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Abstract The goal of this mainly expository paper is to develop the theory of the algebraic entropy in the basic
setting of vector spaces V over a field K . Many complications encountered in more general settings do not
appear at this first level. We will prove the basic properties of the algebraic entropy of linear transformations
φ : V → V of vector spaces and its characterization as the rank of V viewed as module over the polynomial
ring K [X ] through the action of φ. The two main theorems on the algebraic entropy, namely, the Addition
Theorem and the Uniqueness Theorem, whose proofs require many efforts in more general settings, are easily
deduced from the above characterization. The adjoint algebraic entropy of a linear transformation, its connec-
tion with the algebraic entropy of the adjoint map of the dual space and the dichotomy of its behavior are also
illustrated.

Mathematics Subject Classification 16D10 · 15A03 · 37A35

1 Introduction

The following questions, even if formulated in a vague way, should excite curiosity in people with a basic
mathematical education:

Question 1.1 Given a linear transformation φ : V → V of a vector space V over a fixed field K , how chaotic
is the iterated action of φ in V ? Can we measure the dynamical behavior of the linear transformation φ?
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The attempt to give a precise answer to the above questions, not in the setting of vector spaces, but in the
less elementary setting of Abelian groups, originated the theory of the algebraic entropy (see [1,6,14,20]).
Nowadays, this theory is extended to R-modules over arbitrary rings R (see [2,15,16,18,21]), and also to
topological groups (see [9]). As usual, the more general the considered ring R is, the less specific are the
results obtainable for R-modules. Nevertheless, general deep results also for modules over arbitrary rings have
been recently obtained for the algebraic entropy.

The goal of this paper is to develop the theory of the algebraic entropy in the simplest possible case,
that is, in the setting of vector spaces over commutative fields. This soft approach to the subject should be
accessible to people with a basic knowledge of linear algebra and of the theory of modules over PID’s. Many
complications arising even for Abelian groups, or for modules over more general rings, do not appear at this
first level. However, the basic properties and the two main theorems, namely, the Addition Theorem and the
Uniqueness Theorem, have their full significance even for the algebraic entropy of linear transformations of
vector spaces.

As motivation for our goal, it is worthwhile to remark that the general study of the algebraic entropy
reduces in many different cases to linear transformations of vector spaces: for instance, if φ : G → G is an
endomorphism of an Abelian group, the study of ent(φ), the algebraic entropy of φ, reduces to that of ent(φ),
where φ : G/pG → G/pG (p a prime number) is the linear transformation induced by φ on the vector space
G/pG over the field with p elements (see [6]). Furthermore, in the investigation of the rank entropy, which
is associated with the rank of modules over an integral domain R, one can reduce to linear transformations of
vector spaces over the field of quotients K of R (see [16]).

The plan of the paper is as follows. In Sect. 2, we will give the definition of algebraic entropy of a linear
transformation, which is based on the computation of the limit of a sequence of positive real numbers; further-
more, we will show how the algebraic structure of a vector space allows one to avoid the limit calculation in
computing the value of the algebraic entropy.

In Sect. 3, we will prove the basic properties of the algebraic entropy and in Sect. 4 we will discuss the
structure of K [X ]-module induced on the K -vector space V by a linear transformation φ; we will denote such
a module by Vφ . This matter reflects a classical point of view in linear algebra (see Chapter 2 in Kaplansky’s
monograph [12] or the book by Warner [19, pp. 659–674]), and is of essential importance in dealing with
algebraic entropies. Moreover, we will show the characterization of the linear transformations φ : V → V
with finite algebraic entropy, interpreted as properties of K [X ]-modules. From this characterization, we will
derive the main formula: ent(φ) = rkK [X ](Vφ).

Section 5 will be devoted to the proof of the Addition Theorem and the Uniqueness Theorem, two funda-
mental results in the theory of algebraic entropy. Unlike in more general settings, where the two theorems have
long and complicated proofs, in our case they follow quite easily from the formula ent(φ) = rkK [X ](Vφ). In
fact, the Addition Theorem is just a corollary of the fact that the rank is an additive function, and the Uniqueness
Theorem is a consequence of a result on length functions proved by Northcott and Reufel [13].

In Sect. 6, we investigate the adjoint algebraic entropy of a linear transformation φ : V → V , that is,
ent�(φ), which was introduced for endomorphisms of Abelian groups in [5] and studied also in [11]. After
providing its basic properties, we will prove the main formula ent�(φ) = ent(φ∗), where φ∗ : V ∗ → V ∗
is the adjoint linear transformation of the dual space V ∗ of V . A relevant difference between the algebraic
entropy ent and its adjoint version ent� is that the latter presents a dichotomy in its behavior, since it takes
only values 0 and ∞. The proof of this dichotomy furnished here for vector spaces, similar to the analogous
proof for Abelian groups given in [5], makes an essential use of some structure results of modules over PID’s.
In the setting of Abelian groups, the adjoint algebraic entropy does not satisfy the Addition Theorem, except
when one considers only bounded groups; in the present setting of vector spaces, we will prove the Addition
Theorem for ent� in full generality, as an easy consequence of the dichotomy of ent�.

2 Measuring the dynamical behavior of linear transformations

We can specify Question 1.1 in the Introduction by asking how complicated are the sets F + φF + φ2 F +
· · · + φn−1 F (n ≥ 1) of the sums of the iterated images of a finite subset F of V . We could consider this set
theoretical question but, since V has an algebraic structure, it is reasonable to formulate the above question not
just for finite subsets of V , but for the subspaces they generate in V (see the next Remark 2.5, which explains
the main differences between taking finite subsets or finite dimensional subspaces of V ). So, we are led to
consider a finite dimensional subspace F of V and its iterated images: F, φF, φ2 F, . . . , φn F, . . .. If we take
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the subspace of V generated by the first n of these subspaces, that is,

F + φF + φ2 F + · · · + φn−1 F,

we obtain again a finite dimensional subspace of V , called the n-th partial φ-trajectory of F in V , and denoted
by Tn(φ, F). Note that Tn(φ, F) ≤ Tn+1(φ, F) for all n. Adding all the subspaces φn F we get:

⋃

n

Tn(φ, F) = F + φF + φ2 F + · · · + φn F + · · ·

which is a subspace of V no longer of finite dimension, in general; it is denoted by T (φ, F) and it is called
the φ-trajectory of F in V . The φ-trajectory T (φ, F) is said to be cyclic if dim(F) = 1.

Everybody should agree that infinite dimensional subspaces are less easy to handle than those of finite
dimension, so Question 1.1 could be reformulated more precisely as follows:

Question 2.1 Given a linear transformation φ : V → V of a vector space V over a field K , and a finite
dimensional subspace F of V , when is the φ-trajectory T (φ, F) infinite dimensional? If this occurs, can we
estimate how fast the partial φ-trajectories Tn(φ, F) grow?

From an intuitive point of view, we could say that φ creates chaos in V if there exist φ-trajectories T (φ, F)
of infinite dimension, and that the chaos is bigger when the growth of these trajectories is faster.

Some easy examples could give some hints for a possible answer to our questions.

Example 2.2 Let K be a field and V = ⊕
n≥0 K xn a K -vector space with countable basis {x0, x1, x2, . . . }.

Let β : V → V be the right Bernoulli shift, that is the linear transformation defined by the assignment
β(xn) = xn+1 for each n ≥ 0. We compare the chaos created by β with the chaos created by other linear
transformations of V .

Obviously, β is more chaotic than the identity map 1V of V . Less trivial is the comparison with the linear
transformation φ : V → V defined by the assignments:

x0 �→ x0, x1 �→ x2 �→ x1, x3 �→ x4 �→ x5 �→ x3, x6 �→ x7 �→ x8 �→ x9 �→ x6, . . . .

Since for all x ∈ V there exists k > 0 such that φk(x) = x , one can easily deduce that for every finite
dimensional subspace F of V , the φ-trajectory of F has finite dimension, while, for instance, the β-trajectory
of K x0 is the whole space V . We can conclude that β is more chaotic than φ.

Example 2.3 We compare now the right Bernoulli shift β of Example 2.2 with its square β2, which sends xn
to xn+2. Take the finite dimensional subspace F = ⊕

0≤i≤r K xi of V , for a suitable r ≥ 1; for every n ≥ 0
we have

dim(F + βF + · · · + βn F) = r + n

and

dim(F + β2 F + β4 F + β6 F + · · · + β2n F) = r + 2n.

Hence, both the β-trajectory and the β2-trajectory of F have infinite dimension, but the growth of their partial
trajectories are different: the growth of Tn(β

2, F) is faster than the growth of Tn(β, F). If we compute the
asymptotic average growth of F under the action of β and β2, we get:

lim
n→∞

dim(F + βF + β2 F + · · · + βn F)

n + 1
= lim

n→∞
r + n

n + 1
= 1

and

lim
n→∞

dim(F + β2 F + β4 F + · · · + β2n F)

n + 1
= lim

n→∞
r + 2n

n + 1
= 2.

This suggests that the chaos created by β2 doubles the chaos created by β.
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The preceding examples lead naturally to the following:

Definition 2.4 Given a linear transformation φ : V → V of a vector space V over a field K , and a non-zero
finite dimensional subspace F of V ,

(a) the algebraic entropy of φ with respect to F , denoted by H(φ, F), is the asymptotic average growth of
the partial φ-trajectories of F , that is

H(φ, F) = lim
n→∞

dim(Tn(φ, F))

n
;

(b) the algebraic entropy of φ, denoted by ent(φ), is the supremum of the algebraic entropies of φ with respect
to F , ranging F over the set of all finite dimensional subspaces of V , that is

ent(φ) = sup
F

H(φ, F).

Remark 2.5 The above definitions make sense even if F is not assumed to be a finite dimensional subspace,
but only a finite subset. In this case, the partial φ-trajectories Tn(φ, F) are no longer subspaces of V , but only
finite subsets; so their size, that cannot be computed by the dimension, is computed by log |Tn(φ, F)| (log is
necessary to make the invariant additive). The next proposition, which ensures that the limit defining H(φ, F)
exists and is finite, is applicable also to this different version of the algebraic entropy, which is called here
Peters entropy. If the base field K is finite, then every finite dimensional subspace of V is a finite subset; hence,
the Peters entropy essentially coincides with the algebraic entropy (up to the multiplicative factor log |K |).
But if K is infinite, the two notions are different. Actually, since the definition of the Peters entropy involves
only sums of elements and not their multiplication by scalars, one can consider only the structure of Abelian
group of V , disregarding that of K -vector space. We refer to [3,4,14] for many interesting results on Peters
entropy in the Abelian groups setting.

Remark 2.6 As another less interesting variation of the definition of algebraic entropy, we can consider finite
dimensional subspaces F of V as above, but we measure the size of the partial φ-trajectories by log |Tn(φ, F)|,
and not by means of the dimension. Again, if K is a finite field, we do not find anything essentially new, but,
if K is infinite, log |Tn(φ, F)| = ∞ for every non-zero subspace F . Therefore, in the latter case we obtain a
trivial notion of entropy.

Remark 2.7 If in Definition 2.4 we replace the linear transformation φ : V → V by an endomorphism
ψ : G → G of an Abelian group G, and the invariant “dimension” by the invariant “rank”, we obtain the
notion of rank-entropy, investigated in [16]. But, even if the algebraic entropy of linear transformations of
Q-vector spaces and the rank-entropy of endomorphisms of Abelian groups are calculated in the same way
(recall that rkZ(G) = dimQ(G ⊗Z Q)), there is a deep difference between the two settings. For instance, every
vector space of infinite dimension has linear transformations of arbitrarily large algebraic entropy, as we will
see below; on the converse, it is possible to construct torsion-free Abelian groups G of rank 2ℵ0 such that every
endomorphism of G has rank-entropy zero (see [10]). This obviously reflects the fact that endomorphism rings
of Abelian groups have a much more complex structure than the endomorphism rings of vector spaces.

The next proposition shows that Definition 2.4(a) makes sense; recall that a sequence of real numbers {an}n
is subadditive if an+m ≤ an + am for all n and m.

Proposition 2.8 The sequence {dim(Tn(φ, F))}n is subadditive, hence the limit

H(φ, F) = lim
n→∞

dim(Tn(φ, F))

n

does exist and equals infn≥0
dim(Tn(φ,F))

n .

Proof We have Tn+m(φ, F) = Tn(φ, F)+ φnTm(φ, F) for every n,m > 0. Then for all n,m > 0,

dim(Tn+m(φ, F)) ≤ dim(Tn(φ, F))+ dim(φn(Tm(φ, F)) ≤ dim(Tn(φ, F))+ dim(Tm(φ, F)).

This proves that {dim(Tn(φ, F))}n is subadditive. The rest of the statement follows by a well-known result of
calculus, due to Fekete [7], which completes the proof. ��
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The next two results allow one to avoid the limit calculation in the computation of the algebraic entropy.
This fact, which has no analogy for topological or metric entropies, essentially depends on the additivity of
the invariant dim. The crucial fact is provided by the following:

Lemma 2.9 For every n > 0 let

αn = dim

(
Tn+1(φ, F)

Tn(φ, F)

)
. (2.1)

The sequence of non-negative integers {αn}n is decreasing, and hence stationary.

Proof Let n > 1. Since Tn+1(φ, F) = Tn(φ, F)+ φn F and since φTn−1(φ, F) ⊆ Tn(φ, F), it follows that

Tn+1(φ, F)

Tn(φ, F)
∼= φn F

Tn(φ, F) ∩ φn F

is a quotient of

Bn = φn F

φTn−1(φ, F) ∩ φn F
.

Therefore αn ≤ dim Bn . Furthermore, since φTn(φ, F) = φTn−1(φ, F)+ φn F , we have:

Bn ∼= φTn−1(φ, F)+ φn F

φTn−1(φ, F)
= φTn(φ, F)

φTn−1(φ, F)
∼= Tn(φ, F)

Tn−1(φ, F)+ (Tn(φ, F) ∩ ker φ)

which is a quotient of Tn(φ, F)/Tn−1(φ, F), so dim Bn ≤ αn−1. Hence αn ≤ αn−1, as desired. ��
By means of Lemma 2.9, we can easily show how to determine the algebraic entropy of the linear trans-

formation φ with respect to the subspace F , avoiding the limit calculation.

Proposition 2.10 Let φ : V → V be a linear transformation of the vector space V , and F a finite dimensional
subspace of V . Then H(φ, F) = α, where α is the value of the stationary sequence {αn}n for n large enough.
In particular, H(φ, F) = 0 precisely when the sequence {dim(Tn(φ, F))}n becomes stationary, equivalently,
when αn = 0 for every n large enough.

Proof For every n > 0, in view of the definition of the αn given in (2.1),

αn = dim(Tn+1(φ, F))− dim(Tn(φ, F)). (2.2)

By Lemma 2.9, the decreasing sequence {αn}n is stationary, so there exist n0 > 0 and α ≥ 0 such that αn = α
for every n ≥ n0.

Then, α=0 if and only if dim(Tn+1(φ, F))=dim(Tn(φ, F)) for every n ≥n0; in this case, dim(T (φ, F))=
dim(Tn(φ, F)) for every n ≥ n0. If α > 0, since by (2.2) dim(Tn0+n(φ, F)) = nα + dim(Tn0(φ, F)) for
every n ≥ 0, we have

H(φ, F) = lim
n→∞

dim(Tn0+n(φ, F))

n0 + n
= lim

n→∞
dim(Tn0(φ, F))+ nα

n0 + n
= α.

This concludes the proof. ��
From Proposition 2.10, we derive that the value of the algebraic entropy ent(φ) of a linear transformation

φ is either a non-negative integer or ∞.
We consider now the two examples of the right and the left Bernoulli shifts on a countably dimensional vec-

tor space, showing that their algebraic entropies are, respectively, 1 and 0. The example of the right Bernoulli
shift is fundamental, since it plays a crucial role in the Uniqueness Theorem, discussed in Sect. 5.

Example 2.11 (a) Reconsidering Example 2.3, every finite dimensional subspace of V = ⊕
n≥0 K xn is con-

tained in a subspace of the form F = ⊕
0≤i≤r K xi for a suitable r ≥ 0. We have shown in Example 2.3

that H(β, F) = 1, independently of the dimension of F , so ent(β) = 1. Note that, using the notation of
Proposition 2.10, the sequence {αn}n is constantly equal to 1.
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(b) By means of the same argument, one can show that ent(β2) = 2. Note that V = T (β2, x1)⊕T (β2, x2), and
that β2 acts as the right Bernoulli shift on the two cyclic trajectories T1 = T (β2, x1) and T2 = T (β2, x2).
Thus ent(β2 �Ti ) = 1 for i = 1, 2 and ent(β2) = ent(β2 �T1)+ ent(β2 �T2). This gives a foretaste to the
Addition Theorem, to be proved in Sect. 5.

(c) Slightly modifying the previous argument, one can show that, if W = ⊕
n≥0 Vn with Vn = V for all

n ≥ 0, setting β(v0, v1, v2, . . . ) = (0, v0, v1, v2, . . . ), then ent(β) = dim(V ).
(d) Reversing the arrows, we can consider the left Bernoulli shift λ : W → W , defined by λ(v0, v1, v2, . . . ) =

(v1, v2, v3, . . . ). For a finite dimensional subspace F of W , we get that λr (F) = 0 for a suitable positive
integer r ; from this one easily deduces that H(λ, F) = 0, independently of F , so ent(λ) = 0 (again using
the notation of Proposition 2.10, the sequence {αn}n is equal to 0 for n > r ).

3 Basic properties of the algebraic entropy

In this section, we prove some basic properties of the algebraic entropy, starting with the announced fact that
the algebraic entropy is stable under conjugated linear transformations.

Proposition 3.1 Let φ : V → V be a linear transformation and α : V → W an isomorphism of vector
spaces. Then ent(φ) = ent(αφα−1).

Proof Let F be a finite dimensional subspace of W . For every n > 0 we have Tn(αφα
−1, F) =

α(Tn(φ, α
−1 F)). Therefore,

H(αφα−1, F) = lim
n→∞

dim(Tn(αφα
−1, F))

n
= lim

n→∞
dim(αTn(φ, α

−1 F))

n
= H(φ, α−1 F).

Since F is a finite dimensional subspace of W if and only if α−1 F is a finite dimensional subspace of V , we
can conclude that ent(αφα−1) = ent(φ). ��

Proposition 3.1 says that the algebraic entropy is an invariant of the category Mod(K [X ]); the fact that it
takes integer values (plus ∞) is expressed by saying that it is a discrete invariant.

The following lemma is one of the inequalities of the Addition Theorem. In particular, it shows that the
algebraic entropy is monotone under restrictions to subspaces and quotients.

Lemma 3.2 Let φ : V → V be a linear transformation and W a φ-invariant subspace of V . Then ent(φ) ≥
ent(φ �W )+ ent(φ), where φ : V/W → V/W is the linear transformation induced by φ.

Proof We prove first that

ent(φ) ≥ max{ent(φ �W ), ent(φ)}. (3.1)

Since every finite dimensional subspace of W is a finite dimensional subspace of V , it follows that ent(φ) ≥
ent(φ �W ). Let F ′/W be a finite dimensional subspace of V/W . Then there exists a finite dimensional subspace
F of W such that F ′/W = (F + W )/W . For every n > 0,

Tn(φ, F ′/W ) = Tn(φ, F)+ W

W
∼= Tn(φ, F)

Tn(φ, F) ∩ W
,

that is, Tn(φ, F ′/W ) is a quotient of Tn(φ, F). Passing to the limit, this gives H(φ, F ′/W ) ≤ H(φ, F); hence
ent(φ) ≤ ent(φ). This concludes the proof of (3.1).

If ent(φ) = ∞, the inequality in the thesis is satisfied. So assume that ent(φ) is finite. By (3.1) both
ent(φ �W ) and ent(φ) are finite. By Proposition 2.10 there exists a finite dimensional subspace F ′ of W and a
finite dimensional subspace F ′′ of V such that ent(φ �W ) = H(φ, F ′) and ent(φ) = H(φ, F ′′ + W/W ). Let
F = F ′ + F ′′. Then

ent(φ �W ) = H(φ, F ∩ W ),

as H(φ, F ′) ≤ H(φ, F ∩ W ) ≤ ent(φ �W ) = H(φ, F ′), and

ent(φ) = H(φ, F + W/W ).
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We need to prove now that

H(φ, F) ≥ H(φ �W , F ∩ W )+ H(φ, (F + W )/W ). (3.2)

To this end, consider the exact sequence

0 → Tn(φ, F) ∩ W → Tn(φ, F) → Tn(φ, F)

Tn(φ, F) ∩ W
∼= Tn(φ, F)+ W

W
→ 0.

Then,

dim(Tn(φ, F)) = dim(Tn(φ, F) ∩ W )+ dim

(
Tn(φ, F)+ W

W

)
.

Since, Tn(φ,F)+W
W = Tn(φ,

F+W
W ),

dim(Tn(φ, F)) = dim(Tn(φ, F) ∩ W )+ dim

(
Tn

(
φ,

F + W

W

))
.

Moreover, Tn(φ �W , F ∩ W ) ⊆ Tn(φ, F) ∩ W and so

dim(Tn(φ, F)) ≥ dim(Tn(φ �W , F ∩ W ))+ dim

(
Tn

(
φ,

F + W

W

))
.

Dividing by n and passing to the limit, we have (3.2).
Now, (3.2) implies ent(φ) ≥ H(φ, F) ≥ H(φ �W , F ∩ W ) + H(φ, F + W/W ), and hence ent(φ) ≥

ent(φ �W )+ ent(φ). ��
From Lemma 3.2, we derive the following important property of the algebraic entropy.

Proposition 3.3 Let φ : V → V be a linear transformation. If V is the direct limit of φ-invariant subspaces
Vσ , then ent(φ) = supσ ent(φ �Vσ ).

Proof By Lemma 3.2, ent(φ) ≥ ent(φ �Vσ ) for every σ and so ent(φ) ≥ supσ ent(φ �Vσ ). Let F be a
finite dimensional subspace of V . There exists σ such that F ⊆ Vσ . Then H(φ, F) ≤ ent(φ �Vσ ) and so
ent(φ) ≤ supσ ent(φ �Vσ ). ��

The following property is the so-called logarithmic law for the algebraic entropy; compare it with
Example 2.11.

Proposition 3.4 Let φ : V → V be a linear transformation. Then, ent(φk) = k · ent(φ) for all k ≥ 0. If φ is
an automorphism, then ent(φ) = ent(φ−1); in particular, ent(φk) = |k| · ent(φ) for every integer k.

Proof For k = 0, it is enough to note that ent(idV ) = 0. So let k > 0 and let F be a finite dimensional
subspace of V . For every n > 0, we have Tnk(φ, F) = Tn(φ

k, Tk(φ, F)). Let E = Tk(φ, F). Then

k · H(φ, F) = k · lim
n→∞

dim(Tnk(φ, F))

nk
= lim

n→∞
dim(Tn(φ

k, E))

n
= H(φk, E) ≤ ent(φk);

consequently, k · ent(φ) ≤ ent(φk). Conversely,

ent(φ) ≥ H(φ, F) = lim
n→∞

dim(Tnk(φ, F))

nk
= lim

n→∞
dim(Tn(φ

k, E))

nk
= H(φk, E)

k
.

Since Tn(φ
k, F) ≤ Tn(φ

k, E), it follows that dim(Tn(φ
k, F)) ≤ dim(Tn(φ

k, E)), and so k · ent(φ) ≥
H(φk, F). Hence k · ent(φ) ≥ ent(φk).

Assume now thatφ is invertible. For every n > 0, we have Tn(φ, F) = φn−1Tn(φ
−1, F), and so H(φ, F) =

H(φ−1, F). Hence, ent(φ) = ent(φ−1). ��
The following is a particular case of the Addition Theorem.

Lemma 3.5 If V = V1 ⊕ V2 for some subspaces V1, V2 of V , and φ = φ1 ⊕ φ2 : V → V for some linear
transformations φi : Vi → Vi , i = 1, 2, then ent(φ) = ent(φ1)+ ent(φ2).

Proof Let F1 be a finite dimensional subspace of V1 and F2, a finite dimensional subspace of V2.
Since Tn(φ, F1 × F2) = Tn(φ1, F1) + Tn(φ2, F2) for every n > 0, it follows that H(φ, F1 × F2) =
H(φ1, F1) + H(φ2, F2). Since every finite dimensional subspace F of V is contained in F1 × F2, where
F1 is the projection of F onto V1 and F2 is the projection of F onto V2, it follows that ent(φ) =
ent(φ1)+ ent(φ2). ��
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4 Passing to modules over polynomial rings

In this section, we connect the algebraic entropy of linear transformations of K -vector spaces with the structure
of K [X ]-modules, following the classical approach that can be found for instance in [12, Chapter 12] and [19,
pp. 659–674].

Fixing a field K , we can define the category whose objects are the pairs (V, φ) with V a K -vector space
and φ : V → V a linear transformation. In this category, a morphism α : (V, φ) → (W, ψ) is a commutative
square of the form

V
φ ��

α

��

V

α

��
W

ψ �� W

(4.1)

where α is a linear transformation from V to W . This category is just isomorphic to the category Mod(K [X ])
of modules over the polynomial ring over K , which is a PID; the equivalence functor is given by (V, φ) �→
Vφ ∈ Mod(K [X ]), where Vφ as a K -vector space is just V and X acts on Vφ via φ; in detail, if v ∈ V and
f (X) = a0 + a1 X + · · · + am Xm is a polynomial in K [X ], then

f (X) · v = ( f (φ))(v) = a0v + a1φ(v)+ · · · + amφ
m(v).

The homomorphism α in (4.1) becomes a K [X ]-homomorphism, as it commutes with the action of X . In
this way, a φ-invariant subspace of V is just a K [X ]-subspace of Vφ ; furthermore, Vφ and Wψ are isomorphic
as K [X ]-modules if and only if there exists a K -isomorphism α : V → W such that ψ = αφα−1, that is, φ
and ψ are conjugated.

Every K [X ]-module can be viewed as a K -vector space V with the multiplication by X acting as a K -endo-
morphism. So, in the following, when dealing with K [X ]-modules, we will always consider objects written in
the form Vφ ; we will sometimes abuse notation, denoting a φ-invariant subspace W of V with the structure of
K [X ]-module induced by the restriction of φ to W simply by Wφ .

At this point, we can interpret the algebraic entropy as a map

ent : Mod(K [X ]) → R≥0 ∪ {∞},
which associates to the K [X ]-module Vφ the value ent(φ). Indeed, in Proposition 3.1, we have seen that two
K [X ]-modules Vφ and Wψ are isomorphic exactly when φ and ψ are conjugated, which implies that iso-
morphic K [X ]-modules have the same algebraic entropy. Therefore, ent can be viewed as an invariant of the
category Mod(K [X ]) with values in R≥0 ∪ {∞} (this point of view is fully developed in [15]). Moreover, as
every module is the direct limit of its finitely generated submodules, Proposition 3.3 says in particular that the
algebraic entropy is an upper continuous invariant of Mod(K [X ]), that is, ent(Vφ) = supW ent(W ), ranging W
in the set of the finitely generated K [X ]-submodules of Vφ , that is, of the φ-trajectories of finite dimensional
subspaces of V .

In [12], one can find the description of when Vφ is primary (under the assumption that K is algebraically
closed), or primary of bounded order, or cyclic, and some classical theorems holding for Abelian p-groups are
adapted to the present situation.

We introduce now a functor from the category Vect(K ) of K -vector spaces to the category Mod(K [X ]) of
the K [X ]-modules, which will play a crucial role in the Uniqueness Theorem 5.3.

The Bernoulli functor B : Vect(K ) → Mod(K [X ]) associates with a K -vector space V the direct sum⊕
n≥0 Vn , with Vn = V for all n, endowed with a right Bernoulli shiftβ defined in Example 2.11. Ifα : V → W

is a K -linear transformation, then

B(α) : B(V ) → B(W ) is defined by B(α)(v0, v1, v2, . . . ) = (αv0, αv1, αv2, . . . ).

It is easy to check that the Bernoulli functor is equivalent to the functor −⊗K K [X ], that is, B(V ) is naturally
isomorphic to V ⊗K K [X ]. Thus, Example 2.11 can be reformulated by saying that, for all vector spaces V ,
the following equality holds:

ent(V ⊗K K [X ])) = dim(V ). (4.2)
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Recall that the linear transformation φ : V → V is locally algebraic if for every v ∈ V there exists a
non-zero polynomial f (X) ∈ K [X ] such that f (φ)(v) = 0, and φ is algebraic if the polynomial f (X) is
independent of v ∈ V .

We give now an example of a locally algebraic linear transformation which fails to be algebraic.

Example 4.1 The linear transformation φ : V → V considered in Example 2.2, defined by the assignments:

x0 �→ x0, x1 �→ x2 �→ x1, x3 �→ x4 �→ x5 �→ x3, x6 �→ x7 �→ x8 �→ x9 �→ x6, . . .

is locally algebraic, since for all v ∈ V there exists k > 0 such that φk(v) = v; hence, v is annihilated by the
polynomial Xk −1. One can easily deduce that for every finite dimensional subspace F of V the φ-trajectory of
F has finite dimension; therefore, ent(φ) = 0, according to the next Theorem 4.3. Clearly, φ is not algebraic,
since for each k > 0 there exist cyclic trajectories of dimension bigger than k.

In the following, we will assume the reader to be familiar with basic notions on modules over PIDs, as
developed for instance in [12]. If R is such a domain and M is an R-module, we will denote as usual by t (M)
the torsion part of M .

Theorem 4.3 characterizes the linear transformations of zero algebraic entropy. To prove it, we need the
following

Lemma 4.2 Let φ : V → V be a linear transformation, W a φ-invariant subspace of V , and φ : V/W →
V/W the linear transformation induced by φ.

(a) If ent(φ) = 0, then ent(φ) = ent(φ �W ).
(b) If ent(φ �W ) = 0 and dim(V/W ) is finite, then ent(φ) = 0.

Proof (a) By Lemma 3.2 we have ent(φ) ≥ ent(φ �W ). To prove the converse inequality, it suffices to show that
H(φ, F) ≤ ent(φ �W ) for every finite dimensional subspace F of V . So, let F be a finite dimensional sub-
space of V and F = F+W/W . By Proposition 2.10, there exists m > 0 such that Tm+n(φ, F) = Tm(φ, F)
for every n ≥ 0. In particular, φ

m
F ⊆ Tm(φ, F), and so φm F ⊆ Tm(φ, F) + W . Since φm F is finite

dimensional, there exists a finite dimensional subspace E of W , such that φm F ⊆ Tm(φ, F) + E . It is
possible to prove by induction that φm Tn(φ, F) ⊆ Tm(φ, F)+ Tn(φ, E) for every n > 0. Consequently,

Tm+n(φ, F) = Tm(φ, F)+ φm Tn(φ, F) ⊆ Tm(φ, F)+ Tn(φ, E)

for every n > 0. Then

dim(Tm+n(φ, F)) ≤ dim(Tm(φ, F))+ dim(Tn(φ, E)),

so that dividing by m + n and passing to the limit with respect to n, we obtain H(φ, F) ≤ H(φ, E) ≤
ent(φ �W ).

(b) The hypothesis ensures that V = F0 ⊕ W for a finite dimensional subspace F0 of V . If F is an arbitrary
finite dimensional subspace of V , then F ≤ F0 ⊕ F1 for a finite dimensional subspace F1 of W . In order
to show that H(φ, F) = 0, it is enough to prove that H(φ, F0) = 0, as H(φ, F1) = H(φ �W , F1) = 0,
by hypothesis. Let now F0 +φF0 = F0 ⊕ W1, where W1 is a finite dimensional subspace of W . For every
n ≥ 2, we have that Tn(φ, F0) ≤ F0 ⊕ Tn−1(φ,W1). Since H(φ �W ,W1) = 0, the conclusion easily
follows. ��

Theorem 4.3 Let φ : V → V be a linear transformation. The following conditions are equivalent:

(a) ent(φ) = 0;
(b) every φ-trajectory T (φ, F) of a finite dimensional subspace F of V is finite dimensional;
(c) Vφ is the union of a smooth ascending chain of K [X ]-submodules Vσ (σ < λ) such that dim(Vσ+1/Vσ )

is finite for all σ and V0 = 0;
(d) φ is locally algebraic;
(e) Vφ is a torsion K [X ]-module.

123



78 Arab J Math (2012) 1:69–87

Proof (a) ⇒ (b) The condition ent(φ) = 0 implies that H(φ, F) = 0 for every finite dimensional subspace F
of V . By Proposition 2.10, there exists k > 0 such that dim(Tn(φ, F)) = dim(Tk(φ, F)) for every n ≥ k. In
particular, dim(T (φ, F)) = dim(Tk(φ, F)) as well, and so dim(T (φ, F)) is finite.

(b) ⇒ (c) We construct the Vσ by transfinite induction. Let V0 = 0. Suppose that σ = β + 1 for some β
and assume that Vβ �= V ; let x + Vβ be a non-zero element of V/Vβ . Let Vσ = Vβ + T (φ, K x). Then, Vσ is
φ-invariant as T (φ, K x) and Vβ are φ-invariant, respectively, by definition and by inductive hypothesis. By

hypothesis, dim(T (φ, K x)) is finite, moreover Vβ+T (φ,K x)
Vβ

∼= T (φ,K x)
Vβ∩T (φ,K x) , so Vσ /Vβ has finite dimension.

For σ limit, let Vσ = ∪β<σVβ . Then, V = ⋃
σ<λ Vσ for some λ.

(c) ⇒ (a) Let φσ = φ �Vσ for every σ . By Proposition 3.3, it suffices to verify that ent(φσ ) = 0 for every σ .
We proceed by transfinite induction on σ . If σ = 0, then V0 = 0 and in particular ent(φ0) = 0. If σ = β+1 for
some β, then Lemma 4.2 ensures that ent(φσ ) = 0, since dim(Vσ /Vβ) is finite and ent(φβ) = 0 by inductive
hypothesis. If σ is a limit ordinal, then ent(φσ ) = supβ<σ ent(φβ) = 0, in view of Proposition 3.3 and the
inductive hypothesis.

(b) ⇔ (d) Let x ∈ V . Item (b) implies that dim(T (φ, K x)) is finite. Then, T (φ, K x) = Tn(φ, K x)
for some n > 0, and so φn(x) = a0x + a1φ(x) + · · · + an−1φ

n−1(x) for some a0, . . . , an−1 ∈ K . Then,
f (X) = a0 + a1 X + · · · + an−1 Xn−1 − Xn is a polynomial such that f (φ)(x) = 0. Therefore, (b) implies
(d). The argument can be reversed thus: as for a finite dimensional subspace F = ⊕

i≤r K xi of V , we have
that T (φ, F) = ∑

i≤r T (φ, K xi ), the converse implication holds too.
(d) ⇔ (e) Look at the definition of φ that is locally algebraic. ��
In the proof of Theorem 4.3, we used a special kind of trajectories, namely, those of the form T (φ, K x),

which we call cyclic trajectories. These trajectories are of great importance in the characterization of the
endomorphisms of finite algebraic entropy given in the next Lemma 4.4 and Theorem 4.7.

The rest of this section is devoted to prove the characterization of linear transformations of vector spaces
having finite algebraic entropy. The proof will be done by induction, the basic step being furnished by the
following:

Lemma 4.4 Let φ : V → V be a linear transformation. Then, ent(φ) = 1 if and only if there exists a non-zero
element x in V such that T = T (φ, K x) is infinite dimensional and Vφ/T is a torsion K [X ]-module.

Proof Assume ent(φ) = 1. By Theorem 4.3, there exists an element x ∈ V such that T (φ, K x) has infinite
dimension. It is immediate that this implies that T (φ, K x) = ⊕

n≥0 Kφn(x); clearly φ acts on T = T (φ, K x)

as the right Bernoulli shift, hence ent(φ �T ) = 1 by Example 2.11. By Lemma 3.2 we get that ent(φ) = 0,
where φ is the linear transformation induced by φ on V/W , and hence the conclusion follows by Theorem 4.3.
Conversely, since ent(φ) = 0 and ent(φ �T ) = 1, the conclusion derives from Lemma 4.2(a). ��

We give now an example, which is an application of Lemma 4.4 showing that the “bilateral” right shift has
the same algebraic entropy as the right Bernoulli shift.

Example 4.5 Let V = ⊕
n∈Z

K xn and β the right shift. Then, β restricted to T (β, x0) is the usual right Ber-
noulli shift, and Vβ/T (β, x0) is a torsion K [X ]-module, because βr (x−r ) ∈ T (β, x0) for all r ≥ 0. Hence,
ent(φ) = 1 by Lemma 4.4.

Lemma 4.6 Let φ : V → V be a linear transformation, W a φ-invariant subspace of V and φ : V/W →
V/W the linear transformation induced by φ. If ent(φ) > 0, then there exists x ∈ V such that the elements in
{φn x}n≥0 are independent and

⊕
n≥0 Kφn x ∩ W = 0.

Proof By Theorem 4.3, there exists x = x + W ∈ V/W such that T (φ, x) has countable dimension. There-
fore, Tn(φ, x) has dimension n for each n > 0, and so T (φ, x) = (T (φ, x)+ W )/W = ⊕

n≥0 Kφ
n
x, where

φ
n
x �= 0 for all n ≥ 0. This implies the thesis. ��

Theorem 4.7 Let φ : V → V be a linear transformation. The following conditions are equivalent:

(a) ent(φ) = k, where k ≥ 1;
(b) V is the union of an ascending chain of K [X ]-submodules

t (Vφ) = V0 < V1 < · · · < Vk = V,

such that, for all 0 ≤ i ≤ k, ent(φi ) = 1, where φi : Vi/Vi−1 → Vi/Vi−1 is the linear transformation
induced by φ, and ent(φ �Vi ) = i ;
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(c) there exist k independent cyclic trajectories Ti = T (φ, K xi ) (i ≤ k) which are infinite dimensional, such
that Vφ/

⊕
1≤i≤k Ti is a torsion K [X ]-module.

Proof (a) ⇒ (b) We construct the subspaces Vi by induction on i ≥ 0. For i = 0, there is nothing to prove in
view of Theorem 4.3. Assume that i > 0 and that Vi−1 is already constructed. Then the linear transformation
φi−1 : V/Vi−1 → V/Vi−1 induced by φ has ent(φi−1) > 0. In fact, if ent(φi−1) = 0, then Lemma 4.2(a)
would imply ent(φ) = ent(φ �Vi−1) = i − 1 < k, against the hypothesis. By Lemma 4.6, there exists xi ∈ V
such that Ti = T (φ, xi ) has countable dimension and Ti +Vi−1 = Ti ⊕Vi−1, where Ti and Vi−1 are φ-invariant
subspaces of V . Since φ acts as the right Bernoulli shift on Ti , we have ent(φ �Ti ) = 1 by Example 2.11. Then,
Lemma 3.5 gives

ent(φ �Ti ⊕Vi−1) = ent(φ �Ti )+ ent(φ �Vi−1) = i. (4.3)

Let Vi be the subspace of V , containing Ti ⊕ Vi−1 such that

Vi/Ti ⊕ Vi−1 = t ((V/(Ti ⊕ Vi−1)φ). (4.4)

We show that ent(φi ) = 1. To this end, consider the short exact sequence

0 → Ti ∼= (Ti ⊕ Vi−1)/Vi−1 → Vi/Vi−1 → Vi/(Ti ⊕ Vi−1) → 0.

By (4.4), Theorem 4.3, Lemma 4.2(a) and Proposition 3.1, it follows that ent(φi ) = ent(φ �Ti ) = 1.
Consider now the short exact sequence

0 → Ti ⊕ Vi−1 → Vi → Vi/(Ti ⊕ Vi−1) → 0.

By (4.4), Theorem 4.3, Lemma 4.2(a) and (4.3), we have ent(φ �Vi ) = ent(φ �Ti ⊕Vi−1) = i .
By construction, ent(φ �Tk⊕Vk−1) = k = ent(φ). Consequently, (V/(Tk ⊕ Vk−1))φ is torsion in view of

Lemma 3.2 and Theorem 4.3, hence V = Vk .
(b) ⇒ (a) is obvious.
(a) ⇒ (c) Let m > 0 be such that there exist x1, . . . , xm ∈ V with each Ti = T (φ, xi ) = ⊕

n≥0 Kφn x of
countable dimension and independent, that is,

T =
∑

1≤i≤m

Ti =
⊕

1≤i≤m

Ti . (4.5)

By Lemma 4.4 at least the case m = 1 is possible. Moreover, ent(φ �Ti ) = 1 for every 1 ≤ i ≤ m, by
Example 2.11 since φ acts as a right Bernoulli shift on each Ti , and so Lemma 3.5 yields

ent(φ �T ) = m. (4.6)

Then, m ≤ k by Lemma 3.2. Suppose that m is maximum with respect to (4.5); we verify that m = k. Assume
looking for a contradiction that m < k. By (4.6) and Lemma 4.2(a) ent(φ) > 0, where φ : V/T → V/T is
the linear transformation induced by φ. In view of Lemma 4.6, there exists xm+1 ∈ V such that T (φ, xm+1)
has countable dimension and T ∩ T (φ, xm+1) = 0; this contradicts the maximality of m. Thus, m = k and
(V/T )φ are torsion.

(c) ⇒ (a) Let W = ⊕
1≤i≤k Ti . Since (V/W )φ is torsion, Theorem 4.3 and Lemma 4.2(a) give ent(φ) =

ent(φ �W ). By Lemma 3.5 ent(φ) = ∑
1≤i≤k ent(φ �T (φ,xi )); since φ acts on each Ti (φ, xi ) as a right Bernoulli

shift, by Example 2.11 we can conclude that ent(φ) = k. ��
The following is the most important consequence of Theorem 4.7, which extends to arbitrary K [X ]-modules

the formula proved in (4.2).

Corollary 4.8 Let φ : V → V be a linear transformation. Then ent(φ) = rkK [X ](Vφ).
Proof It is enough to prove the equality when ent(φ) is finite, say equal to k. By Theorem 4.7, V contains⊕

1≤i≤k Ti , where Ti = T (φ, K xi ) is isomorphic to K [X ] as K [X ]-modules for all i , hence rkK [X ](Ti ) = 1.
Taking care that Vφ/(

⊕
1≤i≤k Ti ) is a torsion K [X ]-module, we get

rkK [X ](Vφ) = rkK [X ]

⎛

⎝
⊕

1≤i≤k

Ti

⎞

⎠ = k,

which concludes the proof. ��
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5 Addition Theorem, Uniqueness Theorem and their consequences

The Addition Theorem for the algebraic entropy of endomorphisms φ of an algebraic structure (however
defined) says that, given a φ-invariant substructure, the algebraic entropy of φ is the sum of the algebraic
entropy of the restriction of φ to the substructure and of the algebraic entropy of the induced map on the quo-
tient structure. It is a very useful tool, since it allows one to reduce the computation of the algebraic entropy
to simpler substructures.

The Addition Theorem was one of the main achievements in the study of the algebraic entropy of endo-
morphisms of Abelian groups in [6]. In that paper, the theorem was proved to hold for the subcategory of
torsion groups, and it was proved to fail for the whole category of Abelian groups. Its demonstration was quite
eleborate, reducing the proof to bounded p-groups and then inducting on the exponent of the group.

The proof of the Addition Theorem for the rank-entropy given in [16] was much simpler. Very recently,
using ideas from both the above proofs and borrowing techniques typical of p-groups and of torsion-free
groups, a very general Addition Theorem has been proved in [15] for suitable subcategories of modules over
arbitrary rings, dealing with the algebraic entropies associated with length functions (see their definition below
in this section).

In our present setting of vector spaces, the Addition Theorem loses its complexity and becomes an easy
consequence of the formula proved in Corollary 4.8.

Theorem 5.1 (Addition Theorem) Let V be a vector space over the field K and φ : V → V a linear
transformation. If W is a φ-invariant subspace of V , then

ent(φ) = ent(φ �W )+ ent(φ)

where φ : V/W → V/W is the linear transformation induced by φ.

Proof Look at the algebraic entropy as a discrete invariant on the category Mod(K [X ]). Corollary 4.8 ensures
that this invariant coincides with rkK [X ], which is obviously additive. So

rkK [X ](Vφ) = rkK [X ](Wφ�W )+ rkK [X ]((V/W )φ)

from which the conclusion immediately follows. ��
As a consequence of the Addition Theorem, we prove now the counterpart of the Grassmann formula for

the algebraic entropy:

Corollary 5.2 Let φ : V → V be a linear transformation, and let U and W be φ-invariant subspaces of V
such that V = U + W . Then ent(φ) = ent(φ �U )+ ent(φ �W )− ent(φ �U∩W ).

Proof Consider the short exact sequence

0 → U ∩ W
f−→ U ⊕ W

g−→ U + W = V → 0,

where f : U ∩ W → U ⊕ W is defined by f (x) = (x,−x), and g : U ⊕ W → U + W = V is defined by
g(x, y) = x + y. Let ψ = φ �U ⊕φ �W : U ⊕ W → U ⊕ W . Then the subspace

D = ker g = {(x,−x) ∈ U ⊕ W : x ∈ U ∩ W }
of U ⊕W isψ-invariant and (U ⊕W )/D ∼= V . Moreover, the induced linear transformationψ : (U ⊕W )/D →
(U ⊕ W )/D is conjugate to φ and so ent(φ) = ent(ψ) by Proposition 3.1. Analogously, it is possible to prove
that ent(ψ �D) = ent(φ �U∩W ). Moreover, ent(ψ) = ent(φ �U )+ ent(φ �W ) by Lemma 3.5. Hence, applying
Theorem 5.1, we have

ent(φ �U )+ ent(φ �V ) = ent(ψ) = ent(ψ �D)+ ent(ψ) = ent(φ �U∩W )+ ent(φ),

which concludes the proof. ��
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As we saw above, the algebraic entropy of linear transformations of K -vector spaces can be viewed as
a discrete invariant for the category Mod(K [X ]). Proposition 3.3 says that it is upper continuous, and the
Addition Theorem says that it is also additive. Now, upper continuous additive invariants for Mod(R) with
values in R≥0 ∪ {∞}, where R is a commutative integral domain, have been investigated by Northcott and
Reufel in [13] under the name of length functions (see also [17]). In particular, Theorem 2 in [13] states that
a length function L : Mod(R) → R≥0 ∪ {∞}, where R is an integral domain, coincides with L(R) · rkR
provided that L(R) < ∞. From that theorem, we immediately derive the following

Theorem 5.3 (Uniqueness Theorem) Given an arbitrary field K , the algebraic entropy ent is the unique
length function L : Mod(K [X ]) → R≥0 ∪ {∞} such that, for every finite dimensional vector space V ,
L(B(V )) = dim(V ).

Proof Let L : Mod(K [X ]) → R≥0 ∪ {∞} be a length function such that, for every finite dimensional vec-
tor space V , L(B(V )) = dim(V ); then L(K [X ]) = L(B(K )) = dim(K ) = 1. Therefore, L = rkK [X ] by
Theorem 2 in [13]. Hence the claim follows by Corollary 4.8. ��

As an application of the above results, we will prove now that the algebraic entropy of the right and the
left Bernoulli shift of the direct product is ∞ (see also [8]); let us denote respectively by β̂ : ∏

n≥0 K xn →∏
n≥0 K xn and λ̂ : ∏

n≥0 K xn → ∏
n≥0 K xn such shifts.

Proposition 5.4 ent(β̂) = ∞ and ent(λ̂) = ∞.

Proof The canonical isomorphism of vector spaces
∏

n≥0 K xn ∼= K [[X ]], given by (knxn)n �→ ∑
n≥0 kn Xn ,

is also an isomorphism of K [X ]-modules between (
∏

n≥0 K xn)β̂ and K [[X ]]. It is well known that
rkK [X ](K [[X ]]) is infinite and so Corollary 4.8 gives ent(

∏
n≥0 K xn)β̂ ) = ∞.

To see that ent(λ̂) = ∞, since ent(
∏

n≥0 K xn)λ̂) = rkK [X ](
∏

n≥0 K xn)λ̂) by Corollary 4.8, we verify now
that rkK [X ](

∏
n≥0 K xn)λ̂) is infinite. To this end, for every m ≥ 2, we provide m many independent elements

of (
∏

n≥0 K xn)λ̂. We consider first the case m = 2. Let v(1) = (v
(1)
n )n be defined by

v(1)n =
{

1 if n = (2k)! for some k > 0,
0 otherwise; and v(2)n =

{
1 if n = (2k + 1)! for some k > 0,
0 otherwise.

In other words, supp(v(1)) = {(2k)! : k > 0} and supp(v(2)) = {(2k + 1)! : k > 0}. Now, let f1(X), f2(X) ∈
K [X ] and assume that d1 = deg f1(X) > 0 and d2 = deg f2(X) > 0. We have to show that f1(X)v(1) +
f2(X)v(2) �= 0. To this end, it suffices to find h > 0 such that h ∈ supp( f1(X)v(1)) \ supp( f2(X)v(2)). Let
d = max{d1, d2} and k > d . Then

(2k − 1)! < (2k)! − d < (2k)! < (2k + 1)! − d < (2k + 1)!.

Therefore, (2k)! − d1 ∈ supp( f1(X)v(1)) \ supp( f2(X)v(2)), that concludes the proof for the case m = 2. It
is possible to extend in an easy way this argument for an arbitrary m > 0. However, we leave it to the reader.

��
We provide a sketch of a more structural proof of the equality ent(λ̂) = ∞ given in Proposition 5.4. Let

F be the prime subfield of the field K . Let M = ∏
n≥0 Fxn and consider M as an F[X ]-module using the

action of the left shift λ̂. First, one has to prove that the torsion part of M as F[X ]-module is countable: in fact,
since F[X ] is countable, it is enough to prove that the submodule M[ f (X)] of M consisting of the elements
annihilated by a fixed non-zero polynomial f (X) ∈ F[X ] is countable. To prove this fact, one can see that
an element in M[ f (X)] has the coordinates of index ≥ deg f (X) determined by the coefficients of f (X)
and the preceding coordinates; thus, there exists countably many of such elements. Thus, the rank of M as
F[X ]-module is the continuum; hence, for each natural number n, M contains a free submodule of rank n and,
once tensored by K , this submodule becomes a submodule of the K [X ]-module

∏
n≥0 K xn , where the action

of the indeterminate X is still that of the left shift λ̂. This shows that ent(λ̂) = ∞.
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6 Adjoint algebraic entropy

In this section, we introduce the adjoint algebraic entropy for linear transformations of vector spaces. In partic-
ular, first we give its definition and some basic examples, then we study its fundamental properties and lastly
we prove the main theorems.

6.1 Definition

Let W be a subspace of V . The codimension of W in V is dim(V/W ). If V is finite dimensional, then
dim(V/W ) = dim V − dim W . Let C(V ) be the family of all subspaces of V of finite codimension. We start
giving basic properties of C(V ).
Lemma 6.1 Let φ : V → V be a linear transformation. Then:

(a) C(V ) is closed under finite intersections;
(b) C(V ) is closed under counterimages, that is, φ−1 N ∈ C(V ) for every N ∈ C(V );
(c) if dim V is infinite, then |C(V )| = |K |dim V .

Proof (a) First, we show that if N1, N2 ∈ C(V ), then N1 ∩ N2 ∈ C(V ). In fact, consider the linear trans-
formation ψ : V → V/N1 ⊕ V/N2 defined by v �→ (v + N1, v + N2). Since kerψ = N1 ∩ N2, it
follows that V/(N1 ∩ N2) is isomorphic to a subspace of V/N1 ⊕ V/N2, and so dim(V/(N1 ∩ N2)) ≤
dim(V/N1 ⊕V/N2) = dim(V/N1)+dim(V/N2), which is finite by hypothesis. Hence, N1 ∩ N2 ∈ C(V ).
Proceeding by induction, it is possible to prove that each finite intersection of elements of C(V ) is still in
C(V ).

(b) Let N ∈ C(V ). Consider the linear transformation φ : V/φ−1 N → V/N induced by φ; then φ is injective
and so dim(V/φ−1 N ) is finite, as dim(V/N ) is finite. In other words, φ−1 N ∈ C(V ).

(c) It is well known that there is a bijection between the set C(V ) and the set of the finite dimensional subspaces
of the dual space V ∗, and that this set has cardinality max(|K |, dim V ∗). Since dim V ∗ = |K |dim V , we
get that C(V ) = |K |dim V . ��
To introduce the adjoint algebraic entropy, we start with some definitions. Let N ∈ C(V ). For a linear

transformation φ : V → V and a positive integer n, let

Bn(φ, N ) = N ∩ φ−1 N ∩ · · · ∩ φ−n+1 N

and let

Cn(φ, N ) = V

Bn(φ, N )
;

Cn(φ, N ) is called the n-th φ-cotrajectory of N in V . Lemma 6.1 implies that Bn(φ, N ) belongs to C(V ) for
every n > 0, hence dim (Cn(φ, N )) is finite for every n > 0. Let

B(φ, N ) =
⋂

n≥0

φ−n N and C(φ, N ) = V

B(φ, N )
;

C(φ, N ) is called the φ-cotrajectory of N in V . It is easy to check that B(φ, N ) is the maximum φ-invariant
subspace of N .

The adjoint algebraic entropy of φ with respect to N is

H �(φ, N ) = lim
n→∞

dim (Cn(φ, N ))

n
. (6.1)

We will show now that this limit exists and is finite.

Lemma 6.2 For every n > 0, let

γn = dim

(
Cn+1(φ, N )

Cn(φ, N )

)
. (6.2)

Then γn = dim
(

Bn(φ,N )
Bn+1(φ,N )

)
and the sequence of non-negative integers {γn}n is decreasing, and hence

stationary.
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Proof Since for every n > 0, Bn+1(φ, N ) is a subspace of Bn(φ, N ), it follows that

Cn(φ, N ) = V

Bn(φ, N )
∼=

V
Bn+1(φ,N )

Bn(φ,N )
Bn+1(φ,N )

= Cn+1(φ, N )
Bn(φ,N )

Bn+1(φ,N )

.

Let n > 1. We intend to prove that Bn(φ,N )
Bn+1(φ,N )

is isomorphic to a subspace of Bn−1(φ,N )
Bn(φ,N )

.

First, note that Bn(φ,N )
Bn+1(φ,N )

∼= Bn(φ,N )+φ−n N
φ−n N . From Bn(φ, N ) = N ∩ φ−1 Bn−1(φ, N ) ≤ φ−1 Bn−1(φ, N ),

it follows that

Bn(φ, N )+ φ−n N

φ−n N
≤ An = φ−1 Bn−1(φ, N )+ φ−n N

φ−n N
.

Since the linear transformation φ̃ : V
φ−n N → V

φ−n+1 N
, induced by φ, is injective, also its restriction to An is

injective, and the image of An is contained in Ln = Bn−1(φ,N )+φ−n+1 N
φ−n+1 N

, which is isomorphic to Bn−1(φ,N )
Bn(φ,N )

.
Summarizing,

Bn(φ, N )

Bn+1(φ, N )
∼= Bn(φ, N )+ φ−n N

φ−n N
≤ An � Ln ∼= Bn−1(φ, N )

Bn(φ, N )
,

which concludes the proof. ��
The following proposition shows that indeed it is possible to avoid the calculation of the limit in the

definition of the adjoint algebraic entropy, that is, in (6.1).

Proposition 6.3 Let φ : V → V be a linear transformation and N ∈ C(V ). Then H �(φ, N ) = γ , where γ is
the value of the stationary sequence {γn}n for n large enough. In particular, H(φ, N ) = 0 precisely when the
sequence {dim(Cn(φ, N ))}n becomes stationary, equivalently, when γn = 0 for every n large enough.

Proof For every n > 0, in view of the definition of the γn given in (6.2),

γn = dim(Cn+1(φ, N ))− dim(Cn(φ, N )). (6.3)

By Lemma 6.2, the decreasing sequence {γn}n is stationary, so there exist n0 > 0 and γ ≥ 0 such that γn = γ
for every n ≥ n0.

Then, γ = 0 if and only if dim(Cn+1(φ, N )) = dim(Cn(φ, N )) for every n ≥ n0; in this case,
dim(C(φ, N )) = dim(Cn(φ, N )) for every n ≥ n0. If γ > 0, since by (6.3) dim(Cn0+n(φ, N )) =
nγ + dim(Cn0(φ, N )) for every n ≥ 0, we have

H �(φ, N ) = lim
n→∞

dim(Cn0+n(φ, N ))

n0 + n
= lim

n→∞
dim(Cn0(φ, N ))+ nγ

n0 + n
= γ.

This concludes the proof. ��
An easy computation shows that H �(φ,M) is an anti-monotone function on M :

Lemma 6.4 Let φ be a linear transformation and let N ,M ∈ C(V ). If N ≤ M, then Bn(φ, N ) ≤ Bn(φ,M)
and so dim (Cn(φ, N )) ≥ dim (Cn(φ,M)). Therefore, H �(φ, N ) ≥ H �(φ,M).

Now we can define the adjoint algebraic entropy of φ : V → V as the quantity

ent�(φ) = sup{H �(φ, N ) : N ∈ C(V )}.
By Proposition 6.3, the value of the adjoint algebraic entropy ent�(φ) of a linear transformation φ is either a
non-negative integer or ∞ (we will see in Theorem 6.15 that ent�(φ) is either zero or ∞), and ent�(φ) = ∞
if and only if there exists a countable family {Nk}k≥0 ⊆ C(V ) such that H �(φ, Nk) converges to ∞. Now we
give some easy examples.

Example 6.5 (a) If φ : V → V is a linear transformation and N ∈ C(V ) is φ-invariant, then H �(φ, N ) = 0.
Indeed, φ−1 N ⊇ N , so Bn(φ, N ) = N for every n > 0 and consequently Cn(φ, N ) = V/N for every
n > 0; hence, H �(φ, N ) = 0.

(b) For V any vector space, ent�(idV ) = ent�(0V ) = 0, by a trivial application of item (a).
(c) Let x ∈ K and ẋ : V → V the linear transformation of V defined by v �→ xv for every v ∈ V . Then item

(a) shows that ent�(ẋ) = 0, since all subspaces of V are ẋ-invariant.
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6.2 Basic properties

In this section we present the basic properties of the adjoint algebraic entropy, in analogy to the basic properties
of the algebraic entropy discussed in Sect. 3. We omit the proofs, which are a simplified version of the proofs
given in [5] and which can be verified by the reader as a straightforward application of the definition, imitating
the proofs of the corresponding properties of the algebraic entropy.

Property 6.6 Let φ : V → V be a linear transformation and α : V → W an isomorphism of vector spaces.
Then, ent�(φ) = ent�(αφα−1).

The following property shows that the algebraic entropy is monotone under restrictions to subspaces and
quotients.

Proposition 6.7 Let φ : V → V be a linear transformation, W a φ-invariant subspace of V and φ : V/W →
V/W the linear transformation induced by φ. Then ent�(φ) ≥ max{ent�(φ �W ), ent�(φ)}. If W ∈ C(V ), then
ent�(φ) = ent�(φ �W ).

The following is a logarithmic law for the adjoint algebraic entropy.

Property 6.8 Let φ : V → V be a linear transformation. Then ent�(φk) = k · ent�(φ) for every k ≥ 0. If φ
is an automorphism, then ent�(φ) = ent�(φ−1); in particular, ent�(φk) = |k| · ent�(φ) for every integer k.

Property 6.8 has the next good consequence, which will be applied in the proof of Theorem 6.15.

Corollary 6.9 Letφ : V → V be a linear transformation. If f (X) ∈ K [X ], then ent�( f (φ)) ≤ deg f ·ent�(φ).

Proof Let f = a0 + a1 X + · · · + ak Xk , where k = deg f and a0, a1, . . . , ak ∈ K . Let n > 0 and N ∈ C(V ).
Then an easy check shows that Bn( f (φ), N ) ≥ Bkn(φ, N ) and that Cnk(φ, N ) = Cn(φ

k, Bk(φ, N )). Conse-
quently,

dim (Cn( f (φ), N )) ≤ dim (Ckn(φ, N )) = dim
(

Cn(φ
k, Bk(φ, N ))

)
.

Hence, H �( f (φ), N ) ≤ H �(φk, Bk(φ, N )) ≤ ent�(φk), and so ent�( f (φ)) ≤ ent�(φk). By Property 6.8,
ent�(φk) = k · ent�(φ). ��

The following is a particular case of the Addition Theorem.

Proposition 6.10 If V = V1 ⊕ V2 for some subspaces V1, V2 of V , and φ = φ1 ⊕ φ2 : V → V for some
linear transformations φi : Vi → Vi , i = 1, 2, then ent�(φ) = ent�(φ1)+ ent�(φ2).

6.3 Duality theorem, dichotomy theorem and addition theorem

Let V ∗ be the dual space of the vector space V . If U is a subspace of V , we set as usual:

U⊥ = {χ ∈ V ∗ : χ(x) = 0, for every x ∈ U }
which is the annihilator of U in V ∗. Moreover, for a linear transformation φ : V → V , the adjoint linear
transformation φ∗ : V ∗ → V ∗ of φ is defined by φ∗(χ) = χ ◦ φ for every χ ∈ V ∗.

We collect here some known facts concerning the dual space.

(i) If V is a finite dimensional vector space, then V ∗ ∼= V .
(ii) For a family {Vi : i ∈ I } of vector spaces, (

⊕
i∈I Vi )

∗ ∼= ∏
i∈I V ∗

i .
(iii) If V is a vector space and W a subspace of V , then W ⊥ ∼= (V/W )∗ and V ∗/W ⊥ ∼= W ∗.
(iv) If V1, . . . , Vn are subspaces of a vector space V , then

(∑n
i=1 Vi

)⊥ ∼= ⋂n
i=1 V ⊥

i and
(⋂n

i=1 Vi
)⊥ ∼=∑n

i=1 V ⊥
i .

We recall also the following two properties that will be applied to prove Theorem 6.12.
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Proposition 6.11 Let φ : V → V be a linear transformation and W a subspace of V . Then:

(a) W is φ-invariant if and only if W ⊥ is φ∗-invariant;
(b) (φ−nW )⊥ = (φ∗)nW ⊥ for every n > 0.

Proof (a) If W is φ-invariant, then φ∗(χ)W = (χ ◦ φ)W ⊆ χW = 0 for every χ ∈ W ⊥, that is, W ⊥
is φ∗-invariant. Suppose now that W is not φ-invariant, that is, φW �⊆ W . Let x ∈ φW\W and define
χ : V → K so that χW = 0 and χx �= 0. Then φ∗(χ)W = χ ◦ φW �= 0, and so W ⊥ is not φ∗-invariant.

(b) We prove the result for n = 1, that is, (φ−1W )⊥ = φ∗W ⊥. Indeed, the general case easily follows as
(φ∗)n = (φn)∗ for every n > 0. Let π ′ : V → V/φ−1W and π : V → V/W be the canonical projections.
Let φ̃ : V/φ−1W → V/W be the linear transformation induced by φ, and note that φ̃ is injective. Let us
consider the following diagram:

V

χ

��

φ

��

π ′
�� V
φ−1W

φ̃

��

η �� K

V
π ��

θ

��

V
W

ξ

�����������

where the square commutes. If we take a χ ∈ (φ−1W )⊥, then χ = η◦π ′ for a suitable η : V/φ−1W → K .
Since φ̃ is injective, η can be extended to ξ : V/W → K , i.e., η = ξ ◦ φ̃. Therefore,

χ = η ◦ π ′ = ξ ◦ φ̃ ◦ π ′ = ξ ◦ π ◦ φ,
which shows that χ = φ∗(θ), where θ = ξ ◦ π ∈ W ⊥. This proves the inclusion (φ−1W )⊥ ⊆ φ∗W ⊥.
Now let χ ∈ φ∗W ⊥. Then χ = φ∗(θ) = θ ◦ φ, where θ ∈ W ⊥. So θ = ξ ◦ π , for some ξ : V/W → K .
Take η = ξ ◦ φ̃ (since φ̃ is injective we can think that η = ξ �V/φ−1W ). Therefore,

χ = θ ◦ φ = ξ ◦ π ◦ φ = ξ ◦ φ̃ ◦ π ′ = η ◦ π ′ ∈ (φ−1W )⊥.
This proves the inclusion (φ−1W )⊥ ⊇ φ∗W ⊥ and concludes the proof. ��
It is now possible to prove the main theorems on the adjoint algebraic entropy, starting from the following

result connecting it with the algebraic entropy.

Theorem 6.12 (Duality Theorem) Let φ : V → V be a linear transformation. Then ent�(φ) = ent(φ∗).
Proof Let N ∈ C(V ). Then, F = N⊥ is a finite dimensional subspace of V ∗ by facts (iii) and (i). By Propo-
sition 6.11(b), (φ−n N )⊥ = (φ∗)n F for every n ≥ 0. Hence, Bn(φ, N )⊥ = Tn(φ

∗, F) for every n > 0 by fact
(iv). It follows that

dim (Cn(φ, N )) = dim
(
Cn(φ, N )∗

) = dim
(

Bn(φ, N )⊥
)

= dim
(
Tn(φ

∗, F)
)

for every n > 0, and this concludes the proof. ��
We see now that the value of the adjoint algebraic entropy on the right and the left Bernoulli shift is ∞.

A direct computation of this fact is given in [9].

Proposition 6.13 ent�(β) = ent�(λ) = ∞.

Proof Identify K ∗ with K , and so also K N with (K (N))∗. Let χ = (a0, a1, . . . ) ∈ K N and consider the i-th
canonical vector ei = (0, . . . , 0, 1, 0, . . . , 0, . . . ) (where 1 is in i-th position) of the canonical basis of K (N)

for i ≥ 0. Then χ(ei ) = ai for every i ≥ 0, and hence χ(x) = ∑
i≥0 ai xi for every x = (xi )i≥0 ∈ K (N).

Therefore, β∗(χ) = χ ◦ β = (a1, a2, . . . ) = λ̂(χ), because χ ◦ β̂(e0) = 0 and χ ◦ β(ei ) = ai+1 for every
i > 0. Analogously, λ∗(χ) = χ ◦ λ = (0, a0, a1, . . . ) = β̂(χ), because χ ◦ λ̂(e0) = 0 and χ ◦ β̂(ei ) = ai−1
for every i > 0. So, we have proved that

β∗ = λ̂ and λ∗ = β̂.

By Proposition 5.4, ent(β̂) = ent(λ̂) = ∞, hence ent�(β) = ent(λ̂) = ∞ and ent�(λ) = ent(β̂) = ∞ by
Theorem 6.12. ��
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As a consequence of Proposition 6.13, we can prove the following result relating the algebraic entropy
with the adjoint algebraic entropy, which will be applied in the proof of Theorem 6.15.

Corollary 6.14 Let φ : V → V be a linear transformation. If ent(φ) > 0, then ent�(φ) = ∞.

Proof By Theorem 4.3, ent(φ) > 0 is equivalent to the existence of an infinite trajectory T (φ, x) =⊕
n≥0 Kφn x for some x ∈ V . Then, φ �T (φ,x) is a right Bernoulli shift, and so ent�(φ �T (φp,x)) = ∞

by Proposition 6.13. Now Property 6.7 yields ent�(φ) = ∞ as well. ��
The next theorem is one of the main results of this section; it has as immediate consequence the Dichotomy

Theorem.

Theorem 6.15 Let φ : V → V be a linear transformation. Then the following conditions are equivalent:

(a) φ is algebraic;
(b) ent�(φ) = 0;
(c) ent�(φ) is finite.

Proof (a) ⇒ (b) By hypothesis there exists f (X) ∈ K [X ] of deg f = n > 0 such that f (φ)(V ) = 0. An easy
computation shows that B(φ, N ) = Bn(φ, N ) for every N ∈ C(V ). Consequently, C(φ, N ) = Cn(φ, N ), and
hence H �(φ, N ) = 0 for every N ∈ C(V ), that is, ent�(φ) = 0.

(b) ⇒ (c) is obvious.
(c) ⇒ (a) Assume by way of contradiction that φ is not algebraic, that is, Vφ is not bounded. We prove that

ent�(φ) = ∞.
If Vφ is not torsion (i.e., φ is not locally algebraic), then ent(φ) > 0 by Theorem 4.3, and so Corollary 6.14

gives ent�(φ) = ∞. Thus, let us assume that Vφ is torsion.
First, suppose that the module Vφ is not reduced. Then there exist an irreducible polynomial f (X) ∈ K [X ]

and an independent family of elements {vn}n≥0 ⊆ V such that

f (φ)(v0) = 0, f (φ)(v1) = v0, . . . , f (φ)(vn+1) = vn, . . . .

Then, f (φ) is a left Bernoulli shift on 〈vn : n ≥ 0〉, and ent�( f (φ)) = ∞ by Proposition 6.13. By Corollary 6.9,
ent�(φ) = ∞ as well.

Finally, suppose that Vφ is a reduced torsion unbounded K [X ]-module. Then, Vφ contains as K [X ]-sub-
module an infinite direct sum

⊕
n≥0 Vn , where either Vn = K [X ]/( fn(X)) for each n, with { fn(X)}n a

sequence of different monic irreducible polynomials, or Vn = K [X ]/( f (X)rn ) for every n, with f (X) a fixed
irreducible polynomial and {rn}n a strictly increasing sequence of positive integers. In both cases, each Vn is
a φ-invariant finite dimensional subspace of V and a torsion cyclic K [X ]-module.

Let us assume, without loss of generality that Vφ = ⊕
n≥0 Vn . Let φn = φ �Vn for every n ≥ 0. Con-

sider φ∗ : V ∗ → V ∗. By facts (i) and (ii), V ∗ ∼= ∏
n≥0 V ∗

n and V ∗
n

∼= Vn for every n ≥ 0. Moreover,
V ∗

m
∼= (

⊕
n �=m Vn)

⊥ and so V ∗
m is φ∗-invariant by Proposition 6.11(a), and φ∗ �V ∗

m
= φ∗

m . As φn and its adjoint
map φ∗

n have the same minimal polynomial, the two K [X ]-modules (Vn)φn and (V ∗
n )φ∗

n
are isomorphic.

Now, in both cases considered above, V ∗ ∼= ∏
n≥0 V ∗

n is not a torsion K [X ]-module, being a direct product
of an unbounded sequence of cyclic modules; hence, φ∗ is not locally algebraic, that is, ent(φ∗) > 0, by
Theorem 4.3.

We can now easily conclude that ent(φ∗) = ∞. In fact, there exists a partition N = ⋃̇
i∈N

Ni of N, where
each Ni is infinite. Then, V ∗ ∼= ∏

n≥0 V ∗
n

∼= ∏
i≥0 Wi , where Wi = ∏

n∈Ni
V ∗

n is φ∗-invariant and has the
same properties of V ∗ for every i ≥ 0. By the previous part of the proof, ent(φ∗ �Wi ) ≥ 1 for every i ≥ 0 and
so ent(φ∗) ≥ ∑

i≥0 ent(φ∗ �Wi ) = ∞. By Theorem 6.12, ent�(φ) = ∞ as well. ��
Corollary 6.16 (Dichotomy Theorem) Let φ : V → V be a linear transformation. Then either ent�(φ) = 0
or ent�(φ) = ∞.

Applying Theorem 6.15, it is now possible to give a short direct proof of the Addition Theorem for the
adjoint algebraic entropy. If one would avoid the use of Theorem 6.15, one can prove it by applying the above
properties of the duality, the Addition Theorem for the algebraic entropy and Theorem 6.12; this proof was
given for example in [5].
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Theorem 6.17 (Addition Theorem) Let φ : V → V be a linear transformation, W a φ-invariant subspace of
V and φ : V/W → V/W the linear transformation induced by φ. Then

ent�(φ) = ent�(φ �W )+ ent�(φ).

Proof By Proposition 6.7 and Theorem 6.15, it suffices to prove that ent�(φ) = 0 when ent�(φ �W ) =
ent�(φ) = 0. In view of Theorem 6.15, φ �W and φ are algebraic, that is, there exist f (X), g(X) ∈ K [X ]
such that f (φ)(W ) = 0 and g(φ)(V/W ) = 0, i.e., g(φ)(V ) ⊆ W . Let h(X) = f (X)g(X); then h(φ)(v) =
( f g)(φ)(v) = f (φ)(g(φ)(v)) = 0 for every v ∈ V . This shows that φ is algebraic, and hence ent�(φ) = 0 by
Theorem 6.15. ��

Acknowledgements Partially supported by MIUR, PRIN 2008.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

1. Adler, R.L.; Konheim, A.G.; McAndrew, M.H.: Topological entropy. Trans. Am. Math. Soc. 114, 309–319 (1965)
2. Dikranjan, D.; Giordano Bruno, A.: Entropy in a category. Appl. Categorical Struct. (2012, in press)
3. Dikranjan, D.; Giordano Bruno, A.: Entropy on Abelian groups. preprint (2012)
4. Dikranjan, D.; Giordano Bruno, A.: The Pinsker subgroup of an algebraic flow. J. Pure Appl. Algebra 216(2), 364–376

(2012)
5. Dikranjan, D.; Giordano Bruno, A.; Salce, L.: Adjoint algebraic entropy. J. Algebra 324, 442–463 (2010)
6. Dikranjan, D.; Goldsmith, B.; Salce, L.; Zanardo, P.: Algebraic entropy for abelian groups. Trans. Am. Math. Soc. 361,

3401–3434 (2009)
7. Fekete, M.: Über die Verteilung der Wurzeln bei gewisser algebraichen Gleichungen mit ganzzahlingen Koeffizienten. Math.

Zeitschr. 17, 228–249 (1923)
8. Giordano Bruno, A.: Algebraic entropy of generalized shifts on direct products. Commun. Algebra 38(11), 4155–4174 (2010)
9. Giordano Bruno, A.: Adjoint entropy vs topological entropy. Topol. Appl. (2012, in press)

10. Göbel, R.; Salce, L.: Endomorphism rings with different rank-entropy supports. Quart. J. Math. (2012, in press)
11. Goldsmith, B., Gong, K.: On adjoint entropy of Abelian groups. Commun. Algebra (2012, in press)
12. Kaplansky, I.: Infinite Abelian Groups. University of Michigan Publications in Mathematics, no. 2. University of Michigan

Press, Ann Arbor (1954)
13. Northcott, D.G.; Reufel, M.: A generalization of the concept of length. Quart. J. Math. Oxford Ser. (2) 16, 297–321 (1965)
14. Peters, J.: Entropy on discrete Abelian groups. Adv. Math. 33, 1–13 (1979)
15. Salce, L.; Vámos, P.; Virili, S.: Length functions, multiplicities and algebraic entropy. Forum Math. (2012, in press)
16. Salce, L.; Zanardo, P.: A general notion of algebraic entropy and the rank entropy. Forum Math. 21(4), 579–599 (2009)
17. Vámos, P.: Length functions on modules. Ph.D. Thesis, Scheffield (1968)
18. Virili, S.: Algebraic i-entropies. Master Thesis, Padova (2010)
19. Warner, S.: Modern Algebra, vol. II. Prentice–Hall, Englewood Cliffs (1965)
20. Weiss, M.D.: Algebraic and other entropies of group endomorphisms. Math. Syst. Theory 8(3), 243–248 (1974/75)
21. Zanardo, P.: Multiplicative invariants and length functions over valuation domains. J. Commut. Algebra (2012, in press)

123


	A soft introduction to algebraic entropy
	Abstract
	1 Introduction
	2 Measuring the dynamical behavior of linear transformations
	3 Basic properties of the algebraic entropy
	4 Passing to modules over polynomial rings
	5 Addition Theorem, Uniqueness Theorem and their consequences
	6 Adjoint algebraic entropy
	6.1 Definition
	6.2 Basic properties
	6.3 Duality theorem, dichotomy theorem and addition theorem

	Acknowledgements
	References


