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Abstract

This paper illustrates the design and implementation of a conflict-driven ASP solver that is capable of
exploiting the Single-Instruction Multiple-Thread parallelism offered by General Purpose Graphical
Processing Units (GPUs). Modern GPUs are multi-core platforms, providing access to large number
of cores at a very low cost, but at the price of a complex architecture with non-trivial synchroniza-
tion and communication costs. The search strategy of the ASP solver follows the notion of ASP
computation, that avoids the generation of unfounded sets. Conflict analysis and learning are also
implemented to help the search. The CPU is used only to pre-process the program and to output the
results. All the solving components, i.e., nogoods management, search strategy, (non-chronological)
backjumping, heuristics, conflict analysis and learning, and unit propagation, are performed on the
GPU by exploiting SIMT parallelism. The preliminary experimental results confirm the feasibility
and scalability of the approach, and the potential to enhance performance of ASP solvers.

KEYWORDS: ASP solvers, ASP computation, SIMT parallelism, GPU computing

1 Introduction

Answer Set Programming (ASP) (Marek and Truszczynski 1998; Niemelä 1999) has gained
momentum in the Logic Programming and Artificial Intelligence communities as a paradigm
of choice for a variety of applications. In comparison to other non-monotonic logics and
knowledge representation frameworks, ASP is syntactically simpler and, at the same time,
very expressive. The mathematical foundations of ASP have been extensively studied; in
addition, there exist a large number of building block results about specifying and pro-
gramming using ASP (see (Gelfond 2007) and the references therein). ASP has offered
novel and highly declarative solutions in a wide variety of application areas, including
planning, verification, systems diagnosis, semantic web services composition and moni-
toring, and phylogenetic inference. An important push towards the popularity of ASP has
come from the development of very efficient ASP solvers, from SMODELS (Syrjänen and
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Niemelä 2001) to CLASP (Gebser et al. 2012a), among many others. In particular, systems
like CLASP and its variants have been shown to be competitive with the state-of-the-art in
several domains, including competitive performance in SAT solving competitions. In spite
of the efforts in developing fast execution models for ASP, execution of large programs
and programs requiring complex search patterns remains a challenging task, limiting the
scope of applicability of ASP in certain domains (e.g., planning).

In this work, we explore the use of parallelism as a viable approach to enhance perfor-
mance of ASP inference engines. In particular, we are interested in devising techniques
that can take advantage of recent architectural developments in the field of General Pur-
pose Graphical Processing Units (GPUs). Modern GPUs are multi-core platforms, offering
massive levels of parallelism; vendors like AMD and NVIDIA support the use of GPUs
for general-purpose non-graphical applications, providing dedicated APIs and develop-
ment environments. Languages and language extensions like OpenCL (Khronos Group
Inc 2015) and CUDA (NVIDIA Corporation 2015) support the development of general
purpose applications on GPUs. To the best of our knowledge, the use of GPUs for ASP
computations has not been explored and, as demonstrated in this paper, it opens an inter-
esting set of possibilities and issues to be resolved. It is a contribution of this paper to bring
these opportunities and challenges to the attention of the logic programming community.

The work proposed in this paper builds on two existing lines of research. The exploita-
tion of parallelism from ASP computations has been explored in several proposals, starting
with the seminal work presented in (Pontelli and El-Khatib 2001; Finkel et al. 2001), and
later continued in several other projects (e.g., (Balduccini et al. 2005; Pontelli et al. 2010;
Gebser et al. 2012b; Perri et al. 2013)). Most of the existing proposals have primarily fo-
cused on parallelization of the search process underlying the construction of answer sets, by
distributing parts of the search tree among different processors/cores (search parallelism).
Furthermore, the literature has focused on parallelization on traditional multi-core or Be-
owulf architectures. These approaches are not applicable in the context of GPUs since the
models of parallelization used on GPUs are deeply different, as we will discuss in the paper.
GPUs are designed to operate with very large number of very lightweight threads, operating
in a synchronous way; GPUs present a significantly more complex memory organization,
that has great impact on parallel performance, and existing parallel ASP models are not
directly scalable on GPUs. The second line of research that supports the effort proposed in
this paper can be found in the recent developments in the area of GPUs for SAT solving and
constraint programming. The work in (Dal Palù et al. 2012; Dal Palù et al. 2015) illustrates
how to parallelize the search process employed by the DPLL procedure in solving a SAT
problem on GPUs; the outcomes demonstrate the potential benefit of delegating to GPUs
tails of the branches of the search tree—an idea that we have also investigated in a previous
version of the present work (Vella et al. 2013). Several other proposals have appeared in
the literature suggesting the use of GPUs to parallelize parts of the SAT solving process—
e.g., the computation of variable heuristics (Manolios and Zhang 2006). In the context of
constraint programming, (Campeotto et al. 2014, PADL) explores the parallelization on
GPUs of constraint propagation, in particular in the case of complex global constraints;
(Campeotto et al. 2014, ECAI) shows how (approximated) constraint-based local-search
exploits the parallelism of the GPU to concurrently visit larger neighborhoods, improving
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the quality of the results. In (Campeotto et al. 2015), a GPU-based constraint solver is used
for fast prediction of protein structures.

The lesson learned from the above studies, and explored in this paper, is that, as long as
(exact) search problems are concerned, the best way to exploit GPUs for search problems
is the parallelization of the “easy” activities, such as constraint propagation. Therefore, the
main focus of this work is to exploit GPU parallelism for addressing the various (polyno-
mial time) operations associated to answer set search, such as unit propagation, heuristics,
conflict analysis, management of nogoods, and learning. The control of the search is also
handled by the GPU, but the visit of the search tree is not parallelized. (As we will see,
the CPU is used only to read and pre-process the program and to output the results.) This
approach contrasts sharply with that of (Dal Palù et al. 2015), which achieves the paral-
lelization of a DPLL procedure mainly through search space partitioning and distribution
of entire search subtrees to different single threads.

The usual algorithms for unfounded set check (Gebser et al. 2012a), which is part of
the CLASP implementation, are hard to be efficiently implemented exploiting fine-grained
SIMT parallelism, also due to the reachability bottleneck (Khuller and Vishkin 1994). Ap-
proaches relying on a coarse-grained parallelism, such as, for instance, running several
instances of the source pointers algorithm (Simons et al. 2002) to process separately each
strongly connected component of the dependency graph, are in a sense orthogonal to our
approach. We have circumvented this problem by implementing the search strategy de-
scribed in (Liu et al. 2010), that was also successfully used for solving ASP programs
delaying the grounding process (Dal Palù et al. 2009). In spite of some of these limitations,
the current results already show the scalability and feasibility of the overall approach.

2 Background

2.1 Answer Set Programming

In this section, we will review the basic notions on ASP (e.g., (Marek and Truszczynski
1998; Niemelä 1999)). We focus on the classical single-head clauses. Let us consider a
language composed of a set of propositional atoms P . An ASP rule has the form

p0 ← p1, . . . , pm , not pm+1, . . . , not pn (1)

where n ≥ 0 and pi ∈ P . A rule that includes first-order atoms with variables is simply
seen as a syntactic sugar for all its ground instances. p0 is referred to as the head of the
rule (head(r)), while the set of atoms {p1, . . . , pm , not pm+1, . . . , not pn} is referred to as
the body of the rule (body(r)). In particular, body+(r) = {p1, . . . , pm} and body−(r) =

{pm+1, . . . , pn}. A constraint is a rule of the form:

← p1, . . . , pm , not pm+1, . . . , not pn (2)

A fact is a rule of the form (1) with n = 0. A program Π is a collection of ASP rules.
We will use the following notation: atom(Π) denotes the set of all atoms in Π, while
rules(p) = {r : head(r) = p} denotes the set of all the rules that define the atom p.

Let Π be a program; its positive dependence graph D+
Π = (V ,E ) is a directed graph

with V = atom(Π) and the edges are E = {(p, q) : r ∈ Π, head(r) = p, q ∈ body+(r)}.
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In particular, we are interested in recognizing cycles in D+
Π ; the number of non-self loops

in D+
Π is denoted by loop(Π). A program Π is tight (resp., non-tight) if loop(Π) = 0

(resp., loop(Π) > 0). A strongly connected component of D+
Π is a maximal subgraph X

of D+
Π such that there exists a directed path between each pair of nodes in X .

The semantics of ASP programs is provided in terms of answer sets. An interpretation
is a set M of atoms. M is an answer set of a program Π if it is the subset-minimal model
of the reduct program ΠM (we refer the reader to (Baral 2010) for a detailed treatment).

2.2 Answer Set Computation

Let us recall some of the techniques that we will exploit in our proposal, namely the notion
of ASP computation (Liu et al. 2010) and some of the techniques used by CLASP (Geb-
ser et al. 2012a). Let us start with the latter. The CLASP system explores a search space
composed of all truth value assignments to the atoms in Π, organized as a binary tree. The
successful construction of a branch in the tree corresponds to the identification of an an-
swer set of the program. If a (possibly partial) assignment fails to satisfy the rules in the
program, then backjumping procedures are used to backtrack to the node in the tree that
caused the failure. The design of the tree construction and the backjumping procedure in
CLASP are implemented in such a way to guarantee that if a branch is successfully con-
structed, then the outcome will be an answer set of the program. CLASP’s search is also
guided by special assignments of truth values to subsets of atoms that are known not to be
extendable into an answer set—these are referred to as nogoods (Dechter 2003; Rossi et al.
2006). Assignments and nogoods are sets of assigned atoms—i.e., entities of the form Tp

or Fp, denoting that p has been assigned true or false, respectively. For assignments
it is also required that, for each atom p, at most one between Tp and Fp is present. Given
an assignment A, let AT = {p : Tp ∈ A} and AF = {p : Fp ∈ A}. Note that AT is an
interpretation. A total assignment A is such that, for every atom p, {Tp,Fp} ∩ A 6= ∅.
Given a (possibly partial) assignment A and a nogood δ, we say that δ is violated if δ ⊆ A.
In turn, A is a solution for a set of nogoods ∆ if no δ ∈ ∆ is violated by A. The con-
cept of nogood can be used during deterministic propagation phases (unit propagation) to
determine additional assignments. Given a nogood δ and a partial assignment A such that
δ \ A = {Fp} (resp., δ \ A = {Tp}), then we can infer the need to add Tp (resp., Fp) to
A in order to avoid violation of δ.

We distinguish two types of nogoods. The completion nogoods (Fages 1994) are derived
from Clark completion of a logic program; we will denote with ∆Πcc

the set of completion
nogoods for the program Π. The loop nogoods ΛΠ (Lin and Zhao 2004) are derived from
the loop formulae of Π. Let Π be a program and A an assignment (Gebser et al. 2012a):
• If Π is tight, then atom(Π) ∩AT is an answer set of Π iff A is a solution of ∆Πcc .
• If Π is not tight, then atom(Π) ∩ AT is an answer set of Π iff A is a solution of

∆Πcc ∪ ΛΠ.
In this paper we focus on the completion nogoods (although the solver might deal with
the other as well). Let us define the Clark completion Πcc of a program Π. For each rule
r ∈ Π: head(r)← body(r) we add to Πcc the formulae

βr ↔ τr , ηr τr ↔
∧

a∈body+(r) a ηr ↔
∧

b∈body−(r) ¬b (3)
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where βr , τr , ηr are new atoms. For each p ∈ atom(Π), the following formula is added to
Πcc (if rules(p) = ∅, then the formula reduces simply to ¬p):

p ↔
∨

r∈rules(p) βr (4)

The completion nogoods reflect the structure of the implications in the formulae in Πcc :
• From the first formula above we have the nogoods: {Fβr ,T τr ,Tηr}, {Tβr ,F τr},

and {Tβr ,Fηr}.
• From the second and third formula above we have the nogoods: {T τr ,Fa} for each

a ∈ body+(r); {Tηr ,Tb} for each b ∈ body−(r); {F τr} ∪ {Ta : a ∈ body+(r)};
and {Fηr} ∪ {Fa : b ∈ body+(r)}.

• From the last formula we have the nogoods: {Fp,Tβr} for each r ∈ rules(p) and
{Tp} ∪ {Fβr : r ∈ rules(p)}.

∆Πcc
is the set of all the nogoods defined as above plus the constraints (2) that introduce

nogoods of the form {Tp1, . . . ,Tpm ,Fpm+1, . . . ,Fpn}.
The work described in (Liu et al. 2010) provides a computation-based characterization

of answer sets for programs with abstract constraints. One of the outcomes of that research
is the development of a computation-based view of answer sets for logic programs; we
will refer to this model as ASP COMPUTATIONS. The computation-based characterization
is based on an incremental construction process, where the choices are performed at the
level of what rules are actually applied to extend the partial answer set. Let TΠ be the
immediate consequence operator of Π: if I is an interpretation, then

TΠ(I ) =

{
p0 : p0 ← p1, . . . , pm , not pm+1, . . . , not pn ∈ Π∧

{p1, . . . , pm} ⊆ I ∧ {pm+1, . . . , pn} ∩ I = ∅

}
(5)

An ASP Computation of a program Π is a sequence of interpretations I0 = ∅, I1, I2, . . .
satisfying the following conditions:
• Ii ⊆ Ii+1 for all i ≥ 0 (Persistence of Beliefs)
• I∞ =

⋃∞
i=0 Ii is such that TΠ(I∞) = I∞ (Convergence)

• Ii+1 ⊆ TΠ(Ii) for all i ≥ 0 (Revision)
• if a ∈ Ii+1 \ Ii then there is a rule a ← body in Π such that Ij |= body for each
j ≥ i (Persistence of Reason).

I0 can be the empty set or, more in general, a set of atoms that are logical consequences of
Π. We say that a computation I0, I1, . . . converges to I if I =

⋃∞
i=0 Ii . Liu et al. (2010)

prove that given a ground program Π, an interpretation I is an answer set of Π if and only
if there exists an ASP computation that converges to I . I determines the assignment A
such that AT = I and A− = atom(Π) \ I .

2.3 CUDA

GPU computing is a general term indicating the use of the multicores available within
modern graphical processing units for general purpose parallel computing. NVIDIA is one
of the pioneering manufacturers in promoting GPU computing, especially thanks to its
Computing Unified Device Architecture (CUDA) (NVIDIA Corporation 2015). A GPU is
composed of a collection of Streaming MultiProcessors (SMs); in turn, each SM contains a
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Fig. 1. CUDA Logical Architecture Fig. 2. Generic workflow in CUDA

collection of computing cores (e.g., 32 in the Fermi platforms). Each GPU provides access
to both on-chip memory (used for thread registers and shared memory) and off-chip mem-
ory (used for L2 cache, global memory and constant memory). The architecture of the GPU
also determines the GPU Clock and the Memory Clock rates. The underlying conceptual
model of parallelism supported by CUDA is Single-Instruction Multiple-Thread (SIMT),
where the same instruction is executed by different threads that run on identical cores,
while data and operands may differ from thread to thread. CUDA’s architectural model is
represented in Fig. 1. A logical view of computations is introduced by CUDA, in order to
define abstract parallel work and to schedule it among different hardware configurations. A
typical CUDA program is a C/C++ program that includes parts meant for execution on the
CPU (referred to as the host) and parts meant for parallel execution on the GPU (referred
to as the device). The host program contains all the instructions necessary to initialize the
data in the GPU, define the number of threads and manage the kernels. A kernel is a set
of instructions to be executed by many concurrent threads running on the GPU. The pro-
grammer organizes these threads in thread blocks and grids of blocks. Each thread in a
block executes an instance of the kernel, and has a thread ID within its block. A grid is an
array of blocks that execute the same kernel, read data input from the global memory, and
write results to the global memory. When a CUDA program on the host launches a kernel,
the blocks of the grid are distributed to the SMs with available execution capacity. The
threads in the same block can share data, using shared high-throughput on-chip memory.
The threads belonging to different blocks can only share data through the global memory.
Thus, the block size allows the programmer to define the granularity of threads coopera-
tion. Fig. 1 shows the CUDA threads hierarchy (Nickolls and Dally 2010). Referring to
Fig. 2, a typical CUDA application can be summarized as follow:
Memory allocation and data transfer. Before being processed by kernels, the data must

be copied to GPU’s global memory. The CUDA API supports memory allocation (func-
tion cudaMalloc()) and data transfer to/from the host (function cudaMemcpy()).

Kernels definition. Kernels are defined as standard C functions; the annotation used to
communicate to the CUDA compiler that a function should be treated as kernel has the
form: global void kernelName (Formal Arguments).

Kernels execution. A kernel can be launched from the host program using:
kernelName <<< GridDim, TPB >>> (Actual Arguments)
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Algorithm 2.2 CUD@ASP-computation
Require: A set of nogoods ∆ computed from the ground ASP program Π
1: current dl := 1 . Initial decision level
2: A := ∅ . Initial assignment is empty
3: (A,Violation) := InitialPropagation(A,∆) . CUDA kernel
4: if (Violation is true) then return no answer set
5: else
6: loop
7: (∆A,Violation) := NoGoodCheckAndPropagate(A,∆) . CUDA kernels
8: A := A ∪∆A;
9: if (Violation is true) ∧ (current dl = 1) then return no answer set

10: else if (Violation is true) then
11: (current dl , δ) = ConflictAnalysis(∆,A) . CUDA kernels
12: ∆ := ∆ ∪ {δ}
13: A := A \ {p ∈ A | current dl < dl(p)}
14: end if
15: if (A is not total) then
16: (p,OneSel) := Selection(∆,A) . CUDA kernel
17: if (OneSel is true) then
18: current dl := current dl + 1
19: dl(p) := current dl
20: A := A ∪ {p}
21: else A := A ∪ {Fp : p is unassigned}
22: end if
23: else return AT ∩ atom(Π)
24: end if
25: end loop
26: end if

where GridDim is the number of blocks of the grid and TPB specifies the number of
threads in each block.

Data retrieval. After the execution of the kernel, the host needs to retrieve the results This
is performed with another transfer operation from global memory to host memory.

3 Design of a conflict-based CUDA ASP Solver

In this section, we present the ASP solving procedure which exploits ASP computation, no-
good handling, and GPU parallelism. The ground program Π, as produced by the grounder
GRINGO, is read by the CPU. The current implementation accepts as inputs normal pro-
grams possibly extended with choice rules and cardinality rules. Choice and cardinality
rules are eliminated in advance by applying the technique described in (Gebser et al. 2012).
In this first prototype, we did not include weight rules and aggregates. The CPU computes
the dependency graph of Π and its strongly connected components (using the classical Tar-
jan’s algorithm), detecting, in particular, if the input program is tight. The CPU also com-
putes the completion nogoods ∆Πcc

and transfers them to the GPU. The CPU launches the
various kernels summarized in Algorithm 2.2. The rest of the computation is performed
completely on the GPU, under the control of the CPU. During this process, there are no
memory transfers between the CPU and the GPU, with the exception of (1) flow control
flags, such as the “exit” flag, used to communicate whether the computation is terminated,
and (2) the transfer of the computed answer set from the GPU to the CPU.

The overall structure of Algorithm 2.2 is a conventional structure for an ASP solver. The
differences lay in the selection heuristic (ASP computation) and in the parallelization of all
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Main and auxiliary Kernels blocks threads

InitialPropagation d Num Unitary Nogoods/TPB e TPB
NoGoodCheckAndPropagate

Binary Nogoods Num Rec Assign Vars TPB∗

Ternary Nogoods Num Rec Assign Vars TPB∗

General Nogoods d Num Long Nogoods/TPB e TPB
ConflictAnalysis

MkNewNogood 1 1024
Backjump d Num Tot Atoms/TPB e TPB
Selection 1 TPB

Table 1. Main CUDA kernels and the number of blocks-threads per kernel. TPB is the number of
threads-per-block (heuristically set to 256). TPB∗ is the minimum between TPB and the number of
nogoods immediately related to recently assigned variables—See Sect. 3.2.

the support functions involved. Each atom of Π is identified with an index. The variable A

represents the set of assigned atoms (with their truth values) computed so far. In practice, A
is a vector such that: (1) A[p] = 0 iff the atom p is currently undefined; (2) A[p] = i , i > 0

(resp., A[p] = −i ) means that atom p has been assigned true (resp., false) at the decision
level i . The variable current dl represents the current decision level ; this variable acts as a
counter that keeps track of the number of “choices” that have been made in the computation
of an answer set. These variables are stored and updated in the GPU. A is transferred to the
CPU as soon as an answer set is found. For each program atom p, the notation p represents
the atom with a truth value assigned; ¬p denotes the complement truth value with respect
to p. The assignments in lines 8, 20, and 21 correspond to assignments of A[p].

In the rest of the section, we focus on the various kernels executed by the procedure
CUD@ASP-computation (Algorithm 2.2). Each kernel has its own number of blocks
and of threads-per-block (TPB), as summarized in Table 1.

3.1 InitialPropagation

The set of nogoods ∆ computed from the input program may include some unitary no-
goods. A preliminary parallel computation partially initializes A by propagating them. No-
tice that the algorithm can be restarted several times—typically, this happens when more
than one solution is requested. In such cases, the initial propagation also handles unit no-
goods that have been learned in the previous executions. A single kernel is invoked with
one thread for each unitary nogood. In particular, if k is the number of unitary nogoods,
dk/TPBe blocks, with TPB threads each, are started. The sign of the literal p in it is ana-
lyzed and the value array A[p] is set consistently. If one thread finds A[p] already assigned
in a inconsistent way, the Violation flag is set to true and the computation ends.

The preliminary phase also includes a pre-processing step aimed at enabling a special
treatment of binary and ternary nogoods, as described in the next section.

3.2 NoGoodCheckAndPropagate

Given a partial assignment A, each nogood δ needs to be analyzed to detect whether: (1) δ
is violated by A or (2) δ is not violated but there is exactly one literal in it that is unassigned
in A (i.e., δ \ A = {p}, where p = Fp or p = Tp) then an inference must be executed,
namely adding ¬p to A. The procedure is repeated until a fixpoint is reached.
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To better exploit the SIMT parallelism and maximize the degree of thread concurrency,
in each kernel execution the workload has to be divided among the threads as much uni-
formly as possible. To this aim, the set of nogoods is partitioned depending on their car-
dinality. Moreover, the NoGoodCheckAndPropagate is split in three steps, each one im-
plemented by one different kernel. The first kernel deals with all the nogoods with exactly
two literals, the second one processes the nogoods made of three literals and a third ker-
nel processes all remaining nogoods. The first and the second kernels act as follows. The
execution of each iteration of NoGoodCheckAndPropagate is driven by the atoms that
have already been assigned a truth value; in particular, in the first iteration, the procedure
relies on the atoms that have been assigned by the InitialPropagation. The motivation is
that only the atoms with an assigned truth value may trigger either a conflict or a propa-
gation of a nogood. New assignments contribute to the following steps, either by enabling
further propagation or by causing conflicts. Thus, the first two kernels rely on a number of
blocks that is equal to the number of assigned atoms. The threads in each block process
the nogoods that share the same assigned atom. The number of threads of each block is
established by considering the number of occurrences of each assigned atom in the binary
(resp., ternary) nogoods. Observe that this number may change between two consecutive
iterations of NoGoodCheckAndPropagate, and as such it is evaluated each time. Specific
data structures (initialized once during the pre-processing phase) are used in order to de-
termine, after each iteration of NoGoodCheckAndPropagate and for each assigned atom,
which are the binary/ternary nogoods to be considered in the next iteration. We observe
that, despite the overhead of performing such a pre-processing, this selective treatment of
binary and ternary nogoods proved to be very effective in practice, leading to several or-
ders of magnitude of performance improvement with respect to a “blind” approach that
treats all nogoods in the same manner. The third kernel is called with one thread for each
nogood of cardinality greater than three. If n is the number of such nogoods, the kernel
runs dn/TPBe blocks of TPB threads each. The processing of longer nogoods is realized
by implementing a standard technique based on watched literals (Biere et al. 2009). In this
kernel, each thread accesses the watched literals of a nogood and acts accordingly.

During unit propagation, atoms may be assigned either true or false truth values. As-
signment of false is not a critical component in ensuring stability, while assignment of
true might lead to unfounded solutions. The Selection procedure, defined in Sect. 3.4,
introduces only positively assigned atoms of the form βr . Each βr occurs in nogoods in-
volving the “head” p and the auxiliary variables τr and ηr . In the subsequent call to No-
GoodCheckAndPropagate, Tp and Tηr are introduced in A. They are positive literals
but asserting them does not invalidate stability of the final model, if any. This is because
their truth values are strictly related to the supportedness of p, due to the choice of βr by
the Selection procedure. Moreover, the assignments Fb for b ∈ body−r are added, but
being negative, they do not lead to unfounded solutions.

There are two cases when a positive, unsupported, literal may be assigned by unit prop-
agation: (1) when the propagating nogood comes from a constraint of the initial program,
and (2) when the nogood has been learned. In these cases, the literal is propagated anyway,
but it is marked as “unsupported”. The ASP computation described earlier would suggest
not to propagate such positive assignment. However, performing such a propagation helps
in the early detection of conflicts and significantly speeds up the search for a solution. No-
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tice that these inferences have to be satisfied in the computed solution, because they are
consequences of the conjunction of all selected literals. When a complete assignment is
produced, for each marked atom an inspection is performed to check whether support for
it has been generated after its assignment. Thanks to specific information gathered during
the computation this check is performed in constant time. If that is not the case, a restart is
performed (for simplicity, this step is not depicted in Algorithm 2.2).

3.3 ConflictAnalysis Procedure

The ConflictAnalysis procedure is used to resolve a conflict detected by the NoGood-
CheckAndPropagate; the procedure identifies a level dl and an assignment p the compu-
tation should backtrack to, in order to remove the nogood violation. This process allows
classical backjumping in the search tree generated by Algorithm 2.2 (Russell and Norvig
2010; Rossi et al. 2006). This part of the solver is the one that is less suitable to SIMT par-
allelism, due to the fact that a (sequential) sequence of resolution steps must be encoded.
This procedure ends with the identification of a unique implication point (UIP (Marques
Silva and Sakallah 1999)) that determines the lower decision level/literal among those
causing the detected conflicts. As default behavior, the solver selects one of the (possibly
multiple) conflicts generated by NoGoodCheckAndPropagate. Heuristics can be applied
to perform such a selection. In the current implementation priority is given to shorter no-
goods. The kernel is run with a single block to facilitate synchronization—as we need to
be sure that the first resolution step ends before the successive starts. The block contains a
fixed number of threads (we use, by default, 1024 threads) and every thread takes care of
one atom; if there are more atoms than threads involved in the learning, atoms are equally
partitioned among threads. For each analyzed conflict, a new nogood is learned and added
to ∆. This procedure takes also care of backtracking/backjumping, through the use of a
specific kernel (Backjumping). The level in which to backjump is computed and the data
structures (e.g., the values of A and of current dl ) are updated accordingly. Notice that the
prototype is capable of learning from all different conflicts detected by the same run of No-
GoodCheckAndPropagate. The number of conflicts to process can be specified through
a command-line option. In case of multiple learned nogoods involving different “target”
decision levels, the lowest level is selected.

3.4 Selection Procedure

The purpose of this procedure is to determine an unassigned atom in the program. For each
unassigned atom p occurring in the head of a clause in the original program, all nogoods
reflecting the rule βr ← τr , ηr , such that r ∈ rules(p) are analyzed to check whether
T τr ∈ A and Fηr /∈ A (i.e., the rule is applicable). All p and all rules r that pass this
test are evaluated according to a heuristic weight. Typical heuristics are used to rank the
atoms. In particular, we consider the number of positive/negative occurrences of atoms in
the program (by either simply counting the occurrences or by applying the Jeroslow-Wang
heuristics) and the “activity” of atoms (Goldberg and Novikov 2007). Using a logarithmic
parallel reduction scheme, the rule r with highest ranking is selected. Then, Tβr is added
to A. In the subsequent execution of NoGoodCheckAndPropagate, Tp and Fηr are also
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Fig. 3. A visualization of the experiments. The x axis reports the 17 instances (in decreasing order
w.r.t. running time). The y axis shows the sum of the running times in seconds. The GPU models are
shown on the z axis.

added to A. Fηr imposes that all the atoms of body−(r) are set to false. This ensures the
persistence of beliefs of the ASP computation.

4 Experimental Results and Conclusions

We have tested the software we have developed with seven NVIDIA GPUs with differ-
ent computing capabilities. We report here just the number of cores and the GPU clock.
Complete info can be retrieved from the vendor website.

GT520: GeForce: 48 cores, 1.62 GHz GT640: GeForce: 384 cores, 0.80 GHz
C2075: Tesla C2075: 448 cores, 1.15 GHz K20c: Tesla: 2496 cores, 0.71 GHz
K80: Tesla: 2496 cores, 0.82 GHz Titan: GeForce GTX TITAN (Fermi): 2688 cores, 0.88 GHz
Titan X: GeForce GTX TITAN X (Maxwell): 3072 cores, 1.08 GHz

We report here the results obtained for some of the benchmarks we used. Namely, those
coming from the grounding of stablemarriage-0-0, visitall-14-1, graph col-

ouring-125-0, labyrinth-11-0, ppm-70/90/120-0, and sokoban-15-1 programs
and instances (material from ASP competitions (Alviano et al. 2013)). In Fig. 3 and Table 2
an excerpt the overall running times of 17 benchmarks is reported. As one might expect,
the code scales with the card computing power. If pow = #cores×GPUclock is chosen as
an (approximated) index for the “power” of a card, a simple regression analysis on the sum
of all running times shows us that the running time is≈ − 1

2pow + k , where k is a constant
depending on the overall number of instances tested. This is a good witness of scalability.
Other analyses have been performed (using memory size and bitrate). Typically, memories
with higher bitrate are installed in cards with larger numbers of cores. As a result, the
bitrate “per single core” does not change significantly, and therefore this finer analysis did
not lead us to different results.

Several aspects of the current implementation deserve further investigation. As men-
tioned earlier, the unfounded set check, which is part of the CLASP implementation, rep-
resents a challenge to parallel implementation, especially due to the reachability bottle-
neck (Kao and Klein 1993). A fast implementation of this module would allow us to
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INSTANCE GT 520 GT 640 C2075 K20c K80 Titan Titan X

0001-stablemarriage-0-0 20.90 10.15 9.65 11.82 12.46 5.87 10.20
0002-stablemarriage-0-0 42.77 32.90 7.16 16.18 26.65 51.69 20.47
0001-visitall-14-1 127.64 93.35 70.03 46.45 33.66 14.07 13.51
0003-visitall-14-1 218.64 155.28 82.85 30.36 38.02 28.74 25.27
0007-graph colouring-125-0 214.12 155.44 133.88 90.64 63.54 66.49 28.89
0010-graph colouring-125-0 17.82 4.65 11.56 7.89 4.12 6.25 3.39
0009-labyrinth-11-0 96.10 40.55 25.87 26.23 23.41 23.56 16.78
0023-labyrinth-11-0 – 899.34 – 313.60 50.57 50.67 49.54
0061-ppm-70-0 3.02 1.77 1.54 1.29 1.20 1.26 0.97
0072-ppm-70-0 4.11 3.27 2.96 3.06 2.60 2.62 2.06
0130-ppm-90-0 15.61 9.32 8.41 7.57 6.53 6.70 5.79
0153-ppm-90-0 2.25 1.65 1.46 1.33 1.10 1.24 0.94
0121-ppm-120-0 41.88 24.75 18.78 18.68 14.44 15.97 12.55
0128-ppm-120-0 0.96 0.79 0.70 0.76 0.63 0.68 0.50
0129-ppm-120-0 36.26 19.21 22.59 21.85 17.64 17.85 12.94
0167-sokoban-15-1 102.09 39.88 32.98 58.77 63.40 70.88 27.65
0589-sokoban-15-1 81.04 60.77 34.17 36.53 28.48 42.55 17.55

Table 2. Performance of the GPU-based solver on instances from the 2014 ASP competition.
Symbol ‘–’ stands for 20 minutes timeout expiration.

use safely other search heuristics combined with the ASP computation. Conflict-driven
learning suffers from the same problem (and currently takes roughly 50% of the com-
putation time). This is the real bottleneck, essentially because of the intrinsically serial
algorithm used for conflict analysis. We are still working to speed-up this part as much
as possible, but the current results already show the scalability and feasibility of the over-
all approach. Alternative approaches should be considered. A first attempt in developing
alternative learning schemata, expressly conceived to benefit from SIMT parallelism, can
be found in (Formisano and Vella 2014). Another possibility to be considered is the use
of a GPU thread as the “host” of the main loop (that is currently assigned to the CPU).
This would reduce the running time for the transfer of flags at the end of any kernel exe-
cution. On the other hand, dynamic parallelism—namely, the capability of calling a kernel
from a kernel— is supported only by the most recent devices. Finally, another interesting
approach to be considered is the execution of the final part of the search using an exhaus-
tive search among all possible assignments for the last atoms (e.g., when 30-40 atoms are
unassigned). This would exploit well the GPU parallelism. However, this would require
the development of fast parallel algorithms for unfounded set extraction, in order to learn
useful nogoods from non-stable total assignments.

To conclude, we have presented the first ASP solver running on GPUs and experimen-
tally proved that the approach scales well on the power of the devices. The solver is not
yet ready to challenge the best ASP solvers, e.g., CLASP (although it proves to be only 3
times slower on the sum of the running times of the 17 instances described above). Those
solvers include families of heuristics for driving the search that are not (yet) implemented
in our solver. A sensible speedup will be obtained as soon as the conflict analysis will
be implemented by exploiting a truly parallel schema. Another point to be addressed is
the development of an ad-hoc parallel handling of the cardinality constraints/aggregates
by suitable kernels instead of removing them in the pre-processing stage, thus removing
relevant structural information.
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