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Abstract

Unwinding conditions have been fruitfully exploited in Information
Flow Security to define persistent security properties. In this paper we
investigate on their meaning and possible uses in the analysis of biological
systems. In particular, we elaborate on the notion of robustness and propose
some instances of unwinding over the process algebra Bio-PEPA and over
hybrid automata. We exploit such instances to analyze two case-studies:
Neurospora Crassa circadian system and Influenza kinetics models.

Introduction

Different languages have been proposed for modeling biological systems. As
noticed in [24] we can distinguish two main categories: mathematical models
(e.g., differential equations) and computational models (e.g., process algebras).
Mathematical models rely on denotational semantics, i.e., they describe rela-
tionships between quantities. Algorithms for finding/approximating solutions
of such models are not part of the model itself. On the other hand, com-
putational models are equipped with “natural” operational semantics which
describes the evolution of the system. Simulation algorithms for such models
can be easily defined.

Temporal Logics and Model Checking are standard tools for the analy-
sis of computational models (e.g., see [18]). The former provide specifica-
tion languages for formulating the properties of interest. The latter furnishes
algorithms for verifying properties on models. Two models are considered
behaviourally equivalent when they are indistinguishable with respect to the
temporal logic formulæ.

∗This work has been partially supported by Istituto Nazionale di Alta Matematica (INdAM).
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Behavioural equivalences can then be used to both compare models and
reduce their sizes. While their use as reduction criteria is well known in Model
Checking, where the state explosion problem is a major concern, their impor-
tance for comparing models has been fruitfully exploited in other fields. In
particular, in Information Flow Security behavioural equivalences are at the
basis of unwinding conditions which allow to establish whether the system
would behave correctly in hostile environments (see [61, 10]).

In this paper, we propose the use of unwinding conditions in Systems
Biology. In order to achieve this goal we develop a framework, based on the
notion of labelled transition system, that exploits the unwinding conditions and
we suggest how to instantiate this framework to handle different computational
formalisms. Unwinding conditions allow to generalize notions of robustness
based on formulæ satisfaction which have been introduced in the literature,
giving rise to robust notions of robustness where possibly infinite set of formulæ
can be preserved over possibly infinite sets of perturbations.

The paper is organized as follows: Section 1 introduces Labelled Transition
Systems and bisimulations as standard operational semantics tools. Section 2
presents the unwinding framework in both Information Flow Security and
Systems Biology, showing how it can be used to formalize a robust notion
of robustness. In Section 3, we briefly recall the main features of Bio-PEPA
process algebra and we instantiate our unwinding framework on Bio-PEPA
systems. In Section 3.1, we test it on the Bio-PEPA model of the Neurospora
crassa circadian network. In Section 4 we present two unwinding conditions
over hybrid automata and in Section 4.1 we exploit them on kinetic models of
influenza virus. Conclusions are drawn in Section 5.

1 Labelled Transition Systems and Equivalences

Labelled Transition Systems (latter on referred as LTS’s) are a general tool used
to define the operational semantics of wide variety of models. An LTS is a
directed graph with labels on edges.

Definiton 1 (Labelled Transition System). A LTS is a tuple (V,VI,A,E) where:

- V is a set of nodes and VI ⊆ V is a set of initial nodes;

- A is the set of edge labels (alphabet);

- E ⊆ V × AE × V is a set of edges.

We may write v α
−→ v′ to indicate that (v, α, v′) is an edge, i.e., (v, α, v′) ∈ E,

and v −→ v′ to denote that there exists some α ∈ AE such that (v, α, v′) is an edge.
In some cases, also labels on nodes can be introduced.

Well-known classes of models which are given in terms of LTS’s are Discrete
Time Markov Chains (DTMCs) and Continuous Time Markov Chains (CTMCs).
Both DTMCs and CTMCs are used for modeling stochastic memoryless pro-
cesses in which the next state of the system only depends on the current state
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and on a probability distribution over its out-going edges. While in DTMCs
labels on the edges represent the instantaneous crossing probability, in CTMCs
they are the parameters of exponential distributions which allow one to com-
pute the crossing probability within a time interval.

Definiton 2 (Markov Chains). A DTMC is a LTS D = (VD,VD
I ,A

D,ED) such that
AD = [0, 1] ⊆ R and the sum of the labels of the edges leaving each node is equal to 1,
i.e.,

(∑
(v,α,u)∈ED α

)
= 1 for each v ∈ VD.

A CTMC is a LTS C = (VC,VC
I ,A

C,EC) such that AC = R≥0.

As examples of the broad and heterogeneous use of LTS’s in modeling,
we will consider later in this paper two formalisms, having a quite different
approach to the modeling problem, whose evolutions are naturally described
by means of LTS’s: the process algebra Bio-PEPA (see, e.g., [27]), and hybrid
automata (see, e.g., [48]).

Once an LTS representing a system has been obtained, behavioural equiv-
alences can be used to reduce the size of the LTS, prove properties over the
system, and compare different systems. Behavioural equivalences are equiva-
lences over LTS’s that relate nodes having “similar behaviours”. Trace equiva-
lence and bisimulation are two of the most used behavioural equivalences in the
literature.

Trace equivalence relates two nodes if and only if they generate the same
sequences of node and edge labels (traces). It produces a drastic reduction
of the model size, but its computation is expensive (PSPACE-complete) [51].
Moreover, in many applications, it equates models that are “different”. In
particular, it cannot distinguish models which differ because of “the time at
which non determinism occur” (see Figure 1).

Definiton 3 (Trace Equivalence). Given an LTS T = (V,VI,A,E), a path over T
starting from u ∈ V is a sequence ph of transitions of the form u = u0

α1
−→ u1

α2
−→ . . .

αn
−→

un. The trace underlying the path ph is the sequence tr defined as α1α2 . . . αn. The set
Tr(u) is the set of traces underlying paths starting from u. Two nodes u, v ∈ V are said
to be trace equivalent if Tr(u) = Tr(v).

On the contrary, bisimulation is a finer relation which is easier to com-
pute. In its strong version it equates models that satisfy exactly the same for-
mulæ of modal and branching temporal logics (see, e.g., [18]) Its co-inductive
characterization is at the basis of efficient polynomial time algorithms for its
computation [39, 53].

Definiton 4 (Strong Bisimulation). Given an LTS T = (V,VI,A,E), a strong bisim-
ulation over T is a relation R ⊆ V × V such that for each (u, v) ∈ R the following
conditions hold:

- u ∈ VI if and only if v ∈ VI;

- if u α
−→ u′, then v α

−→ v′ and (u′, v′) ∈ R;

http://dx.doi.org/10.1016/j.tcs.2015.02.045
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- if v α
−→ v′, then u α

−→ u′ and (u′, v′) ∈ R.

Two nodes u, v ∈ V are said to be strongly bisimilar, denoted as u ∼ v, if there exists
a strong bisimulation R such that (u, v) ∈ R.

When also labels on nodes are considered two bisimilar nodes must share the
same labels. The following proposition states some well known and appealing
properties of bisimulation.

Proposition 1. Given an LTS T = (V,VI,A,E). The relation ∼ is an equivalence
relation, it is the largest strong bisimulation relation, and Paige-Tarjan algorithm [53]
computes it in time O(|E| log |V|). Moreover, u ∼ v implies Tr(u) = Tr(v).

q0

q1 q2

q3 q4

α α

β γ

p0

p1

p2 p3

α

β γ

Figure 1: Trace equivalence vs strong bisimulation: the two nodes p0 and q0 are
are trace equivalent but not strongly bisimilar.

There exist many variant of bisimulation (e.g., weak and stuttering), de-
pending on the modal/temporal logic one wants to preserve. In the context of
DTMCs and CTMCs bisimulations, which need to “preserve” probabilities, are
usually called lumpability relations (see, e.g., [70]).

2 Robustness through Non-interference and Unwind-
ing

2.1 From Biology . . .

As observed in [42], “. . . robustness is one of the fundamental characteristics of
biological systems . . . Nevertheless, a mathematical foundation that provides a
unified perspective on robustness is yet to be established”. In [40], robustness
is defined as a property ensuring that a system maintain its functions against
internal and external perturbations. A framework for analyzing robustness
should support the definition of both functions to be preserved and admissible
perturbations.

Robustness has not to be confused with stability. A robust system can
exploit instability or even evolve through new steady states in order to preserve
its functionalities against perturbations.

http://dx.doi.org/10.1016/j.tcs.2015.02.045


Preprint Version - The final version of this work appeared on TCS (Elsevier)
and it is available at http://dx.doi.org/10.1016/j.tcs.2015.02.045

In the following example we try to clarify these concepts.

Example 1 (Research on Pathogens). Let us consider the case of a system infected
by a pathogen agent. Of course the pathogen stimulates the immune system and would
probably affect some organs, i.e., the system is not stable. Hence, the immune system
and all the organs directly attacked by the pathogen will exhibit a behavior which could
be very different from the standard one (at least in the acute phase). However, if the
system is robust against the pathogen, behaviour of critical organs (e.g., heart, lung,
kidney, brain) should not be dramatically affected.

A formalization of “how much” a system is robust with respect to a pathogen
is a fundamental question in medicine both in the diagnosis process (to avoid expen-
sive/invasive exams) and in the therapy phase.

On the other hand, if a system is stable with respect to a pathogen, this means
that the pathogen has almost no effects on the system. Hence, probably such pathogen
has low medical interest: not even the patient will notice that his immune system is
interacting with the pathogen.

It is important to notice that robustness is not a local property. The “functions
to be preserved” could have no apparent relationship with the “admissible
perturbations”. This is better shown by the following example.

Example 2 (Drug Development). The case of different drugs for mitigating inflam-
mations is described in [41]. Cyclooxygenase 2 (COX2) is expressed in tissues with
inflammation and its inhibition reduces the inflammation process. Some drugs were
designed to inhibit COX2, but since they also inhibit COX1 adverse gastrointestinal
effects were observed. Hence, drugs with more selective inhibition of COX2 were con-
sidered. These do not have gastrointestinal side-effects, but at high doses the risk of
cardiovascular problems increased. As Kitano pointed out this example “highlights the
fact that selectivity for a molecule in the target cells does not eliminate the risk of side
effects, as the target molecule might have an important role in off-target cells. . . . Drug
side effects can be caused by unwanted interactions with molecules that expose the
fragility of cellular or organ-level functions to specific interventions in both target cells
and off-target cells.”

In the next section we present an unwinding framework typical of informa-
tion flow security. We will take inspiration from such framework to define a
general notion of robustness which tries to answer Kitano’s requirements.

2.2 . . . To Security . . .

Information flow security deals with multilevel systems in which confidential and
public data coexist. Its main goal is to ensure that no information flow from a
level to a lower one. Traditionally, only two security levels are considered: high
(H) and low (L). High level users have access to confidential information, while
low level users can only handle public data. The interaction between high level
users and the system should not influence the low level behaviours. In the
case of deterministic systems, this was formalized in [31] as the notion of non-
interference. Such notion has been generalized in different non-deterministic

http://dx.doi.org/10.1016/j.tcs.2015.02.045
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settings such as programming languages [62], process calculi [25, 60], proba-
bilistic models [2], cryptographic protocols [8].

In information flow security, unwinding conditions have been introduced as
local properties on high level actions aiming at ensuring non-interference [60,
61, 10]. We present here the notion of unwinding over LTS’s. First we need to
partition the edge labels into two sets: H, high level labels, corresponding to
high level actions and L, low level labels, associated to low level actions. We
dub LTS’s with H and L edge labels multilevel LTS’s. The unwinding condition
is parametric with respect to two relations: a low level behavioural equivalence,
∼

L, and a transition relation, d. The former establishes which nodes should
be considered indistinguishable from a low level point of view. The latter
identifies paths alternative to the execution of a high action.

Definiton 5 (UnwindingW(∼L,d)). Let T = (V,VI,H∪L,E) be a multilevel LTS,
∼

L
⊆ V × V be an equivalence relation, and d⊆ V × V be a transition relation. We

say that T satisfies the unwinding conditionW(∼L,d) if for each h ∈ H for each
u ∈ V the following condition holds:

u h
−→ u′ implies ∃u′′(u d u′′ ∧ u′ ∼L u′′)

In Figure 2 we give an intuitive representation of a generic unwinding
condition.

Whenever the information included in the nodes is also important, gener-
alized unwinding conditions come into play. They are parametric on a further
relation =L establishing which node information is low level visible or, in other
terms, when two nodes are locally low level indistinguishable, i.e., indistin-
guishable without considering their outgoing edges.

Definiton 6 (Generalized Unwinding W(=L,∼L,d)). Let T = (V,VI,H ∪ L,E)
be a multilevel LTS, =L,∼L

⊆ V ×V be two equivalence relations, and d⊆ V ×V be a
transition relation. We say that T satisfies the generalized unwinding condition
W(=L,∼L,d) if for each h ∈ H for each u ∈ V the following condition holds:

u h
−→ u′ implies ∀v(u =L v implies ∃v′(v d v′ ∧ u′ ∼L v′))

Intuitively, this corresponds to say that the low level user is not even able
to tell whether the system before the high level transition was in u or in v.
Generalized unwinding conditions have been used in [9] to study information
flows on a basic concurrent imperative language. Unwinding conditions are
nothing but generalized unwinding conditions in which the relation =L is the
identity relation.

Surprisingly, in [10] it has been proved that some instances of the unwind-
ing schema were equivalent to well known security properties defined in terms
of high level attacker models. Intuitively, if a system E satisfies the unwinding
condition, then a high level malicious process Π interacting with any state E′

reachable from E (denoted by E′|Π) cannot send down to the low level user

http://dx.doi.org/10.1016/j.tcs.2015.02.045
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h

u

u′ u′′

?

T

Figure 2: Intuitive representations of unwinding condition. The system T
satisfies the unwinding conditions W(∼L,d) if, whenever a high action can
lead the state from u to u′, d can lead T from u to u′′ and u′ and u′ are not
distinguishable by the low user.

private informations (i.e., E′|Π ∼L E′). In such context, the (generalized) un-
winding framework is appealing for many reasons. It allows a universal quan-
tification over an infinite set of attackers. It characterizes persistent security
properties, i.e., properties which hold also when the attack starts in the middle
of the computation. It localizes the reasoning/computation over the system. In
many cases it naturally suggests refinements and correction policies.

2.3 . . . and Back: a Robust notion of Robustness

Our proposal is to use the notion of non-interference and its formalization
through unwinding conditions to define a general framework for robustness.
Informally a system is robust if, when it moves to a perturbed state, the behav-
iors of its critical components remain almost unchanged. In other words, when
a robust system perform a “high level action” which leads to a perturbed state
the “low level behaviors” of its critical components are not influenced. Hence,
in the biological setting high level actions play the role of perturbations and
they interfere only with some specific components of the system, while low
level actions represent the functions to be preserved, where “preserved” mean
having a behaviour which is “equivalent” to the standard one. We try to better
understand this idea on the examples presented in Section 2.1.

Example 3 (Research on Pathogens – part II). Let us consider again the system
infected by a pathogen agent. The immune system and all the organs directly attacked
by the pathogen are high level components, while the organs which we do not want
to be dramatically affected are the low level ones (e.g., heart, lung, kidney, brain).

http://dx.doi.org/10.1016/j.tcs.2015.02.045
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Some changes in the immune system (high actions) could slightly modify the usual
behaviour of the “low level” organs. To be acceptable such changes should be low level
behaviourally equivalent to the usual evolution.

Example 4 (Drug Development – part II). In the anti-inflammatory drugs exam-
ple, COX1 and COX2 inhibition is the high level expected effect of the drugs, while
gastrointestinal and cardiovascular problems are the low level undesirable changes.
The “unwanted interactions” mentioned by Kitano [41] are the interference effects we
intend to measure with low level observational equivalences.

The above examples point out that when we define a notion of robustness
based on non-interference, the low level actions are the ones we want to preserve
and hence, they are the ones we are interested in observing. So, in the biological
setting we call them Exposed (Exp). On the other hand, high level actions are
perturbations usually coming from the environment and, of course, actions of
the system in response to such perturbations. Since, the system has limited
(or possible none) control on external perturbations, we will call them Imposed
(Imp). So we get the following definition of robustness.

Definiton 7 (Robustness through Non-Interference). A biological system S which
can both interact with the behaviour through Imposed Imp actions and perform Exposed
Exp actions is said to be robust through Non-Interference if the Imposed behaviours
do not influence the Exposed ones.

As in the field of Information Flow Security, Non-Interference has been
formalized through (generalized) unwinding conditions, in Systems Biology
we can exploit them to characterize robustness.

Definiton 8 (Robustness through Unwinding). Let T = (V,VI, Imp ∪ Exp,E) be a
multilevel LTS representing a biological system, =Exp,∼Exp

⊆ V ×V be two equivalence
relations, and d⊆ V × V be a transition relation. We say that T is unwinding
robust, denoted as T ∈ W(=Exp,∼Exp,d), if for each i ∈ Imp for each u ∈ V the
following condition holds:

u i
−→ u′ implies ∀v(u =Exp v implies ∃v′(v d v′ ∧ u′ ∼Exp v′))

In order to instantiate the unwinding framework in the biological context
we need to choose the exposed behavioural equivalences ∼Exp and =Exp and
the transition relation d. The exposed behavioural equivalences ∼Exp and =Exp

establish which variations in the behaviour of the system are considered accept-
able. In the literature comparisons between systems under different conditions
are performed either observing simulations of the systems or checking that
some system properties are true in all cases. These are just two possible cases
of exposed behavioural equivalences. As we further explain in the rest of this
section unwindings generalize these approaches. The transition relation d
has a less intuitive meaning. We can view d as a possible delay between the
behaviour of the system running in normal conditions and the system after an

http://dx.doi.org/10.1016/j.tcs.2015.02.045
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imposed change. In the case of biological systems this is coherent with a situa-
tion in which the imposed action speeds up a “reaction”. Consider for instance
the case of a model representing the behaviour of a patient with a bacterial
infection. The imposed action represents the decision of taking an antibiotic
and immediately reaching a recovery state, while the d relation slowly leads
to the recovery state without taking any drug. In this cased clearly represents
a delay. On the other hand, when the imposed action is a perturbation on a
system at the steady-state, the perturbed system needs time to go back to a
steady-state. In the case d is the identity relation, i.e., no action is performed,
while the “delay” needed by the perturbed system has to be absorbed by the
exposed observational equivalence ∼Exp.

Going back to Kitano’s requirements for a robustness framework [40], we
can now say that in our general notion of robustness based on unwinding
conditions, the functions of a system are mainly defined through the exposed
observational equivalences =Exp and ∼Exp, while the perturbations are modeled
through imposed actions. Moreover, as far as the difference between stability
and robustness is concerned, unwinding conditions allow to move inside a
lattice of equivalences where, travelling from finer (qualitative) relations to
coarser (quantitative) ones, stability transits to robustness.

Let us explain in which sense our notion robustness is robust. Recently many
authors have proposed models for robustness in the biological setting (see, e.g.,
[43, 22, 21, 59, 20, 12, 7]). We can distinguish two main approaches: robustness
as “sensitivity” and robustness as “properties preservation”.

Sensitivity analysis aims at explaining the uncertainty in the output of a
mathematical model by means of different sources of uncertainty in its inputs.
It is based on statistical techniques and it has been successfully applied in the
area of control theory to ensure robustness of engineered controllers. More
recently, it has been proposed for the robustness analysis of biological systems
(see e.g., [43]).

As far as properties preservation is concerned, Temporal Logics can be
used as specification languages for expressing the properties of interest. Such
logics have been traditionally used by the computer science community for
the verification of real-time critical systems. Properties of system traces can
be specified by these formalisms and Model Checking algorithms verify them
on a given system (see, e.g, [18] for a general introduction). [55] suggested
to model biological systems through LTS’s and exploit these well-extablished
techniques in the biological setting. In such context robustness has been defined
as a way to “measure the distance” (or in other terms a “degree of satisfaction”)
of a set of traces from a given specification (see, e.g., [22, 21, 59, 20, 12, 7]).
In particular, Fainekos and Pappas defined in [22], and Brim et al. extended
in [12], both a distance δ(s, s′) between two signals and a robustness degree
Dist

(
s, ϕ

)
of the signal s on a Metric Temporal Logics formula ϕ. They prove

that if δ(s, s′) ≤ Dist
(
s, ϕ

)
, then the evaluations of ϕ on both s and s′ give the

same result. Hence, Dist
(
s, ϕ

)
represents the diameter of a maximal flow tube

which includes s and over which the value of ϕ is constant. In other terms,
it represents the minimum distance between s and signals over which ϕ has

http://dx.doi.org/10.1016/j.tcs.2015.02.045
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a different truth value. If Dist
(
s, ϕ

)
= 0, then s is not robust on ϕ. More in

general the following definition applies.

Definiton 9. [Robustness as property preservation [22]] Given a set of perturbations
S, i.e., a set of signals, s is robust on ϕ with respect to S if δ(s,S) = sups′∈Sδ(s, s′) ≤
Dist

(
s, ϕ

)
.

We can embed such notion of robustness in our framework as follows.

Definiton 10 (Signals LTS). A signal s is a function s : R≥0 → Rn which associates
to any time instant t ∈ R≥0 a tuple s(t) = (x1, . . . , xn) of values.

The timed LTS LT(s) = (V,VI, Imp ∪ Exp,E) associated to a signal s is defined as
follows:

- V
def
= {(t, s(t)) | t ∈ R≥0};

- VI
def
= {(0, s(0))};

- Imp
def
= ∅ and Exp

def
= R≥0;

- E
def
=

{((
t1, s(t1)

)
, t2 − t1,

(
t2, s(t2)

))
| t1 ≥ t2

}
.

The untimed LTS is obtained from LT(s) by removing edge labels.

Given a signal s and a set of signals S we build a model containing s and
all the signals of S in which s is interpreted as the standard behaviour, while
the elements of S are the perturbed behaviours which occur after an Imposed
action ι.

Definiton 11 (Set Signals LTS). Let s and S be a signal and a set of signals, respec-
tively. Moreover, let (Vp,Vp

I , Imp∪ Expp,Ep) be the LTS LT(p) for all p in S∪ {s}. The
set signals LTS LT(s,S) is the tuple (V,VI, Imp ∪ Exp,E) where:

- V
def
= {init} ∪ (Vs

× {s}) ∪
⋃

s′∈S(Vs′
× {s′});

- VI
def
= {init};

- Imp
def
= {ι} and Exp

def
= R≥0 ∪ {ε};

- E
def
= {(init, ε, ((0, s(0)), s))} ∪ {(init, ι, ((0, s′(0)), s′)) | s′ ∈ S} ∪ lift (Es, s)∪⋃
s′∈S lift

(
Es′ , s′

)
;

and lift
(
F, q

) def
= {((u, q), α, (v, q)) | (u, α, v) ∈ F}.

From an intuitive point of view, LT(s,S) is the disjoint union of the LTS’s of s
and of each of s′ ∈ S together with a new distinguished node init which reaches
all the nodes of the form (0, r). From the node init, LT(s,S) can reach the LTS
LT(s) by crossing an edge whose label is ε ∈ Exp; on the contrary, all the edges
that connect init to one of the LTS LT(s′), where s′ ∈ S, are labelled by ι ∈ Imp.

We define an unwinding condition which embed the robustness notion
defined in [22] in our framework.

http://dx.doi.org/10.1016/j.tcs.2015.02.045
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Definiton 12. The unwinding condition for the temporal formula ϕ isWϕ = (id,≈ϕ

,
ε
−→) where id is the identity relation and ≈ϕ is the smallest equivalence relation such

that:
(0, s(0)) ≈ϕ (0, s′(0)) iff δ(s, s′) ≤ Dist

(
s, ϕ

)
Proposition 2. Let s be a signal, S be a set of signals, and ϕ a temporal formula. It
holds that s is robust on ϕ with respect to S if and only if LT(s,S) satisfiesWϕ.

Proof. ⇒) In LT(s,S) if u ι
−→ u′, then u = init and u′ is of the form (0, s′(0)

with s′ ∈ S. Hence, init ε
−→ (0, s(0)). Moreover, by Definition 9, it holds that

δ(s, s′) ≤ δ(s,S) ≤ Dist (() s, ϕ) and hence (0, s′(0)) ≈ϕ (0, s(0)). Since id is the
identity relation this is sufficient to prove that LT(s,S) satisfiesWϕ.
⇐) Since LT(s,S) satisfies Wϕ, for each s′ ∈ S we have that (0, s′(0)) ≈ϕ

(0, s(0)). By definition of ≈ϕ this means that for each s′ ∈ S δ(s, s′) ≤ Dist
(
s, ϕ

)
.

Hence, δ(s,S) = sups′∈Sδ(s, s′) ≤ Dist
(
s, ϕ

)
, i.e., the thesis. �

Of course this is a trivial way to map the notion of robustness defined in [22]
in our framework. However, this embedding reveals that we can immediately
generalize this robustness notion and consider sets of formulæ by simply mod-
ifying ≈ϕ. As a matter of fact any set Φ of formulæ over a temporal language
L can be used to define an exposed observational equivalence ≈Φ as follows:

u ≈Φ v iff ∀ϕ ∈ Φ u ≈ϕ v.

In temporal and modal logics, bisimulations are the natural equivalences
that establish which states are indistinguishable with respect to the logic, i.e.,
whenever two states are bisimilar all the formulæ of the logic have the same
truth values on them. So, if we consider as exposed observational equivalence
a bisimulation equivalence over L, we are sure that the perturbed and unper-
turbed systems are undistinguishable with respect to any formula of L. In
this sense unwinding conditions based on bisimulation relations can be seen as
robust robustness definitions.

A strong objection against the use of bisimulation as exposed observational
equivalence for unwinding conditions characterizing robustness concerns the
fact that in the case of real time/space systems and even more crucially in the
case of probabilistic systems (e.g., DTMCs and CTMCs), bisimulation relations
could be too demanding. An answer to this objection comes from bisimulations
notions which take into consideration continous domain, probability, errors
(see, e.g., [11, 68, 65, 23, 64, 28]). In particular, [11] and [68] introduced a
bisimulation distance δB(u, v) between states that can be used to define exposed
observational equivalences as u ≈k v iff δB(u, v) ≤ k, where k is a constant. The
algorithm proposed in [6] can be used to efficiently compute such relations on
DTMC models.

Notice also that in our encoding we used LTS’s in the simplest possible
way. In general, using LTS’s we can finitely represent any regular infinite set S
of perturbed signals. Moreover, with a clever use of exposed actions we can
exploit unwinding robustness also to compare perturbed signals and to analyse
the effects of applying more than one perturbation.
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3 Bisimulation Based Unwindings on Bio-PEPA

As an example of a computational language for modeling biological systems,
we consider in this section the stochastic process algebra Bio-PEPA. A detailed
description of Bio-PEPA is out of the scope of our work and we refer the reader
to Bio-PEPA website1, where complete bibliography, implementations, and
case-studies can be found. The following definitions and notions mainly come
from [27].

Definiton 13 (Bio-PEPA [27]). A well-defined Bio-PEPA sequential component
C is a recursive process of the form:

C
def
=

q∑
i=1

(αi, κi)opiC

where opi ∈ {↑, ↓,⊕,	,�}, αi is an action name, κi is a stoichiometry coefficient, and
αi , α j for i , j.

A well-defined Bio-PEPA model component is a process of the form:

P
def
= C1(x1) BC

L1
. . . BC

Lp−1
Cp(xp)

where the Ci’s are well-defined sequential components which are pairwise different, the
xi’s represent concentrations, and Li’s are sets of actions that appear in P.

We may interpret ↓ as a reactant, ↑ a product,⊕ an activator,	 as an inhibitor,
and � as a generic modifier. Bio-PEPA model components are used to rule the
evolution of a Bio-PEPA system.

Definiton 14 (Bio-PEPA System [27]). A Bio-PEPA systemP is a 6-tuple (V,N ,K ,
F ,Comp,P) whereV is the set of compartments,N is the set of quantities describing
each species,K is a set of parameters, F is the set of functional rates, Comp is the set of
well-defined sequential components, and P consists of a well-defined Bio-PEPA model
over Comp.

The operational semantics of Bio-PEPA is defined through the set of rules,
reported in Table 1 and 2, whose meaning is left to the specific domain. In [17]
these rules are at the basis of the construction of a Stochastic LTS representing
a Bio-PEPA model. In [16] such LTS’s are mapped into CTMCs with levels. In
[27] LTS over Bio-PEPA systems are defined by both discretizing concentrations
through compartments and abstracting the above mentioned rules from quan-
titative aspects. The authors obtain LTS’s whose nodes are tuples of integers
and whose edges have the form α

−→, where α is a reaction name.

1http://homepages.inf.ed.ac.uk/jeh/Bio-PEPA/biopepa.html
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prefixProd (α, κ) ↓ S(l)
(α,[S:↓(l,κ)])
−−−−−−−−→c S(l − κ)

N′S + κ ≤ l ≤ NS

prefixReac (α, κ) ↑ S(l)
(α,[S:↑(l,κ)])
−−−−−−−−→c S(l + κ)

N′S ≤ l ≤ NS − κ

prefixMod (α, κ) op S(l)
(α,[S:op(l,κ)])
−−−−−−−−−→c S(l)

N′S + κ ≤ l ≤ NS if op = ⊕
N′S ≤ l ≤ NS if op = {	,�}

choice1

S1(l)
(α,w)
−−−→c S′1(l′)

(S1 + S2) (l)
(α,w)
−−−→c S′1(l′) choice2

S1(l)
(α,w)
−−−→c S′2(l′)

(S1 + S2) (l)
(α,w)
−−−→c S′2(l′)

coop1

P1
(α,w)
−−−→c P′1

P1 BC
L

P2
(α,w)
−−−→c P′1 BCL P2

a < L
coop2

P2
(α,w)
−−−→c P′2

P1 BC
L

P2
(α,w)
−−−→c P1 BC

L

P′2
a < L

coop3

P1
(α,w1)
−−−−→c P′1 P2

(α,w2)
−−−−→c P′2

P1 BC
L

P2
(α,w1::w2)
−−−−−−→c P′1 BCL P′2

a ∈ L
constant

S(l)
(α,[S:op(l,κ)])
−−−−−−−−−→c S′(l′)

C(l)
(α,[C:op(l,κ)])
−−−−−−−−−→c S′(l′)

C def
= S

Table 1: The operational semantics of Bio-PEPA model components [27]

Final

P
(α,w)
−−−→c P′(

V,N ,K ,F ,Comp,P
) (α,rα[w,N ,K ])
−−−−−−−−−→s

(
V,N ,K ,F ,Comp,P′

)

Qual

P
(α,w)
−−−→c P′(

V,N ,K ,F ,Comp,P
) α
−→

(
V,N ,K ,F ,Comp,P′

)
Table 2: The operational semantics of Bio-PEPA systems [27]

Example 5 (A simple Bio-PEPA model). Let us consider one of the examples pre-
sented in [27]. It represents a system with 3 species interacting through 3 reactions.

A = (α1, 1) ↓ A + (α2, 1) ↑ A + (α3, 2) ↓ A

B = (α3, 1) ↑ B

C = (α1, 1) ↑ C + (α2, 1) ↓ C

P = A(xA) BC
∗

B(xB) BC
∗

C(xC)

where BC
∗

denote the synchronization on all actions.

The possibility of associating different semantics to Bio-PEPA systems al-
lows to exploit different behavioural equivalences on them. While lumpability
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relations can be computed on the CTMCs associated to Bio-PEPA systems [16],
a qualitative notion of bisimulation has been introduced in [27], where LTS’s are
first abstracted from level quantities, then compared using strong bisimulation.

We introduce here a simple instance of our framework over Bio-PEPA pro-
cess algebra. First we extend the standard notation of Bio-PEPA systems. We
partition the set of species into two sets Imp and Exp. As a consequence we
partition the set A of action names into two sets Imp and Exp of imposed and
exposed actions, respectively, as follows: each action which occurs in the defi-
nition of species of Imp is in Imp, all the remaining actions are in Exp.

Example 6. Let us consider the Bio-PEPA model specified in Example 5. If Imp = {C}
and Exp = {A,B}, then Imp = {α1, α2} and Exp = {α3}. From now on we will use this
system as illustrative example

As observed in [27], given a system P we can denote the states of its LTS
by using tuples of integers representing the levels of the species (see Example
7). We use the same convention, but we distinguish between species of Imp
and Exp, i.e., our tuples have the form (i1, . . . im, e1, . . . en), where i1, . . . , im are the
levels of the species of Imp, while e1, . . . , en are the levels of the ones of Exp.

Definiton 15 (LTS of P [27]). The LTS L(P) of a Bio-PEPA system P is the LTS
(P, {P}, Imp ∪ Exp,→) where:

- P is the set of all the possible Bio-PEPA systems;

- Imp ∪ Exp is the set of admissible actions;

- → is the relation associated to the rule Qual of the Table 2.

WheneverP → P′,P′ differs fromP only in the levels of some components.
Hence, the state of L(P) can be represented by a vector of levels. Moreover,
since all the species range over a finite set of levels, the LTS of a Bio-PEPA
system is finite.

Example 7 (LTS of a Bio-PEPA system). Let us reconsider the Bio-PEPA system
described in Example 6. When the concentration level admitted for each species ranges
in [0, 4] and the evolution begins from the state xA = 4, xB = 0, and xC = 0, the LTS
of it is the transition system P(4, 0, 0[4, 4, 4]) depicted in Fig. 3. We recall that in this
LTS we have Imp = {α1, α2} and Exp = {α3}.

We define the relations which equates nodes from an exposed point of view
as follows. We use the notation u→ u′ to denote u α

−→ u′ for some α ∈ A.

Definiton 16 (�Exp and ≈Exp). Let u, v be two states of L(P). We say u �Exp v iff u
and v coincide on the species of Exp. A strong exposed bisimulation over L(P) is a
symmetric binary relation R over L(P) such that for each (u, v) ∈ R:

- u �Exp v;

- if u→ u′, then v→ v′ and (u′, v′) ∈ R.
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(4, 0, 0)start

(2, 1, 0)

(0, 2, 0)

(3, 0, 1)

(1, 1, 1)

(2, 0, 2)

(0, 1, 2)

(1, 0, 3) (0, 0, 4)

α3

α3

α3 α3

α1

α2

α1

α2

α1

α2

α1

α2

α1

α2

α1

α2

Figure 3: The transition system P(4, 0, 0[4, 4, 4]) of Example 5.

Two states u and v are strongly exposed bisimilar, denoted by u ≈Exp v, if there
exists a strong exposed bisimulation R such that (u, v) ∈ R.

It is easy to prove that ≈Exp is the largest exposed bisimulation and it is an
equivalence relation.

We are now ready to define our instance of the generalized unwinding
framework.

Definiton 17 (Quantitative Unwinding). P satisfies the quantitative unwinding
if L(P) ∈ W(�Exp,≈Exp,→).

Unwinding conditions can be introduced over any operational semantics
based on LTS’s. The advantages of considering unwinding conditions over
process algebras such as Bio-PEPA are twofold. On the one hand, we can prove
properties over the systems satisfying the unwinding conditions in terms of
their interactions with other systems. In particular, we can prove that these
systems are not critically affected by hostile environments (see Theorem 1).
On the other hand, we can exploit compositionality properties of the syntactic
operators to both reduce the complexity of checking the unwinding condition
and to suggest corrections when unwinding is not satisfied.

Theorem 1. It holds that L(P) ∈ W(�Exp,≈Exp,→) if and only if for each u, v ∈ L(P)
if u �Exp v, then u ≈Exp v.

Proof. ⇒) Let S = {(u, v) | u, v ∈ L(P) and u �Exp v}. We prove that S is a strong
exposed bisimulation up to ≈Exp. Let (u, v) ∈ S, i.e., u �Exp v. If u ε

−→ u′ with
ε ∈ Exp, then since u �Exp v and both the side-coditions and the resultant of
applying an ε transition only depend on Exposed quantities, it holds that there
exists v′ such that v ε

−→ v′ and u′ �Exp v′, i.e., (u′, v′) ∈ S. On the other hand,
if u ι
−→ u′ with ι ∈ Imp, then, since L(P) ∈ W(�Exp,≈Exp,→) and u �Exp v, there

exists v′ such that v→ v′ and u′ ≈Exp v′.
⇐) Let u ι

−→ u′ with ι ∈ Imp and u �Exp v. Since u �Exp v implies u ≈Exp v, we
get that v→ v′ with u′ ≈Exp v′. �
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The above theorem states that changes in the imposed environment of a
system satisfying the unwinding condition do not affect the exposed behaviour
of the system itself. Moreover, it suggests an efficient algorithm for testing
L(P) ∈ W(�Exp,≈Exp,→) as explicitly stated in the following corollary.

Corollary 1. It holds that L(P) ∈ W(�Exp,≈Exp,→) if and only if L(P)/ ≈Exp coin-
cides with L(P)/ �Exp.

Proof. This is an immediate consequence of Theorem 1 and of the fact that
u ≈Exp v implies u �Exp v. �

Hence, to test whether L(P) ∈ W(�Exp,≈Exp,→) one should simply start
a partitioning bisimulation algorithm, such as Paige-Tarjan algorithm [53], on
L(P) to compute≈Exp. If the algorithm terminates without performing any split,
then L(P) satisfies the unwinding condition. On the other hand, if it performs
a split, we can immediately stop the computation and return L(P) <W(�Exp

,≈Exp,→). Since, such bisimulation algorithms can work both symbolically and
on-the-fly, they allow to test the unwinding condition without fully computing
L(P) and avoid space-explosion problems.

Example 8. If we consider the system of Example 6, we get that it satisfies the
quantitative unwinding, since as shown by Figure 3 in this case both �Exp and ≈Exp

are the identity relation.

Notice that if a system is inW(�Exp,≈Exp,→), then imposed species cannot
produce/consume exposed species, unless the same production/consumption
can be also achieved exploiting only exposed species. In the case of closed
chemical systems satisfying the conservation mass law this corresponds to im-
posing a complete separation between exposed and imposed species. However,
this is not the case in biological systems where the presence of degradation laws
make systems non-conservative.

Example 9. Consider a simple system in which a species E ∈ Exp can be produced
from a reaction which involves a species I ∈ Imp. Moreover, both species can degrade.

E = (ε, 1) ↓ E + (ι1, 1) ↑ E
I = (ι1, 1) ↓ I + (ι2, 1) ↓ I

No matter which are the boundary levels defining such system, if its LTS includes one
ι1 action, then the system does not satisfy the unwinding condition. Intuitively, if I is
a vaccine (or a pathogen), since it can produce a specie in Exp, it interferes with the
system’s observable behaviour. We obtain the same result also if ι1 would require the
presence of other species of Exp.

On the other hand, if we allow the presence of another reaction from which E can
be produced, then we obtain a system which satisfies the unwinding condition.

E = (ε, 1) ↓ E + (ι1, 1) ↑ E + (δ, 1) ↑ E
I = (ι1, 1) ↓ I + (ι2, 1) ↓ I
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Since ≈Exp is qualitative with respect to the rates, this second system satisfies the
unwinding condition for each possible values of ι1 and δ. Imposing a more qualitative
equivalence we would obtain constraints on these values.

Let us now introduce a second unwinding condition, called quasi-quantitative
on Bio-PEPA LTS’s. At a first sight this could seem less demanding than quan-
titative unwinding however we will show that this is not the case.

Definiton 18 (+Exp and uExp). Let u, v be two states of L(P). We say u +Exp v iff u
and v have the same sets of Exp labels on outgoing edges. A strong quasi-exposed
bisimulation over L(P) is a symmetric binary relation R over L(P) such that for each
(u, v) ∈ R:

- u +Exp v;

- if u→ u′, then v→ v′ and (u′, v′) ∈ R.

Two states u and v are strongly quasi-exposed bisimilar, denoted by u uExp v, if
there exists a strong exposed bisimulation R such that (u, v) ∈ R.

Definiton 19 (Quasi-Quantitative Unwinding). P satisfies the quasi-quantitative
unwinding if L(P) ∈ W(+Exp,uExp,→).

Even if �Exp implies +Exp, the following examples show thatW(+Exp,uExp,→
) +W(�Exp,≈Exp,→).

Example 10. Let us consider the Bio-PEPA model defined as follows:

A = (ε1, 2) ↓ A + (ε2, 3) ↓ A

B = (ε1, 5) ↑ B + (ε2, 6) ↑ B + (ι, 6) ↓ B

C = (ι, 1) ↑ C

P = A(xA) BC
∗

B(xB) BC
∗

C(xC)

where A and B are exposed species, while C is an imposed species.
The LTS P(3, 0, 0[6, 6, 6]) that is associated to above model when the concentra-

tion level admitted for each species ranges in [0, 6] and the evolution begins from the
state xA = 3, xB = 0, and xC = 0 is depicted in Figure 4. It is easy to see that
P(3, 0, 0[6, 6, 6]) ∈ W(�Exp,≈Exp,→) because the states in P(3, 0, 0[6, 6, 6]) are pair-
wise distinct with respect to the exposed species. On the contrary, (1, 5, 0), (0, 6, 0),
and (0, 0, 1) have the same exposed actions and, thus, (1, 5, 0) +Exp (0, 6, 0). How-
ever, (0, 6, 0) ι

−→ (0, 0, 1), while there is no transition leaving (1, 5, 0). It follows that
P(3, 0, 0[6, 6, 6]) ∈ W(+Exp,uExp,→) does not hold.

Notice that also the system of Example 6 satisfies the quantitative unwinding
(as proved in Example 8), but not the quasi-quantitative unwinding. In particular,
(0, 0, 4) +Exp (0, 2, 0) and (0, 0, 4) reaches (1, 0, 3) through an imposed action, but
(0, 2, 0) does not reach any state equivalent to (1, 0, 3), since it does not reach any state.
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(3, 0, 0)start

(1, 5, 0)

(0, 6, 0) (0, 0, 1)

ε1

ε2 ι

Figure 4: The LTS P(3, 0, 0[6, 6, 6]) of the Bio-PEPA model described in Exam-
ple 10.

Given a systemP the LTS L(P) can be very large. Moreover, it distinguishes
too precisely on the basis of quantitative information also LTS’s which represent
the same qualitative behaviours. The qualitative LTS of P is obtained as a
quotient of L(P) in which nodes having the same capabilities (outgoing actions)
are identified.

Definiton 20 (QLTS of P). Let P be a Bio-PEPA system. Given two states u, v of
L(P) we say that u + v iff u and v have the same sets of labels on outgoing edges.

The qualitative LTS QL(P) of a Bio-PEPA system is the LTS L(P)/ +, where
[u] α
−→ [u′] if and only if there exist u ∈ [u] and u′ ∈ u′ such that u α

−→ u′ in L(P).

Since all the states in any class ofP/ + share the same admissible actions, we
can denote each node of QL(P) by using the set of these actions. The qualitative
semantics defined in [27] for Bio-PEPA systems is close to our definition, with
the difference that in [27] for each pair of classes [u], [v] in QL(P) there exists at
most one edge from [u] to [v] whose label is the set of actions which allow to
move from [u] to [v].

Example 11 (QLTS of a Bio-PEPA system). Let us reconsider the Bio-PEPA system
described by Example 5. When the concentration level admitted for each species ranges
in [0, 4] and the evolution begins from the state xA = 4, xB = 0, and xC = 0, the QLTS
of it is the transition system depicted in Figure 5.

In order to define a generalized unwinding condition over QL(P) we intro-
duce the following relations. With a slight abuse of notation we use the same
symbols used for quasi-quantitative unwinding.

Definiton 21 (+Exp and uExp). Let [u], [v] be two states of QL(P). We define the
relation +Exp as follows: for each [u], [v] ∈ QL(P) it holds that [u] +Exp [v] iff [u] and
[v] have the same sets of Exp labels on outgoing edges.

We define the relation uExp as follows: for each [u], [v] ∈ QL(P) it holds that
[u] uExp [v] iff there exist u′ ∈ [u] and v′ ∈ [v] such that u′ uExp v′ holds in L(P).

Notice that [u] +Exp [v] in QL(P) if and only if u +Exp v in L(P). Both +Exp and
uExp are equivalence relations on QL(P). Exploiting such relations we obtain
the following notion of qualitative unwinding.
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Figure 5: The qualitative transition system of the Bio-PEPA system described
in Example 5.

Definiton 22 (Qualitative Unwinding). P satisfies the qualitative unwinding if
QL(P) ∈ W(+Exp,uExp,→).

Example 12. The system of Example 6 does not satisfy the qualitative unwinding
since as shown in Figure 5 {α1, α2} +Exp

∅ and {α1, α2} reaches other states through
imposed actions, while ∅ does not reach any state.

This third instance of unwinding is an over-approximation of the previous
one in the following sense.

Theorem 2. If L(P) ∈ W(+Exp,uExp,→), then QL(P) ∈ W(+Exp,uExp,→).

Proof. Let [u] ι
−→ [u′], with ι ∈ Imp, and [u] +Exp [v]. This means that there

exists u ∈ [u] and u′ ∈ [u′] such that u ι
−→ u′ and u +Exp u +Exp v. Hence,

since L(P) ∈ W(+Exp,uExp,→) we have that v → v′ and u′ uExp v′. Hence, by
definition of uExp over QL(P) we have that [u′] uExp [v′]. �

So, since QL(P) is usually significantly smaller than L(P) this result can be
fruitfully exploited when L(P) is too large. We will do this in the next section
on a real world case-study.

3.1 Neurospora Crassa circadian network in Bio-PEPA

The Neurospora crassa is a fungus whose circadian network has been widely
investigated and almost completely brought to light (e.g., see [47]). In total
darkness this organism generates spores, a process called conidiation, every
22 hours. Both light and temperature affect the rhythm of this cycle. The
alternation between day and night causes spore production in the middle of
the night during all the year, independently on the length of daylight. From
the metabolic point of view, the conidiation period is ruled by the white collar-1
gene and the rhythmic gene frequency frq. The protein associated to the white
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collar-1 gene, WC-1, activates the transcription of frq, while the protein product
of frq both interacts with frq-bound WC-1 (PW) inhibiting the expression of
frq and positively regulates the expression of WC-1. The light promotes the
binding between a flavin chromophore and WC-1 (PWL) which increases the
transcription of frq.

Akman et al. presented in [1] a Bio-PEPA model of the Neurospora crassa
circadian network accounting 22 actions and 9 species. The effects of light on the
system are described by a rate change in the reaction that produce the species
PWL out of PW. We call this reaction PWtoPWL. The authors investigated
the system in two different light conditions: constant darkness (D) and light
and dark 12-hour alternation (LD). We considered this model to prove the
effectiveness of our framework. We focused on constant darkness (D) and
constant light conditions (L) and we formally proved that Imp = {PWtoPWL} is
relevant for the system. While this result is not surprising, it is worth to notice
that it was obtained by analyzing exclusively the (Q)LTS’s of the system and it
does not rely on reaction rates.

The full LTS of the investigated Bio-PEPA model may contain up to 2103

nodes and, thus, it is not feasible for the analysis. However, the corresponding
QLTS has at most 2|A| nodes and we can to compute it directly. We wrote a
Python program to assemble the QLTS of any Bio-PEPA system avoiding the
LTS construction and we applied it to the system in both D and L conditions. The
program computes the set of species constraints corresponding to each node of
the QLTS and reduces the reachability of the region satisfying these constraints
to a set of Interger Linear Programming problems having the following form:

Objective: min
∑

i

ni


l0
...
ln

 −


b0
...

bn

 ≤∑
i

ni


ei,0
...

ei,n

 ≤


u0
...

un

 −


b0
...

bn

 (1)

where the natural variable ni represent the number of repetitions of the action
αi, ei, j is the effect of the action αi on the species s j, and b j and [l j,u j] are the
LTS starting value and the admissible interval for the species s j, respectively.
Whenever System (1) is not satisfiable, there is no way to reach the considered
QLTS state from the starting value. On the contrary, other tests are necessary
to verify that the proposed path does not cross the imposed boundaries.

By using the developed program, we built two QLTS’s, QLD and QLL, rep-
resenting the Bio-PEPA model in D and L conditions, respectively. The former
has 3969 nodes and misses the PWtoPWL action, the latter has 11529 nodes and
uses that action. We know that if the PWtoPWL action is not relevant for the
system evolution, then, whenever a state u performs a PWtoPWL transition and
reaches u′, then each other state v such that u +Exp v should be able to perform
an action and reaches a v′ such that u′ uExp v′.

We projected the QLL on PWtoPWL by joining all the nodes that differ
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exclusively for that label i.e., we merged all the pairs of nodes of QLL, v and v′,
such that v\{PWtoPWL} = v′\{PWtoPWL}. The obtained QLTS, named QL′L, has
8505 nodes and we observed that some of the nodes in QL′L are not present in
QLD. Moreover, both QLD and QLL are strongly connected (i.e., all the nodes are
reachable from each other) and, hence, whenever a node is reachable from the
considered starting conditions, it is reachable also from any other admissible
value. It follows that there exist states in QL′L, and, as a consequence, in both
QLL and QLLD, that are not reachable if we avoid the action PWtoPWL (i.e. the
model is in D condition). Thus, the investigated system in LD conditions does
not satisfy the qualitative unwinding and, by Theorem 2, does not satisfy the
quasi-quantitative unwinding too. As noticed above, this means that PWtoPWL
is relevant for the evolution of the Neurospora crassa model in LD conditions or
in other terms Neurospora crassa is not robust with respect to perturbations on
PWtoPWL action.

4 Unwinding Conditions over Hybrid Automata

Hybrid models, such as hybrid automata, mix mathematical and computa-
tional models. The discrete part of hybrid models is computational while the
continuous one is mathematical.

Many different definitions of hybrid automaton have been suggested in the
literature so far [3, 34, 50, 57, 35, 15, 13]. In this paper, we rely on a definition
which is close to the one given by Lynch et al. [48] as the unwinding framework
that we are proposing fits into it in a natural way.

Definiton 23 (Hybrid Automata). A hybrid automaton (HA)A = (Imp,Exp,Q,
Θ, Imp,Exp−,D,T ) consists of:

- Two disjoint sets of variables: a set Imp of imposed variables and a set Exp of
exposed variables. Var

def
= Imp ∪ Exp;

- A set Q ⊆ val(Var) of states, where val(Var) is the set of values that Var can
assume;

- A nonempty set Θ ⊆ Q of start states;

- Two disjoint sets of actions: a set Imp of imposed discrete actions and a set
Exp− of exposed discrete actions. Act

def
= Imp ∪ Exp−;

- A set D ⊆ Q ×Act ×Q of discrete transitions. The action a is enabled in x if
there exists a x′ such that (x, a, x′) ∈ D;

- A setT of trajectories for Var. Each τ ∈ T is a function whose domain, dom(τ),
is an initial subset ofR≥0 and whose image set is a subset of Q, i.e., τ(t) ∈ Q, for
all τ ∈ T and all t ∈ dom(τ). The following axioms must hold:
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T1 (Prefix closure)
If τ ∈ T , dom(τ′) ⊆ dom(τ), and τ′(t) = τ(t) for all t ∈ dom(τ′), then
τ′ ∈ T ;

T2 (Suffix closure)
If τ ∈ T and t′ ∈ dom(τ), then τ′(t)

def
= τ(t + t′) belongs to T ;

T3 (Concatenation closure)
Let S = {τ0, τ1, τ2, . . .} be a subset of T such that dom(τi) has the form
[0, tmax,i] and τi(tmax,i) = τi+1(0) for all i + 1 < |S|. Then the trajectory:

(τ0 _ τ1 _ τ2 _ . . .)(t)
def
=

{
τ0(t) if t ∈ dom(τ0)
(τ1 _ τ2 _ . . .)(t − tmax,0) otherwise

belongs to T .

The trajectories can be given in implicit form, for instance, as a differential
system: the set T contains all the solutions of the provided differential system.
In such cases, the computation of the trajectories themselves is not always trivial
and may be not even computable.

The semantics of hybrid automata are usually given in terms of LTS by
associating a hybrid automaton with an infinite LTS whose nodes are the states

of the automaton and edges have the form t
−→C or e

−→D. As the continuous
transition relation t

−→C concerns, q t
−→C q′ holds if and only if there exists a τ ∈ T

such that dom(τ) = [0, tmax], τ(0) = q and τ(tmax) = q′. Regarding the discrete
transition relation t

−→D, q a
−→D q′ holds if and only if (q, a, q′) ∈ D.

Definiton 24 (Hybrid Automata - Semantics). Given a hybrid automaton H =
(Imp,Exp,Q,Θ, Imp,Exp−,D,T ), the LTS associated to H is the tuple L(H) = (Q,Θ,
Imp∪Exp,R), where Exp = Exp−∪R≥0 and R

def
= {(q, α, q′) |q α

−→C q′∧α ∈ R≥0 or q α
−→D

q′ ∧ α ∈ Imp ∪ Exp−}.

In the above definition we consider all the actions associated to the contin-
uous transitions, i.e., the positive real numbers labeling the transition relation
−→C, as exposed actions. This is an arbitrary choice. Intuitively we interpret
all the continuous evolutions as internal transitions not influenced by the envi-
ronment. The imposed interactions with the environment are represented only
through some discrete transition labels. For those who are more familiar with
the definition of hybrid automata given in [3, 34], this corresponds to say that
the imposed interactions cause a change of location in the automaton and hence
a possible change in the differential laws regulating the continuous evolution.

Example 13 (A Simple Thermostat Model). Let us model a simple thermostat by
using a hybrid automaton. The discrete variable mode represents the state of the heater
(i.e., mode = 1 means “heater on” and mode = 0 “heater off”), while the variable xT is
associated to the temperature. Whenever the temperature reaches 15 ◦C, the thermostat
activates the heater (exposed action switchOn), while, if the temperature rises up to
20 ◦C, the heater is turned off (exposed action switchOff). The users can switch on and
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off the heater independently from the thermostat status by using the imposed actions
forceOn and forceOff, respectively. The two constants kr and kh are the dispersion and
heating coefficients, respectively, while the variable X represents the room temperature.
Initially, the heater is switched off and the temperature is 17 ◦C.

Meaning Actions
Turn off the heater switchOff
Turn on the heater switchOn
Force off the heater forceOff
Force on the heater forceOn

(a) Actions

Imp \ Exp Preconditions Action Effects
Exp (mode = 1) ∧ (xT ≥ 20) switchOff mode← 0
Exp (mode = 0) ∧ (xT ≤ 15) switchOn mode← 1
Imp mode = 1 forceOff mode← 0
Imp mode = 0 forceOn mode← 1

(b) Transitions

Trajectories
ẋT = kh ∗mode − kr ∗ xT

˙mode = 0

(c) Trajectories

Meaning Variables
Temperature xT : R← 17,
Heater state mode : {0, 1} ← 0

(d) Internal Variables

Table 3: A formal specification of the hybrid automaton representing a simple
thermostat.

In the context of hybrid automata, (bi)simulation reductions [4, 44], series of
abstractions [67], piecewise linear approximations [29, 30] have been proposed
in the literature to abstract the infinite LTS representing the semantics of an
hybrid automaton into finite ones.

We now introduce an unwinding condition over hybrid automata. Notice
that the unwinding conditions defined over LTS’s generated from Bio-PEPA
systems can be used also on LTS’s generated from hybrid automata. As a
matter of fact one of the advantages of unwinding conditions is that they are
defined on LTS and hence they do not depend on the modeling language from
which the LTS has been inferred. However, we prefer to introduce here a
further unwinding condition to give to the reader an idea of the flexibility of
the framework. As done in the quantitative unwinding in the previous section,
we consider two nodes of the LTS to be “equal” if the have the same values
on the exposed variables . We consider them to be “equivalent” if using only
exposed transitions they generate the same sequences of exposed variables
values. Finally, the transition relation d is a generic exposed transition.
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Definiton 25 (�Exp,�Exp,→Exp and→>t). Let H be a hybrid automaton and L(H) =
(Q,Θ, Imp ∪ Exp,R) be the LTS associated to H. The relation �Exp

⊆ Q ×Q is defined
as follows: u �Exp v if and only if the exposed variables have the same values on u and
v. A strong bi-exposed bisimulation over L(H) is a symmetric binary relation R
over L(H) such that for each (u, v) ∈ R:

- u �Exp v;

- if u ε
−→ u′ with ε ∈ Exp, then v ε

−→ v′ and (u′, v′) ∈ R.

Two states u and v are strongly bi-exposed bisimilar, denoted by u �Exp v if there
exists a strong exposed bisimulation R such that (u, v) ∈ R.

The relations→Exp
⊆ Q×Q and→>t

⊆ Q×Q, where t ∈ R≥0, are defined as follows:
u→Exp v if and only if there exists ε ∈ Exp such that u ε

−→ v and u→>t v if and only if

there exists t′ > t such that u t′
−→ v.

Notice that �Exp is the same relation introduced on LTS’s of Bio-PEPA sys-
tems. We are now ready to introduce two unwinding conditions. We the first
one is called bi-exposed since exposed actions are involved in the definition of
both the equivalence relation �Exp and the transition relation →Exp. Once the
system has moved from u to u′ through an imposed action if u �Exp v, then v
has to reach v′ through an exposed action and u′ and v′ are compared only on
the basis of exposed values and exposed transitions. The second one is called
delayed unwinding since the transition relationd is instantiated as→>t which
represent a delay of time greater than t. In this second instance u′ and v′ are
compared on the basis of all transitions through the relation ≈Exp introduced in
the previous section.

Definiton 26 (Bi-Exposed Unwinding and Delayed Unwinding). H satisfies
the bi-exposed unwinding if L(H) ∈ W(�Exp,�Exp,→Exp). H satisfies the t-delayed
unwinding if L(H) ∈ W(�Exp,≈Exp,→>t).

In the next section we apply bi-exposed unwinding in the analysis of in-
fluenza models, proving that, as one could expect, influenza is not robust with
respect to antiviral and interferons treatments. Moreover, t-delayed unwinding
allows to show that also if we refer to a single type of treatment (e.g., antiviral)
the result strongly depends on the time at which the treatment is imposed.

4.1 Influenza Kinetics Analysis through hybrid automata

Influenza is an infectious disease caused by a family of RNA viruses known
as influenza viruses. Its symptoms include fever, weakness, and coughing
and, in the most acute form, it can bring a severe threat to the respiratory
system. Worldwide, 250,000 to 500,000 deaths per years are ascribed to the
complications of the seasonal influenza virus [52] and the infamous Spanish flu
of the 1918 infected 500 million people leading to the death of 20 to 100 million
of them [37, 66].
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Understanding the dynamics of infection plays a crucial role in avoiding
or, at least, controlling possible influenza pandemics. Many models have been
suggested so far to achieve this goal [46, 5, 33, 63, 54, 49].

Handel et al. deal with the effects of the most effective drugs against in-
fluenza, the Neuraminidase inhibitors (NI), and take into account the rise of virus
strains resistant to this antiviral [33]. The model distinguishes the load of
viruses that are NI-sensitive (Vs) from that of viruses that are NI-resistant (Vr).
Uninfected cells (U) are infected by either NI-resistant virus or NI-sensitive
virus at a rate proportional to the correspondent virus load and became NI-
resistant infected (Ir) or NI-sensitive infected (Is), respectively. Both NI-resistant
and NI-sensitive infected cells increase virus load of the respective strain. More-
over, due to natural mutations, a fraction of the viruses released by NI-sensitive
infected cells belongs to the NI-resistant strain. Whatever is the strain of the
viruses produced by NI-sensitive infected cells, NI represses their release at
a rate that is proportional to the efficiency of the antiviral itself. A natural
immune response (X) restrains the increase in viral load in all the strains too.
As it occurs also to the virus strains, both the kinds of infected cells share the
same decay rate.

On the contrary, Saenz et al. consider the interactions between viral agents
and immune system and describe the antiviral response modulated by the
type I interferon (IFN-α/β) which triggered by infection [63]. In their model,
uninfected cells (U) are infected at a rate proportional to the virus load (V).
Newly infected cells spend some time in an eclipse phase (E1) and then they
move to a state (I), having a limited span life, in which they increase the virus
load. Infective cells produce IFN (F) which is able to bring uninfected cells
into a prerefractory state (W) and, possibly, in a refractory cells (R) at a rate
proportional to F itself. Whenever cells in the prerefractory state are infected,
they move to an eclipse phase (E2), in which they release IFN, and, eventually,
become infective (I).

IFNs have been long used as a treatment for various autoimmune, viral,
and tumor diseases [58, 73, 45, 32, 56, 36]. So, one may wonder if IFNs can be
used as antiviral drugs and, in particular, whether INFs and NIs are equivalent
or not with respect to the virus load, i.e., if IFNs can be used in place of NIs,
and viceversa, in influenza treatment. Notice that, whatever the answer is,
the NI-based therapies will be still preferable to the IFN-based ones in normal
condition since the latter exhibit many serious side effects in humans [69, 71, 26]
and they are less cost-effective than the former. However, above questions
maintain some relevance in the case of a pandemic produced by a viral strain
that is resistant to the antivirals.

We developed a model that takes into account the effects of both IFN and NI
on the virus load. As done in [33], we admit the existence of a NI-resistant strain
and, analogously to [63], we represent the antiviral response due to IFN. The
trajectories, the actions, and the transitions of our model are reported in Table 6.
The values of their parameters are dependent on the virus strain and on the
host species; we focused on human hosts infected with influenza A/Texas/91
(H1N1) and we fit our model on the data produced by the IR kinetic model
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Meaning Variables
Uninfected cells U : R≥0 ← 4.0 ∗ 108

Cells infected by virus sensitive to NI E1,s : R≥0 ← 0.0
in eclipse phase

Cells infected by virus resistent to NI E1,r : R≥0 ← 0.0
in eclipse phase

Prerefractory cells infected by virus E2,s : R≥0 ← 0.0
sensitive to NI in eclipse phase

Prerefractory cells infected by virus E2,r : R≥0 ← 0.0
resistent to NI in eclipse phase

Cells in prerefractory state W : R≥0 ← 0.0
Refractory cells R : R≥0 ← 0.0
Cells infected by virus sensitive to NI Is : R≥0 ← 0.0
Cells infected by virus resistant to NI Ir : R≥0 ← 0.0
Virus sensitive to NI Vs : R≥0 ← 7.7 ∗ 10−3

Virus resistant to NI Vr : R≥0 ← 0.0
Interferons (IFN-α/β) F : R≥0 ← 0.0
Immune response X : R≥0 ← 3.4 ∗ 10−1

Elapsed time T : R≥0 ← 0.0
Antiviral injection mode (A = 1 injecting NI, ) A : {0, 1} ← 0

A = 0 not injecting NI)
Model mode (M = 0 treatment to be selected, M : [0, 3]← 0

M = 1 NI-based treatment,
M = 2 IFN-based treatment,
M = 3 treatment concluded)

Table 4: Variables of the hybrid automaton modeling the influenza kinetics.

described in [33] by minimizing the cost function:

SSE def
=

∑
i

(
log Vs(i) − log V̂s(i)

log maxi V̂s(i)

)2

+
∑

i

(
log Vr(i) − log V̂r(i)

log maxi V̂r(i)

)2

+ (D − D̂)2, (2)

where Vs, Vr, and D are the number of NI-sensitive virus, the number of NI-
resistant virus, the total death cell estimated by our model, respectively, while
V̂s, V̂r, and D̂ are the same quantities evaluated by the IR model suggested
in [33].

Notice that the IR model does not take into account IFN and, thus, the
value estimated for the parameters that directly connected with IFN, i.e., q and
ψ, may need some scaling to match the real kinetics of interferons in humans
infected by H1N1. Nevertheless, our model exhibits the same IFN peek as
the one proposed by Saenz et al. in the case of an A/equine/Kildare/89 (H3N8)
infection [63].

Our hybrid model chooses one treatment between the IFN-based and the NI-
based one by using either the action treatIFN or the action treatNI, respectively.
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Symbol Meaning Value Source
ki Eclipse phase period 2 Days−1 [38, 63]
a Prefactory period 4 Days−1 [19, 63]
µ Mutation rate 10−5 [33]
σ Fitness cost of resistance 0.1 [33]
n IFN-reduced production 1 [63]
m IFN-reduced infectivity 1 [63]
β Virus infectivity 1.18368 ∗ 10−1 Fitted
p Virus production per cell 5.96623 ∗ 10−4 Fitted
q IFN induction per cell 5.18653 ∗ 10−11 Fitted
ψ IFN efficiency 3.68109 Fitted
dI Infected cell death rate 1.23661 ∗ 10−1 Fitted
dV Virus death rate 0.80710 ∗ 10−1 Fitted
dF IFN clearance rate 1.80413 Fitted
r Immune response growth rate 1.14835 Fitted
εNI Antiviral efficacy 0.97647 Fitted

f IFN released per injection 6 Arbitrary

Table 5: Trajectory parameters of the hybrid automaton modeling the influenza
kinetics.

In the former case, the effect of the antiviral is assumed to be constant along all
the treatment; in the latter case, the host is injected with an arbitrary dose f of
IFN every ti days from the begin of the treatment until the end of it. Figure 6
represents the evolution of the two variables Vs (plain line) and Vr (dotted line)
under both the considered treatments.

First of all, we may want to decide whether the effectiveness of two treat-
ments depends or not on the timing. We notice that the LTS associated to our
hybrid model does not satisfy the 0.5-delayed unwindingW(�Exp,≈Exp,→>0.5).
As the matter of the facts, the peek of the Vr load observable by starting the
NI-based treatment at the time of the infection can be obtained neither with dif-
ferent timing nor by using the IFN-based treatment (see Figure 6). This proves
that the effectiveness of the treatments are time-dependent.

Another question that deserves attention is whether IFN and NI are equiva-
lent or not with respect to the virus level. We consider treatNI being an imposed
action and verify that the LTS associated to the proposed influenza model does
not satisfies the bi-exposed unwindingW(�Exp,�Exp,→Exp), i.e., it is not possi-
ble to obtain the same virus load produced by the NI-treatment, whenever it
has began, in the same time.

More details about this example are given in [14].
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Trajectories
U̇ = −β(Vr + Vs)U − φFU

˙E1, j = βV jU − k1E1, j
˙E2, j = mβV jW − k2E2, j

Ẇ = φFU −mβ(Vr + Vs)W − aW
Ṙ = aW
İ j = k1E1, j + k2E2, j − dII j
V̇s = (1 − A ∗ εNI)(1 − µ)pIs − dVVs − XVs
V̇r = (1 − A ∗ εNI)µpIs + (1 − σ)pIr − dVVr − XVr
Ḟ = nq(E2,r + E2,s) + q(Ir + Is) − dFF
Ẋ = rX
Ṫ = 1
Ȧ = 0
Ṁ = 0

(a) Trajectories

Meaning Actions
Begin NI-based treatment treatNI
Begin IFN-based treatment treatIFN
End the treatment conclude
Inject IFN injectIFN

(b) Actions

Preconditions Action Effects
M = 0 treatNI A← 1 ∧M← 1
M = 0 treatINF M← 2
M = 1 conclude A← 0 ∧M← 3
M = 2 conclude M← 3
M = 2 ∧ ti | T injectIFN F← F + f

(c) Transitions

Table 6: Trajectories, actions, and transitions of the hybrid automaton modeling
the influenza kinetics.
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Figure 6: A comparison between the kinetics of the proposed model under
NI-based treatment (first row) and IFN-based treatment (second row). The
plain and the dotted lines represent the number of NI-sensible virus (Vs) and
the number of NI-resistent virus (Vr), respectively. The first, the second, and
the third columns depict the evolutions when the treatment, whatever it is,
begins 0, 12, and 24 hours after the infection, respectively. All the treatments
continue until the 7th day. Early inoculation of NI leads to a proliferation
of the NI-resistant strain, while interferons can be used in early stage of the
infection to control the proliferation of both the virus strains. On the contrary,
NI maintains effectiveness throughout the course of the disease as opposed to
IFN which seems to be useless whenever the treatment begins after the peek in
the number of virus, i.e., about 1.5 day after the infection.
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5 Conclusions

We proposed a framework for the analysis of biological systems based on un-
winding conditions. The framework can be instantiated on all modeling lan-
guages which rely on operational semantics defined in terms of LTS’s. From the
modeling point of view, unwinding conditions have the advantage of clarifying
which questions one has to answer in order to choose the right formalization:
(1) which are the exposed (observable) actions/species and which are the im-
posed ones? (2) which are the relevant exposed observational equivalences?
(3) which are the alternative transitions (d)?

As observed in [72] robustness in biology is strongly related with redun-
dancy. This is exactly in the spirit of our unwinding framework, where for each
imposed transition we have to find an alternative path leading to an equivalent
situation.

In this paper, we proposed the use of “approximated” behavioural equiv-
alences (e.g., see [11, 27]) to obtain flexible instantiations. As future work we
intend to explore also the use of downgrading like techniques (see [9]) to this
aim.
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