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Abstract

Inspired by socio-political scenarios, like dictatorships, in which a
minority of people exercise control over a majority of weakly intercon-
nected individuals, we propose vulnerability and power measures defined
on groups of actors of networks. We establish an unexpected connec-
tion between network vulnerability and graph regularizability. We use
the Shapley value of coalition games to introduce fresh notions of vul-
nerability and power at node level defined in terms of the corresponding
measures at group level. We investigate the computational complexity
of computing the defined measures, both at group and node levels, and
provide effective methods to quantify them. Finally we test vulnerability
and power on both artificial and real networks.

1 Introduction

Our investigation moves from the observation that there exists a recurrent topol-
ogy in many real-life scenarios characterized by a majority of individuals (that
we call the victims), with rare connections among them, that are linked to a
minority of people (that we call executioners). It can be portrayed as a sparse
periphery of victims linked to a restricted core of executioners, a sort of general-
ization of the star topology. In fact, as we will see, the nature of the relationship
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between victims and executioners may have different semantics depending on
the application domain, for instance control or support.

In this paper we conduct a formal investigation of the described topology in
the context of network science. We define a vulnerability measure on groups of
nodes of an undirected network that quantifies the tendency of a set of actors
to be the victims with respect to some smaller group of executioners. We also
define a symmetric power measure that assesses the capacity of a group of actors
to play the role of executioners with respect to some larger pool of victims. We
extend the defined notions of vulnerability and power at the level of network,
leading to a characterization of vulnerable networks.

We discover an unexpected connection between the notion of network vul-
nerability and that of graph regularizability, a seasoned concept in graph theory.
Besides building an interesting bridge between modern network science and tra-
ditional graph theory, this result provides us with a method to decide the sign of
the vulnerability of a network (positive, null, or negative). We then tackle the
problem of quantifying the exact vulnerability value of a network and finding
the set of nodes that determines such vulnerability score. It turns out that,
for networks with null or positive vulnerability, this problem can be solved by
exploiting a reduction to the minimum 2-vertex cover problem. We furthermore
map the general problem to an integer linear programming model and prove
that, whenever the network has non-negative vulnerability, a single continuos
relaxation of the model can be exploited to solve the problem. As for networks
with negative vulnerability, we show that the solution of the integer linear pro-
gramming model can be reduced to the solution of one linear programming
problem for each node of the network.

We then make a detour through game theory. In accordance with a well-
established game-theoretic approach to define node centrality in networks, we
define a cooperative game over a network in which players are the nodes, coali-
tions are the groups of nodes, and payoffs of coalitions are defined by the vulner-
ability (or power) measures on groups of nodes. Hence we interpret the Shapley
value of each player in such a game as a centrality measure at node level: the
measure represents the average marginal contribution made by each node to
the vulnerability (or power) of every coalition of nodes. This allows us to define
sophisticated vulnerability and power measures for nodes that take into con-
sideration the corresponding measures for sets of nodes. Notably, we provide
closed-form expressions for the Shapley values of both vulnerability and power
that can be computed in linear time with respect to the size of the network.

Finally, we test the proposed vulnerability and power measures, at the lev-
els of nodes, sets and network, over artificial networks (random and scale-free
graphs) as well as real networks (social and technological networks). We use arti-
ficial graphs to investigate the relationship between vulnerability and robustness
of networks as defined by algebraic connectivity, as well as for estimating the
probability of being a vulnerable network. We use vulnerability and power mea-
sures on real networks to reveal meaningful properties of the structure of these
networks, as well as to empirically study the correlation between node power
and node degree in a network.
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Figure 1: Four different network topologies.

The rest of the paper is organized as follows. In Section 2 we give two appli-
cation scenarios for the problems here investigated. Section 3 does the formal
work, defining and investigating vulnerability and power from various angles.
The experimental investigation on artificial and real networks is discussed in
Section 4. We review the related literature in Section 5 and draw our conclu-
sions in Section 6.

2 Application domains

In this part we explore two application domains of the notions of vulnerability
and power introduced in this paper. The first application domain interprets
the relationship between executioners and victims as control. Victims are larger
in number than executioners, are poorly connected among them, and are con-
trolled by executioners, meaning that there exist no link between a victim and
an external actor different from victims and executioners. The result is that ex-
ecutioners can potentially exercise control over victims, since victims can hardly
communicate among them and cannot reach external sources.

This topology is adopted, for instance, in dictatorships. Meetings and asso-
ciations among people (the victims) are prohibited. Links of victims to external
sources of information are hampered. This is accomplished, for instance, by
imposing limitations to the use of Internet and popular social networking ser-
vices. On the other hand, communication necessarily flows only between the
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dictator or a group of few individuals (the executioners) and the isolated vic-
tims. The crucial role of Internet and in particular of social networking services
(Twitter in particular) during the uprisings of the Arab Spring has been largely
acknowledged. These media have been used by insurgents to break isolation
with the external world as well as to organize the internal revolution. These
communication links decreased the vulnerability of victims with respect to the
executioners.

Further instances of a similar topological exploitation are described in [16];
we quote a couple of historical examples in the following: “Plantation own-
ers in Hawaii a century ago expressly hired workers who spoke different native
languages to ensure that communication among them would be limited, thus dis-
couraging labor action. And the extraordinary longevity of the Ottoman Empire
(1300-1918) and its remarkable integration and taxation of diverse ethnic and
religious communities was based on a network structure that made peripheral
elites dependent on the center, communicating only with the center rather than
with one another.”

Consider the topologies depicted in Figure 1. The archetypal power-vulnerability
topology is the star shown in the top-left network: the black node exercises con-
trol over a large set of independent white nodes. The set of peripheral victims
is vulnerable, and the central executioner is powerful. The central black node
loses much of its control in the top-right configuration: although all white nodes
are still connected to it, each white node is also linked to at least another white
node. Hence the central black node does not control any white node anymore.
The situation depicted in the bottom-left network is intermediate with respect
to the previous cases: although the number of bonds between white nodes is the
same as in the previous case (3 connections), the distribution of the links penal-
ize the white nodes. Indeed, two of them are still isolated from their white mates
and connected only to the black center, which maintains some of its power. Fi-
nally, in the bottom-right network, although white nodes are independent, as in
the star graph, they are connected to the black node as well as to many other
grey nodes. Hence white nodes are not vulnerable and the black node is not
powerful.

The second broad application domain is about the influence of social net-
works on health [3]. A social network is a natural mean to capture and represent
social relationships. These relationships are classified in five categories: social
capital, social influence, social undermining, companionship, and social support
[13]. We are interested in particular in social support that expresses the recip-
rocal assistance between actors of the social network. Social support is always
intended to be helpful, is consciously provided, and if it tries to influence the
receiver it is provided in an interpersonal context of caring, trust and respect
[13]. The influence of social support on health have been thoroughly studied;
however, few is known on the influence of the topological properties of social
networks, such as diameter, clustering coefficient, degree distribution, and cen-
trality, on social support [6].

Our view is that vulnerability is a meaningful structural property of a net-
work in relation to social support. More specifically, we argue that networks
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that are not vulnerable are good models for the exchange of reciprocal assis-
tance. In non-vulnerable networks, each actor can count on the reciprocal help
of some neighbor1, a simple idea that is in fact employed by the buddy systems
of the Unites States Armed Forces and of the Boy Scouts of America. On the
other hand, vulnerable networks contain fragments in which a group of inde-
pendent actors are connected only to a few central actors; in case of need, most
of the independent actors will remain without support. The central actors are
good spots for the establishment of a public or professional assistance service.

Consider again the topologies of Figure 1. The star topology (top-left) is
the worst assistance model: all white actors can receive assistance from only
one supporter, the black central actor. Hence all white actors but one are not
going to receive any help. This topology identifies, however, the central actor
as a perfect spot for a public or professional support server. The bottom-left
structure is a somewhat better model of assistance: all white nodes but one can
receive support. Indeed, out of the six white actors, four of them can help each
other, while a fifth one can receive assistance from the black central actor. On
the other hand, the models on the right hand of the picture are good structures
for social support. In the bottom-right network, five white actors can receive
support from the same number of grey actors, and the last white actor can be
assisted from the central black actor. In the top-right topology, all white actors
can assist each other, even without the help of the central black actor.

3 Vulnerability and power on networks

We start by formally defining the notion of vulnerability. Let G = (V,E)
be an undirected connected graph. For every subset T ⊆ V , we denote by
N(T ) = {j ∈ V : there is i ∈ T such that ij ∈ E} the set of the neighbors of
the nodes in T and by S(G) the collection of the independent sets of G, i.e.,
those subsets S ⊆ V such that N(S)∩S = ∅. Hence an independent set is a set
such that no two vertices in the set are linked by an edge.

We introduce a vulnerability function vG : 2V → Z defined by

vG(T ) = |T | − |N(T )| T ⊆ V. (1)

Since for every set T ⊆ V each node in T ∩N(T ) gives a null contribution
to vG(T ), the vulnerability function vG(T ) can be equivalently expressed as

vG(T ) = |I(T )| − |N(T ) \ T | (2)

where I(T ) = T \N(T ) denotes the independent set containing all the nodes of
T that have no neighbor in T . One might divide vG(T ) by the maximum value
it takes (which is n−2 on a connected graph), so that the resulting vulnerability
lies between −1 (minimum vulnerability, corresponding to the vulnerability of
the central node of a star network with n nodes) and 1 (maximum vulnerability,

1A property that we formally show in Proposition 2 of Section 3.

5



corresponding to the vulnerability of the set of peripheral nodes of a star network
with n nodes).

The definition of vulnerability, which is central in this work, claims that a set
is vulnerable when it is large and it is connected to few neighbors. Equivalently,
a set is vulnerable when it contains a large independent set with few neighbors
outside the set. Consider again examples in Figure 1. The set W1 of white
nodes in the top-left graph G1 is vulnerable: it contains 6 nodes with only 1
neighbor, hence vG1

(W1) = 6 − 1 = 5. Notice that W1 is an independent set,
hence I(W1) = W1. The vulnerability of the white node set W2 in the bottom-
left network G2 is largely reduced: the set W2 has 6 members, as before, but
the neighbor set N(W2) contains now 5 nodes, hence vG2

(W2) = 6 − 5 = 1.
Notice that I(W2) is different from W2 and contains 2 nodes, while N(W2)\W2

contains 1 node. The set W3 of white nodes in the top-right graph G3 in not
vulnerable: vG3

(W3) = 6−7 = −1. We have moreover that I(W3) = ∅. Finally,
the set W4 of white nodes in the bottom-right graph G4 in also not vulnerable,
but for a different reason. Indeed, W4 = I(W4) is independent and contains 6
nodes, the same number of nodes of N(W4), hence vG4

(W4) = 6− 6 = 0.
The vulnerability ν̄G of the network G is the maximum vulnerability of a

non-empty independent set of nodes in G:

ν̄G = max
∅6=S∈S(G)

vG(S). (3)

We say that G is vulnerable if ν̄G > 0, i.e., there exists an independent set S such
that |S| > |N(S)|. On the contrary, in non-vulnerable networks, |S| ≤ |N(S)|
for every independent set.

A weaker notion of vulnerability can be defined by maximizing the function
vG(T ) over all the subsets of V , not only the independent ones, that is by setting

ν̂G = max
T⊆V

vG(T ). (4)

We define ν̂G as weak vulnerability of the network G. Clearly ν̄G ≤ ν̂G and, since
∅ ⊆ V and vG(∅) = 0, then ν̂G ≥ 0 for each graph G. Moreover, the following
proposition holds.

Proposition 1. It holds ν̄G 6= ν̂G if and only if ν̄G < 0.

Proof. Assuming ν̄G < ν̂G and, by contradiction, 0 ≤ ν̄G < ν̂G, let T̄ be a subset
of V such that vG(T̄ ) = ν̂G. Then vG(T̄ ) = |I(T̄ )| − |N(T̄ ) \ T̄ | > 0 and this
implies that the independent set I(T̄ ) is not empty. From N(I(T̄ )) ⊆ N(T̄ ) \ T̄
we obtain vG(I(T̄ )) ≥ vG(T̄ ) and thus ν̄G ≥ ν̂G, a contradiction. The opposite
implication follows from the fact that ν̂G ≥ 0.

From the proof of the above proposition it follows that if ν̂G > 0 and T̄
is an optimal solution of problem (4), then also the independent set I(T̄ ) is
optimal. Moreover, if ν̂G = 0, then, since vG(∅) = 0, the empty set, which is an
independent set, is an optimal solution of (4). It follows that we can write:

ν̂G = max
S∈S(G)

vG(S). (5)
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3.1 Determining if a network is vulnerable

As a first aspect, we consider the problem of determining if a network G is
vulnerable or not. In graph theory the networks G with ν̄G ≤ 0 and ν̄G < 0
have been characterized from several perspectives. A first characterization arises
from the study of quasi-regularizable and regularizable graphs. We recall that
a graph G is quasi-regularizable if it is possible to assign non-negative integer
weights to the edges of the graph in such a way that the sum of the weights over
the edges incident in any node is the same non-null value. The graph is called
regularizable if these weights can be chosen strictly positive. An alternative
characterization, useful from a computational point of view, involves the notion
of 2-matching. A 2-matching is an assignment of weights 0, 1 or 2 to the edges
of the graph with the property that the sum of weights of the edges incident in
any node is at most 2. If this sum is exactly 2 for each node, the 2-matching
is called perfect. The notion of 2-matching someway generalizes the notion of
matching. We remind that a matching M is a subset of edges with the property
that different edges of M cannot have a common endpoint. A matching M is
called perfect if every node of the graph is the endpoint of (exactly) one edge of
M . In the following we will exploit the fact that 2-matchings are strictly related
to 2-vertex covers, where a 2-vertex cover is an assignment of weights 0, 1 and
2 to the nodes such that for each edge the sum of the weights of its endpoints is
at least 2. In turn, the notion of 2-vertex cover someway generalizes the notion
of vertex cover. We remind that a vertex cover A is a subset of nodes with the
property that each edge of the graph has at least one endpoint in A.

We summarize the main relations between the above concepts and the prop-
erties ν̄G ≤ 0 and ν̄G < 0 in the following two theorems.

Theorem 1. Let G = (V,E) be a connected undirected graph. Then the follow-
ing conditions are equivalent:

1. |S| ≤ |N(S)| for every independent set S ⊆ V , i.e., ν̄G ≤ 0;

2. G is quasi-regularizable [2];

3. G admits a perfect 2-matching [28].

Theorem 2. Let G = (V,E) be a connected undirected graph. Then the follow-
ing conditions are equivalent:

1. |S| < |N(S)| for every independent set ∅ 6= S ⊆ V , i.e., ν̄G < 0;

2. G is a regularizable graph that is not elementary bipartite, where a bipartite
graph is elementary if every edge is contained in a perfect matching [1];

3. G is a 2-bicritical graph, i.e., for each node i ∈ V the graph G(V \ {i})
admits a perfect 2-matching [23].

We will see in Section 3.2 how the problem of determining if a graph admits
a perfect 2-matching can be solved in polynomial time by finding a maximum
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matching on a bipartite graph. Therefore Theorems 1 and 2 imply that one can
determine in polynomial time the sign of the vulnerability ν̄G of a graph.

The following proposition, that follows from Hall’s Theorem [18], points out
an interesting property of non-vulnerable networks: each node of any indepen-
dent set can be matched with a different neighbor.

Proposition 2. Let G be a network with ν̄G ≤ 0. Then for each S ∈ S(G),
S 6= ∅, there exists an injective map φ : S → N(S) such that φ(i) ∈ N({i}) for
each i ∈ S.

3.2 Computing the vulnerability of a network

In this section we present two polynomial methods to compute the vulnerability
of a network. The first method is a strongly polynomial algorithm and works
for non-regularizable networks. The second method, valid for the general case,
is based on an integer linear programming model of the problem. We show that
the solution of this model can actually be reduced to the solution of |V | linear
programming problems, one for each node of the network.

A polynomial method to compute the vulnerability of non-regularizable
graphs, i.e., graphs G with ν̄G ≥ 0, is provided by the theory of the 2-matchings
and 2-vertex covers. For the sake of completeness, we report here the main
results that justify the method and refer the reader to [18] for a complete expo-
sition of the subject.

In the following, the sum of the components of a vector z is called the size of
z and is denoted by |z|. In graph theory, the minimum size of a 2-vertex cover of
a graph G is denoted by τ2(G) and the maximum size of a 2-matching is denoted
by ν2(G). It is well known that the maximum possible size of a 2-matching is
|V | and that a 2-matching is perfect if and only if it has size |V |.

The following two results state an important relationship between the weak
vulnerability ν̂G of a graph, the maximum size of a 2-matching and the minimum
size of a 2-vertex cover.

Theorem 3. If G = (V,E) is an undirected graph, then

ν2(G) = τ2(G) = min
S∈S(G)

|V | − |S|+ |N(S)| = |V | − ν̂G. (6)

Proof. For the two relevant equalities ν2(G) = τ2(G) = minS∈S(G) |V | − |S| +
|N(S)| we refer to [18]. The last equality directly follows from identity (5).

Given a 2-vertex cover ū of minimum size an independent set S̄ with vG(S̄) =
ν̂G is given by

S̄ = {i ∈ V : ūi = 0}. (7)

Note that, since ūi + ūj ≥ 2 for each ij ∈ E, the set S̄ is in fact an independent
set of G and ūj = 2 for each j ∈ N(S̄). Moreover, the optimality of ū implies
ūk = 1 for each k ∈ V \ (S̄∪N(S̄)), so that |ū| = 2|N(S̄)|+ |V |− |S̄|− |N(S̄)| =
|V | − |S̄|+ |N(S̄)|. In particular, S̄ = ∅ if and only if ūi = 1 for each i ∈ V and
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thus |ū| = |V | and ν̂G = 0. As a consequence S̄ can be the empty set only if
ν̄G ≤ 0 and it is necessarily the empty set if ν̄G < 0.

Theorem 3 and Proposition 1 immediately imply the following corollary.

Corollary 1. If ν̄G ≥ 0, then ν̄G = |V | − ν2(G) = |V | − τ2(G).

Based on the previous results, the following theorem gives the complexity of
solving problem (3) for non-regularizable graphs.

Theorem 4. Let G = (V,E) be an undirected connected graph. The problem
of determining a non-empty independent set of maximum vulnerability ν̄G can
be solved in time O(|V | 12 |E|) if ν̄G > 0, and in time O(|V | 32 |E|) if ν̄G = 0. In

particular, the sign of ν̄G can be determined in time O(|V | 32 |E|).

Proof. As it follows from Theorem 3 and Corollary 1, if ν̄G ≥ 0 then ν̄G =
|V | − |ū| where ū is any 2-vertex cover of minimum size of G. As shown in
[18], the problem of finding a 2-vertex cover ū of minimum size reduces to that
of finding a minimum vertex cover on a bipartite graph with 2|V | nodes and
2|E| edges. Now, as reported in [24], the minimum vertex cover problem on

bipartite graphs can be solved in O(|n| 12 |m|) where n is the number of nodes of
the graph and m the number of edges. Given a 2-vertex cover ū of minimum
size, let S̄ be the independent set defined in (7). If S̄ 6= ∅, as it always happens
when ν̄G > 0, then S̄ is an optimal solution of problem (3). Otherwise, if
S̄ = ∅, then ν̂G = 0 and G is quasi-regularizable. In this case, by item 3 of
Theorem 2, G is non-regularizable if and only if for at least one node k ∈ V
the graph G(V \ {k}) does not admit a perfect 2-matching. By Theorem 3
this is equivalent to both ν2(G(V \ {k})) = τ2(G(V \ {k})) < |V | − 1 and
ν̄G(V \{k})) > 0. Therefore, if ν̄G = 0, such a node k can be found by solving
at most |V | instances of the 2-vertex cover problem of minimum size, one for

each node of the graph, with a global time requirement O(|V | 32 |E|). If S̄ is
an independent set of maximum vulnerability in the graph G(V \ {k}), then
it must be vG(V \{k})(S̄) = 1, k ∈ NG(S̄) and vG(S̄) = 0. So S̄ is an optimal
solution of problem (3). On the contrary, when ν̄G < 0, the procedure returns
ν̂G(V \{k}) = 0 for each k ∈ V .

We remark that the problem of computing the sign of the vulnerability ν̄G of
a graph (without finding an independent set of maximum vulnerability) can be
tackled by solving a maximum size 2-matching problem (at most |V | maximum
size 2-matching problems if ν̂G = 0) instead of a minimum size 2-vertex cover
problem. This does not change the complexity of the procedure since the last
two problems have not only the same optimal value, as stated in Theorem 3,
but their solving algorithms share a common main part [18].

The computation of ν̄G further simplifies when G is a bipartite graph.

Corollary 2. If G = (V1 ∪ V2, E) is a bipartite graph, then a non-empty inde-

pendent set of maximum vulnerability ν̄G can be found in O(|V | 12 |E|) by solving
a maximum matching problem on G.
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Proof. Being V1 and V2 independent sets of G and N(V1) = V2, N(V2) = V1,
then either vG(V1) ≥ 0 or vG(V2) ≥ 0. Thus v̄G ≥ 0 and Corollary 1 applies.
Now, as shown in [18], a 2-matching of maximum size in a bipartite graph can
be obtained by simply assigning weight 2 to the edges of a maximum matching.
The statement follows from the fact that a maximum matching in G can be
found in O(|V | 12 |E|) [24]. In particular, if ν̄G = 0, then both V1 and V2 are
independent sets of maximum vulnerability.

When ν̄G < 0 the equivalence between the problems of maximizing the
vulnerability function over the non-empty sets of S(G) and that of finding a 2-
vertex cover of minimum size does not hold anymore. In order to solve problem
(3) in the general case we adopt an integer linear programming approach. A 0-1
linear programming model of the problem can be defined by introducing two
binary variables xi and yi for each i ∈ V with the meaning that xi = 1 if i ∈ S,
0 otherwise, and yi = 1 if i ∈ N(S), 0 otherwise. The model is

PG : max
∑
i∈V

(xi − yi)

xi + xj ≤ 1 ij ∈ E (8)

yj ≥ xi ij ∈ E (9)

yi ≥ xj ij ∈ E (10)∑
i∈V

xi ≥ 1 (11)

xi, yi ≥ 0 i ∈ V. (12)

xi ∈ Z i ∈ V. (13)

Constraints (8) assure that the set S of the nodes i with xi = 1 is an independent
set, constraints (9) and (10) force to 1 all the variables yj associated with
nodes in N(S), while constraint (11) excludes the solution corresponding to
S = ∅. Note that we have omitted the constraints xi, yi ≤ 1 and the integrality
constraints on the y variables since they are anyway satisfied in every optimal
solution.

Our next task is that to show that problem PG can actually be solved by
solving |V | linear programming problems. To this aim for each node k ∈ V
consider the integer linear programming problem PG(k) obtained from problem
PG by substituting constraint (11) with the constraint xk = 1, that is by forcing
node k to belong to an optimal solution, and denote by ν̄G(k) its optimal value.
Moreover, denote by PRG(k) the continuos relaxation of problem PG(k) and by
ν̄RG(k) its optimal value. The next result states that every problem PG(k) can
be solved by solving its relaxation PRG(k).

Theorem 5. Let G = (V,E) be an undirected graph. Then for each k ∈ V it
holds ν̄G(k) = ν̄RG(k) and an optimal solution of problem PG(k) can be derived
by any optimal solution of problem PRG(k).
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Figure 2: Inclusions among the sets X0, X1, Y0, Y1 and N(X1) used in the proof
of Theorem 5.

Proof. Let (x̄, ȳ) be an optimal solution of problem PRG(k). For r ∈ {0, 1}
define Xr = {i ∈ V : x̄i = r} and Yr = {i ∈ V : ȳi = r}. Consider the sets
X1 and N(X1). The set X1, containing node k, is not empty. Moreover, by
constraints (8), (9) and (10) for each j ∈ N(X1) it holds x̄j = 0 and ȳj = 1, thus
N(X1) ⊆ X0∩Y1. Moreover the optimality of (x̄, ȳ) implies ȳi = maxj∈N({i}) x̄j
for each j ∈ V and thus, in particular, X1 ⊆ Y0 and Y1 = N(X1). The relations
among the sets X0, X1, Y0, Y1 and N(X1) are shown in Figure 2. By the above
considerations x̄i− ȳi = 1 for each i ∈ X1 and the set X1 is contained in the set
S̄ = {i ∈ V : x̄i > ȳi}. From the constraints (9) and (10) it also follows that

ȳj ≥ x̄i > ȳi ≥ x̄j for every i ∈ S̄, j ∈ N({i}). (14)

In particular S̄ is an independent set of G and, since x̄j − ȳj ≤ 0 for each
j ∈ V \ S̄, it holds

ν̄RG(k) =
∑
i∈V

(x̄i − ȳi) ≤
∑
i∈S̄

(x̄i − ȳi) +
∑

j∈N(S̄)

(x̄j − ȳj). (15)

In order to prove the statement it is now sufficient to show that the right-hand
side of (15) is not greater than |X1|−|N(X1)|, since this implies that the integer
solution corresponding to the independent set X1 defines an optimal solution
of problem PRG(k) and thus an optimal solution of problem PG(k). The thesis
holds when S̄ = X1 since in this case the right-hand side of (15) is equal to
|X1| − |N(X1)|. Let us assume, on the contrary, that the set Sfrac = S̄ \X1 is
not empty and rewrite (15) as

ν̄RG(k) =
∑
i∈V

(x̄i−ȳi) ≤ |X1|−|N(X1)|+
∑

i∈Sfrac

(x̄i−ȳi)+
∑

j∈N(Sfrac)\N(X1)

(x̄i−ȳi).

(16)
In order to prove that

∑
i∈Sfrac

(x̄i − ȳi) +
∑
j∈N(Sfrac)\N(X1)(x̄i − ȳi) ≤ 0, let

us first show that it holds |T | ≤ |N(T ) \N(X1)| for every T ⊆ Sfrac. Assume
by contradiction that there exists T̄ ⊆ Sfrac such that |T̄ | > |N(T̄ ) \ N(X1)|
and choose such a set T̄ of minimum cardinality. Define R = N(T̄ ) \ N(X1).
By the above considerations, it holds R = N(T̄ ) \ Y1. The relations among the

11



Figure 3: Relations among the sets S̄, Sfrac, X1, N(X1) and sets T̄ and R used
in the proof of Theorem 5.

sets S̄, Sfrac, X1 and Y1 = N(X1) and the sets T̄ and R are shown in Figure 3.
For δ > 0 sufficiently small the solution (x′, y′) defined by

x′i = x̄i + δ i ∈ T̄ and y′i = ȳi − δ j ∈ T̄ \ Y0 (17)

x′j = x̄j − δ j ∈ R \X0 and y′j = ȳj + δ j ∈ R (18)

x′k = x̄k and y′k = ȳk otherwise (19)

is feasible for PRG(k) and its value differs from ν̄RG(k) by the amount

∆ = δ
(
|T̄ |+ |T̄ \Y0|− |R\X0|− |R\Y1|

)
≥ δ

(
2|T̄ |− |T̄ ∩Y0|−2|R|+ |R∩X0|

)
.

Since constraints (9) and (10) imply N(Y0) ⊆ X0 we have that N(T̄ ∩ Y0) \
N(X1) ⊆ R ∩ X0. Thus in the case T̄ ⊆ Y0 it holds R ⊆ X0 and we obtain
∆ ≥ δ(|T̄ | − |R|). Otherwise the minimality of |T̄ | implies |T̄ ∩ Y0| ≤ |N(T̄ ∩
Y0) \N(X1)| ≤ |R ∩X0| and we obtain ∆ ≥ 2δ(|T̄ | − |R|). Being |T̄ | > |R| by
assumption, in both cases we get ∆ > 0 in contradiction with the optimality
of (x̄, ȳ). So we can assume |T | ≤ |N(T ) \ N(X1)| for every T ⊆ Sfrac. By
Hall’s Theorem [18], this implies that there exists an injective map φ : Sfrac →
N(Sfrac) \ N(X1) such that φ(i) ∈ N({i}) for each i ∈ Sfrac. Since property
(14) implies ȳφ(i)− x̄φ(i) ≥ x̄i− ȳi for each i ∈ Sfrac, from (16) we finally obtain,
as required,

ν̄RG(k) =
∑
i∈V

(x̄i−ȳi) ≤ |X1|−|N(X1)|+
∑

i∈Sfrac

(x̄i−ȳi+x̄φ(i)−ȳφ(i)) ≤ |X1|−|N(X1)|.

We remark that an argument similar to that used in the proof of Theorem
5 allows to prove that when ν̄G > 0 an optimal solution of problem PG can be
obtained simply by solving its continuous relaxation.

Corollary 3. The vulnerability ν̄G of every undirected network G = (V,E) can
be computed in polynomial time.

12



Proof. Since linear programming problems are polynomial [17], the statement
follows from Theorem 5 and the fact that ν̄G = maxk∈V ν̄G(k).

It is worth noticing that for every maximal independent set S of a graph G
it holds N(S) = V \ S and hence vG(S) = |S| − |V \ S| = 2|S| − |V |. It follows
that the problem of finding a maximal independent set of maximum vulnera-
bility corresponds to the problem of finding an independent set of maximum
cardinality, which is known to be NP-hard.

We conclude this section by showing some topological properties of the vul-
nerability function νG(T ). We first show that the vulnerability function νG(T )
is non-monotonic. Recall that a real function f defined on the collection 2V of
all the subsets of V is monotonically increasing (respectively, decreasing) if for
all S, T ⊆ V with S ⊆ T , it holds that f(S) ≤ f(T ) (respectively, f(S) ≥ f(T )).
Indeed, consider a set T ⊆ V and a node i /∈ T . Suppose there are k ≥ 0 neigh-
bors of i not belonging to the neighbors of T , that is, |N({i}) \ N(T )| = k.
Then

νG(T ∪ {i}) = |T ∪ {i}| − |N(T ∪ {i})| = |T |+ 1− |N(T )| − k = νG(T ) + 1− k

Hence, if k = 0, then νG(T ∪ {i}) > νG(T ); if k = 1, then νG(T ∪ {i}) =
νG(T ); and if k ≥ 2, then νG(T ∪ {i}) < νG(T ).

On the other hand, the vulnerability function νG(T ) is supermodular. A
real function f defined on 2V is supermodular if for all S, T ⊆ V it holds that
f(S ∪ T ) + f(S ∩ T ) ≥ f(S) + f(T ). Moreover, f is called submodular if
g = −f is supermodular and f is called modular if f is both supermodular and
submodular.

Theorem 6. The vulnerability function vG(T ) is supermodular.

Proof. Since |T | is a modular function it is sufficient to show that |N(T )| is a
submodular function. This immediately follows from the fact that for each pair
of subsets S, T ⊆ V it holds |N(S ∪T )| = |N(S)|+ |N(T )|− |N(S)∩N(T )| and
N(S ∩ T ) ⊆ N(S) ∩N(T ).

We remark that the problem of maximizing an integer-valued supermodular
function f , i.e., to find a subset T ⊆ V of maximum value f(T ), can be solved
in strongly polynomial time if f is given by a value giving oracle and the func-
tion is bounded [11]. So every polynomial algorithm for the maximization of a
supermodular function offers, according to Proposition 1, an alternative way to
compute the vulnerability ν̄G of a vulnerable network. The complexity of these
methods [15] is, however, largely dominated by the above described approach
based on 2-vertex covers and 2-matchings.

3.3 A symmetric perspective: power

Assuming a symmetric perspective, in this section we study two power functions
that measure the capacity of a set of nodes to completely control a set of other
nodes. To this aim for every T ⊆ V we denote by B(T ) = {i ∈ V : N({i}) ⊆ T}

13



the subset of nodes whose neighbors are contained in T . By definition, the
subset S(T ) = B(T ) \ T is an independent set.

We define two power functions pG, qG : 2V → Z by setting, for each T ⊆ V :

pG(T ) = |B(T )| − |T | (20)

and
qG(T ) = |S(T )| − |T | (21)

Hence, a set T is powerful if it is small and controls a large set B(T ). Notice
that nodes in B(T ) do not have connections outside T , hence are potentially
at the mercy of nodes in T . Moreover, nodes in S(T ) are controlled nodes that
are not themselves controllers. Let us consider again Figure 1. The black node
i1 in the top-left graph G1 is powerful: it controls all 6 white nodes. We have
that pG1

({i1}) = qG1
({i1}) = 6 − 1 = 5. The power of the black node i2 in

the bottom-left graph G2 is severely reduced: it now controls only two nodes,
hence pG2

({i2}) = qG2
({i2}) = 2 − 1 = 1. Graph G2 is useful to distinguish

the two power functions. Consider the set T containing the four connected
white nodes plus the black node. We have that B(T ) is the set of all white
nodes, while S(T ) = B(T ) \ T contains only the two white nodes that are not
connected among themselves. Hence pG2

(T ) = |B(T )| − |T | = 6 − 5 = 1 and
qG2

(T ) = |S(T )| − |T | = 2 − 5 = −3. The black node i3 in the top-right
graph G3 has completely lost its power: it does not control any node, hence
pG3({i3}) = qG3({i3}) = 0 − 1 = −1. Notice that, for all graphs analyzed
so far, the power of the black node corresponds to the vulnerability of the
complementary set of white nodes (that we computed above), a property that
we formally show in the first item of the next Proposition 3. Finally, the black
node of the bottom-right graph does not control any node, hence its power is
−1. In this case, because of the grey vertices, the set of white nodes is not the
complement of the set containing the only black node.

Power at the graph level is defined as follows:

p̄G = max
T⊆V

pG(T ) (22)

and
q̄G = max

T⊆V : S(T )6=∅
qG(T ). (23)

Since S(T ) ⊆ B(T ) for each T ⊆ V , it holds q̄G ≤ p̄G. The next proposition
points out the strong relationship between p̄G and q̄G and the vulnerability
notions ν̄G and ν̂G introduced in the previous section.

Proposition 3. For every network G it holds that:

1. pG(T ) = vG(V \ T ) for each T ⊆ V ;

2. p̄G = ν̂G and q̄G = ν̄G.
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Proof. Item 1 follows from the fact that for each T ⊆ V it holds that B(T ) =
V \N(V \ T ) and thus

pG(T ) = |V \N(V \T )|−|T | = |V |−|N(V \T )|−|T | = |V \T |−|N(V \T )| = vG(V \T ).

We now show item 2 of the proposition. The first identity immediately
follows from item 1. About the second identity, we note that for every non-
empty independent set U , it holds that U ⊆ S(N(U)). So we obtain

vG(U) = |U | − |N(U)| ≤ |S(N(U))| − |N(U)| = qG(N(U))

that implies v̄G ≤ q̄G. On the other hand for each T ⊆ V with S(T ) 6= ∅ it
holds N(S(T )) ⊆ T and this implies vG(S(T )) ≥ qG(T ). As a consequence
ν̄G ≥ q̄G.

As a consequence of the above result, the problems (4) and (22) are equiva-
lent. In particular T̄ is an optimal solution of problem (4) if and only if V \ T̄
is an optimal solution of problem (22). In the same way, the problems (3)
and (23) are equivalent. In particular if S̄ is an optimal solution of problem
(3) then N(S̄) is an optimal solution of problem (23); conversely, if T̄ is an
optimal solution of problem (23) then S(T̄ ) is an optimal solution of problem
(3). Moreover, by Proposition 1, if G has a non-negative vulnerability ν̄G then
q̄G = ν̄G = ν̂G = p̄G ≥ 0 and by Theorem 4 a set of maximum power can
be found in polynomial time. Also, item 1 of Proposition 3 implies that the
power function pG(T ), as the vulnerability function vG(T ), is non-monotonic
and supermodular. Differently, the power function q̄G(T ) is not supermodu-
lar. For instance, for every graph G and each non-isolated node i it holds
qG(V \ {i}) + qG({i}) = 1− (|V | − 1) + |S({i})| − 1 > −|V | = qG(V ).

3.4 A game-theoretic definition of power and vulnerability

Both the power and the vulnerability functions introduced above associate val-
ues with subset of nodes, and not with single nodes as it is common for the
centrality measures proposed in network theory. In this respect they are, ac-
cording to the terminology introduced in [7], group centrality measures. In this
section we show how to derive vulnerability and power at node level using a
game-theoretic approach. This can be done by using the power and vulnerabil-
ity functions to define suitable coalitional games on the node set of the network
and by considering a classical game solution, the Shapley value. For the game
theory notions in this section the reader is referred, among others, to [22].

In game theory, a characteristic function is commonly used to assign to
each coalition of players a value corresponding to the power of the coalition,
i.e., how much these players can globally get if they decide to play together,
independently on the other players’ actions. A common task in game theory
is that of deriving, on the base of the characteristic function, an assignment of
scores to the players as an index of the power of the single players in the game.
Probably the most popular and used solution proposed for coalitional games is
the Shapley value. This solution associates with each game G = (N,w), where
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N is the set of players and w : 2N → R is the characteristic function, a vector
φ ∈ R|N | whose components are given by

φi =
1

|N |!
∑
L∈Π

(w(TL(i) ∪ {i})− w(TL(i))) i ∈ N, (24)

where Π denotes the set of all the orders (permutations) of the players and TL(i),
L ∈ Π, denotes the coalition formed by the players that precede i in L. In other
words TL(i) = {k ∈ N : L(k) < L(i)} where L(k) is the position of node k in
the order L. According to this definition, the score assigned to each player i is
the average over all the orders L of the player set N of the contribution that
player i gives when it reaches the coalition TL(i). Alternatively, the Shapley
value can be expressed in the more compact form

φi =
∑

T⊆N :i/∈T

|T |!(|N | − |T | − 1)!

|N |!
(w(T ∪ {i})− w(T )) i ∈ N. (25)

The computation of the Shapley value for coalitional games requires, in
general, exponential time. As a consequence, despite its interest, this value can
be computed using formula (24) or (25) only for games with a number of players
relatively small. Nevertheless, in some cases the particular structure of the
characteristic function allows for an explicit formula of the Shapley value of the
game. This favorable situation actually occurs for the power and vulnerability
functions we have considered.

The next theorem gives an explicit expression of the Shapley value for the
games defined by the power functions pG(T ) and qG(T ). The argument used in
the proof is similar to the one used in [19] for other group centrality measures.

Theorem 7. Given a graph G, the Shapley values φp and φq of the coalitional
games (V, pG(T )) and (V, qG(T )) have the expression

φpi = −1 +
∑

j∈N({i})

1

dj
i ∈ V (26)

φqi = −1− 1

1 + di
+

∑
j∈N({i})

1

(1 + dj)dj
i ∈ V (27)

where di is the degree of node i.

Proof. Let i be a node of G. Given an order L ∈ Π, the marginal contributions
of i to the set T = TL(i) with respect to the characteristic functions pG(T ) and
qG(T ), respectively, are

pG(T ∪ {i})− pG(T ) = |B(T ∪ {i}) \B(T )| − 1 (28)

qG(T ∪ {i})− qG(T ) = |S(T ∪ {i}) \ S(T )| − |S(T ) ∩ {i}| − 1. (29)

It holds that

B(T ∪ {i}) \B(T ) = {j ∈ N({i}) : N(j) \ {i} ⊆ T}
S(T ∪ {i}) \ S(T ) = {j ∈ N({i} \ T : N(j) \ {i} ⊆ T}.
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As a consequence, the only nodes that can give a non-trivial contribution to
(28) and (29) are those in N({i}) and possibly, in the case of (29), the node
i. Moreover a node j ∈ N({i}) gives a contribution to |B(T ∪ {i}) \ B(T )|
in expression (28) only for those orders L where all the nodes in N({j}) \ {i}
belong to T , i.e., precede i in L. It is easy to verify that number of such orders
is (

|V |
dj

)
(dj − 1)!(|V | − dj)! =

|V |!
dj

.

Similarly, a node j ∈ N({i}) gives a contribution to |S(T ∪ {i}) \ S(T )| in
expression (29) only for those orders L where all the nodes in N({j}) \ {i}
precede i and L(j) > L(i). It is easy to verify that the number of such orders is(

|V |
dj + 1

)
(dj − 1)!(|V | − dj − 1)! =

|V |!
dj(1 + dj)

.

Finally, the orders in which node i gives a contribution to |S(T ) ∩ {i}| in (29)
are those in which N({i}) ⊆ T . The number of these orders is(

|V |
di + 1

)
(di)!(|V | − di − 1)! =

|V |!
1 + di

.

Now the expressions (26) and (27) follow immediately from the definition (24)
of the Shapley value.

We can justify the above result as follows. It states that power rewards
actors having a large number of low-degree neighbors. The difference between
the two power functions φp and φq is that the latter, because of the quadratic
dependency on the degree of neighbors, is less sensitive to neighbors of relatively
high degree. Now, consider a generic node set T and a node i not belonging to
T . Theorem 7 states that the marginal contribution given by i to the power of
T is high if i has many neighbors with low degree. Indeed, if j is a low-degree
neighbor of i, the probability that all neighbors of j are in T ∪{i}, hence that j
is a new victim of T ∪{i}, is high. On the other hand, if j has many neighbors,
then it is unlikely that all of them belong to T ∪{i}, hence that j is controllable
by T ∪ {i}. It follows that a node i that provides the highest increment to the
power of a generic set T is a node with many neighbors of unitary degree, that
is, node i is the center of a star subgraph. In this case, all the neighbors of i
become, for sure, new victims of T ∪ {i}. On the other hand, a node i that
provides the lowest increment to the power of T is a node with no neighbors; in
fact it decreases the power of one unity.

As an example, consider for the umpteenth time Figure 1. In all four net-
works, the black node has the same number of neighbors (the six white nodes).
However, these neighbors have different degrees, and this determines different
powers for the black vertex. Let us consider, for the sake of simplicity, power φp.
The maximum power, equal to −1 + 6 = 5, is achieved by the black node of the
star network in the top-left part of the figure. The black node of the bottom-left
network has a lower power equal to −1 + (1 + 1 + 1

2 + 1
2 + 1

3 + 1
3 ) = −1 + 11

3 = 8
3 .
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The power of the black node of the top-right network is still lower: −1+ 1
2 ·6 = 2,

and the black node of the bottom-right network has the lowest power equal to
−1 + ( 1

2 · 5 + 1
3 ) = −1 + 17

6 = 11
6 . Notice that, if we call i the black node, it

always holds that the Shapley-based power φpi of i is larger than or equal to
the node set power pG({i}) of the singleton {i} (that we computed above), a
property that we formally show in Proposition 5.

The thesis that power is in the hands of those connected to powerless actors
might be surprising at first sight. Classical recursive centrality measures, like
eigenvector and PageRank centrality [8], remunerate those actors that are con-
nected to powerful ones. Nevertheless, the notion has its logic, as sagaciously
observed by [4]: “However, in bargaining situations, it is advantageous to be
connected to those who have few options; power comes from being connected to
those who are powerless. Being connected to powerful others who have many po-
tential trading partners reduces one’s bargaining power”. Bonacich observes in a
subsequent footnote that this notion of power appears already in Caplow’s and
Gamson’s well-known theories of coalition formation of late sixties. A related
notion of power in a hierarchically structured population of economic agents has
been proposed by [29].

Finally, it is worth pointing out that both power measures φp and φq can be
computed in linear time in the size of the graph, that is, in O(|V |+ |E|).

Let us now consider the coalitional game G(V, vG) defined by the vulnerabil-
ity function vG(T ). The following proposition shows how the symmetry between
the vulnerability and power functions reflects in the symmetry of the Shapley
values of the corresponding games.

Proposition 4. For every network G = (V,E), the Shapley values φp and φv

of the games G(V, pG) and G(V, vG) are symmetric, i.e., φv = −φp.

Proof. By item 1 of Proposition 3, for each T ⊆ V and i /∈ T

vG(T∪{i})−vG(T ) = pG(V \(T∪{i}))−pG(V \T ) = −(pG(V \T )−pG(V \(T∪{i}))).

Since the contributions of the node i with respect to the sets T and V \ (T ∪
{i})) have the same coefficient in the expression (25) of the Shapley value the
statement holds.

Games defined by supermodular characteristic functions, as the games de-
fined by the power function pG and the vulnerability function vG, are commonly
called convex games and exhibit some important properties [25]. One of these
properties is that the Shapley value of a convex game G = (N, v) always be-
longs to the core of the game, i.e., the set of the payoffs a ∈ R|N | that satisfy
the condition

∑
i∈S ai ≥ v(S) for each coalition S ⊆ N . Payoffs in the core

are considered robust solutions of the game, since they give to any coalition at
least what the coalition can get by itself. In particular, the core of every convex
game is not empty.

For completeness we report here a direct proof that the Shapley values φp

and φv belong to the core of the corresponding games.
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Proposition 5. The Shapley values φp and φv of the games G(V, pG) and
G(V, vG) belong to the respective cores.

Proof. In order to show that φp belongs to the core of G(V, pG) it is sufficient to
show that for each coalition T ⊆ V it holds

∑
i∈T

∑
j∈N({i})

1
dj
≥ |B(T )|. Now

each node k ∈ B(T ) contributes with a term 1
dk

to exactly |N({k})| = dk terms
of the left hand side. As a consequence∑

i∈T

∑
j∈N({i})

1

dj
≥

∑
k∈B(T )

dk
dk

= |B(T )|.

Consider the Shapley value φv of game G(V, vG). Propositions 3 and 4 and the
just proved item for φp imply that, for each T ⊆ V

vG(T ) = pG(V \ T ) ≤
∑
i∈V \T

φpi = −
∑
i∈V \T

φvi =
∑
i∈T

φvi

where the last identity follows from the fact that, by the efficiency axiom of the
Shapley value,

∑
i∈V φ

v
i = vG(V ) = 0.

4 Experimental analysis

In this section we discuss the outcomes of the experiments that we conducted on
artificial as well as real networks. We mostly used the computing environment
R, and in particular the network analysis package igraph. We solved the integer
linear programming model for the computation of vulnerability ν̄G proposed in
Section 3 using the solver CPLEX 11.2.

4.1 Vulnerability and robustness

The goal of the first experiment is to assess the relationship among vulnerabil-
ity and robustness of a graph: are robust graphs less vulnerable? Do fragile
networks have high vulnerability? For this experiment we generate random
graphs according to the following two graph models: Barabási-Albert graphs
(BA graphs, for short), also known as scale-free graphs, and Erdős-Rényi graphs
(ER graphs, for short). We first generate a sample of 100 random BA graphs,
varying the edge density. In particular, we choose randomly the number of edges
to add in each step of the preferential attachment process in the interval from
1 to n/2, where n is the number of graph nodes. Hence, both sparse and dense
graphs are generated. Next, we generate a sample of the same size of random
ER graphs according to the model G(n,m); we generated the ER graphs with
the same edge densities of the BA graphs previously sampled. On each graph of
the sample, we compute the vulnerability and the algebraic connectivity. The
algebraic connectivity of a graph is the second-smallest eigenvalue of the Lapla-
cian matrix of the graph. This eigenvalue is greater than 0 if and only if the
graph is connected. The magnitude of this value reflects how easily a network
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Figure 4: Scatter plots comparing vulnerability and algebraic connectivity over
Barabási-Albert graphs (left plot) and Erdős-Rényi graphs (right plot).

can be divided: it is small for networks that can be easily partitioned in two
groups of nodes, that is, the network divides by removing few edges from it, and
it is large for networks that can be hardly partitioned in two fragments, that
is, to divide the network a large number of edges must be removed. Algebraic
connectivity is hence a measure of the robustness of networks [20].

As shown in Figure 4, for both BA and ER graphs, vulnerability and al-
gebraic connectivity are negatively correlated as soon as vulnerability is lower
than or equal to the watershed score of 0 (recall that the same score of vul-
nerability determines if the network is regularizable or not). This means that,
regularizable networks with low vulnerability have high algebraic connectivity,
and hence are robust graphs. On the other hand, for graphs with positive vul-
nerability, that is, networks that are not regularizable, there is no association
between vulnerability and algebraic connectivity.

Given these experimental outcomes, we conjecture a partial mathematical
relationship between vulnerability and algebraic connectivity of networks.2

A first step towards a precise formalization of this relationship is the fol-
lowing. Let G = (V,E), with |V | = n and let S ⊂ V . The set of the edges
connecting S with the rest of the graph makes up the boundary of S, that we

2This intuition is corroborated by the known result that expanders (see Section 5) are
graphs with large algebraic connectivity.
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denote with ∂(S). Formally

∂(S) = {ij ∈ E : |S ∩ {i, j}| = 1}.

Clearly, in the case where S is an independent set then

|∂(S)| =
∑
i∈S
|∂({i})|.

Actually, for every S ⊂ V it turns out that

|∂(S)|
|S|

≥ λ2

(
1− |S|

n

)
,

where λ2 is the second-smallest eigenvalue of the graph Laplacian, that is, the
graph algebraic connectivity [9]. If S is an independent set, then

|∂(S)|
|S|

=

∑
i∈S |∂({i})|
|S|

is the mean degree of the nodes of S. For any node set S, we have that |N(S)|
is always greater than or equal to the maximum degree of the nodes in S, and
hence, it is also greater than or equal to the mean degree of the nodes in S.
Summing up, if S is an independent set, we have

λ2

(
1− |S|

n

)
≤ |∂(S)|
|S|

≤ |N(S)|.

This inequality is weak and makes sense only for λ2 > 1; however it partially
explains the results of the experiments: if algebraic connectivity (λ2) is high,
then, any independent set S has a large set of neighbors N(S), and hence the
vulnerability of the graph cannot be large (see Figure 4).

Another simple observation helps us complementing the explanation of the
experimental results. If a graph G has two nodes of degree 1 connected to a
third node (of arbitrary degree), then 1 is an eigenvalue of the Laplacian matrix
[9], so that λ2 ≤ 1. But at the same time the graph vulnerability ν̄G ≥ 1, and,
if the nodes of degree one connected to the same node are k, then ν̄G ≥ k − 1.
This suggests that when algebraic connectivity is small (λ2 ≤ 1) we cannot
expect any relationship between vulnerability and algebraic connectivity (see
again Figure 4).

4.2 The frequency of vulnerable networks

The aim of the second experiment is to estimate the probability of being a
regularizable or quasi-regularizable graph: how many graphs are regularizable?
How many graphs are quasi-regularizable? Notice that, because of Theorem
1, a network is vulnerable if and only if it is not quasi-regularizable, hence
the probability of finding a vulnerable network is the complement to 1 of the
probability of finding a quasi-regularizable network.
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Figure 5: Frequency of Erdős-Rényi graphs that are regularizable and quasi-
regularizable by increasing the mean node degree.

For this experiment, we generate a sample of Erdős-Rényi graphs, increasing
the average node degree from 1 to 10. We use the model G(n, p) of ER graphs,
where n is the number of nodes and p is the probability of edges between vertices.
The mean degree of a node in a G(n, p) graph is 〈k〉 = p(n − 1). We fix the
number of nodes n = 100 and increase p so that we obtain the mean degree
sequence from 1 to 10. For each pair (n, p), we generate a sample of 100 graphs
according to the model G(n, p) of ER graphs. For each graph in the sample,
we check whether the graph is regularizable and, if not, whether it is quasi-
regularizable. As it is clear from Figure 5, the frequency of quasi-regularizable
graphs and that of regularizable graphs increase as the mean node degree 〈k〉
grows. More precisely, when 〈k〉 is low, both frequencies are negligible. As
soon as 〈k〉 is sufficiently large, both frequencies start growing very rapidly. By
way of example, when n = 100, the frequency of quasi-regularizable graphs is
negligible as soon as 〈k〉 ≤ 3, it is significantly above 0 (14%) when 〈k〉 = 4, when
〈k〉 = 5 almost half (48%) of the graphs in the sample are quasi-regularizable,
and as soon as 〈k〉 = 6 more than three-quarters (77%) of the sampled random
networks are quasi-regularizable. For higher values of the mean node degree, the
frequency of quasi-regularizable graphs is close to 100%. As for regularizability,
the frequency is negligible as soon as 〈k〉 ≤ 5. Graphs with 〈k〉 = 6 have 21%
probability of being regularizable, those with 〈k〉 = 7 have 50% chance of being
regularizable, while networks with 〈k〉 ≥ 9 are almost certainly regularizable.
We notice, however, that these frequencies tend to become lower as soon as the
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Network Nodes Edges Vul Maxdeg Maxpow Maxdiff Cor
madrid 64 243 1 29 2.89 0.54 0.84
netsci 379 914 14 34 8.85 0.49 0.89
powergrid 4941 6594 575 19 9.73 0.73 0.84
internet 22963 48436 16362 2390 1127.77 0.05 0.97

Table 1: Statistics for the four analyzed networks. The meaning of columns
is: Network: name of the network; Nodes: number of nodes; Edges: number
of edges; Vul: vulnerability; Maxdeg: maximum degree of a node; Maxpow:
maximum power of a node; Maxdiff: maximum difference in power among nodes
with the same degree divided by the maximum difference in power among any
two nodes (runs between 0 and 1); Cor: Pearson correlation coefficient between
degree and power (runs between -1 and 1).

number of nodes increases.
We conjecture that there exists a transition phase of regularizability of net-

works that depends predominantly on the mean degree of the network.3 This
seems reasonable with the benefit of hindsight. Recall that regularizability is
the process of assigning weights to edges so that the resulting graph is regular.
When the mean node degree is low, nodes have few incident edges, hence the
process of regularizability is hampered. However, as soon as node degrees grow,
there are many more possibilities of assigning weights to edges, significantly in-
creasing the probability of success of the regularizability process. Finally, when
node degrees are sufficiently large, there are so many possible weight assign-
ments that the graph is almost certainly regularizable.

4.3 Vulnerability and power on real networks

In our last experiment we apply the developed vulnerability and power measures
to real-world networks. The goal of this experiment is twofold: (i) show that vul-
nerability and power measures might reveal meaningful properties of the struc-
ture of a network; (ii) empirically study the correlation among Shapley-based
node power4 and node degree in a network. We analyzed four real networks,
two social networks and two technological networks. Table 1 summarizes some
statistics we have computed on these networks.

The first social network is the Madrid train bombing terrorist network.
The network depicts individuals involved in the bombing of commuter trains
in Madrid on March 11, 2004. Ties link the individuals involved in at least
one of the following relationships: (1) trust or friendship; (2) ties to Al Qaeda
and to Osama Bin Laden; (3) co-participation in training camps or wars; (4)
co-participation in previous terrorist attacks. The network was reconstructed

3A similar transition phase has been noticed for the giant component of networks: as soon
as the mean degree of a node is higher than 1, a giant connected component including the
majority of the graph nodes emerges [20].

4In this section we use power defined as φp in Theorem 7 of Section 3.4.
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Figure 6: Madrid train bombing terrorist network. Black circles are, among
nodes having the same degree, those having maximum power difference (54% of
the size of the power range).
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Figure 7: Scatterplot between power and degree of nodes of the Madrid train
bombing terrorist network. The extreme circles connected by the horizontal
segment are, among nodes having the same degree, those having maximum
power difference (54% of the size of the power range).
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by José A. Rodŕıguez of the University of Barcelona using press accounts in the
two major Spanish daily newspapers [12]. It is depicted in Figure 6.

The vulnerability score of the terrorist network is very low. In fact, as soon
as one removes the nodes with degree equal to 1, the resulting network becomes
regularizable, with a negative vulnerability score equal to -1. Also, there are
no big differences among the power scores of nodes: the great majority of the
terrorists (84%) have power between -1 and 1, with a maximum power of 2.89.
If follows that the terrorist network contains no core-periphery, executioner-
victims fragment, in which an independent group of terrorists is connected to a
unique central control. On the contrary, the network is composed of few com-
munities, one of them quite prominent, of tightly connected individuals, with
few links among the different communities [12]. This flattened, non-hierarchical,
and decentralized layout, with no leader in control and defined ranks, is a form
of robustness against attacks: no individual is fundamental for the network, and
when some terrorist is removed (jailed, for instance), new substitutes immedi-
ately emerge.

The correlation among degree and power is depicted in the scatterplot of
Figure 7. Although there exists a positive correlation among the two measures
(the Pearson correlation coefficient is 0.84), degree alone cannot explain power.
Indeed, there are nodes with similar degree having quite different power, so that
the points in the plot do not follow a straight line but are dispersed in a fan-like
shape. Both the scatterplot and the network figures highlight the node pair
with same degree and maximum power divergence. Despite this two nodes have
the same degree (11), it is clear from the network visualization that they have
different structural roles: the less powerful individual is central to a big clique,
and is surrounded by highly connected neighbors (on average its neighbors have
degree 16), while the other one is a broker between scarcely connected neighbors
(with an average degree of 6).

The next network we analyze is a collaboration network of scholars in the
field of network science. The nodes are scientists working on network theory
and experiment, as compiled by Mark Newman in May 2006 [21], using the
bibliographies of two main review articles on networks. There is a link between
two authors if they have collaborated in at least one paper. The original version
contains all components of the network, for a total of 1589 scientists; here we
study the largest component of 379 scientists, which is depicted in Figure 8.

With respect to the terrorist network, the collaboration network has a higher
vulnerability (14 versus 1) and, although the largest degree of a node in the
two networks is comparable (34 versus 29), the power spans a much larger
interval (8.85 versus 2.89). This means that the structure of the network is
more star-like, with core scholars that attract collaborators with a much fewer
collaboration degree. For instance, the most powerful scholar is Mark Newman
(the bigger grey node on the right in Figure 8), with power 8.85. He has 27
collaborators, who are much less collaborative (their average degree is less than
5).

Again, we noticed a positive correlation between power and degree (Person
correlation coefficient 0.89), but important divergences exists. For instance, the
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Figure 8: Network science collaboration network. Black nodes form an indepen-
dent set of maximum vulnerability (14): it contains 78 nodes and is dominated
by the set of 64 grey nodes. The two bigger grey nodes have the same degree
(27) and, among nodes having the same degree, they have the maximum power
difference (49% of the size of the power range): they are Hawoong Jeong (on
the left), and Mark Newman (on the right). They are highlighted in Figure 9.
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Figure 9: The ego-centered networks of Hawoong Jeong (on the left), and Mark
Newman (on the right). They depict the ego (black), their collaborators (grey),
and the collaborators of their collaborators (white).
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Figure 10: A snapshot of the power grid network. It is the ego network of
order 8 (containing all nodes at a distance less than or equal to 8 from the ego)
centered at the node with maximum power (the bigger node).

two scholars with the same degree and the maximum divergence in power are
Hawoong Jeong (degree: 27, power: 4.02), and Mark Newman (degree: 27,
power: 8.85), with a difference in power that accounts almost half of the power
range. Their ego-centered sub-networks are depicted in Figure 9. Notice that
Jeong has more collaborative co-authors than Newman (the average collabora-
tion degree is 8.4 for Jeong and 4.9 for Newman).

The last two graphs we investigate are two technological networks. The first
is a representation of the topology of the western states power grid of the United
States, compiled by Duncan Watts and Steven Strogatz [30]. The nodes are the
generating stations and switching substations while the edges are the physical
electric lines connecting them. A fragment of the network, which is much larger
than the previously analyzed social networks, is depicted in Figure 10.

The nodes of the power network have a relatively low degree: the typical
station has two or three connections with other stations, while few hub stations
have a larger number of connections, with a maximum degree of 19. The distri-
bution of node power is similar, with the great majority of nodes with low power
and a few of them with moderately high power, with a maximum of 9.73. The
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Figure 11: Scatterplot between power and degree of nodes of the power grid
network (above). The extreme circles connected by the horizontal segment are,
among nodes with the same degree, those having maximum power difference
(73% of the size of the power range). Histograms of degree and power are
shown below.
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histograms of degree and power are depicted in the lower part of Figure 11. De-
gree and power are positively associated (Pearson 0.84), but, as clear from the
scatterplot of the upper part of Figure 11, there are nodes with similar power
and quite different degrees and nodes with similar degree and quite diverging
power. This produces a scatterplot with a wide and high cloud of points (as
opposed to a straight thin line).

Nevertheless, the vulnerability of the power network is significantly high:
575, more than 11% of the number of nodes. There exists, indeed, an indepen-
dent set of size 2264 that is dominated by a set size 1689. Such a high network
vulnerability, with a relatively modest power at the level of nodes, reveals the
particular network topology of the power grid network. Nodes are mostly ar-
ranged along linear paths. This is because edges represent physical lines, which,
for economical reasons, typically connect geographically close stations. Hence,
it is likely that two far away stations are connected through a chain of inter-
mediated linked stations. Moreover, some stations are more important than
others, and are connected to a moderate number of other independent stations,
in a star-like structure. The resulting topology has large tree-like fragments,
although the overall network contains circuits, as evident from the visualization
offered in Figure 10.

The last network we observe is the technological network by definition: the
Internet. The representation we use contains a symmetrized snapshot of the
structure of the Internet at the level of autonomous systems, reconstructed from
Border Gateway Protocol tables posted at archive.routeviews.org. Nodes
represent autonomous systems – collections of computers and routers, usually
under single administrative control, within which data routing is handled inde-
pendently of the wider Internet. Edges are physical data connections between
these systems. This snapshot was created by Mark Newman from data for July
22, 2006.

It is immediately clear from the figures in Table 1 that this network is differ-
ent from the previous ones. The distributions of degree and power are severely
skewed, with relatively few hub systems that draw the majority of connections.
For instance, 75% of the systems have one or two connections, 95% have less
than 9 connections, and 99% have less than 37 connections. There are 76 hubs
with more than 100 connections, 6 of them have more than 1000 connections,
and the most linked node has 2390 connections, reaching 10% of the graph.
The high asymmetry determines a high Pearson correlation coefficient among
degree and power (0.97) and a low maximum power divergence among same-
degree nodes (0.05). However, these figures are artifacts of the huge skewness of
the distributions of power and degree. Indeed, the (non-parametric) Spearman
rank correlation coefficient between degree and power is much lower: 0.48. This
means that, also for the Internet, degree only partially explains power of a node.

The vulnerability of the network is extremely large: there exists an indepen-
dent set of cardinality 19018 (notably, 83% of the network) that is dominated
by a much smaller set of 2656 nodes, making the vulnerability of the network
equal to the whopping 16362. These figures reveal a network dominated by few
powerful hubs. This core, made of high-performance routers and long-distance
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Figure 12: A fragment of the Internet consisting of an ego network of order
4 centered at the node of maximal power. For the sake of visualization, only
nodes with maximum degree 100 are considered.
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high-bandwidth lines, is well known as the backbone of the Internet. It pro-
vides connection to a plurality of Internet Service Providers, who in turn serve
connectivity to a myriad of end users, the ultimate consumers of the Internet
bandwidth. This peculiar topology, illustrated in Figure 12, is also responsible
for the vulnerability of Internet to attacks. Since there is so much control in
relatively few hubs, a malicious individual can take advantage of this topology
flaw by attacking few crucial routers and causing conspicuous effects.

5 Related literature

The notion of vulnerability we have proposed is somewhat related to that of ex-
pander graph [14]. Informally, an expander graph is an undirected unweighted
graph that is both sparse and robustly connected. Sparsity is achieved by con-
straining all nodes of the graph to have the same small degree k, which is
constant with respect to the number of nodes n (hence expander graphs are
k-regular graphs). Robustness holds since every not too large subset of nodes of
an expander graph has a relatively large boundary, where the boundary ∂S of
a node set S is defined as the set of edges emanating from S to its complement.
The expansion parameter for a regular graph G is defined as

h(G) = min
S:|S|≤n/2

|∂S|
|S|

and a regular graph is a good expander if its expansion parameter is well above
0.

Expanders can be defined and investigated in different languages including
graph theory, geometry, probability and algebra. In graph theory, expanders
are graphs that are both sparse (hence economical) and robust (to failure or at-
tacks): to disconnect a large part of the graph, one has to remove many edges.
Using the geometric notion of isoperimetry, every set of vertices of an expander
graph has a relatively large boundary. From the probabilistic perspective, ex-
panders are graphs for which a natural random walk on the graph converges
to its limiting distribution very rapidly. Algebraically, expanders are graphs
with a large eigengap between the largest and second-largest eigenvalues of the
adjacent matrix of the graph (this property is related to the convergence speed
of the above mentioned random walk on the graph). Equivalently, expanders
are graphs with a large second-smallest eigenvalue of the Laplacian matrix of
the graph (algebraic connectivity), and hence are robust graphs.

Recall that we defined vulnerability of an arbitrary graph as

ν̄G = max
∅6=S∈S(G)

|S| − |N(S)|.

Our definition diverges from that of expander graph for the following reasons:

1. expansion is a bound on the ratio between a number of edges and a number
of vertices, whereas vulnerability takes the difference between two sets of
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vertices. This is a huge gap – for instance, the boundary of the set of
leaves in the star graph with n nodes has size n − 1, whereas the size of
the neighbor set of the leaves is 1;

2. vulnerability is defined on arbitrary graphs, while an expander is a k-
regular graph with small k;

3. finally, in the context of network science, graph expanders have been stud-
ied with the goal of designing future communication networks with good
topological properties, while we propose graph vulnerability with the aim
of analyzing existing real networks.

The Shapley value-based node power introduced in this paper is also weakly
related to the sociological theory of structural holes [5]. The author argues very
convincingly that “opinion and behavior are more homogeneous within than
between groups, so people connected across groups are more familiar with al-
ternative ways of thinking and behaving. Brokerage across the structural holes
between groups provides a vision of options otherwise unseen, which is the mech-
anism by which brokerage becomes social capital. [...] Compensation, positive
performance evaluations, promotions, and good ideas are disproportionately in
the hands of people whose networks span structural holes”. In short, these
social brokers “see bridges where others see holes”. A quantitative measure
of the mentioned local betweenness centrality is the local clustering coefficient
[30, 20]. For a given node i, the local clustering coefficient is the ratio of the
number of pairs of neighbors of i that are connected and the number of pairs of
neighbors of i. This coefficient is low if there are many structural holes among
the neighbors of node i, making the subgraph induced by the neighborhood of i
loosely connected. In such a case the broker i has power over information flow
between those friends that are not directly connected. The coefficient is high if
the neighbors of i are instead tightly connected, and information between these
friends can flow directly without passing through i, lowering the power of i.
In fact, the inverse of the local clustering coefficient might be regarded as a
centrality measure of local betweenness [20].

Now consider a powerful node. Since, by definition of power, the node has
many neighbors with low degree, we might expect that the node has low clus-
tering coefficient, hence high local betweenness. However, a node i with high
local betweenness is not necessarily a powerful node, since the set of neighbors
of i might be well connected to nodes different from neighbors of i, and hence i
might be powerless.

Standard node centrality measures, like degree, closeness and betweenness,
have been extended to sets of nodes [7]. In particular the authors define group
degree centrality as the relative number of non-group nodes that are connected
to group members, that is, for a node set S in a graph with nodes in V , group
degree centrality is

δ(S) =
|N(S) \ S|
|V \ S|

.
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The coefficient runs from 0 to 1 and, assuming a connected graph, it is maximum
for dominating sets S such that every node not in S is adjacent to at least one
member of S. To be effective, it would be desirable for the group S to be as small
as possible without sacrificing centrality [7]. Therefore, the authors propose
to search for the smallest set S with the maximum degree centrality, that is,
the smallest dominating set. In graph theory, the cardinality of the smallest
dominating set is known as domination number of the graph, and finding the
domination number of an arbitrary graph is a classical computationally hard
problem. Therefore it is believed that there is no efficient algorithm that finds a
smallest dominating set for a given graph. The problem of finding the smallest
dominating set bears some analogy with that of finding the set of maximum
power in our setting. However, there are also significant differences: while the
former problem searches for a small set with a neighbor set that expands over the
whole graph, the latter seeks for a small set that controls a large (independent)
set.

The first application of game theory to the topic of network centrality used
the Banzhaf power index instead of the Shapley value [10]. The use of the Shap-
ley value as a network centrality measure has been later investigated [26, 19, 27].
The authors consider the node-set generalizations of the principal centrality
measures, including degree, closeness, and betweenness, and interpret them as
characteristic functions of coalitional games. Then, the Shapley value of these
games is proposed as a more involved centrality index at node level. Moreover,
polynomial time solutions for Shapley value-based degree, closeness, and be-
tweenness centrality have been devised [19, 27]. We follow a similar technique
to introduce closed-form polynomial-time expressions for the Shapley value of
vulnerability and power measures.

6 Conclusion

We have defined a vulnerability measure on sets of nodes of a network that
counts the difference between the number of nodes in the set and the number of
neighbors of nodes in the set. The measure is seemingly simple, but has proved
interesting from a theoretical, computational and empirical point of view.

We have thoroughly investigated the problem of finding a non-empty inde-
pendent set of maximum vulnerability in a graph. The vulnerability of a graph,
defined as the optimal value for the problem, provides a partition of the class
of networks into regularizable graphs (those with negative vulnerability), quasi-
regularizable graphs that are not regularizable (those with null vulnerability),
and graphs that are not quasi-regularizable (those with positive vulnerability).

Computationally, the maximum vulnerability problem can be solved effi-
ciently, by reducing to the minimum 2-vertex cover problem, for the class of
non-regularizable graphs (those with null or positive vulnerability). The com-

plexity is O(|V | 12 · E) for graphs with positive vulnerability, and O(|V | 32 · E)

for graphs with null vulnerability. These bounds boil down to O(|V | 32 ) and

O(|V | 52 ) on sparse networks with m = O(n). Furthermore, we have modelled
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the maximum vulnerability problem in integer linear programming, showing
that a single continuos relaxation of the model is sufficient to solve the problem
on non-regularizable graphs, while, for regularizable networks, the solution of
|V | linear programming instances are necessary. Incidentally, this demonstrates
that the maximum vulnerability problem is polynomial and provides a practi-
cal, highly efficient and optimized method (linear programming) to tackle the
problem.

We have interpreted the vulnerability measure (as well as its mirror image
power measure) as the characteristic function of a coalition game played on
the graph and have proposed the Shapley value of the game as a sophisticated
measure of vulnerability (and power) at the level of nodes. Interestingly, the
emerging measure of power pontificates that power is in the hands of those con-
nected to powerless ones, a thesis that was already suggested in the sociological
literature of the late sixties. Moreover, the measure has a closed-form expression
that can be computed in linear time in the size of the graph.

We have experimentally shown on artificial graphs (using both random and
scale-free models) that a network is almost certainly non-regularizable when
its mean node degree is sufficiently small. Hence, sparse networks tend to be
non-regularizable. This is good news, since most real networks are sparse – we
have analyzed two social networks and two technological networks (including
the Internet) and found that they are, indeed, non-regularizable. This opens
the possibility of applying the developed measures, at both group level and node
level, to large real networks.
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[27] P.L. Szczepański, T. Michalak, and T. Rahwan. A new approach to be-
tweenness centrality based on the Shapley value. In Joint Conference on
Autonomous Agents and Multi-Agent Systems, pages 239–246, 2012.

[28] W.T. Tutte. The 1-factors of oriented graphs. Proceedings of the American
Mathematical Society, 4:922–931, 1953.

[29] R. van den Brink and R. P. Gilles. A social power index for hierarchically
structured populations of economic agents. In R. P. Gilles and P.H.M. Ruys,
editors, Imperfections and Behavior in Economic Organizations, volume 11
of Theory and Decision Library, pages 279–318. Springer Netherlands, 1994.

[30] D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’ net-
works. Nature, 393:440–442, 1998.

38


