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ABSTRACT:

Suitable extensions of monadic second-order theories of k successors have been proposed in the litera-

ture to specify in a concise way reactive systems whose behaviour can be naturally modeled with respect to

a (possibly infinite) set of differently-grained temporal domains. This is the case, for instance, of the wide-

ranging class of real-time reactive systems whose components have dynamic behaviours regulated by very

different time constants, e.g., days, hours, and seconds. In this paper, we focus on the theory of k-refinable

downward unbounded layered structures MSO[<tot, (↓i)
k−1
i=0 ], that is, the theory of infinitely refinable

structures consisting of a coarsest domain and an infinite number of finer and finer domains, whose sat-

isfiability problem is nonelementarily decidable. We define a propositional temporal logic counterpart of

MSO[<tot, (↓i)
k−1
i=0 ] with set quantification restricted to infinite paths, called CTSL∗

k, which features an

original mix of linear and branching temporal operators. We prove the expressive completeness of CTSL∗
k

with respect to such a path fragment of MSO[<tot, (↓i)
k−1
i=0 ] and show that its satisfiability problem is

2EXPTIME-complete.
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1 Introduction

The ability of providing and relating temporal representations at different ‘grain lev-
els’ of the same reality is widely recognized as an important research theme for tem-
poral logic and a major requirement for many applications, including formal specifi-
cations, artificial intelligence, temporal databases, and data mining, e.g. [2, 6, 11].

A systematic framework for time granularity, based on a many-level view of tempo-
ral structures, with matching logics and decidability results, has been proposed in [21].
The many-level temporal structure replaces the flat temporal structure of standard tem-
poral logics by a temporal universe consisting of a (possibly infinite) set of related
differently-grained temporal domains. Such a temporal universe identifies the rele-
vant temporal domains and defines the relations between time points belonging to dif-
ferent domains. Suitable temporal operators make it possible to specify the temporal
domain(s) a given formula refers to (contextualization), as well as to constrain the rela-
tionships between formulae within any given domain (local displacement) and across
temporal domains (projection). The language for time granularity is the second-order
language MSO[<tot, (↓i)

k−1
i=0 ], where <tot is a total ordering over the temporal uni-

verse and, for every element x of the temporal universe, ↓0 (x), . . . , ↓k−1 (x) are the
k elements of the immediately finer temporal domain (if any) into which x is refined.
Such a language can be interpreted over both n-layered and ω-layered structures. The
corresponding theories have been proved to be expressive enough to capture the key
features of metric and layered temporal logics, that is, to define contextualization,
displacement, and projection operators [21].

In [26], the decidability of the theory of k-refinable n-layered structures has been
proved by mapping its decidability problem into an equivalent one relative to the
finest layer, and, then, by reducing such a problem to the decidability problem for the
monadic second-order theory of one successor MSO[<] [4]. The class of k-refinable

upward unbounded layered structures, i.e., ω-layered structures consisting of a finest
temporal domain and an infinite number of coarser and coarser domains (cf. Figure 1),
and the class of k-refinable downward unbounded layered structures, i.e., infinitely re-
finable structures consisting of a coarsest domain and an infinite number of finer and
finer domains (cf. Figure 2), have been investigated in [23]. Both theories have been
shown to be nonelementarily decidable: the first one has been reduced to the monadic
second-order theory of one successor, properly extended with a suitable partition func-
tion (the resulting theory has been proved to be the counterpart, in the style of Büchi
Theorem, of the class of ω-languages accepted by k-ary tree systolic automata, which
strictly includes the class of ω-regular languages); the second one has been reduced
to the monadic second-order theory of k successors (with k ≥ 2). An expressively
complete temporal logic counterpart of MFO[<tot, (↓i)

k−1
i=0 ], the first-order fragment

of the theory of k-refinable upward unbounded layered structures, has been proposed
in [24]. In this paper, we address the problem of finding a temporal logic counter-
part to a suitable fragment of the theory of k-refinable downward unbounded layered
structures.
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FIG. 1. A 2-refinable upward unbounded layered structure.

We first provide an alternative view of these structures as infinite sequences of in-
finite k-ary trees. Then, we define a temporal logic counterpart of the theory of k-
refinable downward unbounded layered structures MSO[<tot, (↓i)

k−1
i=0 ] with set quan-

tification restricted to infinite tree paths, MPL[<tot, (↓i)
k−1
i=0 ] for short, and show that

it is expressively complete. The resulting logic, that we called CTSL∗
k (Computa-

tional Tree Sequence Logic with k successors), can be viewed as a combined logic
that embeds a logic for branching within (discrete) time points into a linear time logic.
This form of logic combination is called temporalization in [13]. The nice feature
of temporalization is that it transfers many logical properties, such as soundness and
completeness of axiomatisations and decidability, from the component logics to the
combined one.

In order to prove the expressive completeness of CTSL∗
k, we define a translation

of MPL[<tot, (↓i)
k−1
i=0 ] formulas into CTSL∗

k ones that is based on a model-theoretic
decomposition lemma for tree sequences, which is proved by exploiting an application
of the Ehrenfeucht game. Compared with MPL[<tot, (↓i)

k−1
i=0 ], CTSL

∗
k presents two

major advantages. First, the satisfiability problem for CTSL∗
k is elementarily decid-

able, while that for MPL[<tot, (↓i)
k−1
i=0 ] is nonelementarily decidable (we will prove

that the satisfiability problem for CTSL∗
k admits a decision procedure whose com-

putational time complexity is doubly exponential in the length of the input formula,
and that it is 2EXPTIME-hard). Furthermore, according to the combining logic per-
spective [12, 13, 14, 15], an axiomatisation (resp. model and satisfiability checking
procedures) for CTSL∗

k can be synthesized from axiomatisations (resp. model and
satisfiability checking procedures) for the component logics.

The paper is organized as follows. In Section 2 we illustrate the rationale of the
work. In Section 3 we introduce the relevant theories of downward unbounded layered
structures. In Section 4 we define the logic CTSL∗

k. In Section 5 we study its expres-
siveness and complexity. In Section 6 we show how to tailor the logical framework
for downward unbounded layered structures to cope with n-layered ones. Conclusions
provide an assessment of the work done, and outline future research directions.
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FIG. 2. A 2-refinable downward unbounded layered structure.

2 Rationale

The original motivation of our research was the design of a temporal logic embedding
the notion of time granularity, suitable for the specification of complex (real-time)
reactive systems whose components evolve according to different time units. How-
ever, there are significant similarities between the problems we encountered in pursu-
ing our goal, and those addressed by current research on combining logics, theories,
and structures. Furthermore, we recently established interesting connections between
multi-level temporal logics and automata theory that suggests a complementary point
of view on time granularity: besides an important feature of a representation language,
time granularity can be viewed as a formal tool to investigate expressiveness and de-
cidability properties of temporal theories. Finally, as a by-product of our work, we
defined a uniform framework for time and states that reconciles the tense logic and
the logic of programs perspectives.

2.1 The specification of granular real-time reactive systems

Timing properties play a major role in the specification of reactive and concurrent
software systems that operate in real-time, which are among the most critical software
systems. They constrain the interactions between different components of the system
as well as between the system and its environment, and minor changes in the precise
timing of interactions may lead to radically different behaviors. Temporal logic has
been successfully used for modeling and analyzing the behavior of reactive and con-
current systems, e.g. [20]. It supports semantic model checking, which can be used to
verify the consistency of specifications, and to check positive and negative examples
of system behavior against specifications; it also supports pure syntactic deduction,
which may be used to prove properties of systems. Unfortunately, most common
specification languages are inadequate for real-time applications, because they lack
an explicit and quantitative representation of time. A few remarkable exceptions do
exist. They are extensions of Petri Nets or metric variants of temporal logic, which
support direct and quantitative specifications of temporal properties and relevant vali-
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dation activities.
There are, however, systems whose temporal specification is far from being simple

even with timed Petri Nets or metric temporal logic. Consider the wide-ranging class
of real-time systems whose components have dynamic behaviours regulated by very
different—even by orders of magnitude—time constants (hereafter granular real-time

reactive systems). As an example, consider a pondage power station consisting of a
reservoir, with filling and emptying times of days or weeks, generator units, possibly
changing state in a few seconds, and electronic control devices, evolving in millisec-
onds or even less. A complete specification of the power station must include the
description of these components and of their interactions. A natural description of
the temporal evolution of the reservoir state will probably use days: “During rainy
weeks, the level of the reservoir increases 1 meter a day”, while the description of
the control devices behaviour may use microseconds: “When an alarm comes from
the level sensors, send an acknowledge signal in 50 microseconds”. We say that sys-
tems of such a type have different time granularities. It is somewhat unnatural, and
sometimes impossible, to compel the specifier to use a unique time granularity, mi-
croseconds in the previous example, to describe the behaviour of all the components.
A good language must allow the specifier to easily describe all simple and intuitively
clear facts (naturalness of the notation). Hence, a specification language for granular
real-time reactive systems must support different time granularities to allow one (i) to
maintain the specifications of the dynamics of differently-grained components as sep-
arate as possible (modular specifications), (ii) to differentiate the refinement degree
of the specifications of different system components (flexible specifications), and (iii)
to write complex specifications in an incremental way by refining higher-level predi-
cates associated with a given time granularity in terms of more detailed ones at a finer
granularity (incremental specifications).

2.2 The combining logic perspective

Even though the original motivation of our work on time granularity was the design of
a temporal logic suitable for the specification of granular real-time reactive systems,
there are significant similarities between the problems it addresses and those dealt
with by the current research on logics that model changing contexts and perspectives.
Indeed, even if it has been developed in a temporal framework, our proposal actually
outlines the basic features of a general logic of granularity. In this respect, it can be
seen as a generalization of the well-known Rescher and Garson’s topological logic to
layered structures [27]. Moreover, it presents interesting connections with the logics
of contexts developed in the area of knowledge representation, where modalities are
used to shift variables, domains, and interpretation functions from one context to an-
other [5]. More generally, the design of these types of logics is emerging as a relevant
research topic in the broader area of combination of logics, theories, and structures, at
the intersection of logic with artificial intelligence, computer science, and computa-
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tional linguistics [3]. In our work, we devised suitable combination techniques both to
define temporal logics for time granularity and to prove their logical properties, such
as axiomatic completeness and decidability [22, 26]. Furthermore, we followed the
combining logic approach to build a model checking framework for granular reactive
systems and logics [15].

2.3 A complementary point of view on time granularity

A complementary point of view on time granularity arises from interesting connec-
tions that link multi-level temporal logics and automata theory: time granularity can
be viewed not only as an important feature of a representation language, but also as
a formal tool to investigate the definability of meaningful timing properties, such as
density and exponential grow/decay, as well as the expressiveness and decidability of
temporal theories [23, 25]. In this respect, the number of layers (single vs. multi-
ple, finite vs. infinite) of the underlying temporal structure, as well as the nature of
their interconnections, play a major role: certain timing properties can be expressed
using a single layer; others using a finite number of layers; others only exploiting an
infinite number of layers. Timing properties of granular reactive systems composed
by a finite number of differently-grained temporal components can be specified by
using n-layered metric temporal logics. Furthermore, if provided with a rich enough
layered structure, n-layered metric temporal logics suffice to deal with conditions like
“p holds at all even times of a given temporal domain” that cannot be expressed us-
ing flat propositional temporal logics. ω-layered metric temporal logics allow one to
express relevant properties of infinite sequences of states over a single temporal do-
main that cannot be captured by using flat or n-layered temporal logics. For instance,
k-refinable upward unbounded layered logics allow one to express conditions like “p
holds at all time points ki, for all natural numbers i, of a given temporal domain”,
while downward unbounded ones allow one to constrain a given property to hold true
‘densely’ over a given time interval [25].

2.4 Reconciling tense logics and logics of programs

As pointed out in [25], logic and computer science communities have traditionally
followed a different approach to the problem of representing and reasoning about time
and states. Research in philosophy, linguistics, and mathematical logic resulted in a
family of (metric) tense logics that take time as a primitive notion and define (timed)
states as sets of atomic propositions which are true at given time points. Recently,
a few papers demonstrated the possibility of successfully exploiting metric (possibly
layered) tense logics in computer science, e.g. [21, 22]. On the other hand, most re-
search in computer science concentrated on the so–called temporal logics of programs,
which have been successfully used to specify and verify reactive and concurrent sys-
tems, e.g. [10]. In order to deal with real-time systems, such logics have been provided



Branching within Time: an Expressively Complete and Elementarily Decidable Temporal Logic for Time Granularity 7

with a metric of time, e.g. [1]. The resulting temporal logics, called real-time logics,
take state as a primitive notion, and define time as an attribute of states. More pre-
cisely, given an ordered set of states S and an ordered set of time points T , real-time
logics are characterized by a weakly monotonic function ρ : S → T that associates
a time instant with each state. Real-time logics allow one to model pairs of states
si, sj ∈ S such that si < sj and ρ(si) = ρ(sj) (temporally indistinguishable states)
or ρ(si+1) > ρ(si) + 1 (temporal gaps between states). Providing metric temporal
logics with an infinite number of layers (ω-layered), where each time point belonging
to a given layer can be decomposed into k time points of the immediately finer one
(k-refinable), makes it possible to reconcile metric tense logics and real-time logics
of programs. The basic idea is that any pair of distinct states, belonging to the same
course of events, can always be temporally ordered, provided that we can refer to a
sufficiently fine temporal domain. Furthermore, the ordering between pairs of states,
which are temporally indistinguishable with respect to the considered domain, is ac-
tually induced by their temporal ordering with respect to a finer domain, with respect
to which their are temporally distinguishable. Notice that a finite number of layers
is not sufficient to capture timed state sequences: it is not possible to fix a priori any
bound on the granularity that a domain must have to allow one to temporally order a
given pair of states, and thus we need to have an infinite number of temporal domains
at our disposal. In [25], Montanari et al. show how to embed the theory of timed state
sequences, underlying real-time logics, into the theories of upward and downward
unbounded metric and layered temporal structures. Such an embedding allows one
to deal with temporal indistinguishability of states and temporal gaps between states.
In the granularity setting, temporal indistinguishability and temporal gaps can indeed
be interpreted as phenomena due to the fact that real-time logics lack the ability to
express properties at the right (finer) level of granularity: distinct states, having the
same associated time, can always be ordered at the right level of granularity; simi-
larly, time gaps represent intervals in which a state cannot be specified at a finer level
of granularity.

3 Structures and theories of time granularity

In this section, we formally define k-refinable downward unbounded layered struc-
tures and the corresponding monadic second-order theories.

3.1 Infinite sequences of infinite k-ary trees

According to the original definition given by Montanari et al. in [23], k-refinable
downward unbounded layered structures are triplets ⟨

⋃
i≥0 T

i, ↓, <tot⟩, where

• {T i}i≥0 are pairwise disjoint copies of N;

• ↓: {0, . . . , k − 1} ×
⋃

i≥0 T
i →

⋃
i≥1 T

i is a bijection such that, for all i ≥ 0,
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FIG. 3. A 2-refinable downward unbounded layered structure (revisited).

↓|T i : {0, . . . , k − 1}× T i → T i+1 is a bijection;

• <tot is such that

1. ⟨T 0, <tot|T 0×T 0⟩ is isomorphic to N with the usual ordering;

2. t <tot ↓ (j, t), for 0 ≤ j ≤ k − 1;

3. ↓ (j, t) <tot ↓ (j + 1, t), for 0 ≤ j ≤ k − 2;

4. if t <tot t′ and t′ ̸∈
⋃

i≥0 ↓i (t), then ↓ (k − 1, t) <tot t′;
5. if t <tot t′ and t′ <tot t′′, then t <tot t′′.

where ↓n (t) ⊆
⋃

i≥0 T
i is the set such that ↓0 (t) = {t} and, for every n ≥ 1,

↓n (t) = {↓ (j, t′) : t′ ∈↓n−1 (t), 0 ≤ j ≤ k − 1}.

It is worth noting that the domain
⋃

i≥0 T
i is structured by ↓ in such a way that

each time point of T0 is the root of a leafless, perfectly balanced k-ary tree. The total
ordering <tot over

⋃
i≥0 T

i is induced by the linear ordering of the trees, for pairs of
nodes belonging to different trees, and by the preorder visit of the tree, for pairs of
nodes belonging to the same tree (cf. Figure 3). In the following, we make this remark
more precise by providing an equivalent characterization of k-refinable downward
unbounded layered structures as infinite sequences of infinite k-ary trees. Later, we
will exploit this alternative formulation to obtain a temporal logic counterpart of the
theory of k-refinable downward unbounded layered structures.

We start by defining the notion of Σ-labeled k-ary tree. Let Tk = {0, . . . , k − 1}∗

be the set of finite strings over {0, . . . k−1} and, for x ∈ Tk, let |x| be the length of x.
We denote by ϵ the empty string (|ϵ| = 0). Let Σ be a fixed finite alphabet. An infinite

Σ-labeled k-ary tree, with k ≥ 1, is a map t : Tk → Σ. For k ≥ 2, Tk(Σ) defines
the set of infinite Σ-labeled k-ary trees, while, for k = 1, it defines the set of infinite
sequences (or infinite words). A finite sequence (or finite word) is a map from an initial
segment of T1 to Σ. For any 0 ≤ i ≤ k− 1 and x ∈ Tk, let ↓i (x) = xi be the i-th son

of x. Furthermore, we denote by < the (partial) ordering induced by the proper prefix

relation over Tk: x < y iff there exists z ̸= ϵ such that xz = y. The lexicographical
(total) ordering on Tk, denoted by <lex, is defined as follows: x <lex y iff x < y or
x = zav and y = zbu, with a, b ∈ {0 . . . k − 1} and a < b (over N). Any given tree
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t ∈ Tk(Σ) can be represented as a structure t̂ = (Tk, <, (↓i)
k−1
i=0 , (Pa)a∈Σ), where

Pa = {x ∈ Tk | t(x) = a}, for every a ∈ Σ. Given x ∈ Tk, a chain in t, starting at
x, is a subset of Tk, linearly ordered by <, such that x is the minimum of the chain.
A path X in t, starting at x, is a chain, starting at x, such that there exists no chain Y ,
starting at x, which properly includes X . A full path in t is a path starting at the root
ϵ of t, that is, a maximal, linearly ordered subset of t. The i-th layer of t is the finite
set {x0, . . . , xki−1} ⊂ Tk such that, for r = 0, . . . , ki − 1, |xr| = i.

An infinite sequence of infinite Σ-labeled k-ary trees is a map ts : TSk → Σ,
where TSk = N×Tk. The i-th tree of the sequence is the set {(i, x) ∈ TSk | x ∈ Tk}.
Let TSk(Σ) be the set of infinite sequences of Σ-labeled infinite k-ary trees. Given
0 ≤ i ≤ k − 1 and (j, x) ∈ TSk, ↓i ((j, x)) = (j, xi) is the i-th projection of (j, x).
A total ordering relation <tot over TSk, which corresponds to the ordering relation
<tot over

⋃
i≥0 T

i, can be defined as follows:

1. (i, ϵ) <tot (j, ϵ), j > i ≥ 0;

2. (i, x) <tot ↓j (i, x), for 0 ≤ j ≤ k − 1 and i ≥ 0;

3. ↓j (i, x) <tot ↓j+1 (i, x), for 0 ≤ j ≤ k − 2 and i ≥ 0;

4. if (i, x) <tot (j, y) and either i < j or it is not the case that x < y (over Tk), then
↓k−1 (i, x) <tot (j, y), for all i, j ≥ 0;

5. if (i, x) <tot (n, z) and (n, z) <tot (j, y), then (i, x) <tot (j, y).

Furthermore, the domain TSk is partially ordered by two ordering relations <1 and
<2 defined as follows: for every (i, x), (j, y) ∈ TSk, (i, x) <1 (j, y) if and only if
i < j (over N) and (i, x) <2 (j, y) if and only if i = j and x < y (over Tk). Any
given tree sequence ts ∈ TSk(Σ) can be represented as a structure t̂s = (TSk, <tot

, (↓i)
k−1
i=0 , (Pa)a∈Σ), where Pa = {(j, x) ∈ TSk | ts((j, x)) = a}, for every a ∈ Σ.

Given ts ∈ TSk(Σ), (j, x) ∈ TSk, and 0 ≤ i ≤ k − 1, we denote by ts(j,x) and
ts(j,x),i the tree rooted at (j, x) and the tree rooted at the i-th son of (j, x), respectively.
Accordingly, the i-th tree of ts is denoted by ts(i,ϵ). A chain (resp. path, full path) in ts
is a chain (resp. path, full path) in ts(i,ϵ), for some i ≥ 0. We denote byΠ(ts) the set of
full paths of ts. The i-th layer Li of ts is the set

⋃
j≥0{(j, x0), . . . , (j, xki−1)} ⊂ TSk

such that, for r = 0, . . . , ki − 1, |xr | = i. A path P (resp. layer L) in ts can be
ordered with respect to <tot obtaining a sequence (j1, x1)(j2, x2) . . .; we denote by
P (i) (resp. L(i)) the i-th element (ji, xi) of such a sequence. It is worth noting that
the restriction of <1 to the elements belonging to the 0-layer is a total ordering, while
this is not the case for all the other finer layers. We will take advantage of this fact
when we will define a combined temporal logic for time granularity.

It is not difficult to show that any givenΣ-labeled k-refinable downward unbounded
layered structure ⟨

⋃
i≥0 T

i, ↓, <tot⟩ corresponds to an infinite sequence of infinite Σ-

labeled k-ary trees t̂s = (TSk, <tot, (↓i)
k−1
i=0 , (Pa)a∈Σ), and vice versa.
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3.2 Theories of downward unbounded layered structures

In this section, we define the relevant theories of k-refinable downward unbounded
layered structures.

DEFINITION 3.1
Given a finite alphabet Σ, let MSOΣ[c1, . . . , cr, u1, . . . , us, b1, . . . , bt] (abbreviated
MSOΣ[τ ]) be the second-order language with equality over a set C = {c1, . . . , cr}
of constant symbols, a set U = {u1, . . . , us} of unary relational symbols, and a set
B = {b1, . . . , bt} of binary relational symbols, which is defined as follows:

(i) atomic formulas are of the forms x = y, x = ci, with 1 ≤ i ≤ r, ui(x), with
1 ≤ i ≤ s, bi(x, y), with 1 ≤ i ≤ t, x ∈ X , and x ∈ Pa, where x, y are individual
variables, X is a set variable, and Pa, with a ∈ Σ, is a monadic predicate;

(ii) formulas are built up from atomic formulas by means of the Boolean connectives
¬, ∧, ∨, and →, and the quantifiers ∀ and ∃, ranging over both individual and set
variables.

MSOΣ[τ ]-formulas are interpreted over relational structures consisting of a domain D
and an interpretation function I for the symbols in the vocabulary τ and the monadic
predicates (Pa)a∈Σ. Semantics structures for MSOΣ[τ ] give the same interpretation
to symbols in τ ; they may only differ in the interpretation of the predicates (Pa)a∈Σ.

For any given vocabulary τ , let MFOΣ[τ ] be the first-order fragment of MSOΣ[τ ]
and, whenever MSOΣ[τ ] is interpreted over trees or tree sequences, let MPLΣ[τ ] be
the restriction of MSOΣ[τ ] obtained by constraining set variables to be interpreted
over paths (formulas in MPLΣ[τ ] are called path formulas).

Letϕ(x1, . . . , xn, X1, . . . , Xm) be a formula with free individual variables x1, . . . , xn

and free set variables X1, . . . , Xm. A sentenceϕ is a formula devoid of free variables.
A model for a sentence ϕ is a structure in which ϕ is true. Let S be the set of structures
over which MFOΣ[τ ] (resp. MPLΣ[τ ], MSOΣ[τ ]) is interpreted. We say that T ⊆ S
is definable in MFOΣ[τ ] (resp. MPLΣ[τ ], MSOΣ[τ ]) if there exists a sentence ϕ in
MFOΣ[τ ] (resp. MPLΣ[τ ], MSOΣ[τ ]) such that, for every M ∈ S, M is a model of
ϕ if and only if M ∈ T . Whenever no confusion can arise, we will omit the subscript

Σ. In the rest of the paper, we will focus our attention on the following languages and
theories:

• MFO[<], interpreted over finite and infinite sequences;

• MPL[<, (↓i)
k−1
i=0 ], interpreted over infinite k-ary trees;

• MFO/MPL/MSO[<tot, (↓i)
k−1
i=0 ] and MFO/MPL/MSO[<1, <2, (↓i)

k−1
i=0 ], in-

terpreted over infinite sequences of infinite k-ary trees.

It is possible to show that MPL[<1, <2, (↓i)
k−1
i=0 ] (resp. MSO[<1, <2, (↓i)

k−1
i=0 ]) is

as expressive as MPL[<tot, (↓i)
k−1
i=0 ] (resp. MSO[<tot, (↓i)

k−1
i=0 ]).
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PROPOSITION 3.2
MPL[<1, <2, (↓i)

k−1
i=0 ], interpreted over infinite sequences of infinite k-ary trees, is as

expressive as MPL[<tot, (↓i)
k−1
i=0 ].

PROOF. We first show that (i, x) <tot (j, y) if and only if either i = j and x <lex y
or i < j. Consider the direction from left to right. For the sake of conciseness, we
use (i, x)<tot(j, y) as a shorthand for either i = j and x <lex y or i < j. In order
to prove the implication, it suffices to show that axioms (1,2,3) and rules (4,5) of the
definition of <tot (over TSk) are sound, that is, they preserve the relation <tot.

1. (i, ϵ)<tot(j, ϵ), with 0 ≤ i < j: it immediately follows from i < j.

2. (i, x)<tot ↓j (i, x), for 0 ≤ j ≤ k − 1: it follows from ↓j (i, x) = (i, ↓j (x)),
↓j (x) = xj, and x <lex xj.

3. ↓j (i, x)<tot ↓j+1 (i, x), for 0 ≤ j ≤ k − 2 and i ≥ 0: it is analogous to the
previous case.

4. if (i, x)<tot(j, y) and either i < j or it is not the case that x < y (over Tk),
then ↓k−1 (i, x)<tot(j, y), for all i, j ≥ 0. In the case in which i < j, then
↓k−1 (i, x) = (i, ↓k−1 (x))<tot(j, y), and thus the thesis. Suppose that i = j
and x <lex y. Since x < y does not hold, by definition of <lex, there exist
a, b, z, u, and v, with |a| = |b| = 1 and |z|, |u|, |v| ≥ 0, such that x = zau,
y = zbv, and 0 ≤ a < b. Therefore ↓k−1 (x) = x(k − 1) = zau(k − 1) = zau′,
with u′ = u(k − 1). This allows us to conclude that ↓k−1 (x) <lex y, and thus
↓k−1 (i, x)<tot(j, y).

5. if (i, x)<tot(n, z) and (n, z)<tot(j, y), then (i, x)<tot(j, y): a simple case analy-
sis suffices, taking into account that both <lex and <1 are transitive relations.

Let us prove now the opposite direction, that is, for any given i, j, x, and y, if either
i = j and x <lex y or i < j, then (i, x) <tot (j, y). Let i < j. For all z ∈ Tk, it
holds that (i, z) <tot (j, ϵ). The proof is by induction on the length of z. If |z| = 0,
that is, z = ϵ, the thesis follows from axiom (1). Let |z| = n+ 1. By definition, there
exist w, with |w| = n and m, with 0 ≤ m ≤ k − 1, such that z =↓m (i, w). From
axiom (3) and rule (5), it holds that ↓m (i, w) ≤tot ↓k−1 (i, w). Furthermore, by the
inductive hypothesis, it holds that (i, w) <tot (j, ϵ), and thus, by using rule (4), we
obtain that ↓k−1 (i, w) <tot (j, ϵ). An application of rule (5) allows us to conclude
that (i, z) <tot (j, ϵ). If y = ϵ we have the thesis. Otherwise, we need to show that
(j, ϵ) <tot (j, y), for all y, with |y| > 0. This can be proved by a simple induction
on the length of y. Given (i, z) <tot (j, ϵ) and (j, ϵ) <tot (j, y), rule (5) allows us to
conclude that (i, z) <tot (j, y). The case in which i = j and x <lex y can be dealt
with in a similar way.

To complete the proof, it suffices to show that the relation <tot can be expressed in
MPL[<1, <2, (↓i)

k−1
i=0 ] and that both <1 and <2 can be expressed in MPL[<tot, (↓i

)k−1
i=0 ]. As for the first statement, we just showed that (i, x) <tot (j, y) if and only if

either i = j and x <lex y or i < j. On the ground of this equivalence, it is not difficult
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to see that x ≤tot y if and only if

x ≤2 y ∨ ∃z(
∨

0≤i<j≤k

(↓i (z) ≤2 x∧ ↓j (z) ≤2 y)) ∨ x ≤1 y.

By exploiting the same correspondence, we can also prove the second statement. For
all pairs x, y, x ≤1 y if and only if

x ≤tot y ∧ ∃X∃Y ∃r1∃r2(r1 ̸= r2 ∧ T0(r1)∧
T0(r2) ∧ x ∈ X ∧ r1 ∈ X ∧ y ∈ Y ∧ r2 ∈ Y ),

where T0(x) =def ¬∃y
∨k−1

i=0 ↓i (y) = x.
Furthermore, for all pairs x, y, x ≤2 y if and only if

x ≤tot y ∧ ∃X(x ∈ X ∧ y ∈ X)

The above proposition can be easily generalized to the full second-order case. One
direction of the proof remains the same (<tot can be defined in MSO[<1, <2, (↓i)

k−1
i=0 ]

in exactly the same way). To prove the opposite direction, it suffices to show that paths
can be defined in MSO[<tot, (↓i)

k−1
i=0 ]:

Path(X) =def ∃x(T 0(x) ∧ x ∈ X ∧ ∀y((T 0(y) ∧ x ̸= y) → y ̸∈ X))∧

∀y(y ∈ X →
∨k−1

j=0 (↓j (y) ∈ X ∧
∧

i̸=j ↓i (y) ̸∈ X))∧

∀y(y ̸∈ X →
∧k−1

i=0 ↓i (y) ̸∈ X).

3.3 Contextualization, displacement, and projection operators

In [23], Montanari et al. propose MSO[<tot, (↓i)
k−1
i=0 ] as the language for time gran-

ularity and define its interpretations over both upward and downward unbounded lay-
ered structures. In this section, we show that MPL[<tot, (↓i)

k−1
i=0 ], interpreted over

downward unbounded layered structures, is expressive enough to capture the basic
temporal operators of contextualization, local displacement, and projection (an infor-
mal account of these operators can be found in Section 1).

The case of projection is trivial, since the projection symbols ↓i, for 0 ≤ i ≤ k− 1,
belong to the language. As an example, the condition “p holds at the i-th projection of
x” can be written as ∃y(↓i (x) = y ∧ p(y)). We can also define the converse relation
of abstraction as follows. We say that x can be abstracted in y, notationally ↑ (x) = y,

if and only if it holds that
∨k−1

i=0 ↓i (y) = x. Accordingly, the condition “p holds at
the abstraction of x” can be written as ∃y(↑ (x) = y ∧ p(y)).

As for contextualization, let Ti be a monadic predicate that holds at all time points
of the i-th layer, for every i ≥ 0 (this form of contextualization has been called hori-
zontal contextualization in [23]). Ti can be inductively defined as follows:

T0(x) =def ¬∃y
∨k−1

i=0 ↓i (y) = x;

Ti+1(x) =def ∃y(Ti(y) ∧
∨k−1

j=0 ↓j (y) = x).
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Finally, local displacement is captured as follows. For every i ≥ 0, let +i1 be a
binary predicate such that, for all pairs x, y ∈ T i, +i1(x, y) if and only if y is the
within T i-successor of x. It can be defined as follows:

+i1(x, y) =def Ti(x) ∧ Ti(y) ∧ x <tot y ∧
∀z(Ti(z) ∧ x <tot z → y ≤tot z).

In the following, we will use a functional notation for +i1, that is, we will write
+i1(x) = y for +i1(x, y). Moreover, we will adopt +ij(x) as an abbreviation for
(+i1)j(x).

In [23], Montanari et al. also introduce an alternative form of contextualization,
called vertical contextualization, which is defined as follows: for every i ≥ 0, let Di

be a monadic predicate that holds at all time points at distance i from the origin of the
layer they belong to. We show that the combined use of projection, local displacement
and horizontal contextualization makes it possible to define vertical contextualization.
Given w ∈ {0, . . . , k − 1}∗, we inductively define ↓w (x) as follows. Whenever
|w| = 0, ↓w (x) = x. Otherwise, let w = av, with a ∈ {0, . . . , k − 1}. We define
↓av (x) =↓a (↓v (x)). D0(x) can be defined as follows:

D0(x) =def ∃X(x ∈ X ∧ 00 ∈ X ∧ ∀y(y ∈ X →↓0 (y) ∈ X)),

where 00 is the first-order definable origin of coarsest layer (we have that y = 00 if
and only if ∀z(y ≤tot z))1.

For all i > 0, let ankn+ . . . a0k0 be the k-ary representation of i. Di can be defined
as follows:

Di(x) =def
∨⌊logk(i)⌋

j=0 ∃z(D0(z) ∧ Tj(z) ∧ +ji(z) = x)∨
∃y(D0(y)∧ ↓a0,...,an (y) = x).

Since second-order quantification (over paths) only occurs in the definition D0, it
immediately follows that horizontal contextualization, local displacement, and pro-
jection are also definable in MFO[<tot, (↓i)

k−1
i=0 ].

REMARK 3.3
In MSO[<tot, (↓i)

k−1
i=0 ], there is no way to define a binary predicate EqualT (resp.

EqualD) such that, for all x, y, EqualT(x, y) (resp. EqualD(x, y)) holds true if and
only if there exists i such that both T i(x) (resp. Di(x)) and T i(y) (resp. Di(y)) hold.
Indeed, the addition of EqualT (resp. EqualD) makes MSO[<tot, (↓i)

k−1
i=0 ] undecid-

able, a result which is closely related to the undecidability of the extension of S2S
with a predicate Elevel such that Elevel(x, y) holds true if and only if |x| = |y|,
with x, y ∈ {0, 1}∗ [19]. Notice that, from the fact that EqualT and EqualD cannot be
expressed in MSO[<tot, (↓i)

k−1
i=0 ], it obviously follows that they cannot be expressed

in MPL[<tot, (↓i)
k−1
i=0 ] and MFO[<tot, (↓i)

k−1
i=0 ], but it does not follow that the addi-

tion of these predicates to such theories, or to weaker variants of them devoid of the

1In order to define D0 in MSO[<tot, (↓i)
k−1

i=0
], it suffices to add the conjunct Path(X) to the above definition, that is:

D0(x) =def ∃X(Path(X) ∧ x ∈ X ∧ 00 ∈ X ∧ ∀y(y ∈ X →↓0 (y) ∈ X)).
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uninterpreted monadic predicates Pa, with a ∈ Σ, would make them undecidable. We
are currently exploring these decidability problems in a systematic way.

In the following, we will refer to MPL[<1, <2, (↓i)
k−1
i=0 ], which has been proved to

be as expressive as MPL[<tot, (↓i)
k−1
i=0 ] (cf. Proposition 3.2). The reason is that, ac-

cording to the combining logic perspective, MPL[<1, <2, (↓i)
k−1
i=0 ] allows us to spec-

ify the behaviour of a (granular) reactive system as a suitable combination of temporal
evolutions, modeled by <1, and temporal refinements, modeled by <2 (cf. Figure 3).

We conclude by pointing out that the expressive power of MPL[<1, <2, (↓i)
k−1
i=0 ]

does not change if we further constrain set variables to only range over full paths
(instead of paths): a full path is just a particular path starting from a point belonging
to the first temporal domain; moreover, a path can always be embedded into a unique
full path. For instance, the sentence “there is a path whose time points are labeled
with symbol a”, which is expressed in MPL[<1, <2, (↓i)

k−1
i=0 ] by the formula:

∃X∀x(x ∈ X → Pa(x)),

can be captured using full paths by the formula:

∃X∃y(y ∈ X ∧ ∀x(x ∈ X ∧ y ≤2 x → Pa(x))).

3.4 The relationships with interval structures and theories

There exists a natural link between structures and theories of time granularity and
those developed for representing and reasoning about time intervals. Differently-
grained temporal domains can indeed be interpreted as different ways of partitioning
a given discrete/dense time axis into consecutive disjoint intervals. According to this
interpretation, every time point can be viewed as a suitable interval over the time axis
and projection implements an intervals/subintervals mapping. More precisely, let us
define direct constituents of a time point x, belonging to a given domain, the time
points of the immediately finer domain into which x can be refined (if any) and indi-

rect constituents the time points into which the direct constituents of x can be directly
or indirectly refined (if any). The mapping of a given time point into its direct or in-
direct constituents can be viewed as a mapping of a given time interval into (a subset
of) its subintervals. It is worth investigating the possibility of lifting this mapping be-
tween interval and granularity structures to the corresponding theories. Most interval
temporal logics, such as, for instance, Moszkowski’s Interval Temporal Logic (ITL),
Halpern and Shoham’s xxx (HS), and xxx Neighboorhoud Logic (NL), have indeed
been shown to be undecidable, unless we restrict ourselves to very weak fragments of
them, e.g.

goal: transfer of decidability results from the granularity setting to the interval
one; (one of the) key points: the restriction on the set of projection
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4 Temporal logics for time granularity

In this section, we first give the definition of basic linear and branching time logics as
well as that of their past and/or directed variants; then, we introduce temporal logics
for time granularity.

Let PΣ (P when no confusion can arise) be the finite set of atomic propositional
letters {Pa | a ∈ Σ}.

DEFINITION 4.1
((Past) Directed CTL∗ and (Past) Directed PTL)

We inductively define a set of state formulas and a set of path formulas:

• state formulas

(S1) any atomic proposition Pa ∈ PΣ is a state formula;

(S2) if p, q are state formulas, then p ∧ q and ¬p are state formulas;

(S3) if p is a path formula, then Ap and Ep are state formulas;

• path formulas

(P0) any atomic proposition Pa ∈ PΣ is a path formula;

(P1) any state formula is a path formula;

(P2) if p, q are path formulas, then p ∧ q and ¬p are path formulas;

(P3) if p, q are path formulas, then Xp, and pUq are path formulas;

(P4) if p is a path formula, then X0p, . . . ,Xk−1p are path formulas;

(P5) if p, q are path formulas, then X−1p and pSq are path formulas.

As for branching time logics, the language of Past (k-ary) DirectedCTL∗ (PCTL∗
k for

short) is the smallest set of state formulas generated by the above rules. The language
of (k-ary) Directed CTL∗ (CTL∗

k) is obtained by eliminating rule (P5), that of Past

CTL∗ (PCTL∗) by removing rule (P4), and that of CTL∗ by deleting both (P4) and
(P5).
As for linear time logics, the language of Past (k-ary) Directed PTL (PPTLk) is the
smallest set of path formulas generated by the rules (P0), (P2), (P3), (P4), and (P5).
The language of (k-ary) Directed PTL (PTLk) is obtained by deleting rule (P5), that
of Past PTL (PPTL) by eliminating rule (P4), and that of PTL by deleting both (P4)
and (P5). Formulas Fp and Gp are respectively defined as trueUp and ¬F¬p as
usual, where true = Pa ∨ ¬Pa, for some Pa ∈ PΣ.

We interpret (P)PTL over sequences (or unary trees), (P)PTLk over paths of k-ary
trees (with k ≥ 2), and (PD)CTL∗

k over k-ary trees (with k ≥ 2). The semantic in-
terpretation for non-directed logics is given as usual [10]. The semantic interpretation
for (P)CTL∗

k coincides with that for (P)CTL∗, except for path formulas of the form
Xip, whose interpretation is defined as follows. Given t ∈ Tk(Σ), a path X in t, and
a position j in X ,

t,X, j |= Xip if and only if X(j + 1) =↓i (X(j)) and t,X, j + 1 |= p.
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In the following, we will make use of operators Nip defined as EXip, for all i =
0, . . . , k − 1.

In a similar way, the semantic interpretation for (P)PTLk coincides with that for
(P)PTL, except for formulas of the form Xip, whose interpretation is defined as fol-
lows. Given a (full) path X in a k-ary tree and a position j in X ,

X, j |= Xip if and only if X(j + 1) =↓i (X(j)) and X, j + 1 |= p.

Let us now define the Computational Tree Sequence Logic with k successors (CTSL∗
k),

together with its past variant PCTSL∗
k. Let p be a (P)CTL∗

k-formula. We call p mono-

lithic if its outermost operator is not a Boolean connective. For example, AG(P ∨ Q)
is monolithic, while AGP ∨Q is not. Formulas of (P)CTSL∗

k are obtained by embed-
ding monolithic formulas of (P)CTL∗

k into (P)PTL. To avoid confusion, we rename
the linear temporal operators X, U, X−1, and S of (P)PTL by ⃝ , △ , ⃝−1, and
△−1, respectively.

DEFINITION 4.2
(CTSL∗

k and PCTSL∗
k)

We inductively define a set of layered formulas:

(L0) any monolithic formula in CTL∗
k is a layered formula;

(L1) any monolithic formula in PCTL∗
k is a layered formula;

(L2) if p, q are layered formulas, then p ∧ q and ¬p are layered formulas;

(L3) if p, q are layered formulas, then ⃝ p and p△ q are layered formulas;

(L4) if p, q are layered formulas, then ⃝−1p and p△−1q are layered formulas.

The language of PCTSL∗
k is the smallest set of formulas generated by rules (L1),

(L2), (L3), and (L4), while that of CTSL∗
k is obtained by applying rules (L0), (L2),

and (L3). Formulas ✸p and ✷p are respectively defined as true△ p and ¬✸¬p as
usual.

For every k ≥ 2, we interpret (P)CTSL∗
k formulas over k-ary tree sequences as

follows. Given a tree sequence ts ∈ TSk(Σ), linear temporal operators ⃝ , △ ,
⃝−1, and △−1 are interpreted over the first layer L0 of ts, while branching temporal
operators E and A are interpreted over trees rooted at time points in L0. Given a tree
sequence ts ∈ TSk(Σ), a position j ≥ 0 in L0, and a (P)CTSL∗

k-formula p, we
define the satisfiability relation ts, L0, j |= p in terms of the satisfiability relation of
(P)CTL∗

k (here denoted, to avoid confusion, by |=CTL) as follows:
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ts, L0, j |= p iff tsL0(j), L0(j) |=CTL p, p monolithic in (P )CTL∗
k

ts, L0, j |= p ∧ q iff ts, L0, j |= p and ts, L0, j |= q;
ts, L0, j |= ¬p iff it is not the case that ts, L0, j |= p;
ts, L0, j |= ⃝ p iff ts, L0, j + 1 |= p;
ts, L0, j |= p△ q iff ts, L0, r |= q for some r ≥ j, and

ts, L0, s |= p for every j ≤ s < r;
ts, L0, j |= ⃝−1p iff j > 0 and ts, L0, j − 1 |= p;
ts, L0, j |= p△−1q iff ts, L0, r |= q for some r ≤ j, and

ts, L0, s |= p for every r < s ≤ j.

Given a tree sequence ts ∈ TSk(Σ) and a (P)CTSL∗
k-formula p, we say that ts is a

model of p if and only if ts, L0, 0 |= p. A set T ⊆ TSk(Σ) is definable in (P)CTSL∗
k

if there exists a formula p in (P)CTSL∗
k such that, for every ts ∈ TSk(Σ), ts is a

model of p if and only if ts ∈ T .

5 Expressiveness and Complexity of CTSL∗
k

In this section, we show that CTSL∗
k is as expressive as MPL[<1, <2, (↓i)

k−1
i=0 ], when

interpreted over k-ary downward unbounded layered structures or, equivalently, over
infinite sequences of infinite k-ary trees (Theorems 5.7 and 5.15). Furthermore, we
prove that its satisfiability problem is 2EXPTIME-complete (Theorem 5.16).

5.1 Preliminaries

We start by recalling some basic definitions and properties of linear and branching
time logics, and by stating some auxiliary results about branching time logics with
explicit successors. Given two languages L1 and L2, interpreted over the same class
S of structures, we say that L1 is as expressive as L2 if, for every set T ⊆ S, T is
L1-definable if and only if T is L2-definable.

As for linear time logic, it is well-known that, when interpreted over the class of
finite sequences as well as over the class of infinite ones, PTL and PPTL are as
expressive as MFO[<] [16, 18].

THEOREM 5.1
(Expressive completeness of PTL and PPTL)

PTL and PPTL are as expressive as MFO[<], when interpreted over infinite (resp.
finite) sequences.

In [29], Sistla and Clarke show that the satisfiability problem for PTL is PSPACE-
complete.

As for branching time logic, the expressive power of CTL∗ and PCTL∗ is equiv-
alent to the one of monadic second-order logic on infinite binary trees with second-
order quantifiers over infinite paths [17].
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THEOREM 5.2
(Expressive completeness of CTL∗ and PCTL∗)

CTL∗ and PCTL∗ are as expressive as MPL[<], when interpreted over infinite
binary trees.

In [7], Emerson and Jutla prove that the problem of testing satisfiability for CTL∗

is 2EXPTIME-complete.
As pointed out by Hafer and Thomas [17], Theorem 5.2 can be generalized to CTL∗

k

and PCTL∗
k with respect to MPL[<, (↓i)

k−1
i=0 ] by incorporating successors into both

temporal and monadic path logics [17].

THEOREM 5.3
(Expressive completeness of CTL∗

k and PCTL∗
k)

CTL∗
k and PCTL∗

k are as expressive as MPL[<, (↓i)
k−1
i=0 ], when interpreted over

infinite k-ary trees.

Furthermore, a decision procedure for CTL∗
k can be obtained by means of the fol-

lowing non trivial adaptation of the decision procedure for CTL∗ originally developed
by Emerson and Sistla [9] and later refined by Emerson and Jutla [7].

Let us assume k = 2 (the generalization to an arbitrary k is straightforward). As a
preliminary step, we provide an embedding of PTL2 into PTL. To this end, we define
a translation τ of formulas and models of PTL2, over an alphabet Σ, to formulas
and models of PTL, over an extended alphabet Σ × {0, 1}. The mapping of PTL2-
formulas into PTL-formulas is defined as follows:

τ(Pa) =
∨

i∈{0,1} P(a,i) for a ∈ Σ
τ(α ∧ β) = τ(α) ∧ τ(β)
τ(¬α) = ¬τ(α)
τ(Xiα) =

∨
x∈Σ P(x,i) ∧ Xτ(α) for i ∈ {0, 1}

τ(αUβ) = τ(α)Uτ(β)

Temporal structures for PTL2 over Σ can be viewed as infinite labeled (full) paths,
whose nodes are labeled with symbols in Σ and whose transitions are labeled with
symbols in {0, 1}, while temporal structures for PTL over Σ× {0, 1} can be viewed
as infinite labeled sequences, whose nodes are labeled with symbols in Σ×{0, 1}. We
define a bijection τ from temporal structures M for PTL2 over Σ to temporal struc-
tures M′ forPTL overΣ×{0, 1} that maps each a-labeled node of M, with an outgo-
ing transition labeled with i, to an (a, i)-labeled node of M′. As an example, the (full)
path . . . a →0 b →1 a →1 . . . is mapped into the sequence . . . (a, 0)(b, 1)(a, 1) . . ..
The following lemma can be easily proved.

LEMMA 5.4
For every formula ϕ of PTL2 and temporal structure M, M is a model for ϕ if and
only if τ(M) is a model for τ(ϕ).
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As a second preliminary step, we transform CTL∗
k-formulas in a normal form suit-

able for subsequent manipulation. Such a normal form is a straightforward general-
ization of the normal form for CTL∗-formulas proposed by Emerson and Sistla [9].
This result is formally stated by the following lemma, whose proof is similar to the
one for CTL∗ and thus omitted.

LEMMA 5.5
For any given CTL∗

k-formula ϕ0, there exists a corresponding formula ϕ1 in a normal
form composed of conjunctions and disjunctions of subformulas of the form Ap, Ep,
and AGEp, where p is a pure linear time formula of PTL2, such that (i) ϕ1 is satisfi-
able if and only if ϕ0 is satisfiable, and (ii) |ϕ1| = O(|ϕ0|). Moreover, any model of
ϕ1 can be used to define a model of ϕ0 and vice versa.

THEOREM 5.6
(CTL∗

k is elementarily decidable)

The satisfiability problem for CTL∗
k is 2EXPTIME-complete.

PROOF. Hardness follows from 2EXPTIME-hardness of CTL∗ [32]. To show that it
belongs to 2EXPTIME, we outline an algorithm for checking satisfiability for CTL∗

k

of deterministic doubly exponential time complexity. Given a CTL∗
k-formulaϕ0, such

an algorithm can be obtained as follows:

1. by exploiting Lemma 5.5, construct an equivalent formula ϕ1 composed of con-
junctions and disjunctions of subformulas of the form Ap, Ep, and AGEp, where
p is a PTL2-formula;

2. by exploiting Lemma 5.4, replace every maximal PTL2-formula p (over Σ) in
ϕ1 by the PTL-formula τ(p) (over Σ × {0, 1}); then, construct a Büchi string
automaton Aτ(p) (over Σ × {0, 1}) recognizing the models of τ(p), by using the
technique described in [9];

3. for every subformula of the form Ap of ϕ1, determinize the Büchi string automa-
ton Aτ(p) for τ(p), using Safra’s construction [28], to obtain an equivalent deter-
ministic Rabin string automaton A′

τ(p) (over Σ× {0, 1}) for τ(p);

4. program a Rabin tree automaton Aϕ1
(over Σ), accepting the models of ϕ1, which

incorporates the string automata built in steps 2 and 3 in a suitable way (see below);

5. test whether Aϕ1
recognizes the empty language using the algorithm proposed by

Emerson and Jutla [7].

Step 4 is as follows. For every subformula Ep of ϕ1, let Ap = (Q, q0,∆, F ) be
the Büchi string automaton for p. We construct the Büchi tree automaton AEp =
(Q ∪ {q∗}, q0,∆′, F ∪ {q∗}) for Ep, where ∆′ is defined as follows:

∆′(q, a, q′, q∗) if and only if ∆(q, (a, 0), q′);
∆′(q, a, q∗, q′) if and only if ∆(q, (a, 1), q′);
∆′(q∗, a, q∗, q∗) if and only if a ∈ Σ.
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For every subformula Ap of ϕ1, let Ap = (Q, q0,∆,Γ) be the deterministic Rabin
string automaton for p. We construct the deterministic Rabin tree automaton AAp =
(Q, q0,∆′,Γ) for Ap, where ∆′ is defined as follows:

∆′(q, a, q′, q′′) if and only if ∆(q, (a, 0), q′) and ∆(q, (a, 1), q′′).

For every subformula AGEp of ϕ1, let Ap = (Q, q0,∆, F ) be the Büchi string au-
tomaton for p. We construct the Büchi tree automaton AAGEp = (Q ∪ {q∗ | q ∈
Q}, q0,∆′, F ∪ {q∗ | q ∈ Q}) for AGEp, where ∆′ is defined as follows:

∆′(q, a, q′, q∗1) if and only if ∆(q, (a, 0), q′) and ∆(q0, (a, 1), q1);
∆′(q, a, q∗1 , q

′) if and only if ∆(q, (a, 1), q′) and ∆(q0, (a, 0), q1);
∆′(q, a, q′, q∗0) if and only if ∆(q, (a, 0), q′) and ∆(q0, (a, 0), q′);
∆′(q, a, q∗0 , q

′) if and only if ∆(q, (a, 1), q′) and ∆(q0, (a, 1), q′);
∆′(q∗, a, q′, q′′) if and only if ∆′(q, a, q′, q′′).

A tree automaton Aϕ1
for ϕ1 is obtained by taking the intersection and/or the union

of the tree automata constructed for the subformulas of ϕ1. Notice that if ϕ1 does not
contain subformulas of the form Xip, then Aϕ1

is symmetric.
By exploiting classical complexity results on string and tree automata [10, 30, 31],

an easy complexity analysis of the proposed algorithm allows us to conclude that its
complexity is (deterministic) 2EXPTIME.

5.2 Expressive completeness of CTSL∗
k

We prove that CTSL∗
k is as expressive as MPL[<1, <2, (↓i)

k−1
i=0 ], when interpreted

over infinite sequences of infinite k-ary trees.
For technical reasons, we constrain path variables X to be interpreted over full

paths. As shown in Section 3, such a restriction leaves the expressive power of
monadic path formulas unchanged. For the same reason, we reformulate the consid-
ered monadic languages as follows (without altering their expressive power). Given
the vocabularies τ1 = {ϵ, <1, <2, (↓i)

k−1
i=0 }, τ2 = {ϵ, <, (↓i)

k−1
i=0 }, τ3 = {ϵ, <, ↓} and

τ4 = {ϵ, δ, <, ↓}, we will use:

• MPL[τ1], interpreted over infinite sequences of infinite k-ary trees, where ϵ is a
(first-order definable) constant denoting the root of the first tree of the sequence;

• MPL[τ2], interpreted over infinite k-ary trees, where ϵ is a (first-order definable)
constant denoting the root of the tree;

• MFO[τ4] (resp. MFO[τ3]), interpreted over finite (resp. infinite) sequences, where
ϵ and δ are constants that respectively denote the first and the last element of the
sequence, and ↓ is the successor function. It is easy to show that ϵ and δ, as well
as ↓, are (first-order) definable in terms of <.

One direction of the proof (as usual) is easy: there exists a straightforward embed-
ding of CTSL∗

k into MPL[<1, <2, (↓i)
k−1
i=0 ].
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THEOREM 5.7
(CTSL∗

k is a fragment of MPL[<1, <2, (↓i)
k−1
i=0 ])

For every set T ⊆ TSk(Σ) of infinite sequences of Σ-labeled infinite trees, if T is
definable in CTSL∗

k, then T is definable in MPL[<1, <2, (↓i)
k−1
i=0 ].

PROOF. We prove that everyCTSL∗
k-formula can be mapped into an equivalentMPL[τ1]-

sentence, and, thus, that it is equivalent to a MPL[<1, <2, (↓i)
k−1
i=0 ]-sentence. To this

end, for any ts ∈ TSk(Σ), w ∈ ts, and p ∈ CTSL∗
k, we define a translation τw of p

into an MPL[τ1]-formula, with free variable w. For any CTL∗
k-formula p, let τ̂w(p)

be the MPL[τ2]-formula obtained from p by exploiting Theorem 5.3, with the symbol
< replaced by <2. The translation τw can be defined as follows:

τw(p) = τ̂w(p), whenever p is monolithic in CTL∗
k;

τw(p ∧ q) = τw(p) ∧ τw(q);
τw(¬p) = ¬τw(p);
τw(⃝ p) = ∃w′(w′ = +0

1(w) ∧ τw′(p));
τw(p△ q) = ∃w′(T 0(w′) ∧ w ≤1 w′ ∧ τw′(q)∧

∀w′′((T 0(w′′) ∧ w ≤1 w′′ ∧ w′′ <1 w′) → τw′′(p))).

For any CTSL∗
k-formula p, we have that p is equivalent to the MPL[τ1]-sentence

ϕp = τϵ(p).

In order to prove the opposite direction, that is, to show that CTSL∗
k is expressively

complete with respect to MPL[<1, <2, (↓i)
k−1
i=0 ], we follow a ‘decomposition method’

similar to that exploited by Hafer and Thomas in [17] to prove the expressive com-
pleteness of CTL∗ with respect to MPL[<]. We first decompose the model check-
ing problem for an MPL[<1, <2, (↓i)

k−1
i=0 ]-formula and a tree sequence in TSk(Σ)

into a finite number of model checking subproblems for formulas and structures that
do not refer to the whole tree sequence anymore, but only to certain disjoint com-
ponents of it. Then, taking advantage of such a decomposition step, we map ev-
ery MPL[<1, <2, (↓i)

k−1
i=0 ]-formula into an equivalent (but sometimes much longer)

CTSL∗
k-formula.

As a preliminary step, we show that the addition of past operators to CTSL∗
k does

not increase its expressive power.

LEMMA 5.8
PCTSL∗

k is as expressive as CTSL∗
k.

PROOF. By exploiting Theorem 5.3, any PCTSL∗
k-formula p can be replaced by an

equivalent PCTSL∗
k-formula q, whose past operators (if any) are of the forms ⃝−1

and △−1 only. Let q1, . . . qn be the monolithic CTL∗
k-subformulas of q. Regarding

q1, . . . qn as additional atomic propositions within q, we may consider q as a PPTL-
formula. By exploiting Kamp’s Theorem, q can be replaced by an equivalent PTL-
formula r that contains q1, . . . qn as subformulas.

Let ≡n be a relation on TSk(Σ) such that ts ≡n ts′ if and only if ts and ts′ satisfy
the same sentences of MPL[τ1] of quantifier depth n. It is possible to show that ≡n is
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an equivalence relation of finite index. Its equivalence classes are called n-types and
are described by path formulas called n-types descriptors.

DEFINITION 5.9
(n-types descriptors)

Given ts ∈ TSk(Σ), a sequence of r elements a in ts, a sequence of s full paths P
in ts, and n ≥ 0, an n-type descriptor ψn

ts,a,P
is a path formula defined as follows:

ψ0
ts,a,P

=
∧
{ϕ(x1 . . . xr, X1 . . . Xs) | ϕ atomic or negated atomic, ts |= ϕ[a, P ]}

ψn+1
ts,a,P

=
∧

a∈ts ∃xr+1ψn
ts,aa,P

∧
∨

a∈ts ∀xr+1ψn
ts,aa,P

∧∧
P⊆Π(ts) ∃Xr+1ψn

ts,a,PP
∧

∨
P⊆Π(ts) ∀Xr+1ψn

ts,a,PP

The relation ≡n can be characterized by an Ehrenfeucht game Gn(ts, ts′) as follows
(basics on Ehrenfeucht games can be found, for instance, in [8]). A play of this game
is played by two players Spoiler and Duplicator on structures ts, ts′ ∈ TSk(Σ) and
consists of n rounds. At each round, Spoiler chooses an element or a full path either
from ts or from ts′; Duplicator reacts by choosing an object of the same kind in
the other structure. After n rounds, elements a1, . . . ar (a for short) and full paths
P1, . . . Ps (P ) in ts (with n = r+s), and the corresponding elements b1, . . . br (b) and
full paths Q1, . . . Qs (Q) in ts′, have been chosen. Duplicator wins if the map a → b
is a partial isomorphism from (ts, P ) to (ts′, Q), i.e., it is injective and respects ϵ, <2,
<1, and ↓i, with i = 0, . . . k − 1, as well as membership in Pa, for every a ∈ Σ. The
game can be naturally extended to Gn((ts, P ), a, (ts′, Q), b), where a and P (resp. b
and Q) are a finite sequence of elements and a finite sequence of full paths in ts (resp.
in ts′), respectively.

Let ∼n be a relation such that, for any pair of structures (ts, a, P ) and (ts′, b, Q),
(ts, a, P ) ∼n (ts′, b, Q) if and only if Duplicator wins the gameGn((ts, P ), a, (ts′, Q), b).
The following result easily follows from the well-known Ehrenfeucht-Fraı̈ssé Theo-
rem.

THEOREM 5.10
Given structures ts and ts′, element sequences a in ts and b in ts′, full path sequences

P in ts and Q in ts′, the following are equivalent conditions:

1. (ts, a, P ) ∼n (ts′, b, Q);

2. ts′ |= ψn
ts,a,P

[b,Q];

3. a, P satisfy in ts the same formulas of MPL[τ1] of quantifier depth less than or
equal to n as b,Q in ts′.

COROLLARY 5.11
Given n ≥ 0 and an MPL[τ1]-formula ϕ(x,X) of quantifier depth less than or equal

to n, ϕ is equivalent to a finite disjunction of formulas ψn
ts,a,P

such that ts |= ϕ[a, P ].

Similar definitions and results hold for k-ary tree structures and infinite (as well as
finite) word structures. In the former case, n-type descriptors are path formulas in
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the language of k-ary trees MPL[τ2]. In the latter case, the rules of the game are that
Spoiler and Duplicator can only pick elements from the given pair of words; hence,
n-type descriptors are formulas in the first-order language of linear orders MFO[τ3]
(resp. MFO[τ4]).

Let ts ∈ TSk(Σ), k0 be an element belonging to the i-th tree of ts, n be an integer
greater than or equal to 0, and m be the index of ≡n. We enlarge the alphabet Σ to
Σ1 = Σ × {1, . . . ,m}, where all j ∈ {1 . . .m} serve as indices for all possible n-
types. Let π1 (resp. π3) be the finite (resp. infinite) sequence of roots (ϵ)0, . . . (ϵ)i−1

(resp. (ϵ)i+1, . . .). We denote by v1(ts, k0) (resp. v3(ts, k0)) the finite (resp. infinite)
word over Σ1 whose l-th letter is (a, j) if π1(l) (resp. π3(l)) carries letter a ∈ Σ and
the tree rooted in it has n-type j. Similarly, we enlarge the alphabet Σ to Σ2 = Σ ×
({0, . . . , k−1}×{1, . . . ,m})k−1, and we denote by π2 the finite path from (ϵ)i up to
(and excluding) k0. We denote by v2(ts, k0) the finite word over Σ2 whose l-th letter
is (a, (l1, j1), . . . , (lk−1, jk−1)) if π2(l) carries letter a ∈ Σ and, for r = 1, . . . , k−1,
the tree rooted in the lr-th son of it has n-type jr.

We need to prove the following auxiliary lemma, which states that combining local

winning strategies on disjoint parts of two tree sequences it is possible to obtain a
global winning strategy on the two tree sequences.

LEMMA 5.12
For arbitrary (ts, k0) and (ts′, k′0), if vi(ts, k0) ∼n vi(ts′, k′0), with i = 1, 2, 3,
tsk0,i ∼n ts′k0,i

, with i = 0, . . . , k − 1, and ts(k0) = ts′(k′0), then (ts, k0) ∼n

(ts′, k′0).

PROOF. Suppose that Spoiler picks an element k (different from k0) in ts. If k belongs
to some path vi(ts, k0) or to some tsk0,i, then Duplicator chooses k′ in ts′ according
to the corresponding local winning strategies. If k belongs to the tree k0 belongs to,
and neither k <2 k0 nor k0 <2 k, then Duplicator looks for the last node k1 belonging
to the path v2(ts, k0) such that k1 <2 k. Let k2 be the son of k1 such that there is
a path from k2 to k. Suppose that k2 is the i-th son of k1. Duplicator chooses k′1 in
the path v2(ts′, k′0) according to his winning strategy on v2(ts, k0), v2(ts′, k′0). Let
k′2 be the i-th son of k′1. Hence, k1 and k′1 have the same label from Σ2 and thus
the subtrees rooted in their successors k2 and k′2 have the same n-type. Hence, by
Theorem 5.10 (its variant for k-ary trees), Duplicator has a winning strategy on these
subtrees and can use this strategy to choose an element k′ corresponding to k in the
subtree rooted in k′2. Finally, if k <1 k0 (resp. k0 <1 k) and k is not a root, then
Duplicator chooses k′ in ts′ exploiting his winning strategy on v1(ts, k0), v1(ts′, k′0)
(resp. v3(ts, k0), v3(ts′, k′0)).

Suppose now that Spoiler picks a full path P0 in ts. Let A (resp. A′) be the finite
path from the root of the tree k0 (resp. k′0) belongs to up to (and excluding) k0 (resp.
k′0). If k0 ∈ P0, then P0 has the form A, k0, B, where B is a path on tsk0,i, for some
i. Hence, Duplicator chooses a path B′ in ts′k′

0
,i according to his local strategy on

tsk0,i, ts
′
k′

0
,i, and he responds to Spoiler with the full path A′, k′0, B

′. If k0 ̸∈ P0 and

P0 belongs to the tree k0 belongs to, then P0 = A1k1C, where k1 is the last node of
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P0 which belongs to A and C is a path on tsk1,i, for some i. Duplicator first chooses
k′1 according to his local strategy on v2(ts, k0), v2(ts′, k′0). Let A′

1 be the finite path
from the root of the tree k′0 belongs to up to (and excluding) k′1. Then, Duplicator
picks a path C′ on ts′k′

1
,i exploiting his winning strategy on tsk1,i, ts

′
k′

1
,i, and, finally,

he responds to Spoiler with the full path A′
1, k

′
1, C

′ . The case in which P0 does not
belong to the tree k0 belongs to is similar to the previous one, and thus its analysis is
omitted.

The following lemma states that checking a path formula ϕ(x) at a node k0 belong-
ing to the tree sequence ts corresponds to verifying a number of sentences that do not
refer to properties of x relative to the whole tree sequence anymore, but only relative
to certain disjoint components of it. In particular, these disjoint substructures are the
(above defined) sequences π1 and π3, with the trees rooted at them, the path π2, with
the trees rooted at successor nodes that are not on π2, the node k0, and the k trees
rooted at the k successors of k0.

LEMMA 5.13
(First Decomposition Lemma)

For every MPLΣ[τ1]- formula ϕ(x) of quantifier depth n, there exists a finite set
Φ of elements of the form (ψ1,ψ2, a,β0, . . . ,βk−1,ψ3), where ψi, with i = 1, 2, are
n-type descriptors in MFOΣi [τ4], ψ3 is an n-type descriptor in MFOΣ1

[τ3], a ∈ Σ,
and βi, with i = 0, . . . , k − 1, are n-type descriptors in MPLΣ[τ2], such that, for any
ts ∈ TSk(Σ) and any element k0 in ts, it holds that:

(ts, k0) |= ϕ(x) if and only if there exists (ψ1,ψ2, a,β0, . . . ,βk−1,ψ3) in Φ
such that vi(ts, k0) |= ψi, for i = 1, 2, 3, ts(k0) = a, and tsk0,i |= βi, for
i = 0, . . . , k − 1.

PROOF. By Corollary 5.11, ϕ(x) is equivalent to a finite disjunction
∨
{ψn

ts,k0
| ts |=

ϕ[k0]}. Hence, (ts, k0) |= ϕ(x) if and only if there exist ts′, k′0 such that (ts′, k′0) |=
ϕ(x) and (ts, k0) |= ψn

ts′,k′

0

(x). By Theorem 5.10, this holds true if and only if there

exist ts′, k′0 such that (ts′, k′0) |= ϕ(x) and (ts, k0) ∼n (ts′, k′0). This is equivalent
to the existence of ts′′, k′′0 such that (ts′′, k′′0 ) |= ϕ(x), vi(ts, k0) ∼n vi(ts′′, k′′0 ),
with i = 1, 2, 3, ts(k0) = ts′′(k′′0 ) and tsk0,i ∼n ts′′k′′

0
,i, with i = 0, . . . , k − 1.

The implication from right to left follows from Lemma 5.12 by setting ts′ = ts′′ and
k′0 = k′′0 . To prove the opposite implication, take ts′′ = ts and k′′0 = k0. We must
show that (ts, k0) |= ϕ(x). Observe that, by hypothesis, (ts, k0) ∼n (ts′, k′0) and
(ts′, k′0) |= ϕ(x). Since ϕ(x) is of quantifier depth n, by applying Theorem 5.10, we
have that (ts, k0) |= ϕ(x).

Now, we proceed by invoking the analogous of Theorem 5.10 for words and k-ary
trees, to obtain, respectively, appropriate n-type descriptors ψi = ψn

vi(ts′′,k′′

0
), with

i = 1, 2, 3, and βi = ψn
ts′′

k′′

0
,i

, with i = 0, . . . , k − 1, such that vi(ts, k0) |= ψi,

for i = 1, 2, 3, and tsk0,i |= βi, for i = 0 . . . k − 1. By collecting all such n-type
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descriptors, we obtain a set Φ as required. Since, for every n ≥ 0, the equivalence
relation ≡n has finite index, by virtue of Theorem 5.10, there is a finite number of non
equivalent n-type descriptors. From this, it follows that the set Φ is finite.

It is possible to prove a similar decomposition lemma for the second-order case.
To state it, we need the following definition. Let ts ∈ TSk(Σ) and P0 be a full
path in ts. We denote by v(ts, P0) the infinite word over Σ2 whose i-th letter is
(a, (i1, j1), . . . (ik−1, jk−1)) if P0(i) carries letter a ∈ Σ and, for r = 1, . . . , k − 1,
the tree rooted in the ir-th son of it has n-type jr. The proof of Lemma 5.14 is similar
to that of Lemma 5.13, and thus omitted.

LEMMA 5.14
(Second Decomposition Lemma)

For every MPLΣ[τ1]-formula ϕ(X) of quantifier depth n, there exists a finite set Φ
of elements of the form (ψ1,ψ2,ψ3), where ψ1 is an n-type descriptor in MFOΣ1

[τ4],
ψ2 is an n-type descriptor inMFOΣ2

[τ3], andψ3 is an n-type descriptor inMFOΣ1
[τ3],

such that, for any ts ∈ TSk(Σ) and any full path P0 in ts, it holds that:

(ts, P0) |= ϕ(X) if and only if there exists (ψ1,ψ2,ψ3) in Φ such that vi(ts, k0) |=
ψi, with i = 1, 3, and v(ts, P0) |= ψ2.

We are now ready to prove the main theorem.

THEOREM 5.15
(Expressive completeness of CTSL∗

k)

For every set T ⊆ TSk(Σ) of infinite sequences of Σ-labeled infinite trees, if T is
definable in MPL[<1, <2, (↓i)

k−1
i=0 ], then T is definable in CTSL∗

k.

PROOF. We prove that everyMPL[<1, <2, (↓i)
k−1
i=0 ]-sentence corresponds to an equiv-

alent CTSL∗
k-formula. Without loss of generality, we consider MPL[τ1]-sentences

with set quantification restricted to full paths only. Let ϕ be an MPL[τ1]-sentence.
We focus on the two relevant cases: ϕ = ∃xφ(x) and ϕ = ∃Xφ(X).

Let ϕ = ∃xφ(x). By Lemma 5.13, checking φ(x) in (ts, k0) is equivalent to check-
ing certain sentences ψ1, ψ2, β0, . . . ,βk−1, and ψ3, and a label a ∈ Σ, taken from a
finite set Φ, in particular substructures of ts. It suffices to consider the case in which
|Φ| = 1.

The first-order sentence ψ1 can be mapped into an equivalent PTL-formula h1

(cf. [16, 18]). Given the formula h1, we construct the dual formula h−1
1 ∈ PPTL,

that is, a formula such that, for every finite word w of length l, (w, 0) |= h1 if and
only if (w, l − 1) |= h−1

1 . The formula h−1
1 contains atomic propositions P(a,j), for

(a, j) ∈ Σ1, which must be replaced by suitable CTL∗
k-formulas q(a,j). Each formula

q(a,j) states that a given node satisfies Pa and the tree rooted at it has n-type j, i.e.,
it satisfies the j-th n-type descriptor. Hereinafter, we will denote by pj the CTL∗

k-
formula equivalent to the j-th n-type descriptor, whose existence is guaranteed by
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Theorem 5.3. Let q(a,j) = Pa ∧ pj and let (h−1
1 )′ be the PCTSL∗

k-formula obtained

from h−1
1 by replacing propositions P(a,j) by formulas q(a,j) (and using the symbols

⃝ , △ , ⃝−1, and △−1 for the linear time operators that occur in h−1
1 ).

In a similar way, the first-order sentence ψ3 can be mapped into a PTL-formula h3.
The formula h3 can be turned into a CTSL∗

k-formula (h3)′ by replacing propositions
P(a,j) by CTL∗

k-formulas q(a,j) as in the previous case (notice that, in this case, linear
past operators are not needed).

Finally, the first-order sentence ψ2 can be mapped into an equivalent PTL-formula
h2, whose dual version h−1

2 is obtained as already explained in the case of h1. The
PCTL∗

k-formula (h−1
2 )′ is obtained by replacing propositionsP(a,(i1,j1),...,(ik−1,jk−1))

by formulas q(a,(i1,j1),...,(ik−1,jk−1)) which states that a given node satisfies Pa and the
tree rooted at its ir-th son has n-type jr, that is, it satisfies the jr-th n-type descriptor
pjr , for r = 1, . . . k − 1. Formally,

q(a,(i1,j1),...,(ik−1,jk−1)) = Pa ∧
k−1∧

r=1

Nirpjr .

As for the MPL[τ2]-sentences βi, with i = 0, . . . , k−1, let bi be the index of the n-
type descriptor βi. By exploiting once more Theorem 5.3, we obtain a CTL∗

k-formula
pbi , for each i = 0, . . . , k − 1.

Merging together the above results, we have that the given MPL[τ1]-formula ϕ is
equivalent to the PCTSL∗

k-formula:

pϕ = ✸(⃝−1(h−1
1 )′ ∧ EFp ∧ ⃝ (h3)

′),

where

p = X
−1(h−1

2 )′ ∧ Pa ∧
k−1∧

i=0

Nipbi .

Theorem 5.8 guarantees that there exists a CTSL∗
k-formula p′ϕ (that is, a formula

devoid of past operators) which is equivalent to pϕ, and, thus, equivalent to ϕ.
Let ϕ = ∃Xφ(X), with quantifier depth of φ equal to n ≥ 1. By Lemma 5.14,

checking φ(X) in (ts, P0) is equivalent to checking certain sentences ψ1, ψ2, and ψ3

in particular substructures of ts. In analogy to the case of first-order quantification,ψ1,
ψ2, and ψ3 can be replaced by a PCTSL∗

k formula (h−1
1 )′, a CTL∗

k formula (h2)′, and
a CTSL∗

k formula (h3)′, respectively. It is easy to check that the MPL[τ1]-formula ϕ
is equivalent to the PCTSL∗

k-formula:

pϕ = ✸(⃝−1(h−1
1 )′ ∧ E(h2)

′ ∧ ⃝ (h3)
′).

Again, by Theorem 5.8, there exists a CTSL∗
k-formula p′ϕ which is equivalent to

pϕ, and, thus, equivalent to ϕ.
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Putting together Theorems 5.7 and 5.15, we have that CTSL∗
k is as expressive

as MPL[<1, <2, (↓i)
k−1
i=0 ], when interpreted over infinite sequences of infinite k-ary

trees. In particular, it holds that everyMPL[<1, <2, (↓i)
k−1
i=0 ]-sentence can be encoded

into a (sometimes much longer) CTSL∗
k-formula.

5.3 Temporal operators for time granularity

In this section, we show how the basic temporal operators of (horizontal) contex-
tualization, local displacement, and projection, as well as the derived operators of
abstraction and vertical contextualization, can be encoded in CTSL∗

k.
We proceed as follows: first, we provide a natural language specification of a prop-

erty based on one of these temporal operators; then, we encode it in MPL[<1, <2, (↓i
)k−1
i=0 ]; finally, we express it in CTSL∗

k.

• Projection: “whenever p holds at a given time point, then q holds at its ith projec-
tion (if any)”:
– ∀x(∃y(↑ (y) = x) ∧ p(x) → ∃y(↓i (x) = y ∧ q(y)));
– ✷AG(X⊤ ∧ p → Niq).
Notice that the formula ∃y(↑ (y) = x) is always true in downward unbounded
layered structures; however, it can be false in n-layered ones (cf. Section 6).

• Abstraction: “whenever p holds at a given time point, then q holds at its abstrac-
tion (if any)”:
– ∀x(∃y(↑ (x) = y) ∧ p(x) → ∃y(↑ (x) = y ∧ q(y)));
– ✷AG(Xp → q).

• (Horizontal) contextualization: “p holds at all time points of the i-th layer”:
– ∀x(Ti(x) → p(x));
– ✷AXip,

where Xi is the concatenation of i next operators X, for every i ≥ 0.

• Local successor: “if p holds at a given time point of the i-th layer, then q holds at
its successor”:
– ∀x(Ti(x) ∧ p(x) → ∃y(y = +i1(x) ∧ q(y)));
– for i = 0, ✷(p → ⃝ q);

for i > 0, ✷(
∧ki−2

r=0 (N̂i
rp → N̂i

r+1q) ∧ (N̂i
ki−1p → ⃝ N̂i

0q)),

where, for r, i ≥ 0, N̂i
r = Nj0 . . .Nji−1

, with
∑i−1

s=0 k
sji−1−s = r, that is,

j0 . . . ji−1 is the k-ary representation of r.

• Local until: “if h holds at a given time point of the i-th layer, then there exists a
time point in its future (belonging to the same layer) at which q holds and p holds
until then”:

– ∀z(Ti(z) ∧ h(z) → ∃y(Ti(y) ∧ q(y) ∧ ∀x(Ti(x) ∧ z ≤ x < y → p(x))));

– ✷(
∧ki−1

s=0 (N̂i
sh →

∨ki−1
r=s (N̂i

rq ∧
∧r−1

t=s N̂
i
tp)) ∨

∧ki−1
s=0 (N̂i

sh → (
∧ki−1

r=s N̂i
rp) ∧ ⃝ (AX

ip△
∨ki−1

r=0 (N̂i
rq ∧

∧r−1
t=0 N̂

i
tp)))).
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• (Vertical) contextualization: “p holds at all time points at distance i from the
origin of the layer they belong to”:
– ∀x(Di(x) → p(x));
– for i = 0, E(p ∧GX0p);

– for i > 0,
∧⌊logk(i)⌋

j=0 X⌊i/kj⌋N̂
j
imodkjp ∧E(G(X0true ∧ N̂

⌊logki⌋+1
i p)).

5.4 Complexity of CTSL∗
k

We prove now that the satisfiability problem for CTSL∗
k is 2EXPTIME-complete, and

thus elementarily decidable.

THEOREM 5.16
(CTSL∗

k is elementary decidable)

The satisfiability problem for CTSL∗
k is 2EXPTIME-complete.

PROOF. Hardness follows from 2EXPTIME-hardness of the satisfiability problem for
CTL∗ [32]. To show that the satisfiability problem for CTSL∗

k is in 2EXPTIME,
we reduce it to the satisfiability problem for CTL∗

k, which has been shown to be
2EXPTIME-complete in Section 5.1 (Theorem 5.6).

To this end, let Σ be a finite alphabet and Σ′ = Σ ∪ {∗}, where ∗ is a new symbol
not belonging to Σ. We define a translation τ that maps CTSL∗

k-formulas over PΣ

into equisatisfiable CTL∗
k-formulas over PΣ′ .

For any CTSL∗
k-formula α, let

τ(α) = RightPath(P∗) ∧ τ̂ (α),

where

RightPath(P∗) = P∗ ∧ AG(P∗ → (Nk−1P∗ ∧
∧k−2

i=0 Ni¬P∗) ∧ ¬P∗ → AX¬P∗)

and τ̂(α) is recursively defined as follows:

τ̂ (α) = N0α, whenever α monolithic in CTL∗
k;

τ̂ (⃝α) = Nk−1τ̂(α);
τ̂ (α△ β) = E(GP∗ ∧ τ̂ (α)Uτ̂ (β)).

It is not difficult to show that, for every formula α of CTSL∗
k, α is satisfiable over

TSk(Σ) if and only if τ(α) is satisfiable over Tk(Σ′).
As for the left to right direction, let α be a formula of CTSL∗

k and ts = t0, t1, . . . ∈
TSk(Σ) be a tree sequence that validates α. Consider a tree t ∈ Tk(Σ′) built as
follows: we label the subtree of t rooted at 0 in the same way in which t0 is labeled,
the subtree rooted at (k − 1)0 as t1, the subtree rooted at (k − 1)(k − 1)0 as t2, and
so on. Moreover, we label the set of nodes {(k− 1)n | n ≥ 0} with ∗ ∈ Σ′. It is easy
to prove, by induction on the structure of α, that t validates τ(α).
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As for the opposite direction, let α be a formula of CTSL∗
k and t ∈ Tk(Σ′) be a tree

that validates τ(α). Let ts = t0, t1, . . . be a tree sequence in TSk(Σ) built as follows:
t0 is labeled as the subtree of t rooted at 0, t1 is labeled as the subtree of t rooted at
(k − 1)0, t2 is labeled as the subtree of t rooted at (k − 1)(k − 1)0, and so on. It is
easy to prove, by induction on the structure of α, that ts validates α.

6 Coping with n-layered structures

We conclude the paper by showing how to tailor temporal logics for time granularity
over downward unbounded layered structures to deal with n-layered structures. n-
layered structures are layered structures endowed with a finite and bounded number
of temporal domains. Formally, we define a k-refinable n-layered structure as a triplet
⟨
⋃

i≤n T
i, ↓, <tot⟩, with n ≥ 0, such that:

• {T i}i≤n are pairwise disjoint copies of N;

• ↓: {0, . . . , k − 1} ×
⋃

i<n T
i →

⋃
i≤n T

i is a bijection such that, for all i < n,

↓|T i : {0, . . . , k − 1}× T i → T i+1 is a bijection;

• <tot is such that

1. ⟨T 0, <tot|T 0×T 0⟩ is isomorphic to N with the standard ordering;

2. t <tot↓ (j, t), for 0 ≤ j ≤ k − 1;

3. ↓ (j, t) <tot↓ (j + 1, t), for 0 ≤ j ≤ k − 2;

4. if t <tot t′ and t′ ̸∈
⋃n

i=0 ↓i (t), then ↓ (k − 1, t) <tot t′;

5. if t <tot t′ and t′ <tot t′′, then t <tot t′′.

where, ↓i (t) ⊆
⋃

i≤n T
i is the set such that ↓0 (t) = {t} and, for every i ≥ 1,

↓i (t) = {↓ (j, t′) : t′ ∈↓i−1 (t), 0 ≤ j ≤ k − 1}.

For every n ≥ 0, n-layered structures can be viewed as infinite sequences of k-ary
trees of height n, and vice versa. Moreover, the monadic first-order theory MFO[<tot

, (↓i)
k−1
i=0 ] can be adopted as the language for time granularity over n-layered struc-

tures or, equivalently, over infinite sequences of finite trees of height n. MFO[<tot

, (↓i)
k−1
i=0 ] is indeed expressive enough to capture the granular primitives of (horizon-

tal) contextualization, local displacement, and projection as well as the derived opera-
tors of abstraction and vertical contextualization. Projection, abstraction, (horizontal)
contextualization, and local displacement can be expressed as in the case of downward
unbounded layered structures. As for vertical contextualization, its definition can be
simplified as follows:

D0(x) =
n∨

i=0

↓0i (00) = x,

where 00 is the (first-order definable) origin of layer zero.
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For all i > 0, Di(x) can be defined as follows:

Di(x) =
n∨

j=0

∃y(Tj(y) ∧ D0(y) ∧ +ji(y) = x).

REMARK 6.1
Unlike the case of downward unbounded structures (cf. Remark 3.3), by exploiting the
finiteness of the layered structure, we can capture the predicate EqualT as follows:

EqualT(x, y) =
n∨

i=0

(Ti(x) ∧ Ti(y)).

On the contrary, there is no way to define the predicate EqualD. Indeed, it is possible
to show that the addition of such a predicate to MFO[<tot, (↓i)

k−1
i=0 ] would make the

theory undecidable.

Let CTSLn
k be the temporal logic for time granularity over infinite sequences of

finite trees of height n (n-layered structures). From a syntactical point of view, it
coincides with CTSL∗

k; however, it is interpreted over infinite sequences of finite k-
ary trees of height n (with a strong interpretation for the next operator).

In the following, we show how to reduce the satisfiability problem for CTSLn
k to

that for CTSL∗
k. Let i ≥ 0 and θi = ✷(

∧i
j=0 AXjP∗ ∧ AXi+1AG¬P∗), where

∗ ̸∈ Σ. The translation τ from CTSL∗
k-formulas to CTSL∗

k-formulas can be defined
as follows:

τ(Pa) = Pa for a ∈ Σ;
τ(α ∧ β) = τ(α) ∧ τ(β);
τ(¬α) = ¬τ(α);
τ(⃝α) = ⃝ τ(α);
τ(α△ β) = τ(α)△ τ(β);
τ(Aα) = Aτ(α) whenever the outermost operator of α (if any) belongs to

{∧ ,¬,A,E};
τ(AXα) = AX(P∗ → τ(α));
τ(AXiα) = AXi(P∗ → τ(α));
τ(A(αUβ)) = P∗ → A(τ(α)U(P∗ ∧ τ(β)));
τ(Eα) = Eτ(α) whenever the outermost operator of α (if any) belongs to

{∧ ,¬,A,E};
τ(EXα) = EX(P∗ ∧ τ(α));
τ(EXiα) = EXi(P∗ ∧ τ(α));
τ(E(αUβ)) = P∗ ∧ E(τ(α)U(P∗ ∧ τ(β))).

For every CTSL∗
k-formula α and i ≥ 0, let ηi(α) = θi ∧ τ(α). It is not difficult to

show that, for every n ≥ 0, the satisfiability of α over infinite sequences of finite k-ary
trees of height n can be reduced to the satisfiability of ηn(α) over infinite sequences
of infinite k-ary trees. This is formally stated by the following theorem.
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THEOREM 6.2
For every CTSL∗

k-formula α and n ≥ 0, there exists an n-layered structure satisfying
α if and only if there exists a downward unbounded layered structure satisfying ηn(α).

As an immediate corollary of Theorem 6.2, we have that the satisfiability problem
for CTSLn

k is elementarly decidable. As for the expressiveness of CTSLn
k, the proof

given for CTSL∗
k also works for CTSLn

k. Hence, CTSLn
k is as expressive as MPL[<1

, <2, (↓i)
k−1
i=0 ] over infinite sequences of finite k-ary trees of height n. However, since

second-order quantification in MPL[<1, <2, (↓i)
k−1
i=0 ] over sequences of finite trees is

restricted to finite paths (of bounded length), it is not difficult to see that MPL[<1, <2

, (↓i)
k−1
i=0 ] and MFO[<1, <2, (↓i)

k−1
i=0 ] have the same expressive power over infinite

sequences of finite k-ary trees of height n. Therefore, CTSLn
k is as expressive as

MFO[<1, <2, (↓i)
k−1
i=0 ].

7 Conclusions and Future Work

In this paper we proposed a temporal logic for time granularity, that we called CTSL∗
k,

which is based on a simple combination of the branching time logic CTL∗
k (the exten-

sion of CTL∗ with k directed successors) and the linear time logic PTL. We proved
that CTSL∗

k is an expressively complete and elementarily decidable fragment of the
theory of k-refinable downward unbounded layered structures with set quantification
restricted to infinite paths. Furthermore, according to the adopted combining logic
perspective, we have that an axiomatisation, as well as model and satisfiability check-
ing procedures, for CTSL∗

k can be synthesized from the same tools for the component
logics. Finally, we showed that (a minor variant of) CTSL∗

k is expressively complete
with respect to the first order-theory of k-refinable n-layered structures, and that it is
still elementarily decidable. We are currently working at an extension of CTSL∗

k able
to capture the full power of the second-order theory of downward unbounded layered
(resp. n-layered) structures, preserving its elementary decidability.
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