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Abstract

The validity/satisfiability problem for most propositional interval temporal logics is (highly) undecidable,
under very weak assumptions on the class of interval structures in which they are interpreted. That, in
particular, holds for most fragments of Halpern and Shoham’s interval modal logic HS. Still, decidability
is the rule for the fragments of HS with only one modal operator, based on an Allen’s relation. In this
paper, we show that the logic O of the Overlap relation, when interpreted over discrete linear orderings, is
an exception. The proof is based on a reduction from the undecidable octant tiling problem. This is one of
the sharpest undecidability result for fragments of HS.
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1 Introduction

Linear temporal logics are modal logics whose frames are linearly-ordered struc-
tures. Most linear temporal logics are interpreted in models where points are the
primitive ontological entities and the truth of (temporal) formulae is evaluated at
time points. Different choices for the temporal domain (discrete, dense, Dedekind-
complete, etc.) and for the temporal operators (F, P, Next, Until, etc.) lead to dif-
ferent point-based linear temporal logics. However, the ability to represent and to
reason about time intervals is needed in a variety of computer science fields, includ-
ing natural language processing, constraint satisfaction problems, theories of action
and change, temporal databases, specification and verification of concurrent and
real-time systems [8,12]. Unlike point-based ones, interval temporal logics assume
time intervals as their primitive ontological entities and all formulae are evaluated
relative to intervals, rather than points. The systematic description of the variety
of relations between intervals on linear orderings was first discussed by Allen [1] in
an algebraic setting, with the aim of exploiting interval reasoning in systems for
time management and planning. The modal logic counterpart of Allen’s Interval
Algebra is Halpern and Shoham’s logic HS [9], which features a modal operator for
each Allen’s interval relation (apart from equality), namely, “ends” E, “during” D,
“begins” B, “overlaps” O, “meets” A, “after” L, and their inverses E, D, B, O, A, L.
Because every formula of HS is interpreted as a binary relation, rather than a set of
points, the validity/satisfiability problem for HS turns out to be highly undecidable
under very weak assumptions on the class of interval structures over which its for-
mulae are interpreted. In particular, HS is undecidable when interpreted over any
class of linearly-ordered structures that contains at least one linear ordering with
an infinite ascending or descending chain, thus including N, Z, Q, and R [9].

The bad computational behavior of HS motivates a systematic analysis of the
family of its fragments in the search for expressive enough, yet decidable, ones
and, more generally, in the quest for identifying the precise boundary between
decidability and undecidability in the realm of interval logics. The first major step in
this direction was taken by Halpern and Shoham themselves in their original paper,
where they show that undecidability results for HS hold even if one restricts the
logic to its ABE fragment (we use the following notation: ‘XY . . . Z’ is the fragment
of HS involving only the modalities corresponding to the relations X, Y, . . . , Z) and
suggest to investigate weaker or incomparable meaningful fragments such as BE
and DD. The undecidability of BE over dense linear orderings was proved by
Lodaya almost ten years later [10], while the decidability of DD over Q has been
just established [11]. The recent identification of significant decidable fragments
of HS, such as the logic of interval neighborhood AA over various classes of linear
orderings [6,7] and the logic of the subinterval relation D over dense orderings [5,13],
brought new interest in the investigation of HS fragments. A partial classification
of HS fragments with respect to decidability/undecidability, reflecting the recent
state of the art, can be found in [3]. Further undecidability results were obtained
since then in [4].

While undecidability dominates over the complete set of HS fragments, decid-
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ability is typically the case for fragments of HS involving only one modality, which
makes that set of fragments particularly interesting. The decidability of B, B, E, E
can be easily shown by a reduction to point-based logics. The decidability of A, A,
and thus that of L, L (respectively definable in terms of A, A) has been established
in [6,7] by different model-theoretic arguments each implying small (non-standard)
model property for these logics; likewise for the decidability of D over dense linear
orderings (the proof can also be adapted to the case of D). The decidability of D
over general, finite, or discrete linear orderings, however, is still open.

In this work, we show that O (and hence O, which is symmetric) is the only
so far proven exception from that decidability trend, despite its simplicity and
limited expressive power. The main result of the present paper is that the logic
O (resp., O), interpreted over discrete linear orderings, is undecidable. This result
strengthens those obtained in [4] for a number of extensions of O when the semantics
is restricted to discrete linear orderings.The proof is based on a reduction from the
undecidable octant tiling problem (see, e.g., [2]), which is the problem of establishing
whether a given finite set of tile types can tile the second octant of the integer
plane, respecting the color constraints between pairs of tiles that are vertically or
horizontally adjacent.

The paper is organized as follows. In Section 2, we introduce syntax and seman-
tics of the fragment O, interpreted over discrete linear orderings. In Section 3, we
briefly illustrate the structure of the undecidability proof. In Section 4, we give a
detailed account of it. Conclusions provide an assessment of the work and outline
future research directions.

2 The Logic of Overlap O: Syntax and Semantics

Let D = 〈D,<〉 be a discrete linearly-ordered set. An interval over D is an or-
dered pair [a, b], with a, b ∈ D and a < b, thus excluding intervals with coincident
endpoints (strict semantics). For any interval [a, b], we define the length of [a, b],
denoted len([a, b]), as the cardinality of the set {a, . . . , b} minus 1, e.g., the length
of a three-point interval is 2. As an alternative, one can define an interval over D as
a pair [a, b], with a, b ∈ D and a ≤ b (non-strict semantics). Hereafter, we restrict
our attention to strict semantics; however, all proofs can be easily adapted to the
non-strict case (it makes no difference if point intervals are allowed or not, since
O-formulae can only talk about the current interval or intervals of length greater
than or equal to 2).

The logic O features an infinite set of propositional letters AP, the classical
connectives ¬,∨ (the remaining ones are considered as abbreviations), and the
unary modal operator 〈O〉 (the dual operator [O] is defined as ¬〈O〉¬ as usual).
Well-formed formulae, denoted by ϕ, ψ, . . ., are obtained by means of the following
abstract grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈O〉ϕ.

A model for O is a structure of the form M = 〈I(D), V 〉, where I(D) is the set of
all intervals over D and V : AP �→ 2I(D) assigns to every p ∈ AP the set of intervals
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V (p) over which it holds. The truth of a formula over a given interval [a, b] in a
model M is defined by structural induction on formulae:

• M, [a, b] � p iff [a, b] ∈ V (p), for all p ∈ AP;
• M, [a, b] � ¬ψ iff it is not the case that M, [a, b] � ψ;
• M, [a, b] � ϕ ∨ ψ iff M, [a, b] � ϕ or M, [a, b] � ψ;
• M, [a, b] � 〈O〉ψ iff there exists an interval [c, d] such that a < c < b < d, and

M, [c, d] � ψ.
As usual, we have that an O-formula is satisfiable if it is true on some interval in
some model and it is valid if it is true on every interval in every model.

3 An Intuitive Account of the Undecidability Proof

In this section, we give an intuitive account of the structure of the undecidability
proof. We have already exploited a reduction from the tiling problem for the second
octant of the integer plane to prove the undecidability of various HS fragments [3,4].
However, the nature of the overlap modality featured by the logic O substantially
influences the technicalities of the reduction.

3.1 The tiling problem for the second octant O of the integer plane

Let O = {(i, j) : i, j ∈ N ∧ 0 ≤ i ≤ j} be the second octant of the integer plane
Z × Z. The tiling problem for O is the problem of establishing whether a given
finite set of tile types T = {t1, . . . , tk} can tile O. For every tile type ti ∈ T , let
right(ti), left(ti), up(ti), and down(ti) be the colors of the corresponding sides of
ti. To solve the problem, one must find a function f : O → T such that

right(f(n, m)) = left(f(n + 1, m)), with n < m,
and up(f(n, m)) = down(f(n, m + 1)).

Using König’s lemma one can prove that a tiling system tiles O if and only if it tiles
arbitrarily large squares if and only if it tiles N×N if and only if it tiles Z×Z. The
undecidability of the first one immediately follows from that of the last one [2].

3.2 The encoding of the tiling problem for O

The reduction from the tiling problem for O to the satisfiability problem for a
given interval temporal logic takes advantage of some special propositional letters,
namely, u, Id, tile, ∗, up rel, t1, t2, . . . , tk. Additional (distinct) propositional letters
are introduced for the different logics.

For every propositional letter p, by p-interval we mean an interval satisfying p.
The reduction consists of three main steps: (i) the encoding of the octant by means
of a suitable chain of intervals, called ‘unit’ intervals (u-intervals, for short), (ii) the
encoding of the above-neighbor relation by means of a suitable class of intervals,
called up rel-intervals, and (iii) the encoding of the right-neighbor relation. In the
first step, we set our framework by forcing the existence of a unique infinite chain
of u-intervals on the linear ordering (u-chain, for short). The u-intervals are used
as cells to arrange the tiling. Next, we define a chain of Id-intervals (Id-chain, for
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short), each of them representing a row of the octant. Any Id-interval consists of
a sequence of u-intervals; each u-interval is used either to represent a part of the
plane or to separate two Id-intervals. In the former case, it is labeled with the
propositional letter tile, in the latter case, it is labeled with the propositional letter
∗. Then, we define two relations that connect each tile with its above neighbor
and right neighbor (if any) in the octant, respectively. Taking advantage of these
relations, we force the j-th Id-interval to contain exactly j tile-intervals. Finally,
we introduce a set of propositional letters T = {t1, t2, . . . , tk} corresponding to the
set of tile types T = {t1, t2, . . . , tk} and we define a formula ΦT which is satisfiable
if and only if there exists a proper tiling of O by T , i.e., a tiling that satisfies the
color constraints on vertically- and horizontally-adjacent tiles.

3.3 The Logic O and the Construction of the u-Chain

The main problem we must solve when dealing with the logic O is the construction
of the u-chain: we must specify how to reach, from a given u-interval, the next one
by using only the operator 〈O〉. We solve this problem by exploiting the discrete
nature of the linear ordering: we build a chain of adjacent u-intervals, each of them
of length 2. To this end, we make use of a set of additional propositional letters,
namely, u1, u2, u, k1, k2, k, beginu1

, beginu2
, begink1

, and begink2
. More precisely,

to constrain the length of the u-intervals, we first force each inner point of every
u-interval to be the starting point of infinitely many beginu-intervals and then we
constrain each beginu-interval to not overlap any other beginu-interval starting inside
the same u-interval. In this way, we constrain each u-interval to have exactly one
inner point (Fig. 1). Moreover, to force consecutive pairs of u-intervals to be
adjacent, we take advantage of an auxiliary chain of k-intervals, each one of length
2 as well, such that the endpoints of each k-interval are the (unique) inner points
of two consecutive u-intervals (Fig. 2).

4 Undecidability of the Logic O over Discrete Linear
Orderings

In this section, we formally prove that the logic O, interpreted over discrete linear
orderings, is undecidable.

a b

c d

e f

a b

c d e f

Figure 1. an inconsistent scenario where the u-interval [a, b] has length greater than 2 and there exist two
beginu-intervals starting inside it which overlap (left) and the correct scenario where the u-interval [a, b] has
length equal to 2 and all beginu-intervals starting inside it do not overlap (right).
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u u u u u u u u

k k k k k k k k

Figure 2. u-intervals are adjacent and each pair of consecutive u-intervals is connected by a k-interval.

4.1 Definition of the u-chain

The construction of the u-chain can be formalized as follows. For any interval [a, b],
with len([a, b]) ≥ 2, let G[a,b] be the set of intervals that contains the interval [a, b]
and all intervals [c, d], with len([c, d]) ≥ 2, which start after a and end after b.
Moreover, let [G] (always in the future) be the following derived operator:

[G]p ≡ p ∧ [O]p ∧ [O][O]p.

It is not difficult to show that [G]p holds over an interval [a, b], with len([a, b]) ≥ 2,
if and only if p holds over every interval in G[a,b]. Let [a, b] be the interval over
which we evaluate formulae (technically, the interval to the right of which the u-
chain starts). Hereafter, we confine ourselves to intervals (resp., sets of intervals)
belonging to (resp., included in) G[a,b].

In order to define the u-chain, we use the following formulae:

[G]((k ↔ k1 ∨ k2) ∧ (u ↔ u1 ∨ u2) ∧ (k1 → ¬k2) ∧ (u1 → ¬u2)) (1)
[G]((k1 → 〈O〉u1) ∧ (u1 → 〈O〉k2) ∧ (k2 → 〈O〉u2) ∧ (u2 → 〈O〉k1)) (2)

¬u ∧ ¬k ∧ [O]¬u ∧ [O]¬k2 ∧ 〈O〉k1 (3)

Formulae (1)-(3) force the existence of an infinite chain of overlapping intervals
where k- and u-intervals alternate in a regular way. More precisely, u-intervals (resp.,
k-intervals) are partitioned into u1- and u2-intervals (resp., k1- and k2-intervals)
(formula (1)). Every k1-interval (resp., u1-, k2-, u2-interval) overlaps at least a u1-
interval (resp., k2-, u2-, k1-interval) (formula (2)). The first interval of the chain is
a k1-interval (formula (3)). As we will show further, the next formulae constrain
the length of both u- and k-intervals to be equal to 2:

[G]((u1 → [O]beginu1
) ∧ (u2 → [O]beginu2

)∧
∧(k1 → [O]begink1

) ∧ (k2 → [O]begink2
))

(4)

[G](((u2 ∨ k1 ∨ k2) → ¬〈O〉beginu1
) ∧ ((u1 ∨ k1 ∨ k2) → ¬〈O〉beginu2

)∧
∧((k2 ∨ u1 ∨ u2) → ¬〈O〉begink1

) ∧ ((k1 ∨ u1 ∨ u2) → ¬〈O〉begink2
))

(5)

[G]((beginu1
∧ ¬〈O〉beginu2

→ ¬〈O〉beginu1
)∧

∧(beginu2
∧ ¬〈O〉beginu1

→ ¬〈O〉beginu2
)∧

∧(begink1
∧ ¬〈O〉begink2

→ ¬〈O〉begink1
)∧

∧(begink2
∧ ¬〈O〉begink1

→ ¬〈O〉begink2
))

(6)

(1) ∧ . . . ∧ (6) (7)

Formulae (4)-(6) force the first k1-interval to start from the last inner point of the
initial interval [a, b] and every ki-interval (resp., ui-interval) to meet the k3−i-interval
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(resp., u3−i-interval) that immediately follows it.

Lemma 4.1 If M, [a, b] � (7), then there exists an infinite sequence of points c1 <

b1 < c2 < b2 < . . . < bi−1 < ci < bi < . . . such that a < c1, b = b1, and for each
i ≥ 1:
(i) len([ci, ci+1]) = 2 and len([bi, bi+1]) = 2;
(ii) M, [ci, ci+1] � k1 (resp., M, [ci, ci+1] � k2) if and only if i is an odd (resp.,

even) number;
(iii) M, [bi, bi+1] � u1 (resp., M, [bi, bi+1] � u2) if and only if i is an odd (resp.,

even) number,
and no other interval [c, d] ∈ G[a,b] satisfies k1 (resp., k2, u1, u2), unless c > ci

(resp., c > ci, c > bi, c > bi) for each i > 0.

Proof The proof of statements 1-3 is by mutual induction on the indexes i and j

of the sequences c1 < c2 < . . . and b1 < b2 < . . ., respectively.
Base case. We prove that a < c1 < b = b1 < c2 < b2, len([c1, c2]) = 2, len([b1,

b2]) = 2, M, [c1, c2] � k1, and M, [b1, b2] � u1. We first show that [a, b] overlaps
one and only one k1-interval, whose length is equal to 2. By (3), [a, b] overlaps
one interval satisfying k1. Suppose now, by contradiction, that there exists a k1-
interval [c, d] such that [a, b] overlaps [c, d] and len([c, d]) > 2. This means that
there is at least one point b′ such that c < b′ < d and b′ �= b. Let us assume b′ < b

(the opposite case can be dealt with in a very similar way). By (2), there exists an
interval [e, f ] such that [c, d] overlaps [e, f ] and [e, f ] satisfies u1. By (4), the interval
[b′, f ] satisfies begink1

. We show that [b′, f ] does not satisfy the third conjunct of
formula (6), that is, we show that the begink1

-interval [b′, f ] satisfies ¬〈O〉begink2
,

but it does not satisfy ¬〈O〉begink1
, thus leading to a contradiction. In order to

show that [b′, f ] satisfies ¬〈O〉begink2
, suppose, by contradiction, that there exists

a begink2
-interval [g, h] such that [b′, f ] overlaps [g, h]. We distinguish two cases:

• if g < d, then the k1-interval [c, d] overlaps the begink2
-interval [g, h], which

contradicts the fourth conjunct of (5);
• if g ≥ d, then the u1-interval [e, f ] overlaps the begink2

-interval [g, h], which
contradicts the fourth conjunct of (5) as well.

Let us show now that [b′, f ] satisfies 〈O〉begink1
. By (2), there exists an interval

[g, h] such that [e, f ] overlaps [g, h] and [g, h] satisfies k2. By (4), the interval [b, h]
satisfies begink1

. Hence, the begink1
-interval [b′, f ] overlaps the begink1

-interval [b, h]
(contradiction). It follows that [a, b] overlaps (one and) only one k1-interval, whose
length is equal to 2. Let [c1, c2] be such a k1-interval. From len([c1, c2]) = 2,
it follows that b is the only point in between c1 and c2. By (2), the k1-interval
[c1, c2] overlaps a u1-interval, say, [b1, b2]. Since len([c1, c2]) = 2, b1 = b. To
prove that len([b1, b2]) = 2, we can apply the same argument we used to show
that len([c1, c2]) = 2.
Inductive step. Let us assume that, by the inductive hypothesis, M, [ci, ci+1] � k1

(resp., M, [ci, ci+1] � k2), where len([ci, ci+1]) = 2 and i is odd (resp., i is even). The
argument we applied to the base case can be applied to prove that M, [bi, bi+1] � u1

(resp., M, [bi, bi+1] � u2), where ci < bi < ci+1 < bi+1 and len([bi, bi+1]) = 2.
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Similarly, if we assume that, by the inductive hypothesis, M, [bi, bi+1] � u1 (resp.,
M, [bi, bi+1] � u2), where len([bi, bi+1]) = 2 and i is odd (resp., i is even), then the
argument we applied to the base case allows us to conclude that M, [ci+1, ci+2] � k2

(resp., M, [ci+1, ci+2] � k1), where bi < ci+1 < bi+1 < ci+2 and len([ci+1, ci+2]) = 2.
To conclude the proof, we must show that there is no interval [c, d] ∈ G[a,b] such

that [c, d] satisfies u1 and [c, d] �= [bi, bi+1], for every odd positive integer i, unless
c > bi for every i > 0 (the same for u2, k1, and k2). Suppose, by contradiction, that
such an interval [c, d] exists. From (1) and (3), it immediately follows that [a, b]
neither satisfies u1 nor overlaps an interval that satisfies u1, and thus c ≥ b. Given
the properties of the u-chain and k-chain we just proved, it suffices to distinguish
the following three cases:

• if c = bi for some odd i, then d > bi+1. Since [ci+1, ci+2] is a k2-interval, for any
e > d, the interval [bi+1, e] is a begink2

-interval overlapped by the u1-interval
[c, d], contradicting the fourth conjunct of (5);

• if c = bi for some even i, then, by the last conjunct of (1), d > bi+1; exactly
the same argument we applied to the previous case yields a contradiction;

• if c = ci for some odd (resp., even) i, then d ≥ ci+1 and, for any e > d, the
interval [bi, e] is a begink1

-interval (resp., begink2
-interval) overlapped by the

u1-interval [c, d], contradicting the third (resp., fourth) conjunct of (5).
The same argument can be applied to the cases of u2-, k1-, and k2-intervals (in fact,
in the case of k1-intervals, we must take into account that, by (3), [a, b] overlaps the
first k1-interval of the sequence; however, the proof remains essentially the same).�

Corollary 4.2 If M, [a, b] � (7), then there exists an infinite sequence of points
c1 < b1 < c2 < b2 < . . . < bi−1 < ci < bi < . . . such that a < c1, b = b1, and for each
i ≥ 1, (i) M, [ci, ci+1] � k and (ii) M, [bi, bi+1] � u. Moreover, no other interval
[c, d] ∈ G[a,b] satisfies u (resp., k) unless c > bi (resp., c > ci) for each i > 0.

We conclude the section by introducing the operator 〈Xu〉, which allows one to
step from one u-interval to the next one: if evaluated over the initial interval [a, b],
or over a u-interval, 〈Xu〉p holds if and only if p holds over the next u-interval. It is
formally defined as follows:

〈Xu〉p ≡ 〈O〉(k ∧ 〈O〉(u ∧ p)).
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4.2 Definition of the Id-chain

To define the Id-chain, we take advantage of the following set of formulae:

¬Id ∧ ¬〈O〉Id (8)
〈Xu〉(∗ ∧ 〈Xu〉(tile ∧ 〈Xu〉 ∗ ∧[G](∗ → 〈Xu〉(tile ∧ 〈Xu〉tile)))) (9)

[G]((u ↔ ∗ ∨ tile) ∧ (∗ → ¬tile)) (10)
[G](∗ → 〈O〉Id) (11)

[G](Id → 〈O〉(k ∧ 〈O〉∗)) (12)
[G](k → ¬〈O〉Id) (13)

[G](u ∧ 〈O〉Id → ∗) (14)
[G](〈O〉∗ → ¬〈O〉Id) (15)

(8) ∧ . . . ∧ (15) (16)

Lemma 4.3 Let M, [a, b] � (7) ∧ (16) and let c0
1 < b = b0

1 < c1
1 < b1

1 < . . . <

bk1−1
1 < ck1

1 < bk1
1 = b0

2 < c1
2 < b1

2 < . . . < bk2
2 = b0

3 < . . . be the sequence of points
defined by Lemma 4.1. Then, for each j ≥ 1, we have:
a) M, [b0

j , b
1
j ] � ∗;

b) M, [bi
j , b

i+1
j ] � tile for each 0 < i < kj;

c) M, [c1
j , b

0
j+1] � Id;

d) k1 = 2, kl > 2 for each l > 1,
and no other interval [c, d] ∈ G[a,b] satisfies ∗ (resp., tile, Id), unless c > bi

j for each
i, j > 0.

Proof a) First of all, observe that there exists an infinite sequence of ∗-intervals,
thanks to (9), (11), and (12). Let us denote by [b0

1, b
1
1], [b

0
2, b

1
2], . . . , [b

0
j , b

1
j ], . . . such a

sequence. By the first conjunct of (10), we can assume that there is no ∗-interval
between [b0

j , b
1
j ] and [b0

j+1, b
1
j+1], for each j > 0.

b) Since by (10) each interval satisfying ∗ or tile is a u-interval and each u-interval
satisfies either ∗ or tile, the u-intervals between any two ∗-intervals (if any) must be
tile-intervals.
c) By (11), for each ∗-interval [b0

j , b
1
j ] there exists an Id-interval starting at c1

j and
ending at some point, say it c′. We want to show that c′ = b0

j+1, that is, the Id-
interval starting inside the ∗-interval [b0

j , b
1
j ] ends at the point which starts the next

∗-interval. Suppose, by contradiction, that c′ �= b0
j+1 and consider the following

cases:
• If c′ < b0

j+1, then (12) is contradicted, since either [c1
j , c

′] does not overlap any
k-interval or [c1

j , c
′] overlaps a k-interval that does not overlap any ∗-interval;

• If c′ = c1
j+1, then (12) is contradicted, since the interval [c0

1, c
′] does not overlap

any k-interval;
• If c′ > c1

j+1, then (15) is contradicted, since the interval [c0
1, c

1
j+1] overlaps both

the ∗-interval [b0
j+1, b

1
j+1] and the Id-interval [c1

j , c
′].

d) By (9), it immediately follows that k1 = 2 and kl > 2 when l > 1.
Finally, suppose, by contradiction, that there exists an Id-interval [c, d] ∈ G[a,b]
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t11

t21 t22

t31 t32 t33

t41 t42 t43 t44
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b

f

b

f

b

b)

last last last last

∗ t11 ∗ t21 t22 ∗ t33 t32 t31 ∗ t41 t42 t43 t44

︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷︷ ︸︸ ︷b f b f

Figure 3. up rel-intervals starting from backward (resp., forward) rows of the octant do not overlap.

such that [c, d] �= [c1
j , b

0
j+1] for each j > 0 and that c ≤ bi

j for some i, j > 0. By (8),
the interval [a, b] neither satisfies Id nor overlaps an interval that satisfies Id, thus
c ≥ b, and one of the following cases arise. 1) If c = bi

j for some i ≥ 0, j > 0, then
(13) is contradicted. 2) If c = ci

j for some i ≥ 0, j > 0, with i �= 1, then (14) is
contradicted. 3) If c = c1

j for some j > 0, then we have already shown that it must
be d = b0

j+1. The fact that no other interval [c, d] ∈ G[a,b] satisfies ∗ or tile, unless
c > bi

j for each i, j > 0 can be proved by a similar argument. �

4.3 Definition of the above-neighbor relation

We now proceed with the above-neighbor relation, whose encoding is shown in
Fig. 3. Intuitively, the above-neighbor relation connects each tile-interval with its
vertical neighbor in the octant (e.g., t22 with t32 in Fig. 3). If a tile t is connected to
the tile t′ through the above-neighbour relation, then we simply say that t is above-
connected to t′. To model such a relation, we use intervals labeled by up rel, that
is, up rel-intervals connect pairs of tile-intervals encoding pairs of above-connected
tiles of the octant.

We distinguish between backward and forward rows of O using the propositional
letters b and f: we label each u-interval with b (resp., f) if it belongs to a backward
(resp., forward) row (formulae (17)-(18)). Intuitively, the tiles belonging to forward
rows of O are encoded in ascending order, while those belonging to backward rows
are encoded in descending order (the tiling is encoded in a zig-zag manner). In
particular, this means that the left-most tile-interval of a backward level encodes
the last tile of that row (and not the first one) in O. Let α, β ∈ {b, f}, with α �= β:

〈Xu〉b ∧ [G]((u ↔ b ∨ f) ∧ (b → ¬f)) (17)
[G]((α ∧ ¬〈Xu〉∗ → 〈Xu〉α) ∧ (α ∧ 〈Xu〉∗ → 〈Xu〉β)) (18)

(17) ∧ . . . ∧ (18) (19)

Lemma 4.4 If M, [a, b] � (7) ∧ (16) ∧ (19), then there exists a sequence of points
like that defined in Lemma 4.3 such that M, [bi

j , b
i+1
j ] � b if and only if j is an odd

number and M, [bi
j , b

i+1
j ] � f if and only j is an even number. Furthermore, we have

that no other interval [c, d] ∈ G[a,b] satisfies b or f, unless c > bi
j for each i, j > 0.

We make use of such an alternation between backward and forward rows to use
the operator 〈O〉 for correctly enconding the above-neighbor relation. We constrain
each up rel-interval starting from a backward (resp., forward) row not to overlap any
other up rel-interval starting from a backward (resp., forward) row. The structure
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of the encoding is shown in Fig. 3, where up rel-intervals starting inside forward
(resp., backward) rows are placed one inside the others. Consider, for instance, the
3rd and 4th rows in Fig. 3b. The 1st tile-interval of the 3rd row (t33) is connected
with the next-to-last tile-interval of the 4th row (t43), the 2nd tile-interval of the 3rd
row (t32) is connected with the third from last tile-interval of the 4th row (t42), and so
on. Notice that, in forward (resp., backward) rows, the last (resp., first) tile-interval
has no tile-intervals above-connected with it, in order to constrain each row to have
exactly one tile-interval more than the previous one (these tile-intervals are labeled
with last).

Formally, we define the above-neighbor relation as follows. If [bi
j , b

i+1
j ] is a tile-

interval belonging to a forward (resp., backward) row, then we say that it is above-
connected with the tile-interval [bj+2−i

j+1 , bj+2−i+1
j+1 ] (resp., [bj+2−i−1

j+1 , bj+2−i
j+1 ]). We cap-

ture this situation by labelling with up rel the interval [ci+1
j , cj+2−i+1

j+1 ] (resp., [ci+1
j ,

cj+2−i
j+1 ]). Moreover, we distinguish between up rel-intervals starting from forward

and backward rows and, for each one of these cases, between those starting from
odd and even tile-intervals. To this end, we use a new propositional letter, namely,
up relbo (resp., up relbe , up relfo, up relfe) to label up rel-intervals starting from an odd
tile-interval of a backward row (resp., even tile-interval/backward row, odd/forward,
even/forward). Moreover, to ease the reading of the formulae, we group up relbo and
up relbe in up relb (up relb ↔ up relbo ⊕ up relbe), and similarly for up relf . Finally,
up rel is exactly one among up relb and up relf (up rel ↔ up relb ⊕ up relf). In such
a way, we encode the correspondence between tiles of consecutive rows of the plane
induced by the above-neighbour relation. Let α, β ∈ {b, f} and γ, δ ∈ {o, e}, with
α �= β and γ �= δ:

[G]((up rel ↔ up relb ∨ up relf) ∧ (up relα ↔ up relαo ∨ up relαe )) (20)

[G](k → ¬〈O〉up rel) (21)

[G](u ∧ 〈O〉up relαγ → ¬〈O〉up relαδ ∧ ¬〈O〉up relβ) (22)

[G](up relα → ¬〈O〉up relα) (23)

[G](up relαγ → 〈O〉(tile ∧ 〈O〉up relβγ )) (24)

(20) ∧ . . . ∧ (24) (25)

Lemma 4.5 If M, [a, b] � (7) ∧ (16) ∧ (19) ∧ (25), then there exists a sequence of
points like that defined in Lemma 4.3 such that, for each i ≥ 0, j > 0, the following
properties hold:
a) [c, d] satisfies up rel if and only if c = ci

j , d = di′
j′ for some i, i′, j, j′ > 0, that is,

each up rel-interval starts and ends inside u-intervals;
b) [ci

j , c
i′
j′ ] satisfies up rel if and only if it satisfies exactly one between up relb and

up relf and [ci
j , c

i′
j′ ] satisfies up relb (resp., up relf) if and only if it satisfies exactly

one between up relbo and up relbe (resp., between up relfo and up relfe);
c) for each α, β ∈ {b, f} and γ, δ ∈ {o, e}, if [ci

j , c
i′
j′ ] satisfies up relαγ , then there is

no other interval starting at ci
j satisfying up relβδ such that up relαγ �= up relβδ ;
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d) each up relb-interval (resp., up relf-interval) does not overlap any other up relb-
interval (resp., up relf-interval);

e) if [ci
j , c

i′
j′ ] satisfies up relbo (resp., up relbe , up relfo, up relfe), then [bi′−1

j′ , bi′
j′ ] satisfies

tile and there exists a up relfo-interval (resp., up relfe-interval, up relbo-interval,
up relbe-interval) starting at ci′

j′.

Now, we constrain each tile-interval, apart from the ones representing the last
tile of some level, to have a tile-interval above-connected with it. To this end, we
label each tile-interval representing the last tile of some row of the octant with the
new propositional letter last (formulae (33)-(35)). Next, we force all, and only those,
tile-intervals not labelled with last to have a tile-interval above-connected with them
(formulae (36)-(39)):

¬up rel ∧ ¬〈O〉up rel (26)
[G](tile → 〈O〉up rel) (27)

[G](u ∧ 〈O〉up rel → tile) (28)
[G](α → [O](up rel → up relα)) (29)

[G](up relα → 〈O〉β) (30)

[G](〈O〉∗ → ¬(〈O〉up relb ∧ 〈O〉up relf)) (31)
[G](tile ∧ 〈O〉up relαγ ∧ 〈Xu〉tile → 〈Xu〉(tile ∧ 〈O〉up relαδ )) (32)

[G](last → tile) (33)
[G]((∗ ∧ b → 〈Xu〉last) ∧ (f ∧ 〈Xu〉∗ → last)) (34)
[G]((last ∧ f → 〈Xu〉∗) ∧ (b ∧ 〈Xu〉last → ∗)) (35)

[G](∗ ∧ f → 〈Xu〉(tile ∧ 〈O〉(up rel ∧ 〈O〉(tile ∧ 〈Xu〉∗)))) (36)
[G](last ∧ b → 〈O〉(up rel ∧ 〈O〉(tile ∧ 〈Xu〉(tile ∧ 〈Xu〉∗)))) (37)

[G](k ∧ 〈O〉(tile ∧ 〈O〉up relαγ ) → [O](〈O〉up relαγ ∧ 〈O〉(k∧
〈O〉(tile ∧ 〈O〉up relβδ ∧ ¬last)) → 〈O〉up relαδ ))

(38)

[G](up rel → ¬〈O〉last) (39)
(26) ∧ . . . ∧ (39) (40)

Lemma 4.6 If M, [a, b] � (7)∧(16)∧(19)∧(25)∧(40), then there exists a sequence
of points like that defined in Lemma 4.3 such that the following properties hold:
a) for each up rel-interval [c, d], there exist c′, c′′, d′, d′′, with c′ < c < c′′ < d,

c < d′ < d < d′′, such that [c′, c′′] and [d′, d′′] are tile-intervals and if [c, d] satisfies
up relb (resp., up relf), then [c′, c′′] satisfies b (resp., f) and [d′, d′′] satisfies f
(resp., b);

b) (strict alternation property) for each tile-interval [bi
j , bi+1

j ], with i < kj − 1,
such that there exists a up relbo-interval (resp., up relbe-interval, up relfo-interval,
up relfe-interval) starting at ci+1

j , there exists a up relbe-interval (resp., up relbo-
interval, up relfe-interval, up relfo-interval) starting at ci+2

j ;
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c) for every tile-interval [bi
j , b

i+1
j ] satisfying last, there is no up rel-interval ending

at ci+1
j ;

d) for each up rel-interval [ci
j , c

i′
j′ ], with 1 < i ≤ kj, we have that j′ = j + 1.

Proof
a) Let [c, d] be a up rel-interval. By (24), we have that there exist d′, d′′, with

c < d′ < d < d′′, such that [d′, d′′] is a tile-interval and by (21), (28), and Lemma
4.1, there exist c′, c′′, with c′ < c < c′′ < d, such that [c′, c′′] is a tile-interval.
Now, suppose that [c, d] satisfies up relb (the other case is symmetric) and that
[c′, c′′] satisfies f. Then, (29) is contradicted. Similarly, if [d′, d′′] satisfies b, then
(30) is contradicted.

b) Straightforward, by (32);
c) Straightforward, by (39);
d) Let [ci

j , c
i′
j′ ] be a up rel-interval, with 1 < i ≤ kj , and suppose, for contradiction,

that j′ �= j + 1. Suppose that [ci
j , c

i′
j′ ] is a up relb-interval (the other case is

symmetric). By point a) of this lemma, we have that [bi−1
j , bi

j ] satisfies b and
that [bi′−1

j′ , bi′
j′ ] satisfies f. Two cases are possible:

(i) if j′ = j, then [bi−1
j , bi

j ] and [bi′−1
j′ , bi′

j′ ] belong to the same Id-interval. By
Lemma 4.4, they must be both labelled with b or f, against the hypothesis;

(ii) if j′ > j+1, then consider a tile-interval [bh
j+1, bh+1

j+1 ] belonging to the (j+1)-
th row. By Lemma 4.4, we have that [bh

j+1, b
h+1
j+1 ] satisfies f (since [bi−1

j , bi
j ]

satisfies b) and, by (27) and (29), we have that there is a up relf-interval
starting at ch+1

j+1 and ending at some point ch′
j′′ for some j′′ > j + 1 (by

point (i)). Consider the ∗-interval [b0
j+2, b

1
j+2]. We have that the interval

[c0
1, c

1
j+2] overlaps the ∗-interval [b0

j+2, b
1
j+2], the up relf-interval [ch+1

j+1 , ch′
j′′ ]

and the up relb-interval [ci
j , c

i′
j′ ], contradicting (31).

Hence, the only possibility is j′ = j + 1. �

Lemma 4.7 Each tile-interval [bi
j , b

i+1
j ] is above-connected with exactly one tile-

interval and if [bi
j , b

i+1
j ] does not satisfy last, then there exists exactly one tile-interval

which is above-connected with it.

Proof First of all, we observe that each tile-interval is above-connected with at
least one tile, by (27) and by Lemma 4.6, item (a). Now suppose, for contradiction,
that there exists a tile-interval [bi

j , b
i+1
j ] not satisfying last and such that there is

no tile-interval above-connected with it. If [bi
j , b

i+1
j ] is the rightmost interval of

the j-th Id-interval not satisfying last (base case) and it satisfies f (resp., b), then
we have that i = kj − 2 (resp., i = kj − 1) and (37) (resp., (36)) guarantees the
existence of a up rel-interval ending at ci+1

j , leading to a contradiction. Otherwise,
if [bi

j , b
i+1
j ] is not the rightmost interval of the j-th Id-interval not satisfying last,

then the inductive case applies. So, we can assume the inductive hypothesis, that
is, there is a up rel-interval ending at ci+2

j and starting at some point ci′
j−1. We

want to show that there exists also a up rel-interval ending at ci+1
j . Without loss of
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generality, suppose that [ci′
j−1, c

i+2
j ] satisfies up relfo. Then, by Lemma 4.5, item (e),

there exists a up relbo-interval starting at ci+2
j and, by the strict alternation property

(Lemma 4.6, item (b)), there exists a up relbe -interval starting at ci+1
j . We show

that, by applying (38) to the k-interval [ci′−1
j−1 , ci′

j−1], we get a contradiction. Indeed,
[ci′−1

j−1 , ci′
j−1] satisfies k∧〈O〉(tile∧〈O〉up relfo) and it overlaps [bi′−1

j−1 , bi
j ], which satisfies

the following formulae:
• 〈O〉up relfo: [ci′

j−1, c
i+2
j ] satisfies up relfo;

• 〈O〉(k ∧ 〈O〉(tile ∧ 〈O〉up relbe ∧ ¬last)): the interval [ci
j , c

i+1
j ] satisfies k and

overlaps the tile-interval [bi
j , b

i+1
j ], which does not satisfy last (by hypothesis)

and overlaps a up relbe -interval (that one starting at ci+1
j ).

We show that [bi′−1
j−1 , bi

j ] does not satisfy the formula 〈O〉up relfe, getting a contra-
diction with (38). Suppose that there exists an interval [e, f ] satisfying up relfe and
such that bi′−1

j−1 < e < bi
j < f . We distinguish the following cases:

• if f > ci+2
j and e > ci′

j−1, then the up relfo-interval [ci′
j−1, c

i+2
j ] overlaps the

up relfe-interval [e, f ], contradicting Lemma 4.5, item (d);
• if f > ci+2

j and e = ci′
j−1, then there are a up relfo- and a up relfe-interval starting

at ci′
j−1, contradicting Lemma 4.5, item (c);

• if f = ci+2
j , then there are a up relfo- and a up relfe-interval ending at ci+2

j and,
by Lemma 4.5, item (e), there are a up relbo- and a up relbe -interval starting at
ci+2
j , contradicting Lemma 4.5, item (c);

• finally, if f = ci+1
j , we have a contradiction with the hypothesis.

Thus, there exists no such an interval, contradicting (38).
This proves that each tile-interval is above-connected with at least one tile-

interval and if it does not satisfy last, then there exists at least one tile-interval
above-connected with it. Now, we show that such connections are unique. Suppose,
for contradiction, that for some [ci

j , c
i′
j+1] and [ci

j , c
i′′
j+1], with ci′

j+1 < ci′′
j+1 (the case

ci′
j+1 > ci′′

j+1 is symmetric), we have that both [ci
j , c

i′
j+1] and [ci

j , c
i′′
j+1] are up rel-

intervals. By Lemma 4.5, we have that they both satisfy the same propositional
letter among up relfo, up relfe, up relbo and up relbe , say up relfo (the other cases are
symmetric). Then both ci′

j+1 and ci′′
j+1 start a up relbo-interval by Lemma 4.5, item

(e). By the strict alternation property, a up relbe -interval starts at the point ci′+1
j+1 .

Since [bi′
j+1, b

i′+1
j+1 ] does not satisfy last (it is not the rightmost neither the leftmost

tile-interval of the (j + 1)-th Id-interval), then, as we have already shown, there
exists a point c such that [c, ci′+1

j+1 ] is a up rel-interval. By Lemma 4.5, items (e) and
(c), we have that [c, ci′+1

j+1 ] is a up relfe-interval. We show that the existence of such
an interval leads to a contradiction:

• if c < ci
j , then the up relfe-interval [c, ci′+1

j+1 ] overlaps the up relfo-interval [ci
j ,

ci′′
j+1], contradicting Lemma 4.5, item (d);

• if c = ci
j , then ci

j starts both a up relfo- and a up relfe-interval, contradicting
Lemma 4.5, item (c);

• if c > ci
j , then the up relfo-interval [ci

j , c
i′
j+1] overlaps the up relfe-interval [c,
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ci′+1
j+1 ], contradicting Lemma 4.5, item (d).

In a similar way, we can prove that two distinct up rel-intervals cannot end at the
same point. �

4.4 The right-neighbor relation

Intuitively, the right-neighbor relation connects each tile-interval with its horizontal
neighbor in the octant, if any (e.g., t32 with t33 in Fig. 3). If a tile t is connected
to the tile t′ through the right-neighbour relation, then we simply say that t is
right-connected to t′.

Again, we must distinguish between forward and backward rows: a tile-interval
belonging to a forward (resp., backward) row is right-connected with the tile-interval
immediately on its right (resp., left), if any. For example, in Fig. 3b, the 2nd tile-
interval of the 4th row (t42) is right-connected with the tile-interval immediately on
its right (t43), since the 4th row is a forward one, while the 2nd tile-interval of the
3rd row (t32) is right-connected with the tile-interval immediately on its left (t33),
since the 3rd row is a backward one.

As a consequence, we define the right-neighbor relation as follows. If [bi
j , b

i+1
j ] is

a tile-interval belonging to a forward (resp., backward) Id-interval, with i �= kj − 1
(resp., i �= 1), then we say that it is right-connected with the tile-interval [bi+1

j , bi+2
j ]

(resp., [bi−1
j , bi

j ]).

Lemma 4.8 (Commutativity property) If M, [a, b] � (7)∧ (16)∧ (19)∧ (25)∧
(40), then there exists a sequence of points like the one defined in Lemma 4.3 such
that the following commutativity property holds: given two tile-intervals [c, d] and
[e, f ], if there exists a tile-interval [d1, e1], such that [c, d] is right-connected with
[d1, e1] and [d1, e1] is above-connected with [e, f ], then there exists also a tile-interval
[d2, e2] such that [c, d] is above-connected with [d2, e2] and [d2, e2] is right-connected
with [e, f ].

4.5 Tiling the plane

The following formulae constrain each tile-interval (and no other interval) to be
tiled by exactly one tile (formula (41)) and constrain the tiles that are right- or
above-connected to respect the color constraints (from (42) to (44)):

[G](((
∨k

i=1 ti) ↔ tile) ∧ (
∧k

i,j=1,i�=j ¬(ti ∧ tj)) (41)

[G](tile → ∨
up(ti)=down(tj)

(ti ∧ 〈O〉(up rel ∧ 〈O〉tj))) (42)

[G](tile ∧ f ∧ 〈Xu〉tile → ∨
right(ti)=left(tj)

(ti ∧ 〈Xu〉tj)) (43)

[G](tile ∧ b ∧ 〈Xu〉tile → ∨
left(ti)=right(tj)

(ti ∧ 〈Xu〉tj)) (44)

(41) ∧ . . . ∧ (44) (45)
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Given the set of tile types T = {t1, t2, . . . , tk}, let ΦT be the formula

(7) ∧ (16) ∧ (19) ∧ (25) ∧ (40) ∧ (45).

Lemma 4.9 Given any finite set of tile types T = {t1, t2, . . . , tk}, the formula ΦT
is satisfiable if and only if T can tile the second octant O.

Since the above construction can be carried out on any linear ordering containing
an infinite discrete ascending chain of points, such as, for instance, N and Z, the
following theorem holds.

Theorem 4.10 The satisfiability problem for the logic O (resp., O) is undecidable
over any class of discrete linear orderings that contains at least one linear ordering
with an infinite ascending (resp., descending) sequence.

From Theorem 4.10, it immediately follows that the logic O (resp., O) is undecidabile
over the linear orderings Z and N (resp., Z and Z−).

5 Conclusions and future work

In this paper we proved the undecidability of the interval temporal logic with a
single modality corresponding to Allen’s Overlap relation, interpreted over discrete
linear orderings, by a reduction from the octant tiling problem.

It is not difficult to show that the given undecidability proof cannot be directly
applied to the logic of Overlap relation, interpreted over other classes of linear
orderings, e.g., the class of dense linear orderings. We are interested in solving
the decision problem for the considered logic when interpreted over other linear
orderings. As a matter of fact, we are not aware of any interval temporal logic which
is decidable (resp., undecidable) with respect to some classes of linear orderings and
undecidable (resp. decidable) with respect to other ones.
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