
to our applications.

5. EXPERIMENTAL EVALUATION OF THE NESTING ALGORITHM
In Section 4 we provided a linear time algorithm, called NiduX, that solves the max-
imum density problem for arbitrary digraphs. Unfortunately, in the general case, the
maximum depth problem is computationally hard and hence there exists little hope
to discover a polynomial algorithm that solves it. Nevertheless, we have seen that
NiduX solves the maximum depth problem for acyclic directed graphs and for com-
plete graphs, and, in general, it computes an approximation σ of the exact solution σ∗

for the maximum depth problem such that σ∗/2k ≤ σ ≤ σ∗, where k is the size of the
largest strongly connected component (SCC, for short) of the graph. This means that
the approximation ratio ρ = σ/σ∗ lies in the interval [1/2k, 1].

In this section, we experimentally investigate the approximation ratio ρ of NiduX
relative to the maximum depth problem. We conjecture that ρ is well above the theo-
retical lower bound of 1/2k and possibly close to the upper bound 1. The experimental
setup is as follows. We implemented, using the computing environment R, a parame-
terized generator of scale-free graphs. Scale-free graphs have been largely investigated
in the network science community since they share many structural features with
real-world networks; in particular, scale-free graphs are small-world networks with a
node degree distribution following a power law in which most of the nodes (the trivial
many) have low degree and a small but significant share of nodes (the vital few) have
an extraordinary high degree [Barabási and Albert 1999; Barabási et al. 1999]. This

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 M. Franceschet et al.

distribution is the consequence of the popular cumulative advantage (or preferential
attachment) phenomenon, effectively summarized by the sentence the rich get richer.

Specifically, the graph generator that we realized works as follows. It has three pa-
rameters: the number of SCCs of the graph, a vector with the number of nodes for each
SCC, and an inter-component edge probability, that is the percentage of edges to draw
among two different connected components as a fraction of the maximum number of
edges that are possible among the two components. Notice that these parameters are
important in the present experimental study, since NiduX works directly on the SCCs
of the graph. The generator works in three phases:

(1) a scale-free directed acyclic graph (DAG) is generated with as many nodes as the
number of SCCs of the graph to generate;

(2) each node of the DAG is expanded into a strongly connected scale-free graph of
prescribed size;

(3) a number of random edges among nodes of different strongly connected compo-
nents is added according to the given inter-component edge probability.

We made use of the scale-free graph generator offered by the computing environment
R to generate scale-free graphs in phases (1) and (2) of our generator. This basic gen-
erator works as follows: (i) the initial graph has a single isolated node; (ii) additional
nodes are added to the graph one at a time; (iii) each node connects to the existing
nodes with a fixed number r of links. The probability that it will choose a given node
is proportional to the number of links the chosen node already has. In particular, in
phase (1) we set the fixed number of links r = 1, obtaining a DAG. In phase (2) we set
r = 2, and then add random edges until the graph becomes strongly connected.

Furthermore, we coded NiduX in the C programming language. As for the exact
solution of the maximum depth problem, we defined a mapping from the problem to
integer linear programming. We have implemented the mapping through a Perl script
which takes in input the adjacency matrix of a graph and outputs an integer linear
programming problem. A solution of the integer linear programming problem denotes
a maximum depth spanning forest of the input graph. We have used the solver lp solve
to find such a solution. It is worth noticing that finding the exact solution for the
maximum depth problem, the spanning forest of maximum depth, is computationally
demanding even on relatively small graphs. A potential reason is that the number of
possible spanning forests of a graph might be enormous even if the size of the graph is
modest.5

The first part of Table V (up to n = 35) shows the results of experiments on a sample
of scale-free graphs generated varying the number of nodes, the number of SCCs, the
maximum number of nodes per SCC, and the inter-component density of the graphs.
Interestingly, the approximation ratio ρ = σ/σ∗ between the approximated and exact
solution is always well above the theoretical lower bound 1/2k and often close to the
theoretical upper bound 1. The mean approximation ratio is 0.82, which means that,
on average, the sub-optimal depth computed by NiduX is 82% of the maximum depth.
This is four times larger than the mean theoretical lower bound of the approximation
ratio, which amounts to 0.21.

The graphs used so far are relatively small networks characterized by many little
SCCs linked together. We also tested the effectiveness of the proposed approximation
on larger, strongly connected graphs (graphs with only one SCC) containing a Hamilto-

5The Kirchhoff ’s matrix-tree theorem is an elegant result stating that the total number of spanning trees
of an undirected graph is exactly the determinant of any principal minor of the Laplacian matrix of the
graph [Kirchhoff 1847]. The Cayley’s formula provides a closed form of this number for a complete graph of
n nodes: nn−2 [Cayley 1889].

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A graph-theoretic approach to map conceptual designs to XML schemas A:37

0 2 1 3

Fig. 20. The Italian administrative organization example.

nian path. These graphs have been generated starting from an Hamiltonian path and
randomly adding edges until the graph becomes strongly connected. For these graphs,
the maximum depth forest is the Hamiltonian path, whose depth in a graph with n
nodes is n(n − 1)/2. Hence, we are not bound to find the costly exact solution, while
the approximated solution terminates very quickly. Results for these graphs are shown
in the second part of Table V (from n = 200). Once again, the effectiveness of the ap-
proximated solution is encouraging, with a mean approximation ratio of 0.82. This is,
interestingly, the same approximation ratio we obtained for smaller graphs with many
little SCCs. It is worth noticing that none of the strongly connected graphs we have
used is complete. On complete graphs, we recall that NiduX performs even better: it
always finds the optimal solution.

Summing up, the algorithm NiduX we have devised finds the optimal solution at the
extreme of the network topology, that is, for acyclic graphs (graphs with many SCCs
composed of a single node) and for complete graphs (graphs with a single SCC with the
maximum number of edges). Moreover, on randomly generated networks lying between
these extremes, it finds an approximated solution that is worth about four-fifths of the
exact solution.

We complemented the above experimentation with testing of NiduX on ER schemas
taken from real-world application domains, namely, a conceptual schema modeling en-
tities and relations at the basis of the Italian administrative organization; a schema
extracted from KEGG Database, which is a widely-used database that integrates ge-
nomic, chemical, and systemic functional information; a schema taken from Path-
Case, which is an integrated software tool for the analysis of biological systems; and a
schema underlying the content management system Joomla!.

The conceptual schema for the Italian administrative organization is depicted in
Figure 20 on the left. A set of neighboring communes forms a province. One of them
is chosen as the representative of the province. Similarly, provinces are organized in
regions and regions form a state. In each region, one commune is chosen as the repre-
sentative. Finally, one commune is the capital of the state. The directed graph corre-
sponding to the schema is depicted in Figure 20 on the right. It is worth pointing out
that it is quite similar to the graph of Figure 17, which represents NiduX worst case
of approximation. However, due to the lack of a privileged root (node 0 in Figure 17),
NiduX on the graph of Figure 20 computes a forest of depth 6, which coincides with the
exact solution of the maximum depth problem. One can force NiduX to produce a bad
approximation on this case using a particular permutation of the names of the nodes.
We generalized the graph to the case of 20 nodes. In such a case, NiduX computes a for-
est of depth 190. Again, the resulting forest is the exact solution of the maximum depth
problem as well. However, as one can imagine, the exact solution computed through
lp solve requires more than 10 minutes, while NiduX takes few milliseconds.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 M. Franceschet et al.

The KEGG schema we considered has 37 nodes organized in 36 strongly connected
components, that is, it has only one cycle involving 2 nodes. On such a case, NiduX
computes a forest of depth 66, which coincides with the exact solution of the maximum
depth problem. The PathCase schema generates an acyclic graph with 17 nodes. NiduX
computes a forest of depth 14. Since this graph is acyclic, this is also the maximum
depth forest. (As a matter, the same happens with the XMark schema we extensively
used in Section 3.) The graph obtained from the Joomla! schema has 33 nodes orga-
nized in 30 strongly connected components. More precisely, it has 28 strongly connected
components of size 1, one strongly connected component of size 2, and one strongly
connected component of size 3. NiduX generates a forest of depth 39, which is also a
maximum depth forest.

Pairing the outcomes of the experimentations on synthetic graphs and on graphs
extracted from real-world conceptual schemas, there is a clear evidence that solutions
obtained by NiduX are quite satisfactory: in many cases, NiduX computes the exact
solution, and, whenever this is not the case, the approximated solution it computes is
sufficiently close to the exact one.

6. RELATED WORK
There is a vast literature on the relationships between XML and relational databases,
which ranges from expressiveness issues to performance comparison. In particular,
a general comparison of XML and relational constructs and an analysis of the ba-
sic kinds of mapping between them can be found in [Kappel et al. 2004]. Unfortu-
nately, this literature is partly redundant and not well linked. We identified three main
themes related to our work: the encoding of (standard) conceptual schemas into some
XML schema language, the development of new conceptual models tailored to XML
databases, and the mapping of relational schemas into XML schemas. Even though our
work presents significant intersections with research about relational-to-XML map-
pings [Duta et al. 2004; Fong and Cheung 2005; Fong et al. 2006; Lee et al. 2002; Liu
et al. 2006; Lv and Yan 2006; Shanmugasundaram et al. 2001; Zhou et al. 2008] and
XML-inspired conceptual models [Combi and Oliboni 2002; Dobbie et al. 2001; Fong
et al. 2008; Necasky 2007; Psaila 2000] (a detailed analysis of both these research
directions can be found in [Franceschet et al. 2012]), the closest research theme is
definitely that about the XML encoding of (standard) conceptual schemas.

Some work has been done to provide an XML encoding of formalisms for conceptual
modeling like, for instance, UML [Conrad et al. 2000] and ORM [Bird et al. 2000]; how-
ever, most contributions refer to the ER conceptual model. For this reason, we restrict
our attention to the XML encoding of the (enhanced) ER model. The various proposals
differ in a number of respects, including the choice of the target XML schema lan-
guage (DTD or XML Schema), the set of constraints encoded by the conceptual schema
they cope with (cardinality constraints on the participation of entities in relations,
constraints on specializations) as well as the way in which the constraints they encode
are dealt with, and the correspondence they establish between the constructs of the
conceptual model and those of the XML target language (XML elements vs. attributes,
XML ID/IDREF vs. KEY/KEYREF).

The first mappings from conceptual models to XML proposed in the literature take
DTD as their target language [Conrad et al. 2000; Kleiner and Lipeck 2001]. Despite
its simplicity and conciseness, DTD is not expressive enough to capture some relevant
database integrity constraints, such as, for instance, domain constraints, composite
keys, and arbitrary concept cardinalities [Kappel et al. 2004]. To get rid of these draw-
backs, most recent encodings replace DTD by XML Schema. Regardless of the choice of
DTD or XML Schema as the target language, existing proposals can be evaluated with
respect to different parameters. The basic and most important ones are preservation

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A graph-theoretic approach to map conceptual designs to XML schemas A:39

of information (to what extent concepts and constraints expressed by means of concep-
tual schemas are preserved by the corresponding XML schemas) and nesting degree of
the resulting XML schemas (the length of nested element chains). Additional quality
parameters have been proposed in the literature [Liu and Li 2006], including (absence
of) redundancy, conformity with applications, and design reversibility. In fact, they are
not independent from the basic ones, and thus we shall not discuss them separately. In
the following, we first focus our attention on the preservation of information and then
on the nesting degree of the resulting XML schemas.

6.1. Preservation of information
A large variety of XML encodings of conceptual schemas can be found in the litera-
ture. No relevant differences can be found in their treatment of basic constructs. On
the contrary, there is not a consensus mapping for advanced constructs, e.g., special-
ization, and constraints, e.g., cardinality constraints on relations. Furthermore, many
proposals disregard some important constructs and constraints (for instance, many-to-
many relationships with total participation of both entities). The translation in Section
2 can be viewed as the merge (and the improvement) of a number of existing proposals,
coping with all distinctive features of the ER model. In the following, we briefly sur-
vey different translations of the most problematic constructs and constraints, namely,
cardinality constraints on the participation of entities in relations, weak entity types,
and constraints on specializations.

Relationship. The translation of relationships is much more complex than that of en-
tities as one must take into account all their distinctive features. In addition, choices
that influence the nesting of the corresponding XML elements have a considerable
impact on validation and query processing. As a result, different mappings of relation-
ships have been proposed in the literature.

The translation of binary functional relationships R is quite standard: the element
corresponding to (one of) the entity with cardinality constraint (1, 1), say A, is nested
in the element corresponding to R, which, in its turn, is nested in the element corre-
sponding to the other entity, say B [Kleiner and Lipeck 2001; Duta et al. 2004; Pigozzo
and Quintarelli 2005]. Minor variants to such a translation schema have been pro-
posed in [Liu and Li 2006], where the relative positions of R and A are exchanged, and
in [Schroeder and dos Santos Mello 2009], where there is not an element for R, thus
loosing design reversibility. In the specific case of one-to-one relationships, some trans-
lations map them into a unique element (merge) [Kleiner and Lipeck 2001; Schroeder
and dos Santos Mello 2009].

Non-functional (binary) one-to-many relationships R between two entities A and
B are dealt with by adding a reference to the element corresponding to the entity
with cardinality constraint (0, 1), say A (and not directly the element, as in the func-
tional case), in the element corresponding to R, which, in its turn, is nested in the el-
ement corresponding to the entity with cardinality constraint (, N), say B. The same
solution is often applied to the case of non-functional (binary) many-to-many rela-
tionships. As both entities participate in the relationship with maximum cardinality
equal to N , there is the problem of establishing which one must be mapped into the
B-element (resp., A-element). Different criteria have been proposed in the literature.
In [Pigozzo and Quintarelli 2005], the B-element corresponds to an entity with car-
dinality constraint (1, N) (if any). Such a solution aims at minimizing the number of
additional (external) constraints. In [Liu and Li 2006], the choice of the B-element is
based on the notion of dominant entity, where a dominant entity is the entity from
which most accesses to R start. An equivalent solution, based on the notion of general
access frequency, is provided in [Schroeder and dos Santos Mello 2009]. The domi-

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40 M. Franceschet et al.

nance/frequency approach aims at increasing the performance of query evaluation,
and it may possibly yield to the loss of some constraints. An alternative mapping of
many-to-many relationships has been proposed in [Kleiner and Lipeck 2001], where
the element corresponding to the relationship includes references to the elements cor-
responding to the participating entities. A non-trivial limitation of such a solution is
that it cannot enforce total participation of entities in relationships. Finally, a mixed
solution can be found in [Duta et al. 2004]. The mapping of many-to-many relation-
ships with partial participation of entities is the same as in [Kleiner and Lipeck 2001],
while the treatment of the other cases is the same as in [Pigozzo and Quintarelli 2005],
apart from the replacement of references by elements. Such a replacement trades the
absence of redundancy and the enforcement of key constraints for the achievement of
nested and compact structures, that is, the authors accept the presence of some redun-
dancies and the lack of some key constraints in order to increase the nesting degree
and the compactness of the resulting structures.

As we already pointed out in Section 2, the only case in which there is no way of pro-
viding a direct XML encoding of all the constraints, whatever translation one adopts,
is that of many-to-many relationships with total participation of both entities. Some
papers recognize the existence of such a problem, but provide no solution; most papers
ignore it. Complications inherent to the management of many-to-many relationships
in XML are discussed in a survey paper by Link and Trinh on the treatment of car-
dinality constraints in XML [Link and Trinh 2007]. They analyze a variety of alter-
native mappings of many-to-many relationships, pointing out their advantages and
disadvantages. In particular, they explicitly argue that it is not possible to provide an
information-preserving and redundancy-free mapping of many-to-many relationships
with total participation of both entities (to cope with this case, some form of existence
constraint would be necessary).

Translations of binary (functional or non-functional) relationships can be general-
ized to relationships of higher degree, as shown in Section 2. As a matter of fact, most
proposals in the literature do not explicitly consider higher-degree relationships.

Weak entity. A special case of functional (binary) relationships is that of identifying
relationships of weak entities. Most translations proposed in the literature do not deal
with them. This is the case, for instance, with [Schroeder and dos Santos Mello 2009].
The few exceptions assimilate identifying relationships to functional relationships, ne-
glecting the problem of key definition. This is the case, for instance, with [Pigozzo and
Quintarelli 2005]. In [Kleiner and Lipeck 2001], Kleiner and Lipeck correctly pointed
out the problem with key definition. However, their choice of DTD as the target XML
language prevents them from defining the key of the element for the weak entity in a
compositional way (as usual). Finally, the straightforward ‘solution’ proposed in [Liu
and Li 2006] does not work, as we already argued in Section 2.

Specialization. Two different approaches to the XML mapping of specializations can
be found in the literature. The first one makes use of the construct extension (in fact,
such a construct is featured by XML Schema, not by DTD) [Liu and Li 2006]. Given
a specialization of an entity A in two entities B and C, the types of the elements for
B and C are defined as extensions of the type of the element for A. Such a solution
suffers from various weaknesses. First, it does not allow one to express constraints
on specializations consisting of one parent entity and two or more children; moreover,
it cannot manage multiple specializations of the same entity. The second approach
embeds the elements for the children in the element for the parent and it deals with
constraints on specializations by using the XML constructs sequence and choice in
combination with occurrence constraints [Conrad et al. 2000; Kleiner and Lipeck 2001;
Pigozzo and Quintarelli 2005]. Despite the reservations formulated in [Schroeder and

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A graph-theoretic approach to map conceptual designs to XML schemas A:41

dos Santos Mello 2008], such an approach makes it possible to capture all constraints
on specializations, including the total/overlapping constraints, as shown in [Conrad
et al. 2000]. An alternative solution is outlined in [Schroeder and dos Santos Mello
2009], where the authors suggest to first restructure the ER schema, by replacing
specializations by standard relationships, and then to apply the standard translation
rules for relationships. In addition, they consider the case in which the parent entity
is removed (resp., the children are removed) and information about it (resp., them)
is moved to the children (resp., to the parent entity). However, such removals may
introduce redundancy and they do not preserve design reversibility.

6.2. Structure of the resulting XML schemas
The XML nesting problem has not been systematically dealt with in the literature.
Various contributions, indeed, underline its importance, e.g., [Kleiner and Lipeck 2001;
Pigozzo and Quintarelli 2005; Liu and Li 2006]; however, besides recognizing the in-
fluence of functional relationships and specializations on the nesting degree of the re-
sulting XML structure, most papers limit themselves to the definition of a translation
algorithm that guarantees neither maximal depth nor maximal density. In particular,
they do not explicitly address the problems of nesting confluences and loops.

The translation algorithm outlined in [Pigozzo and Quintarelli 2005] preliminar-
ily identifies the set of first-level entities, namely, those entities whose correspond-
ing elements cannot be nested into other elements without introducing some form of
redundancy (for instance, entities whose participation in relationships is always par-
tial), and put them as direct subelements of the root. Then, for every such element,
the algorithm generates the XML subtree rooted at it. To this end, it navigates in the
ER schema, starting from the corresponding first-level entity, until there are no more
reachable entities or relationships whose corresponding elements can be added to the
considered subtree. Finally, the algorithm executes the same steps for those (strong)
entities, that do not participate in a specialization relation as children, which have not
been considered yet (if any). The way in which nesting confluences and loops are dealt
with depends on the ordering according to which entities and relationships are taken
into consideration (such an ordering is to a large extent arbitrary, e.g., the authors
mention as a possible ordering the alphabetical ordering of entity and relationship
names). In some critical situations, e.g., loops involving non-first-level entities only,
this may prevent the algorithm from achieving the highest possible nesting degree.

A similar translation algorithm is given in [Liu and Li 2006]. As a preliminary step,
the algorithm generates an element for every entity, by distinguishing between strong
and weak entities. Then, it processes relationships according to a fixed order: first, it
considers relationships with degree greater than 2; then, it copes with recursive rela-
tionships; finally, it deals with (non-recursive) binary relationships. As for binary re-
lationships, it starts with many-to-many relationships; then, it moves to one-to-many
ones; finally, it considers one-to-one relationships. The final position of the elements
for the entities within the resulting XML structure is determined by the relationships
they participate in. The authors claim that the order according to which relationships
are processed guarantees that the nesting of any pair of elements corresponding to re-
lated entities can be fixed once and for all. Unfortunately, it seems that the algorithm
makes no provision for the treatment of nesting confluences and loops (as a matter of
fact, the informal description of the algorithm makes it difficult to completely check its
correctness and the proposed examples are useless, as they avoid all critical cases).

A translation algorithm that takes into account data and query workload of the ex-
pected XML applications has been proposed in [Schroeder and dos Santos Mello 2009].
Besides the ER schema, the input to such an algorithm includes information about
data volumes and types and frequencies of estimated operations. The algorithm con-

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:42 M. Franceschet et al.

sists of a sequence of three main steps: (i) generalization conversion; (ii) relationship
conversion; (iii) integration. Both in step (i) and in step (ii), the order according to
which specializations (resp., relationships) are considered as well as the choice among
the possible alternative (rewritings and) translations are based on information about
general access frequencies of the involved relationships and entities. Step (iii) defines
the root element of the schema, that can be either the only element devoid of a parent
in the current structure or an additional element. The problems of nesting conflu-
ences and loops are not explicitly addressed; however, they are indirectly solved by the
execution of steps (i) and (ii). Once more, there is no guarantee that the achieved so-
lutions maximize depth and/or density. The effectiveness of the proposed solution has
been checked by executing a suitable sets of queries in XQuery on the trial version of
the native XML database Tamino and comparing the outcomes with those obtained by
applying the same queries to alternative translations given in the literature.

7. CONCLUSION
In this paper, we devised an original graph-theoretic approach to the problem of map-
ping ER schemas into highly-nested XML schema documents. The proposed transla-
tion achieves maximum connectivity and deep nesting in the structure used to embed
the elements of the conceptual design in order to optimize both validation and query
performances. The paper paid a special attention to the XML nesting problem, that
plays a central role in the proposed design methodology. First, it provided a charac-
terization of such a problem in terms of the maximum depth and maximum density
problems. Then, it systematically analyzed their computational complexity, showing
that the maximum depth problem is NP-complete and it admits no constant ratio ap-
proximation algorithm, while the maximum density problem can be solved in linear
time (algorithm NiduX). Finally, it proved that NiduX finds a maximum depth nesting
in case of acyclic or complete graphs, and it experimentally showed that, in the other
cases, its outcome is quite close to such a nesting. A detailed survey of related work
concludes the paper.

Among the various possible developments of the work done, we are focusing our at-
tention on two directions. First, in Subsection 4.5, we defined a constrained variant
of the maximum depth and maximum density problems, where the designer can force
the maintenance of some edges of the original digraph. Additional flexibility can be
achieved by associating a weight with each edge, where higher (resp., lower) weights
are assigned to edges that should be maintained (resp., can be removed). The con-
strained case can be recovered as a special case of weighted graphs, where the same
higher weight is assigned to the edges to be possibly maintained and the same lower
weight is assigned to the remaining edges. Weights can be assigned according to dif-
ferent criteria. As an example, one can give a higher weight to edges representing
relationships involved in frequently asked/dominant queries. As an alternative, the
weight of an edge can be defined as the number of constraints that should be added
in case the edge was removed. Second, to keep the translation algorithm as simple as
possible, we replaced higher-degree relationships and specializations of ER schemas
by a suitable number of total functional binary relationships (see Section 4). An ex-
plicit treatment of higher-degree relationships and specializations would allow us to
trade simplicity of the algorithm for compactness of its output (the resulting graph).
From a technical point of view, it requires the replacement of edges by hyperedges,
thus leading to the replacement of digraphs by hypergraphs.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A graph-theoretic approach to map conceptual designs to XML schemas A:43

ACKNOWLEDGMENTS

We would like to thank the reviewers whose comments and suggestions helped us a lot in improving the
paper.

REFERENCES
BARABÁSI, A.-L. AND ALBERT, R. 1999. Emergence of scaling in random networks. Science 286, 509–512.
BARABÁSI, A.-L., ALBERT, R., AND JEONG, H. 1999. Mean-field theory for scale-free random networks.

Physica A 272, 1-2, 173–187.
BAZGAN, C., SANTHA, M., AND TUZA, Z. 1999. On the approximation of finding a(nother) hamiltonian cycle

in cubic hamiltonian graphs. Journal of Algorithms 31, 1, 249–268.
BIRD, B., GOODCHILD, A., AND HALPIN, T. 2000. Object role modelling and XML-Schema. In Proceedings

of the 19th International Conference on Conceptual Modeling. Springer, 309–322.
BONCZ, P., GRUST, T., VAN KEULEN AMD S. MANEGOLD, M., RITTINGER, J., AND TEUB-

NER, J. 2011. MonetDB/XQuery. MonetDB database system with XQuery front-end.
http://monetdb.cwi.nl/XQuery/index.html.

CAYLEY, A. 1889. A theorem on trees. Quarterly Journal of Mathematics 23, 376–378.
COMBI, C. AND OLIBONI, B. 2002. Conceptual modeling of XML data. In Proceedings of the 17th Symposium

on Applied Computing. ACM, 467–473.
CONRAD, R., SCHEFFNER, D., AND FREYTAG, J. 2000. XML conceptual modeling using UML. In Proceed-

ings of the 19th International Conference on Conceptual Modeling. Springer, 558–571.
DBIS RESEARCH GROUP. 2011. BaseX – Processing and visualizing XML with a native XML database.

http://www.inf.uni-konstanz.de/dbis/basex/.
DOBBIE, G., XIAOYING, W., LING, T., AND LEE, M. 2001. Designing semistructured databases using ORA-

SS model. In Proceedings of the 2nd International Conference on Web Information Systems Engineering.
IEEE Computer Society, 171–180.

DOVIER, A., PIAZZA, C., AND POLICRITI, A. 2004. An efficient algorithm for computing bisimulation equiv-
alence. Theoretical Computer Science 311, 1–3, 221–256.

DUTA, A., BARKER, K., AND ALHAJJ, R. 2004. Converting relationships to XML nested structures. Journal
of Information and Organizational Sciences 28, 1-2, 15–29.

ELMASRI, R. AND NAVATHE, S. 2010. Fundamentals of Database Systems. 6th edn. Addison-Wesley.
FONG, J. AND CHEUNG, S. 2005. Translating relational schema into XML schema definition with data

semantic preservation and XSD graph. Information & Software Technology 47, 7, 437–462.
FONG, J., CHEUNG, S., AND SHIU, H. 2008. The XML tree model - toward an XML conceptula schema

reversed from XML Schema Definition. Data & Knowledge Engineering 64, 624–661.
FONG, J., FONG, A., WONG, H., AND YU, P. 2006. Translating relational schema with constraints into XML

schema. International Journal of Software Engineering and Knowledge Engineering 16, 2, 201–244.
FRANCESCHET, M. AND DE RIJKE, M. 2006. Model checking for hybrid logics (with an application to

semistructured data). Journal of Applied Logic 4(3), 279–304.
FRANCESCHET, M., GUBIANI, D., MONTANARI, A., AND PIAZZA, C. 2012. From entity relationship to XML

Schema: a graph-theoretic approach. Technical Report UDMI/01/12/RR, University of Udine.
GALBIATI, G., MORZENTI, A., AND MAFFIOLI, F. 1997. On the approximability of some maximum spanning

tree problems. Theoretical Computer Science 181, 107–118.
GUBIANI, D. AND MONTANARI, A. 2007. A tool for the visual synthesis and the logical translation of spatio-

temporal conceptual schemas. In Proceedings of the 15th Italian Symposium on Advanced Database
Systems. 495–498.

KAPPEL, G., KAPSAMMER, E., AND RETSCHITZEGGER, W. 2004. Integrating XML and relational database
systems. World Wide Web 7, 4, 343–384.

KARGER, D., MOTWANI, R., AND RAMKUMAR, G. 1997. On approximating the longest path in a graph.
Algorithmica 18, 1, 82–98.

KAY, M. 2011. Saxon. the XSLT and XQuery Processor. http://saxon.sourceforge.net.
KIRCHHOFF, G. 1847. Über die auflösung der gleichungen, auf welche man bei der untersuchung der lin-

earen verteilung galvanischer ströme geführt wird. Annalen für der Physik und der Chemie 72, 497–508.
KLEINER, C. AND LIPECK, U. 2001. Automatic generation of XML DTDs from conceptual database schemas.

GI Jahrestagung 1, 396–405.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:44 M. Franceschet et al.

KRISHNAN, R. AND RAGHAVACHARI, B. 2001. The directed minimum-degree spanning tree problem. In Pro-
ceedings of 21st Conference on Foundations of Software Technology and Theoretical Computer Science.
Springer, 232–243.

LEE, D., MANI, M., CHIU, F., AND CHU, W. W. 2002. NeT & CoT: translating relational schemas to XML
schemas using semantic constraints. In Proceedings of the 11th International Conference on Information
and Knowledge Management. ACM, 282–291.

LINK, S. AND TRINH, T. 2007. Know your limits: Enhanced XML modeling with cardinality constraints. In
Proceedings of the 26th International Conference on Conceptual Modeling. Springer, 19–30.

LIU, C. AND LI, J. 2006. Designing quality XML schemas from E-R diagrams. In Proceedings of the 7th
International Conference on Advances in Web-Age Information Management. Springer, 508–519.

LIU, C., VINCENT, M., AND LIU, J. 2006. Constraint preserving transformation from relational schema to
XML Schema. World Wide Web 9, 1, 93–110.

LV, T. AND YAN, P. 2006. Mapping relational schemas to XML DTDs with constraints. In Proceedings of the
1st International Multi-Symposiums of Computer and Computational Sciences. IEEE Computer Society,
528–533.

NECASKY, M. 2007. XSEM - A Conceptual Model for XML. In Proceedings of the 4th Asia-Pacific Conference
on Conceptual Modelling. Australian Computer Society, 37–48.

PAPADIMITRIOU, C. 1995. Computational Complexity. Addison Wesley Longman.
PIGOZZO, P. AND QUINTARELLI, E. 2005. An algorithm for generating XML schemas from ER schemas. In

Proceedings of the 15th Italian Symposium on Advanced Database Systems. 192–199.
PSAILA, G. 2000. ERX: A conceptual model for XML documents. In Proceedings of the 7th Annual Interna-

tional Workshop on Selected Areas in Cryptography. Springer, 898–903.
SCHMIDT, A., WAAS, F., KERSTEN, M., CAREY, M., MANOLESCU, I., AND BUSSE, R. 2002. XMark: A bench-

mark for XML data management. In Proceedings of the 28th International Conference on Very Large
Data Bases. ACM, 974–985.

SCHROEDER, R. AND DOS SANTOS MELLO, R. 2008. Conversion of generalization hierarchies and union
types from extended Entity-Relationship model to an XML logical model. In Proceedings of the 23rd
Symposium on Applied Computing. ACM, 1036–1037.

SCHROEDER, R. AND DOS SANTOS MELLO, R. 2009. Designing XML documents from conceptual schemas
and workload information. Multimedia Tools and Applications 43, 3, 303–326.

SHANMUGASUNDARAM, J., SHEKITA, E. J., BARR, R., CAREY, M. J., LINDSAY, B. G., PIRAHESH, H., AND
REINWALD, B. 2001. Efficiently publishing relational data as xml documents. VLDB Journal 10(2-3),
133–154.

YAO, G., ZHU, D., LI, H., AND MA, S. 2008. A polynomial algorithm to compute the minimum degree
spanning trees of directed acyclic graphs with applications to the broadcast problem. Discrete Mathe-
matics 308, 17, 3951–3959.

ZHOU, R., LIU, C., AND LI, J. 2008. Holistic constraint-preserving transformation from relational schema
into XML Schema. In Proceedings of the 13th International Conference on Database Systems for Ad-
vanced Applications. Springer, 4–18.

ACM Transactions on Database Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

