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Abstract. Interval temporal logics provide a natural framework for
temporal reasoning about interval structures over linearly ordered do-
mains, where intervals are taken as the primitive ontological entities.
Their computational behaviour and expressive power mainly depend on
two parameters: the set of modalities they feature and the linear orders
over which they are interpreted. In this paper, we consider all fragments
of Halpern and Shoham’s interval temporal logic HS with a decidable
satisfiability problem over the class of all dense linear orders, and we
provide a complete classification of them in terms of their complexity
and expressiveness by solving the last two open cases.

Keywords: computational complexity, interval temporal logics, satisfia-
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1 Introduction

Most temporal logics proposed in the literature assume a point-based structure of
time. They have been successfully applied in a variety of fields, ranging from the
specification and verification of communication protocols to temporal data mining.
However, a number of relevant application domains, such as, for instance, those of
planning and synthesis of controllers, are often characterized by advanced features
like durative actions (and their temporal relationships), accomplishments, and
temporal aggregations, which are neglected or dealt with in an unsatisfactory way
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by point-based formalisms. The distinctive features of interval temporal logics
turn out to be useful in these domains. As an example, they allow one to model
telic statements [18], that is, statements that express goals or accomplishments,
like the statement: “The airplane flew from Venice to Toronto” (see [8, Sect. II.B]).
Temporal logics with interval-based semantics have also been proposed as suitable
formalisms for the specification and verification of hardware [15] and of real-time
systems [10]. Finally, successful implementations of interval-based systems can be
found in the areas of learning (the adaptive learning system TERENCE [11], that
provides a support to poor comprehenders and their educators, is based on the
so-called Allen’s interval algebra [3]) and real-time data systems (the algorithm
RISMA [13], for performance and behaviour analysis of real-time data systems,
is based on Halpern and Shoham’s modal logic of Allen’s relations [12]).

The variety of binary relations between intervals in a linear order was first
studied by Allen [3], who investigated their use in systems for time management
and planning. In [12], Halpern and Shoham introduced and systematically ana-
lyzed the (full) modal logic of Allen’s relations (HS for short), that features one
modality for each Allen relation. In particular, they showed that HS is highly
undecidable over most classes of linear orders. This result motivated the search
for (syntactic) fragments of HS offering a good balance between expressiveness
and computational complexity. During the last decade, a systematic analysis has
been carried out to characterize the complexity of the satisfiability problem for
HS fragments [4, 5, 16], as well as their relative expressive power [1, 2, 5]. Such
an analysis pointed out that such characterizations also depend on the class of
linearly ordered set over which formulae are interpreted.

This paper aims at completing the classification of decidable HS fragments
with respect to both their complexity and expressiveness, relative to the class
of (all) dense linear orders. For our purposes, the class of dense linear orders
and the linear order of the rational numbers Q are indistinguishable. Thus, all
the results presented here directly apply to Q as well. The paper is organized as
follows. In Section 2, we introduce syntax and semantics of (fragments of) HS.
Next, in Section 3 we summarize known results about dense linear orders. In
Section 4 and Section 5, we solve the last two open problems, thus completing
the picture for the class of dense linear structures. It is worth mentioning that
an analogous classification has been provided in [5] for the class of finite linear
orders, the class of discrete linear orders, the linear order of the natural numbers
N, and the linear order of the integers Z.

2 The Modal Logic of Allen’s Relations

Let us consider a linearly ordered set D = 〈D,<〉, where D is an element domain
and < is a total ordering on it. An interval over D is an ordered pair [x, y],
where x, y ∈ D and x ≤ y. An interval is called a point interval if x = y and a
strict interval if x < y. In this paper, we assume the strict semantics, that is, we
exclude point intervals and only consider strict intervals. The adoption of the
strict semantics, excluding point intervals, instead of the non-strict semantics,



Complexity of HS Fragments over Dense Structures 3

HS modalities

〈A〉
〈L〉
〈B〉
〈E〉
〈D〉
〈O〉

Allen’s relations

[x, y]RA[x′, y′]⇔ y = x′

[x, y]RL[x′, y′]⇔ y < x′

[x, y]RB [x′, y′]⇔ x = x′, y′ < y

[x, y]RE [x′, y′]⇔ y = y′, x < x′

[x, y]RD[x′, y′]⇔ x < x′, y′ < y

[x, y]RO[x′, y′]⇔ x < x′ < y < y′

Graphical representation
x y

x′ y′

x′ y′

x′ y′

x′ y′

x′ y′

x′ y′

Fig. 1. Allen’s interval relations and the corresponding HS modalities.

which includes them, conforms to the definition of interval adopted by Allen in [3],
but differs from the one given by Halpern and Shoham in [12]. It has at least two
strong motivations: first, a number of representation paradoxes arise when the
non-strict semantics is adopted, due to the presence of point intervals, as pointed
out in [3]; second, when point intervals are included there seems to be no intuitive
semantics for interval relations that makes them both pairwise disjoint and jointly
exhaustive. If we exclude the identity relation, there are 12 different relations
between two strict intervals in a linear order, often called Allen’s relations [3]: the
six relations RA (meets or adjacent), RL (after or later), RB (starts or begins),
RE (finishes or ends), RD (during), and RO (overlaps), depicted in Fig. 1, and
their inverses, that is, RX = (RX)−1, for each X ∈ {A,L,B,E,D,O}.

We interpret interval structures as Kripke structures with Allen’s relations
playing the role of the accessibility relations. Thus, we associate a modality 〈X〉
with each Allen relation RX . For each X ∈ {A,L,B,E,D,O}, the transpose
of modality 〈X〉 is modality 〈X〉, corresponding to the inverse relation RX of
RX . Halpern and Shoham’s logic HS [12] is a multi-modal logic with formulae
built from a finite, non-empty set AP of atomic propositions (also referred to
as proposition letters), the propositional connectives ∨ and ¬, and a modality
for each Allen relation. With every subset {RX1

, . . . , RXk
} of these relations,

we associate the fragment X1X2 . . .Xk of HS, whose formulae are defined by the
grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X1〉ϕ | . . . | 〈Xk〉ϕ,

where p ∈ AP. The other propositional connectives and constants (e.g., ∧, →,
and >), as well as the dual modalities (e.g., [A]ϕ ≡ ¬〈A〉¬ϕ), can be derived in
the standard way.

The (strict) semantics of HS is given in terms of interval models M = 〈I(D), V 〉,
where D is a linear order, I(D) is the set of all (strict) intervals over D, and V is
a valuation function V : AP → 2I(D), which assigns to each atomic proposition
p ∈ AP the set of intervals V (p) on which p holds. The truth of a formula on a
given interval [x, y] in an interval model M is defined by structural induction on
formulae as follows:
– M, [x, y]  p if and only if [x, y] ∈ V (p), for each p ∈ AP;
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– M, [x, y]  ¬ψ if and only if it is not the case that M, [x, y]  ψ;
– M, [x, y]  ϕ ∨ ψ if and only if M, [x, y]  ϕ or M, [x, y]  ψ;
– M, [x, y]  〈X〉ψ if and only if there exists [x′, y′] such that [x, y]RX [x′, y′]

and M, [x′, y′]  ψ, for each modality 〈X〉.
Formulae of HS can be interpreted over a given class of interval models; we
identify the class of interval models over linear orders in C with the class C itself.
Thus, we will use, for example, the expression ‘formulae of HS are interpreted
over the class C of linear orders’ instead of the extended one ‘formulae of HS
are interpreted over the class of interval models over linear orders in C’. Among
others, we mention the following important classes of linear orders: (i) the class
of all linear orders Lin; (ii) the class of all dense linear orders Den, that is,
those in which for every pair of different points there exists at least one point
in between them; (iii) the class of all weakly discrete linear orders WDis, that
is, those in which every element, apart from the greatest one, if it exists, has an
immediate successor, and every element, other than the least one, if it exists, has
an immediate predecessor; (iv) the class of all strongly discrete linear orders Dis,
that is, those in which for every pair of different points there are only finitely
many points in between them; (v) the class of all finite linear orders Fin, that is,
those having only finitely many points; (vi) the singleton classes consisting of the
standard linear orders over R, Q, Z, and N. The mirror image (or, simply, mirror)
of a fragment F is obtained by simultaneously substituting 〈A〉 with 〈A〉, 〈B〉
with 〈E〉, 〈B〉 with 〈E〉, 〈O〉 with 〈O〉, 〈L〉 with 〈L〉, and the other way around.
When interpreted over left/right symmetric classes of structures (i.e., classes C
such that if C contains a linear order D = 〈D,≺〉, then it also contains a linear
order isomorphic to its dual linear order Dd = 〈D,�〉, where � is the inverse of
≺), such as Den, all computational properties of a fragment are preserved for its
mirror one; thanks to this observation, we can safely deal with only one fragment
for each pair of mirror fragments.

3 Known and Unknown Results

It has been proved in [1] that there are precisely 9 different optimal definabilities
that hold among HS modalities in the dense case. As a consequence, only 966 HS
fragments are expressively different (out of 4096 different subsets of 12 modalities).
Of those, 146 are decidable, thanks to the following results:

Undecidability: we know from [4] that each fragment containing (as definable)
O, AD, or AD is undecidable;

Non-primitive recursive: the decidability of AABB has been proved in [14],
where it has also been shown that each fragment containing AAB or AAB is
non-primitive recursive;

ExpSpace-completeness: as a consequence of the results presented in [8], we
know that ABBL is in ExpSpace, and each fragment containing AB or AB is
ExpSpace-hard (in particular, the hardness result given in [8] for ABB can
be suitably rephrased to deal with the smaller fragments AB and AB);
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Complexity Class

1: Non-primitive recursive

2: EXPSPACE-complete

3: NEXPTIME-complete

4: PSPACE-complete

5: NP-complete

Definabilities

1) 〈L〉p ≡ 〈A〉〈A〉p
2) 〈L〉p ≡ 〈B〉[E]〈B〉〈E〉p
3) 〈L〉p ≡ 〈O〉(〈O〉> ∧ [O]〈D〉〈O〉p)
4) 〈L〉p ≡ 〈B〉[D]〈B〉〈D〉〈B〉p
5) 〈L〉p ≡ 〈O〉[E]〈O〉〈O〉p
6) 〈L〉p ≡ 〈O〉(〈O〉> ∧ [O]〈B〉〈O〉〈O〉p)
7) 〈L〉p ≡ 〈O〉(〈O〉> ∧ [O][L]〈O〉〈O〉p)
8) 〈O〉p ≡ 〈E〉〈B〉p
9) 〈D〉p ≡ 〈E〉〈B〉p

AABB
1

AAB
1

AAB
1

AB
1

AB
1

ABB
1

ABBL
1

ABL
1

ABL
1

AB2
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2
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2
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2
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3
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3
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4
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4

BDLL
4
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4

D
4

D4

DD
4

DDL
4
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4

DDLL
4

DL4

DL
4
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4

DL
4

DLL
4

DLL
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B5
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5

BB
5

BBL
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BBL
5

BBLL
5

BL5

BL
5

BL
5

BL
5

BLL
5

BLL
5

L5

L
5

LL
5

Fig. 2. Decidable fragments of HS in the dense case and their relative expressive power.
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NExpTime-completeness: it has been proved in [7] that AA is in NExpTime,
and both A and A are NExpTime-hard;

PSpace-completeness: each sub-fragment of BBDDLL that contains (as defin-
able) D or D is shown to be PSpace-complete in [6, 16].

The purpose of this paper is to fill in the few gaps still uncovered by this
collection of results. Here, we shall prove that:(i) BBLL and all its fragments are
NP-complete (observe that each fragment is NP-hard, given that it is at least as
expressive as propositional logic), and (ii) all the fragments that contain AB or
AB are non-primitive recursive. The aforementioned results allow us to draw a
picture that encompasses all HS fragments, ordered according to their relative
expressive power and grouped by computational complexity. We show here such
a picture (see Fig. 2), limited to all and only decidable HS fragments (for the
sake of readability, we omit fragments that are expressively equivalent or mirror
image of another fragment featured in the picture). In Fig. 2 we also show the 9
definabilities that hold among HS modalities over dense linear orders.

4 NP-Complete Fragments

In this section we show that the fragment BBLL is in NP (NP-completeness
immediately follows as propositional logic is embedded into BBLL). By defining
a suitable notion of pseudo-model for formulae of BBLL we can show that
each satisfiable formula admits a pseudo-model of size at most P (|ϕ|) for some
polynomial P . For lack of space, in this paper we only give the intuition behind
the concept of pseudo-model and the main ideas behind the small pseudo-model
theorem. A detailed account of the proof can be found in [9].

We start the discussion by considering the fragment LL. The semantics of the
interval modalities implies that intervals with the same ending point agree on the
truth of 〈L〉-formulae (i.e., formulae of the kind 〈L〉ϕ); symmetrically, intervals
with the same beginning point agree on 〈L〉-formulae. Hence, given a model M
for a formula ϕ, we can associate to every point x the set of its LL-requests,
defined as the pair of sets (Lx, Lx), where Lx contains all formulae ψ in the
closure of ϕ (that is, the set of all sub-formulae of ϕ and their negations) such
that 〈L〉ψ is true over all intervals [y, x], and Lx contains all formulae ψ in the
closure of ϕ such that 〈L〉ψ is true over all intervals [x, y]. Since the closure of
a formula is a finite set, we can partition the domain of the model into a finite
number of clusters of points with the same set of LL-requests. Moreover, by the
transitivity of both 〈L〉 and 〈L〉, we have that the set of LL-requests is monotone
with respect to the ordering of points, that is, for every pair of points x < y we
have Lx ⊇ Ly and Lx ⊆ Ly. This implies that every cluster is either a single
point or a segment of D, and that the number of clusters is at most 4|ϕ|.

A pseudo-model for LL is an abstract representation of the partitioning. It is
formally defined as a finite LL-sequence of triples:

(L0, L0, T ype0), (L1, L1, Type1), . . . , (Ln, Ln, Typen),
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0 1 2 n− 1 n

σLL: · · ·
σ0
BB

: · · ·
σ1
BB

: · · ·
σ2
BB

: · · ·
· · ·

σn−1

BB
:

σn
BB

:

point

segment

Fig. 3. A pseudo-model for BBLL.

where each Type is either point or segment, and such that: (i) the monotonicity
of LL-requests is respected; (ii) the first and the last triple of the sequence are
of type segment; (iii) clusters of type point cannot be adjacent. To represent a
well-formed model for ϕ, an LL-sequence must respect the following additional
constraints:
– it must be consistent : for every pair of indexes i < j there must exists an

atom F (that is, a maximally consistent subset of the closure) that contains
the formula 〈L〉ψ for every ψ ∈ Lj , the formula ¬ξ for every ξ 6∈ Li, the
formula 〈L〉η for every η ∈ Li and the formula ¬ζ for every ζ 6∈ Lj ;

– it must be L-fulfilling : for every index i and every formula ψ ∈ Li there must
exists a pair of indexes i < j < k and atom F containing ψ and consistent
with the clusters j and k;

– it must be L-fulfilling, which is defined analogously.
The consistency condition guarantees that [L]- and [L]-formulae are satisfied,
while the fulfillment conditions guarantee that 〈L〉- and 〈L〉-formulae are satisfied
as well. We have already observed that the number of clusters (and thus, the
length of an LL-sequence) is bounded by 4|ϕ|. Hence, by guessing a LL-sequence
and then checking it for consistency and fulfillment we can easily obtain an
NP procedure for deciding the satisfiability of a formula in LL.

The extension of the above result to the full BBLL language is based on the
following observation. Given a model for the formula and an interval [x, y] we
define the set of BB-requests of the interval as the pair (B[x,y], B[x,y]), where
B[x,y] contains all formulae ψ in the closure of ϕ such that 〈B〉ψ is true on [x, y],

and B[x,y] contains all formulae ξ in the closure of ϕ such that 〈B〉ξ is true on

[x, y]. Fixed a point x in the model, we have that the sets of BB-requests of
the intervals [x, y] with begin point x respect the same monotonicity property
as for LL-requests: for every pair of points y < z we have B[x,y] ⊆ B[x,z] and

B[x,y] ⊇ B[x,z]. Hence, it is possible to partition the intervals starting in any given

point x into at most 4|ϕ| “points” and “segments”. A pseudo-model for BBLL is
then made of the following components (see Fig. 3 for a graphical account):
– an LL-sequence σLL = (L0, L0, T ype0), (L1, L1, Type1), . . . , (Ln, Ln, T ypen)

defining the partitioning of LL-requests;
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– for every cluster (Li, Li, Typei) of the LL-sequence, a BB-sequence σi
BB

=

(Bi, Bi, T ypei), (Bi+1, Bi+1, Typei+1), . . . , (Bm, Bm, Typem) representing all
intervals [x, y] such that x belongs to the ith cluster (Li, Li, T ypei). σ

i
BB

must

be a refinement of the partitioning (Li, Li, T ypei) . . . (Ln, Ln, T ypen).
The consistency and the fulfillment condition are suitably extended to guarantee
satisfiability of BB-formulae. Since the size of a BBLL pseudo-model is quadratic
in the size of the formula, we can easily obtain an NP decision procedure that
guesses a pseudo-model and checks the satisfiability of a formula in BBLL.

Theorem 1. The satisfiability problem for the logic BBLL and each one of its
fragments, interpreted over the class of dense linear orders, is NP-complete.

5 Non-Primitive Recursive Fragments

As we have mentioned, the last piece needed to complete the picture in Fig. 2
concerns the non-primitive recursive fragments. In [14] the non-primitive recur-
siveness of AAB and AAB has been proved. We shall prove here that, in actuality,
every fragment that contains AB or AB is non-primitive recursive.

Lossy counter machines are a variant of Minsky counter automata where
transitions may non-deterministically decrease the values of counters. A compre-
hensive survey on faulty machines and on the relevant complexity, decidability,
and undecidability results can be found in [17]. Formally, a counter automaton is
a tuple A = (Q, q0, C,∆), where Q is a finite set of control states, q0 ∈ Q is the
initial state, C = {c1, . . . , ck} is the set of counters, whose values range over N,
and ∆ is a transition relation. The relation ∆ is a subset of Q× L×Q, where
L is the instruction set L = {inc, dec, ifz} × {1, . . . , k}. A configuration of A
is a pair (q, v̄), where q ∈ Q and v̄ is the vector of counter values. A run of a
Minsky (i.e., with no error) counter automaton is a finite or infinite sequence of
configurations such that, for every pair of consecutive configurations (q, v̄), (q′, v̄′),

a transition (q, v̄)
l−→ (q′, v̄′) has been taken (for some (q, l, q′) ∈ ∆). The value of

v̄′ is obtained from the value of v̄ by performing instruction l, where l = (dec, i)
requires vi > 0 and l = (ifz, i) requires vi = 0. In lossy machines, which is
the type in which we are interested, once a faulty transition has been taken,
counter values may have been decreased nondeterministically before or after
the execution of the exact transition by an arbitrary natural number. We use

the notation (q, v̄)
l−→† (q′, v̄′) to denote that there exist v̄†, v̄

′
† such that v̄ ≥ v̄†,

(q, v̄†)
l−→ (q′, v̄′†), and v̄′† ≥ v̄′, where the ordering ≤ is defined component-wise in

the obvious way. We are interested here in the non-termination problem for lossy
machines, defined as the problem of deciding whether A has at least one infinite
run starting with the initial configuration (q0, 0̄). This problem is non-primitive
recursive [17].

Lemma 2. There exists a reduction from the non-termination problem for lossy
counter machines to the satisfiability problem for AB over the class of all dense
linear orders.
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Proof. Let A = (Q, q0, C,∆) be a lossy counter machine. We write an AB-formula
ϕA which is satisfiable over a dense linear order if and only if A has at least one
infinite run starting with the initial configuration. The computation is encoded
left-to-right over a dense domain D, by choosing an evaluation interval [x, y] that
works as the “last” one, and taking into account that, given any x0 < x, there are
infinitely many intervals between x0 and x. We shall make use of the propositional
letters u (units), qi (states, where i ranges from 0 to |Q|), conf (configurations), ci
(counters’ instances, where i ranges from 1 to |C|), and corr , corri (corresponds; i
ranges from 1 to |C|). Counters’ instances, or simply counters, allow us to encode
the counters of A: given a configuration where the value of the i-th counter
is n, the corresponding conf -interval will contain precisely n ci-intervals. (By
p-interval we denote those intervals that satisfy p, for every propositional letter
p.) Additional propositional letters will be used in the reduction for technical
reasons.

Let [G] (universal modality) be the following shortcut:

[G]ϕ = ϕ ∧ [B]ϕ ∧ [A]ϕ ∧ [A][A]ϕ.

The first step in our construction consists in discretizing the domain, making use
of a propositional variable u. In doing so, we also set the first configuration:

ϕu−chain =


〈A〉〈A〉(u ∧ conf ∧ start ∧ q0) ∧ [A](〈A〉u→ 〈B〉u)
[G](u→ [B]¬u) ∧ [G](u→ [B]ub) ∧ [G](u→ [A]¬ub)
[G](start → u) ∧ [G](start → [A](¬u ∧ [A]¬u))

Consider an interval [x, y] over which the formula of our reduction is evaluated.
The sense of the above formula ϕu−chain is to generate an infinite discrete chain
x0, x1, . . . such that x0 < x1 < . . . < x < y, and that each [xk, xk+1] is labeled
by u. With the above formulae we also guarantee that start is unique and no
u-interval overlaps a u-interval in the chain.

With the next formulae we make sure that there is a infinite sequence of
configurations. The first one (start) coincides with the unit [x0, x1], and contains
the starting state q0 only. This is consistent with our requirement that all counters
start with the value 0. Moreover, we guarantee that configurations’ endpoints
coincide with endpoints of elements of the u-chain, that every configuration
contains a state, and that start is unique. In our reduction, the state is placed
on the last unit of every configuration.

ϕconf−chain =


[G](conf → (u ∨ 〈B〉u)) ∧ [G](〈A〉conf → 〈A〉u)
[A](〈A〉conf → 〈B〉conf ) ∧ [G](conf → [B]confb ∧ [B]¬conf )
[G](conf → [A]¬confb) ∧ [G](〈A〉conf ↔ 〈A〉(

∨
i=0,...,|Q| qi))

Notice that states (qi-intervals) occur exactly as last u-intervals of configurations.
Since configurations do not overlap, this implies that each configuration contains
exactly one state.

Configurations also contain counters’ instances ci for each counter i whose
value is greater than zero. Besides, a special placeholder c+i or c−i may be placed
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in a configuration, in order to make it possible to deal with increment and
decrement operations. States, counters’ instances, and placeholders may only
hold over units, which, in turn, all have to contain one of the above. A placeholder
must be placed over the counter to which it refers. Moreover, counters and states
are mutually incompatible, and there cannot be more than one per type on a
given unit. These requirements are guaranteed by the following formula:

ϕunits =



[G](
∧
i=0,...,|Q|(qi → u) ∧

∧
i=1,...,|C|((ci ∨ c

+
i ∨ c

−
i )→ u))

[G](u→ ((
∨
i=0,...,|Q| qi) ∨ (

∨
i=1,...,|C| ci)))

[G]
∧
i=0,...,|Q|(qi → (

∧
j=i+1,...,|Q| ¬qj))

[G]
∧
i=0,...,|Q|(qi → (

∧
j=1,...,|C| ¬cj))

[G]
∧
i=1,...,|C|((ci → (

∧
j=i+1,...,|C| ¬cj)) ∧ (c−i → ci) ∧ (c+i → ci))

Before we can actually encode the transition function ∆, we have to axiomatize
the properties of corr and corri for each i. In a perfect (non-faulty) machine,
when a counter is not modified by any operation from a configuration to the
next one its value is preserved. Since we are encoding a lossy machine, it suffices
to guarantee that no counter’s value is ever incremented, except for the special
case of an incrementing operation. To this end, we use the propositional letter
corr as a basis for correspondence, and the proposition corri to identify the
correspondence for the i-th counter:

ϕcorr =



[G]
∧
i=1,...,|C|(((ci ∧ ¬c

+
i )→ 〈A〉corri) ∧ (c+i → ¬〈A〉corri))

[G]
∧
i=1,...,|C|(corri → corr)

[G]
∧
i=1,...,|C|(corri → 〈A〉(ci ∧ ¬c−i )) ∧ [G](corr → [B]corrb)

[G](((
∨
i=0,...,|Q| qi) ∧ corrb)→ corrb

∗)

[G]((
∨
i=0,...,|Q| qi)→ [A](corrb → corrb

∗))

[G](corr → [B]¬corr) ∧ [G](corrb
∗ → [B]¬corrb

∗)
[G](〈A〉corrb

∗ → 〈A〉u) ∧ [G](corr → 〈B〉corrb
∗)

[G]((u ∧ ¬(
∨
i=0,...,|Q| qi))→ [A]¬corrb

∗)

To finalize the reduction, we now take care of incrementing and decrementing
operations, as well as of the zero test. For each (q, l, q′) ∈ ∆, let conf(q,l,q′) be a
special propositional letter holding on a configuration and carrying information
on which transition produced that configuration. Clearly, every configuration but
start is the result of precisely one transition. Therefore, we have:

ϕconf =

{
[G]((conf ∧ ¬start)↔ (

∨
(q,l,q′)∈∆ conf (q,l,q′)))

[G](
∧

(q,l,q′)∈∆(conf (q,l,q′) → (
∧

(q′′,l′,q′′′)6=(q,l,q′) ¬conf (q′′,l′,q′′′))))
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We can now implement the actual transitions. To deal with the increment (resp.,
decrement) operation we make use of the symbol c+i (resp., c−i ), as follows:

ϕinc =



[G](
∧

(q,(inc,i),q′)∈∆(conf(q,(inc,i),q′) → (〈A〉q ∧ 〈B〉c+i,b)))
[G](

∧
(q,(inc,i),q′)∈∆(〈A〉conf(q,(inc,i),q′) → 〈A〉q′))

[G](
∧
i=1,...,|C|(〈A〉c

+
i,b ↔ 〈A〉c

+
i ))

[G](
∧
i=1,...,|C|(c

+
i,b → (〈A〉conf ∧ [B]¬conf )))

[G](
∧
i,j=1,...,|C|(c

+
i,b → [B]¬c+j,b))

[G](
∧
i=1,...,|C|((conf ∧ 〈B〉c+i,b)→ (

∨
q,q′∈Q conf(q,(inc,i),q′))))

ϕdec =



[G](
∧

(q,(dec,i),q′)∈∆(conf(q,(dec,i),q′) → (〈A〉q ∧ [A](conf → 〈B〉c−i,b))))
[G](

∧
(q,(dec,i),q′)∈∆(〈A〉conf(q,(dec,i),q′) → 〈A〉q′))

[G](
∧
i=1,...,|C|(〈A〉c

−
i,b ↔ 〈A〉c

−
i ))

[G](
∧
i=1,...,|C|(c

−
i,b → (〈A〉conf ∧ [B]¬conf )))

[G](
∧
i,j=1,...,|C|(c

−
i,b → [B]¬c−j,b))

[G](
∧
i=1,...,|C|((conf ∧ 〈A〉〈B〉c−i,b)→ (

∨
q,q′∈Q conf(q,(dec,i),q′))))

ϕifz =


[G](

∧
(q,(ifz,i),q′)∈∆(conf(q,(ifz ,i),q′) → (〈A〉q ∧ [A](conf → [B]czi,b))))

[G](
∧

(q,(ifz,i),q′)∈∆(〈A〉conf(q,(ifz ,i),q′) → 〈A〉q′))
[G](

∧
i=1,...,|C|((〈A〉ci → [A]czi,b) ∧ (¬〈A〉ci → [A]¬czi,b)))

The formula ϕu−chain∧ϕconf−chain∧ϕunits∧ϕcorr∧ϕconf ∧ϕinc∧ϕdec∧ϕifz
is satisfiable if and only if A has at least one infinite run. ut

Since it is possible to construct a similar reduction using the fragment AB,
we can conclude the following theorem.

Theorem 3. The complexity of the satisfiability problem for the fragments AB
and AB over the class of dense linear orders is non-primitive recursive.

6 Conclusions

In this paper, we solved the last open problems about the complexity of HS
fragments whose satisfiability problem is decidable when interpreted over the
class of dense linear orders (equivalently, Q). If we look at the emerging picture,
we notice that such a class turns out to be the best one from the point of view
of computational complexity. The satisfiability problem for any HS fragment
over the class of finite (resp, discrete) linear orders, as well as over N and Z, is
indeed at least as complex as over the class of dense linear orders. Moreover,
there are some fragments, like the logic of subintervals D, for which the problem
is decidable (in fact, PSpace) over the latter class and undecidable over the
former ones. The same relationships hold between the class of dense linear orders
and the class of all linear orders (resp., R) with respect to the known fragments.
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