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Pseudospectral discretization of nonlinear delay equations: new prospects for
numerical bifurcation analysis
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Abstract. We apply the pseudospectral discretization approach to nonlinear delay models described by delay
differential equations, renewal equations or systems of coupled renewal equations and delay differ-
ential equations. The aim is to derive ordinary differential equations and to investigate the stability
and bifurcation of equilibria of the original model by available software packages for continuation
and bifurcation for ordinary differential equations. Theoretical and numerical results confirm the ef-
fectiveness and the versatility of the approach, opening a new perspective for the bifurcation analysis
of delay equations, in particular coupled renewal and delay differential equations.
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1. Introduction. In the last decades the interest in differential equations with delay has
been increasing, motivated by the fact that the incorporation of the history of the variables in
the definition of the evolution law often provides a better description of the real mechanisms.
Nowadays the theory of Delay Differential Equations (DDEs), also referred to as retarded
functional differential equations, is well established [18, 30]. Models involving delay arise
in many different fields [10, 24, 32, 40]. In applications to structured population dynamics,
Renewal Equations (REs), also known as Volterra functional equations, as well as coupled
REs/DDEs, play a central role [12, 13, 14, 15]. Relevant examples of the latter are provided
by the models of Daphnia type, describing the competition of a size/age structured consumer
for an unstructured resource [17, 20]. In such models the RE for the population birth rate of
the consumer is coupled with the DDE for the resource concentration, with right-hand sides
of integral type implicitly defined through external Ordinary Differential Equations (ODEs).

Delay equations are “rules for extending (in one direction) a function that is a priori
defined on an interval” [17] and, once the space of the history function is specified, they gen-
erate infinite-dimensional dynamical systems. Nevertheless, some of the fundamental results
for ODEs have been extended. In this paper the focus is on the stability and bifurcation of
equilibria and, in particular, the principle of linearized stability and the related bifurcation
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theorems. For DDEs we refer to the books [18, 30], whereas for REs and coupled REs/DDEs
a rigorous analysis has been recently developed using sun-star calculus in [17].

For parametrized ODEs there exist efficient numerical methods [34] and software packages
for continuation and bifurcation problems, see for instance AUTO, MATCoONT, PYDSToOL
[2, 37, 39] and the dynamical systems software webpage [22] for further references. These
toolboxes offer various possibilities, such as continuation of equilibria and cycles, detection
and normal form analysis of bifurcations, their continuation in two and three parameters,
branch switching and numerical computation of periodic orbits. Due to the high complexity of
delay equations, numerical methods are necessary, but also more difficult to develop. Indeed,
packages like DDE-BIFTOOL, KNUT, XPP, etc. [11, 22, 33, 43], are either limited in the
range of bifurcations they can analyze or in the class of models they can be applied to (e.g.,
only DDEs, only discrete delays). Therefore, very general toolboxes for DDEs, REs and
coupled REs/DDEs are not available, despite the broad and increasing attention for the latter
in view of applications to physiologically structured population models. These considerations
motivate the present paper.

Different numerical methods have been proposed for the stability analysis of equilibria
of DDEs (see, e.g., [9, 32] and the references therein) and coupled REs/DDEs [13]. Here, in
particular, we focus on the so-called IG-approach developed for linear DDEs, REs and coupled
REs/DDEs [4, 5, 6, 7, 8, 9]. It is based on the pseudospectral method [29, 41] to discretize
the infinitesimal generator associated with linear(ized) delay equations. The spectrum of the
resulting linear finite-dimensional operator approximates part of the eigenvalues of the original
one with spectral accuracy [41]. This allows to investigate the stability of the equilibrium.

In this paper we propose a new perspective, which consists in the extension of the pseu-
dospectral discretization to the nonlinear case in order to derive nonlinear ODEs. Through the
latter, by means of the available numerical software for ODEs, we approximate the dynamics
of the original infinite-dimensional systems and construct bifurcation and stability diagrams
varying one or two parameters, respectively. The starting point is the equivalent formulation of
the delay equation as a nonlinear Abstract Differential Equation (ADE), whose pseudospectral
discretization provides the nonlinear ODE. After showing that the equilibria are in one-to-one
correspondence and that pseudospectral discretization and linearization commute, we can ex-
ploit the principle of linearized stability and the spectral convergence of the eigenvalues in the
linear case to analyze the stability and bifurcation of equilibria, thus achieving the goal. The
same program can be applied to different classes of nonlinear delay models, namely defined
by DDEs, REs or coupled REs/DDEs. We supplement the theoretical results with several
numerical tests, showing the effectiveness and flexibility of the approach.

We remind that the idea of studying the bifurcation properties of nonlinear DDEs with one
discrete delay through nonlinear ODEs appears already in [25], where the authors discretize
the nonlinear ADE using piecewise linear interpolation on equidistant nodes.

The paper is organized as follows. In §2 we present the approach for nonlinear DDEs
with all the details and proofs, whereas in §3 we deal with nonlinear REs, emphasizing the
differences w.r.t. DDEs. In §4 we shortly present the discretization of nonlinear coupled
REs/DDEs, obtained by combining the previous techniques. Finally, in §5, we validate the
approach presenting numerical tests on various examples obtained by using MATCONT [37],
a MATLAB bifurcation toolbox.
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2. Delay differential equations. In this section we introduce the basic notation and we
recall the results strictly necessary to derive the formulation of the ADE, which is the starting
point of our approach. For a more detailed treatment of the theory of DDEs and linear
semigroups, we refer to [18, 23].

For d € N and 7 > 0, we consider the Banach space Y := C([—7, 0]; R?) equipped with the
norm [|[¢[ly = maxge_rq [¢(0)], ¥ € Y, where | - | is any vector norm in R%.

A nonlinear autonomous DDE has the form

(2.1) y'(t)=Gly), t =0,
where y; € Y represents the state, i.e., the history of y, that is
y(0) ==yt +0), 6 €[—1,0],

and G : Y — R? is a smooth nonlinear map. Given ¢ € Y, the initial value problem for (2.1),
ie.,

y’(t) = G(fUt)? t >0,
(2.2) {y( ) =v(0), 0 € [-,0],

has a unique solution, which depends continuously on 1. This makes it possible to define the
nonlinear solution operators T'(t) : Y — Y

(2.3) Tt) () =y, t >0,

associating to the initial state v the state y; at time ¢t > 0. Clearly these form a semigroup of
operators {T'(t)}+>0. Since the action of T'(t) is translation with a rule for extension defined
through (2.1), the corresponding generator A¢g : dom (Ag) C Y — Y is differentiation, i.e.,

1

(2.4) Ac() = lim L0 ) ~0) = 0!, v € dom (Ae).
with

dom (Ag) = {¢ € Y | the limit in (2.4) exists}
(2.5)

—{v € (=01 RY) | ¥(0) = G(w) ).

The subscript of Ag stresses the dependence of the generator, via the domain (2.5), on
the function G.
For a linear DDE

(2.6) y'(t) = Ly, t >0,

where L : Y — R? is a linear and bounded operator, the domain condition in (2.5) reads
1’(0) = L) and the resulting operator Ay, is linear and it is exactly the infinitesimal generator
of the strongly continuous linear solution semigroup defined through (2.3).



4 D. BREDA, O. DIEKMANN, M. GYLLENBERG, F. SCARABEL AND R. VERMIGLIO

The operator (2.4-2.5) allows to define the ADE on Y
(2.7 Lo(t) = Ag(o(t)), ¢ >0,

describing the evolution of the state v(t) = y; in the state space Y. In fact, it can be shown
that for ¢» € dom (Ag) the initial value problem (2.2) is equivalent to the abstract Cauchy
problem associated with (2.7), i.e.,

do(t) = Ar(v
(2.8) {gt(o)(t)_ z/z,AG( (1)), t >0,

in the sense that v(t) = y; is a (classical) solution of (2.8) and vice-versa. We recall that a
(classical) solution of (2.8) is a continuously differentiable function v s.t. v(t) € dom (A¢g) for
all ¢ > 0, and (2.8) holds. The important point is that for ¢y € dom (A¢g), the solution y
is continuously differentiable on [—7,400). It is possible to extend the equivalence to initial
states 1 € Y by rewriting the differential equation (2.7) as an abstract integral equation and
by introducing the concept of mild solution (see [23] for the linear case).

2.1. Pseudospectral discretization. Having in mind (2.7), we propose to discretize the
infinite-dimensional operator A¢g (2.4-2.5) in order to obtain a nonlinear ODE, whose dynam-
ics can be analyzed by the available bifurcation tools. For the linear DDE (2.6) a numerical
approach, called I1G-approach, has been developed to approximate the eigenvalues of A; by
turning the original eigenvalue problem into an eigenvalue problem for a finite-dimensional
linear operator (see the recent monograph [9]). The discretization of Ay, is based on the pseu-
dospectral method, which consists in applying the exact action of A;, and the linear condition
characterizing its domain to interpolating polynomials at a selected set of points. The spectral
accuracy of the IG-approach allows to obtain very accurate approximations of the eigenvalues
and this will be important in the stability analysis of equilibria in §2.2. Here we put forward
the pseudospectral discretization for the nonlinear DDE (2.1).

Let M € N. Given M distinct points in [—7,0), namely —7 < Oy < -+ < Opr1 < 0, we
define

(2.9) Qun ={0pms, i=1,..., M}
and, motivated by the domain condition in (2.5), we add 0y := 0 and consider
(2.10) {HM,() =0} UQyp.

Here we take the M + 1 extrema Chebyshev nodes relevant to the delay interval [—7,0], i.e.,

(2.11) Orri = % <cos (%) - 1> L i=0,1,..., M.

The space Yy := (R0 =~ R RIM yepresents the discretization of Y of index M, in the
sense that every ¢ € Y is discretized by the column vector (y, ¥ys) € Y of the d components
of y = 1¥(0,0) followed by the M blocks of d components Vy; = ¥(0p), ¢ = 1,..., M.
This notation emphasizes the special role of the first d components corresponding to 070 = 0
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which are involved when imposing the domain condition. Let us introduce the reconstruction
operator Rys : Yy — Y associating to any (y,¥ys) € Yas the unique M-degree R%valued
polynomial in Y interpolating y at 670 and Wy, ; at the nodes 07, @ = 1, ..., M. Finally, as
last ingredient, we introduce the function Gy : Yo — R? given by

(2.12) Gu((y,Yum)) = GRu(y, Ym)), (v, VYu) € Y,

which inherits the smoothness properties of G. When the evaluation of G requires suitable
approximation techniques, we will use the notation G, Gjs. This may happen, for instance,
when G involves integrals, which may need to be approximated by quadrature formulas.
Hereafter, in order not to overload the notation, we avoid to use brackets when elements of
Y appear as input to functionals or operators. Hence, for instance, we write Gas(y, ¥ar)
instead of Gpr((y, Yar)).

The discretization of Ag of index M is the operator Ag ar : Yar — Yar which associates
to any (y, Was) € Yar the vector

»AG,M(Y, \IIM) = (Ua TM) € Y,

where
(2.13) v=Gu(y, Yum),
d :
(2.14) Yori = —Ruly, \IIM)(H)\GZGW, i=1,...,M.

do

Note that (2.13) and (2.14) are the discrete version of, respectively, the domain condition
in (2.5) and of the action (2.4) of Ag. As for Ag, the nonlinearity of G affects (2.13) only.
Accordingly, for the linear DDE (2.6), Ay, as is a linear finite-dimensional operator.

We have now arrived at the core of the approach. By means of the discrete operator Ag ys
we can turn the ADE (2.7) into the ODE on Y,

(2.15) Llyn(t), Var(t)) = A m(yne(t), Var (t)), t >0,

and the abstract Cauchy problem (2.8) into the initial value problem

{%(yM( ), V(1) = Ac,m(ym (), Ve (1)), t > 0,
(yr(0), Var (0)) = (v, Y1),
where y = 1(0) and Wys; = ¢¥(On), i =1,..., M.

To find a representation of the discrete operator Ag as, we express Ry (y, ¥as) € Y in the
Lagrange form

M
(2.16) Ry, Oar)(0) = Laro(O)y + Y Lari(0)@ars, 0 € [—7,0],
=1
where £y, =0,1,..., M, are the Lagrange polynomials corresponding to (2.10), i.e

M

0—0mp .
Onri —0,1,..., M.
M HGMz—HMk =0

k;éz
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Accordingly, we define the M x M matrix

ElM,l (HM,l) EIM,M(HMJ)
(2.17) Dy = . )

Oy Onina) oo Loy ag (Oar,m)

For the entries of Dj; corresponding to (2.11) there are explicit formulas, see, e.g., [28] or
[41]. Note that for all 6 € [—,0]

M
> lari(0) =1,
=0

and hence

M
(2.18) > O i(0) = 0.
=0

The relations (2.16),(2.18) and the matrix (2.17) enable us to express (2.13) as

M
v=Gu(y,Yu) =G <€M,0(')Y + ZeM,i(')\I'MJ)

i=1
and (2.14) in the compact form
(2.19) TM:(DM®Id)(\I’M—e®y):(DM(X)Id)\I/M—DMe@y,

where e := (1,...,1)T € RM and ® is the tensor product. As a consequence of (2.13) and
(2.19), the ODE (2.15) reads

Y () = Gar(yn(t), Var (1)),
(2:20) {V]z\é(t) = (Dp @ 1g)Vpu(t) — Dyre @ yu(t), £=0

For a given ¢ € dom (Ag) , the solution (yar(t), Var(t)) of the initial value problem for (2.20)
with initial condition

y =1(0) and Wps; = ¥(0ar4), i = 1,..., M, provides the pseudospectral approximation of
the classical solution v(t) = y; of (2.8), that is yas(t) = y(t), Vari(t) = y(t+0nr4),i=1,..., M,
and Ras(yar(t), Var(t)) = v(t) = yi, t > 0. Therefore, the pseudospectral discretization allows
to construct numerical solutions of (2.2) and, within this context, it represents an alternative
to the numerical method based on Runge-Kutta discretization schemes presented in [36].
From (2.20) it is clear that the matrix Dj; corresponding to (2.11) plays a crucial role in the
convergence analysis of solutions. The first fundamental results on Dj; and its spectrum have
been established in the context of convergence analysis of the pseudospectral method for first
order hyperbolic partial differential equations [27, 28, 29]. Here we only recall the following
result, which is indeed valid for any mesh of distinct points (2.10).

Proposition 2.1. For any M, the matriz Dy; (2.17) is non-singular.
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Proof. Assume D)y is a singular matrix. Then there exists W € RM \ {0} s.t.
(2.21) Dy W =0,

and the polynomial pys := Rpr(0,W) is nonzero. From (2.16), (2.17) and (2.21) we easily
obtain that p);(0r:) =0, i = 1,..., M. Therefore p);, = 0 and pjs is a constant function in
[—7,0]. Since par(6ar,0) = 0, we get that all the components of W must be zero, in contradiction
with W #0. &

2.2. Stability and bifurcation of equilibria. In the theory of dynamical systems, the
stability and bifurcation analysis of equilibria is a central subject. Moreover, the main tool
for the local stability analysis for either ODEs or DDEs, REs and coupled REs/DDEs is the
principle of linearized stability. With the aim to tackle the problem for the nonlinear DDE
(2.1) by means of the nonlinear ODE (2.15), we first characterize the equilibria of (2.1) and
(2.15) and next their relationship, and subsequently we study the linearization. Finally, the
result on the accuracy of approximation of the eigenvalues of A7, by the eigenvalues of Ar s
given in [6, 9] allows us to confirm the reliability of the pseudospectral discretization for the
stability and bifurcation analysis of equilibria of parametrized DDEs.

Definition 2.2. An equilibrium for (2.1) is a constant mapping § € Y with value G s.t.
G(y) = 0. Note that we use the same symbol 7 to denote either the constant function, which
is an element of Y, or its value, which is an element of R?. The meaning will be clear from the
context.

For the linear DDE (2.6), the stability of the zero equilibrium is determined by the spec-
trum o(Az) of the associated infinitesimal generator Ay, which is pure point spectrum. It is
known that the zero solution is exponentially stable if and only if R(A) < 0 for all A € o(Af)
and it is unstable if there is at least one eigenvalue A\ € o(Az) with positive real part.

According to the principle of linearized stability, one can turn the stability analysis of the
equilibria of the nonlinear DDE (2.1) into the stability analysis of the zero solution of the
linearized equation

(2.22) y'(t) = DG(@)ys, t >0,

where DG(7) denotes the Fréchet derivative of G at 7. In fact, 7 is locally exponentially stable
if the zero solution of (2.22) is exponentially stable, and 7 is unstable if the zero solution of
(2.22) is unstable [18].

Now we consider the equilibria of the ODE (2.15).

Definition 2.3. An equilibrium for (2.15) is a constant solution (§,V p1) € Yar s.t.

Acm (@, Vi) =0,

that is

(2.23) d%RM@, V)9,

=04



8 D. BREDA, O. DIEKMANN, M. GYLLENBERG, F. SCARABEL AND R. VERMIGLIO

Theorem 2.4. If the constant mapping §J € Y is an equilibrium for (2.1), then (g, V yr) with
(2.24) Vmi=79,i=1,...,M,

is an equilibrium for (2.15). Vice-versa, if (§,V ) is an equilibrium for (2.15), then (2.24)
holds and g is an equilibrium for (2.1).

Proof. Let 3 be an equilibrium of (2.1) and define the vector V), as in (2.24). Since
pum = R (Y, V) is the constant function of value 3, we have that G/ (7, V) = G(@) = 0
and, moreover, py,(0pr;) = 0, i = 1,...,M. Then (7,V ) is an equilibrium for (2.15).
Conversely, let (7,V p7) be an equilibrium for (2.15). From (2.23) we have that Ry (7, V)
is a constant polynomial and therefore Vy; =%, i = 1,...,M. Let § € Y be the constant
mapping with value 7. Since G(7) = G (7, V) = 0, the assertion follows. B

After having established that there is a one-to-one correspondence between the equilibria
via the relation (2.24), we move on to study local stability by linearization.

Theorem 2.5 (commutativity).

Linearization and pseudospectral discretization commute.

Proof. Consider the linearized DDE (2.22). The corresponding approximating ODE is
obtained by replacing the first equation in (2.15) with

yar(t) = DGR (yu (t), Var(t)), t > 0.

When we linearize (2.15), by (2.24) we get exactly the same result. B

Now the focus is on the linearized equations: the stability properties of the equilibrium 3 of
(2.1) and of the corresponding equilibrium (7, V s) of (2.15) given by (2.24) are determined by
the location in the complex plane of the eigenvalues, respectively, of the infinitesimal generator
Ap and of the matrix Ayp s, where L = DG(7). The accuracy of the approximation of the
eigenvalues is given in the following theorem, which is valid for (2.11).

Theorem 2.6./6, 9] Let \ be an eigenvalue of Ar of multiplicity m. Then, for sufficiently
large M, there exist m eigenvalues A\pr1, - .., Avm of Arar, each counted with its multiplicity,
s.t.

1
(2.25) TWRESPYON L AR A R
. ’LZIIll,a},(m M,Z — 2 \/M € M

where € takes into account the possible error in the approximation of the operator L, the
constants Cy and Cy are independent of M and Cy is proportional to |A|T.

An error bound of the kind (2.25) is known as spectral accuracy [41]. Since the constant
(' is proportional to |A|, we can obtain very accurate approximations of the eigenvalues close
to the origin with small M. Usually, and in practice, an order of tens is sufficient to reach the
machine precision, modulo multiplicity, also for the rightmost eigenvalues. The determination
of the minimum discretization index M ensuring a prescribed accuracy for the rightmost
roots has been considered in [42] for the DDE (2.1) without distributed delay terms. Further
remarks can be found in [9].

Since bifurcation of equilibria occurs when, by changing a parameter, an eigenvalue or a
conjugate pair of eigenvalues passes through the imaginary axis, by collecting all the previous



PSEUDOSPECTRAL DISCRETIZATION OF NONLINEAR DELAY EQUATIONS 9

results we can conclude that the linearized version of (2.15) gives accurate information about
both the stability of equilibria of the original DDE (2.1) and the parameter values at which
such equilibria undergo a bifurcation.

Corollary 2.7 (numerical bifurcation). The linearization of the ODE (2.15) allows to deter-
mine the local stability or instability as well as the parameter values corresponding to bifurca-
tion of an equilibrium of the nonlinear DDE (2.1) with spectral accuracy.

For parametrized nonlinear ODEs, well-developed numerical techniques and software for
numerical continuation and bifurcation are available. It is important to remark that the
dimension of the ODE (2.15) is d(M +1). We expect that the spectral accuracy allows to obtain
reliable results with systems whose dimension is low enough to enable efficient performance of
the numerical methods. Hence, concerning the bifurcation analysis of equilibria of (2.1), the
use of such tools to study (2.15) can yield trustworthy results, as shown in §5.

After having discussed in detail the case of DDEs, we extract and summarize schematically
the fundamental steps that form our recipe for the numerical bifurcation analysis of general
nonlinear delay equations:

(i) the initial value problem associated with the nonlinear delay equation generates a
dynamical system on an infinite-dimensional function space, where the evolution semigroup is
translation with a rule for extension, and the corresponding generator is a derivative operator;

(ii) through such generator, the original delay equation is reformulated as an equivalent
ADE;

(iii) the ADE is discretized using the pseudospectral method in order to obtain the ap-
proximating nonlinear ODE via Lagrange representation;

(iv) equilibria of the delay equation are in one-to-one correspondence with equilibria of
the approximating ODE;

(v) pseudospectral discretization and linearization around an equilibrium commute;

(vi) the relevant eigenvalues of the linearized infinite-dimensional generator are spectrally
approximated by the eigenvalues of the linearized ODE.

In the following sections we show how this template can be applied specifically to different
classes of delay models, in particular REs and coupled REs/DDEs.

3. Renewal equations. REs are functional equations expressing the value of the function
itself in terms of the history. A nonlinear autonomous RE is a relation of the form

(3.1) 2(t) = Fay), t >0,

where the state x;, i.e., x4(0) = z(t +0), 0 € [—7,0], lives in the Banach space X :=
LY ([—7,0];R?), equipped with the norm ||¢||x = f_OT]cp(Q)]dH, o€ X,and F: X — R?
is a smooth nonlinear map. The choice of X is motivated by the applications to population
dynamics (see [17] and the references therein).

The basic results for such equations, as well as for coupled REs/DDEs, have been devel-
oped in [17], making available all the key ingredients to extend the pseudospectral discretiza-
tion also to the nonlinear RE (3.1), i.e., the well-posedness of the associated initial value
problem, the abstract formulation, the principle of linearized stability and the bifurcation
theorems. The last ingredient to complete the program, i.e., the theorem on the convergence
of the eigenvalues of the discretized generator to the eigenvalues of the original one in the linear
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case, can be obtained from [5]. We remark that the same convergence problem is addressed
in [7] for a different choice of the underlying state space, namely X = C([—7,0];R%). In this
section we introduce the necessary notation and results to arrive to the abstract reformulation
of (3.1) and then we examine the pseudospectral discretization, emphasizing the differences
w.r.t. DDEs.

Given ¢ € X, the initial value problem for (3.1) with initial condition
(3.2) 2(0) = ¢(0), 0 € [-7,0],

has a unique solution, which depends continuously on ¢. From now on we proceed as in
§2. The generator of the solution semigroup associated with (3.1) is the nonlinear operator
Ap :dom(Ap) C X - X

(3.3) Arp(p) =¢', ¢ € dom (Ap),
(3.4) dom (Ap) = {p € X | p € AC, ¢(0) = F(p)},

where the notation ¢ € AC' means that ¢ is absolutely continuous. Note that its action is
still differentiation, but now the domain condition in (3.4) involves the value of ¢ at 0.
The operator (3.3-3.4) allows to define the ADE on X

(35) %u(t) = Ap(u(t)), t >0,
and it can be proved that the abstract Cauchy problem

dult) = Anlu
(3.6) {Zt(ogt)_ (p:élp( (1)), t >0,

is equivalent to the initial value problem (3.1-3.2), that is u(f) = 2, is a (classical or mild)
solution of (3.6) whenever z is a solution of (3.1-3.2).

Following the approach introduced in §2.1, we now construct the discretization of (3.3—
3.4). As we will see soon, the only difference consists in how we impose the domain condition
in (3.4) to the interpolating polynomial relevant to the mesh (2.11).

For a given M € N, let Q7 be the mesh in (2.9). Every ¢ € X is discretized by the vector
Oy € Xy i= (RYCM = RIM - which is a column vector with M blocks of d components
Pari = @(Oni), i=1,...,M. For a given x € R? and ®; € X we consider the M-degree
polynomial Ry (x, @) interpolating x € R? at 079 = 0 and ®py; at Opr4, i = 1,..., M, and
we define the function Fj;: R? x X — R? by

Fu(x, ®u) = F(Ru(x, ®ar)), x € RY, @y € Xy

The discretization Ap ys of index M of (3.3-3.4) is the operator Ap s : Xar — Xar which
associates to any ®,; € X, the vector

-AF,M((I)M) =2 € XM,
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where

- d .
(3.7) Emi= @RM(X, q)M)(H)‘e:eM,,-’ i=1,...,M,

and the value x in (3.7) is the solution of the nonlinear equation
(3.8) x = Fy(x, ).

Relations (3.7) and (3.8) are the discrete version of, respectively, the action (3.3) and the
domain condition (3.4). Note that, contrary to DDEs, the discretized domain condition (3.8)
is involved in (3.7). In many examples of REs arising in population dynamics [20], the equation
(3.8) is linear w.r.t. x and explicitly solvable:

(3.9) x = Hy(®).

In general, when the matrix Iy — Dy Fis(x, ®ps) is invertible in a neighborhood of the solution,
the nonlinear equation (3.8) has a local unique solution (3.9), which can be computed by
efficient numerical methods [38]. Hereafter we assume that (3.8) has a unique local solution
(3.9). When a solver for nonlinear equations is needed, we employ the notation Hjy. Simi-
larly, ' and F); stress the use of approximation techniques to evaluate the function F' and,
consequently, Fiy.

By means of Ap s we turn the ADE (3.5) and the associated Cauchy problem (3.6) into,
respectively, the ODE

and the initial value problem

{Uzlw(t) = Arm(Un(t)), t >0,
UM(O) = ®,y,

where ®5r; = @(0ari), @ = 1,..., M. Under the assumption (3.9), by using the Lagrange
representation for the polynomial Ry (x, ®s) and the matrix Djs in (2.17), we obtain the
following compact representation for (3.7)

Em = Dy ®1g)Par — Dyre @ Hy (o), t >0,
and, as a consequence, the ODE (3.10) reads
(3.11) Upr(t) = (D @ 1a)Uni(t) — Dre @ Hy(Une(t)), ¢ > 0.

Remark 3.1. The expression (3.9) for the solution of the equation (3.8) is essential to obtain
the ODE (3.11), whose dynamics can be analyzed by the existing numerical software. Note
that (3.11) can be derived by inserting (3.9) into the following differential-algebraic equation

{iBM(t) = Fp(zm(t), Unm(t)), £>0
Upy(t) = (Dy @ Ig)Uns(t) — Dare @ xar(t), =
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where the discretized domain condition appears explicitly.

We now briefly analyze the relation between equilibria and stability of the delay equation
(3.1) and its discretization.

Definition 3.2. An equilibrium for (3.1) is a constant mapping T € X with value T s.t.
T = F(T).

Definition 3.3. An equilibrium for (3.10) is a constant mapping Uyr € Xy s.t.

Ap v (Unr) =0,

that is

d — = :
(3.12) @RM(HM(UM),UM)((?)\GZGW =0,i=1,...,M.

Like for DDEs, the correspondence of equilibria is ensured for the RE (3.1).
Theorem 3.4.1If the constant mapping T € X is an equilibrium for (3.1), then Uy with

(3.13) UMﬂ':f, i=1,....,M,

is an equilibrium for (3.10). Vice-versa, if Uyps is an equilibrium for (3.10), then (3.13) holds
with T = Hy (Uypy) and T is an equilibrium for (3.1).

Proof. Let T € X be an equilibrium of (3.1) and define Uy, as in (3.13). Since py =
R (Z,Upr) is the constant polynomial with value T, we have that Fy(Z,Uy) = F(T) = 7,
and ph;(0pr;) =0, i =1,..., M. From T = H;(Upy), we conclude that Uy is an equilibrium
for (3.10). Conversely let Uy be an equilibrium for (3.10) and define * = Hy;(Uyy) the
solution of T = Fj(F,U ). From (3.12) we have that Ry (Has(Upr), Uas) has constant value
and then Ujps; = T. Let T € X be the constant mapping with value Z. The assertion follows
from F(Z) = Fy(Z,Upy) =7. A

The principle of linearized stability for (3.1) says that the stability of the equilibrium =
can be determined by ascertaining the stability of the zero solution of the linearized equation

(3.14) 2(t) = DF(@)xy, t > 0,

where DF(Z) is the Fréchet derivative of F' at Z. In particular, Z is locally asymptotically
stable if the zero solution of (3.14) is exponentially stable and it is unstable if the zero solution
of (3.14) is unstable.

The theorem concerning the spectral accuracy of the IG-approach in approximating the
eigenvalues of the infinitesimal generator of linear REs, which is analogous to Theorem 2.6,
has been proved in [5]. Then, by the same arguments as used in §2.2, we conclude the
validity of the appropriate analogues of Theorem 2.5, concerning the commutativity between
pseudospectral discretization and linearization, and of Corollary 2.7, ensuring that the study of
the approximating ODE (3.10) gives accurate information about the stability and bifurcation
of the equilibria of the nonlinear RE (3.1).
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4. Coupled REs/DDEs. As already mentioned, in applications to physiologically struc-
tured populations, systems of a RE coupled with a DDE are central. All the necessary
theoretical and numerical results are valid in general also for such delay equations, see [5, 17]
and [21] for a recent discussion about the linearization of Daphnia-like models. Therefore, we
can combine the procedures in §2 and §3 to extend the pseudospectral discretization and to
derive the nonlinear ODE. In this section we briefly present the basic steps, skipping all the
details, which can be easily recovered.

Let X := £Y([~7,0;R%) and Y := C([—7,0]; R%). A nonlinear coupled RE/DDE is

x(t) = F(xg, yz),
(1) {y'<t> = Glany), ="

wherez; € X,y € Y,and F: X xY — R% and G : X xY — R% are smooth nonlinear maps.
As state space for (4.1) we consider X x Y, interpreting the function (¢,v) (), 6 € [—7,0],
as the column vector with the d; components of ¢(6) followed by the ds components of ¥ ().
Similarly to the previous sections, the initial value problem associated with (4.1) defines a
dynamical system on X x Y, such that the family of evolution operators is generated by the
operator Apg : dom (Apg) € X xY — X x Y given by

(42) AFG((@? w)) - (Spla 1/},) ) (SO? w) € dom (-AFG) )
_ € AC, ¢ € CH([-7,0);R%),
6 domtare) ={(ew) e x x| LTG0 ERELTGE b

By means of Ap¢ it is possible to define the ADE and the abstract Cauchy problem equivalent
to the initial value problem associated with (4.1).

For the delay equation (4.1), the domain condition in (4.3) combines the value of ¢ € X
at 0 with the value of the derivative of ¥ € Y at 0 and, as a consequence, its discretization
uses both the approaches presented in §2.1 and §3.

Given M € N, we define X3; and Y3 as in §3 and §2.1, respectively, with the proper
choice of the space dimensions d; and do. Note that in general the discretization indices of
X and Yy can be different. Any (¢, 1) € X xY is discretized by the vector (®ar, (v, ¥ar)) €
Xy x Y. For a given x € R% we introduce the functions Fas: R4 x X3 x Yar — R% and
GM :Rdl ><4XM'><Y']\/[—>Rd2 by

FM(X’ (I)M,Y, \IIM) = F(RM(X’ (I)M)’RM(y’ \IIM)),
GM(Xa q)M,Y, \IIM) = G(RM(XaCI)M)aRM(ya\I[M))

The discretization Apg, s of (4.2-4.3) is obtained by combining the discretization techniques
introduced for DDEs and REs, and the resulting approximating ODE on Xj; x Yjs reads

Up(t) = (D @ 14,)Uni(t) — Dare @ Knp(Une(t), ynr (), Var (1)),
(4.4) Yar(t) = Gu(Kp(Uni(8), yna (), Var (1)), Une (8), yma (1), Vi (¢)), £ >0,

Vi) = (D ® I,)Var(t) — Dyre @ yar(t),
where we have assumed that the solution of the nonlinear equation x = Fy;(x, @7, y, Uas) is
locally expressed as

(45) X:KM(@M,y, \I’M)
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The theorem about one-to-one correspondence of equilibria and the analogues of Theorem
2.5, Theorem 2.6 and Corollary 2.7 hold also for coupled REs/DDEs, ensuring that the study
of the approximating ODE (4.4) gives accurate information about the stability and bifurcation
of the equilibria of the nonlinear equation (4.1). The details and proofs can be easily recovered
by combining properly the techniques of §2.2 and §3.

5. Numerical bifurcation analysis. In this section, in order to test the efficiency and flex-
ibility of the proposed method, we complement the analysis with some numerical examples
belonging to each class of nonlinear delay models analyzed so far, namely DDEs, REs and
coupled REs/DDEs. The models are discretized using the technique introduced in the previ-
ous sections and the dynamical and bifurcation properties of the original equation w.r.t. some
parameters are analyzed through the corresponding approximating ODE. As pointed out in
the Introduction, several software products are nowadays available for the numerical analysis
of ODEs. The simulations in this section are obtained using MATCONT [16, 37], a continua-
tion and bifurcation toolbox that is compatible with the widely used computing environment
MATLAB. Among other functionalities, MATCONT allows the continuation of equilibria and
limit cycles, the detection and continuation of several codimension 1 and 2 bifurcations of
equilibria and limit cycles and the computation of stability and normal forms.

For each example, we show the results of the bifurcation analysis of the approximating
equation and we study the behavior of the absolute errors in the approximation of the bi-
furcation points w.r.t. M. Experimentally we verify the spectral accuracy guaranteed by the
results in §2.2 for DDEs, and the analogous results for REs and coupled REs/DDEs.

5.1. A scalar DDE: delayed logistic equation. Our first example is the well-known de-
layed logistic equation

(5.1) y(8) = ry() [1 - y(t — 1)), £ > 0.

The variables are scaled s.t. the delay and the carrying capacity are both equal to 1. Equation
(5.1) was first introduced in [31]. For all values of r the equation has two equilibria, 7, = 0
and y; = 1. The trivial equilibrium is unstable for all » > 0 and the positive equilibrium is
asymptotically stable if » € (0, F). At 7* = § a Hopf bifurcation occurs [1] and for » > 7 the
equation has a stable periodic solution.

Using the notation of §2.1, the function (2.12) is defined by

Gu(y, ¥a) =ry (1 — Warnr)
and the approximating ODE (2.15) reads

Y (t) = ryn(t) (1= Vara(t)),
(5:2) {V]Zi(t) = Dar(Var(t) — yar()e), 1=

Figure 5.1(a) shows the output of the numerical bifurcation analysis of equation (5.2) obtained
using MATCONT with M = 10 and tolerance option TOL = 10~!°. By applying MATCONT
with varying M, it is possible to test the convergence of the computed Hopf bifurcation values
4 to the exact point 7*. The numerical results in Figure 5.1(b) show that the absolute
error eys := |ry; — r¥| decays spectrally w.r.t. M until the fixed tolerance TOL is reached, as
expected from the results in §2.2.
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Figure 5.1. Delayed logistic model (5.1): (a) bifurcation diagram of (5.2) for M = 10 and TOL = 1071°;
(b) absolute error ear = |ry; — r*| in the detected Hopf point vs. M.

5.2. A two dimensional DDE: predator—prey model. We consider now a DDE modeling
the dynamics of a predator—prey ecological system, where the predator is structured in two
classes of individuals: juveniles and adults. Only adult predators are actively hunting. We
assume that, in the absence of predation, prey growth is logistic with carrying capacity K
and initial growth rate r. Predation follows mass action with coefficient p and prey eaten is
converted in predator offspring with a conversion coefficient b. At age 7, juveniles become
adults and start hunting. The juveniles and adults per capita mortality rates are denoted ¢;
and J,, respectively. If we denote y;(t) the prey density and y»(t) the adult predator density
at time ¢, the model is described by the two dimensional DDE with a single discrete delay

5.3 {yi(t) =) [1- 28] — o0, .,
Yo(t) = bpyi (t — T)ya(t — 7)e™%T = Suya(t),

The equilibria are (0,0), (K,0) and (7,,7s), which is strictly positive if and only if

> L
P iepeoir

In [26] the author conjectures that a Hopf bifurcation of the positive equilibrium occurs when
the delay 7 is increased.

Figure 5.2(a) represents the existence and stability regions of the nontrivial equilibrium
of the discretization of (5.3) in the parameter plane (7,6;), approximated with MATCONT
for M = 10 and TOL = 107'°. Figure 5.2(b) shows the approximated bifurcation diagram
of the equilibrium (7;,7y) w.r.t. 7, obtained by numerical continuation and by analyzing the
approximated eigenvalues at singularity points. Two Hopf bifurcation points are detected
on the nontrivial equilibrium branch at 7 ~ 0.2893 and 7 =~ 1.9416. When positive, the
equilibrium (7,,7,) is unstable if 7 € (71, 72), locally asymptotically stable if 7 < 71 or 7 > 5.

In Figure 5.2(c) we can observe the convergence rate of the approximated singularity points
to the reference values, which are computed with M = 20. The branching point 7y ~ 4.0235,
corresponding to the intersection between the trivial and nontrivial equilibrium branches, is
approximated below the required tolerance TOL already for M = 1, while the Hopf bifurcation
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Figure 5.2. Predator—prey model (5.3): (a) approzimated existence (below upper line) and stability (above
lower line) regions of (§,,Ys) and dotted line §; = 0.8 in the plane (1,9;), for M =10, 6o = 0.2, r =K =b=1,
p=>5and TOL = 10""°; (b) approzimated bifurcation diagram of (§,,T,) w.r.t. T, for fizred §; = 0.8; (c) absolute
error in the detected transcritical (o =~ 4.0235,0) and Hopf (11 =~ 0.2893,0, and T2 ~ 1.9416, e) bifurcation
points vs. M.

points 7y and 75 show spectral convergence until the tolerance TOL is reached. It is interesting
to notice that the immediate convergence of the approximated branching point to the required
tolerance is consistent with the result in Theorem 2.6, since the rightmost eigenvalue is A = 0
at the branching point. Similarly, the convergence trends in the Hopf points reflect the
dependence on 7 of the constant C] in Theorem 2.6: smaller delay 7 requires a lower index
M to reach a given tolerance.

5.3. A scalar RE: cannibalism model. We now consider a caricatural egg cannibalism
model. The population is structured in two classes of individuals, juveniles and adults. In-
dividuals become adult when they reach the constant maturation age @ > 0, they have a
constant survival probability until age a for all @ < a < amax, and they die when they reach
the maximum lifespan ap.c. With some probability, newborns are eaten by adults. After
scaling, the model is described by the equation

(5.4) 2(t) = / "t — @) D g, > 0,
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Figure 5.3. Cannibalism model (5.4): (a) approzimated existence (above lower line) and stability (below
upper line) regions of T in the plane (@, 8), dotted line @ = 3, and points on the analytical curves from [}] (*),
for M =10, amas = 4 and TOL = 1071%; (b) bifurcation diagram of (5.5) w.r.t. 8, for fired @ = 3; (c) absolute
error in the detected transcritical (Bpp = 1,0) and Hopf (Bu =~ 7.6474,e) bifurcation point of (5.5) vs. M.

where z(t) denotes the adult population density at time ¢ and (3 is the effective fecundity rate,
i.e., the per capita number of offspring per unit of time that survive until the maturation age @.
The exponential term inside the integral describes the probability of newborns to survive the
cannibalistic activity of adults. Equation (5.4) is a nonlinear RE (3.1) where d = 1, 7 = amax
and F(p) = [~%  p(0)e=?Odh. We refer to [4] for a more detailed derivation.

—0Omax

The trivial solution is always an equilibrium of equation (5.4). The nontrivial equilibrium
T = log[B(amax — @)] is positive if B(amax — @) > 1 and at Bpp = (amax — @) ! a transcritical
bifurcation occurs. When the maturation age @ is fixed, the positive equilibrium undergoes
a Hopf bifurcation for some value Sg. The stability and bifurcation properties of this model
have been analyzed in [4] theoretically and numerically by linearizing the equation at T and
by approximating the eigenvalues of the linearized infinitesimal generator by the IG-approach
for some values of the parameters 5 and a. Here, we perform the bifurcation analysis varying
the parameter § for the nonlinear equation (5.4) avoiding the linearization. As pointed out
in §3, for a given discretization index M we need to treat the domain condition (3.8), where
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the function Fjs is now defined by

FM'(X7 D) = ﬂ/ pM(G)e’pM(G)dH,
where pys := Rp(x, ®yr). By computing numerically for all ¢ > 0 the solution xy(t) :=
Hyr(Ups(t)) of the nonlinear equation

acM(t) — FM(acM(t), UM(t)) = O,

we get the approximating ODE
(5.5) Uhy(t) = Dar(Uns (t) — Har(Uns(t)) ), t > 0.

Figure 5.3(a) shows the existence and stability boundaries of the nontrivial equilibrium in the
plane (@, ) approximated with MATCONT, for M = 10 and TOL = 1071%, compared to the
analytical curves determined in [4]. The dotted line is the line along which the bifurcation
diagram in Figure 5.3(b) is computed. In Figure 5.3(c) the absolute error between the ap-
proximated bifurcation points (branching and Hopf) and the reference values Spp = 1 and
By ~ 7.6474, computed with M = 20, is plotted versus the discretization index M, with TOL
= 10710, As already observed in the predator-prey model, the transcritical bifurcation point
is approximated to the required tolerance already for M = 1, while the Hopf bifurcation point,
detected for M > 4, converges spectrally to the reference value.

5.4. A coupled RE/DDE: logistic Daphnia model. The next example is a logistic Daph-
nia model studied in [4]. We consider an age structured consumer population characterized
by its birth rate b(t) and an unstructured resource with density S(t).

The dynamics is described by the following coupled RE/DDE

Amax

b(t) = BS(1) / b(t — a)da,

(5.6) a . t>0,
S'(t) =rS(t) < - %) - ’yS(t)/ b(t — a)da,

a

where r and K denote, respectively, the growth rate at small density and the carrying capacity
of the resource in the absence of consumer; 5 and «y are the effective fecundity and consumption
rate of the consumer until the fixed maturation age @. As in the cannibalism model, we assume
that adults have a constant survival probability until the maximal age apax.

The equation admits the equilibria Eg = (0,0), E1 = (0, K) and the nontrivial equilibrium
Ey = (b, S), which is strictly positive if and only if 8 > [K (amax — E)]fl .

In [4], a Hopf bifurcation is numerically detected by linearizing the equation around Es
and by approximating the eigenvalues using the IG-approach. Here, we analyze the nonlinear
ODE (4.4) with

—a

Far(x, @41, 3, Uar) = By / par(6)do),

Gmax

Gu(x, Py, ¥ar) =7y (1 - %) - w/ pum(0)do,

Amax
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Figure 5.4. Logistic Daphnia model (5.6): (a) approzimated ezistence (above lower line) and stability
(below upper line) regions of (b, S) and dotted line @ = 3 in the plane (@,f), for M = 10, r = K = v = 1,
Umaz = 4 and TOL = 107'%; (b) approzimated bifurcation diagram of (b, S) w.r.t. 8, for fized@ = 3; (c) absolute
error in the detected transcritical (Bpp = 1,0) and Hopf (Bu =~ 3.0161, e) bifurcation point vs. M.

where pys = R (x, Ppy). Since the function Fjy is linear w.r.t. x, we can solve it explicitly
and get

—a

-1 M
zo(e)cw) > O / :(6)de.
i=1

Gmax j— —Qmax

—a

Kor(®ar,y, ar) = By (1 - /

Figure 5.4(a) shows the plot of the approximated existence and stability boundary of the non-
trivial equilibrium of equation (5.6) together with the reference line @ = 3 for the bifurcation
analysis, for M = 10 and TOL = 107'°. The bifurcation diagram w.r.t. 3 is plotted in Fig-
ure 5.4(b). Figure 5.4(c) shows the behavior of the absolute error in the detected branching
and Hopf point w.r.t. the discretization index M, where TOL = 1071, The Hopf reference
value B ~ 3.0161 is computed for M = 20. We observe that the Hopf point is detected for
M > 2.

Remark 5.1. Although based on rather simplifying assumptions, the logistic Daphnia model
(5.6) shows the typical features of an ecological model with age structure. Indeed, as explained
in [20], physiologically structured populations are naturally described by a linear RE for the
birth rate coupled with a DDE for the evolution of the environmental variable (usually, the
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Figure 5.5. Mackey—Glass equation (5.7): (a) approzimated bifurcation diagram w.r.t. T for M = 10,
B=2~v=1,n=6 and TOL = 107%; (b) absolute error in the detected Hopf (tir ~ 1.2092, ) and period
doubling (tpp ~ 3.5571,03) bifurcation point vs. M.

resource or substrate). The linearity w.r.t. the birth rate is an intrinsic feature of such models
and it allows to obtain the explicit expression (4.5).

5.5. Bifurcation of periodic solutions: Mackey—Glass equation. We conclude this se-
ries of numerical examples with a look to future extensions. The software that is nowadays
available for ODEs allow to approximate bifurcation of equilibria, periodic solutions and even
more complex dynamical objects. Therefore, the pseudospectral discretization method is po-
tentially applicable not only for the bifurcation analysis of equilibria, but also of periodic
solutions. This statement requires a deeper analysis that we reserve for future research. We
show here some first and promising results in this direction by applying our method to the
well-known Mackey—Glass equation

(5.7) Sy =p-—20"T i,

1+yt—71)
introduced in [35] to describe the hematopoiesis process. Here, y(t) denotes the density of
blood cells at time t and 5, v, n and 7 are positive parameters.

If 8 > ~, the equation has a strictly positive equilibrium 7 = (% — 1) v which is locally
asymptotically stable for small values of 7. For a certain value 7z the nontrivial equilibrium
undergoes a Hopf bifurcation and a stable periodic solution appears. Increasing the delay
further, a sequence of period doubling bifurcations has been observed [35]. The results of
the numerical continuation of the equilibrium branch and of the periodic solution w.r.t. 7 are
plotted in Figure 5.5(a) for M = 10 and TOL = 10~8. The Hopf bifurcation is detected at
7 ~ 1.2092 and a period doubling bifurcation at 7pp =~ 3.5571. Figure 5.5(b) shows the
absolute error between the detected bifurcation points and the reference values, which are
computed for M = 25. The convergence of the Hopf bifurcation point resembles the previous
examples. The period doubling bifurcation shows a similar trend, although it requires larger
values of M.

6. Conclusions and outlook. The proposed pseudospectral discretization of nonlinear
delay equations appears to be an effective and flexible tool for the stability and bifurcation
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analysis of equilibria. It allows to treat not only DDEs with both discrete and distributed
delays, but also REs and coupled REs/DDEs. In all cases the starting point is given by the
reformulation of the nonlinear delay equation as an ADE, which is described by a derivative
operator subject to a domain condition depending on the nature and on the right-hand side of
the original delay equation. The pseudospectral discretization turns the infinite-dimensional
operator into a finite-dimensional one. The resulting nonlinear ODE can be easily derived and
then analyzed by various efficient software packages, opening new prospects for the bifurcation
analysis of delay equations. We are planning to develop further numerical tests. Moreover,
for DDEs, an accurate performance comparison with DDE-BIFTOOL is in the pipeline.

The toolboxes for ODEs also support the study of more complex bifurcations. As a follow
up to §5.5, we are planning to extend the analysis to bifurcation of periodic orbits, with
due attention to several interesting examples. The convergence of nonconstant solutions of
the initial value problem for the approximating ODE is strictly connected with the spectral
properties of the matrix Djys (2.17), and we are investigating this link in detail. Moreover,
the resulting ODE could allow to approximate smooth solutions of the initial value problem
associated with the delay equation. This idea has already been explored for DDEs in [36],
where the discretization is based on Runge-Kutta methods. The pseudospectral discretization
provides an alternative.

Among the future issues, we include also the bifurcation analysis of realistic models of
physiologically structured populations of Daphnia type. The complexity of such models rep-
resents a considerable challenge and only limited tools are nowadays available, restricted to
the analysis of equilibria of the linearized problems [5, 13]. In such cases the power of the
pseudospectral discretization might be essential, since it potentially provides a simple tool for
a complete analysis.

Finally, in many cases of ecological modeling it is not possible to determine a priori bounds
on the delay interval, e.g., [3, 17]. In this light, we plan also to extend the pseudospectral
discretization approach to delay models with infinite delay, motivated by the theory in [19].
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