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PSEUDOCOMPACT TOTALLY DENSE SUBGROUPS

DIKRAN DIKRANJAN AND ANNA GIORDANO BRUNO

Abstract. It was shown in [9] that if a compact abelian group K admits a

proper totally dense pseudocompact subgroup, then K cannot have a torsion

closed Gδ-subgroup; moreover this condition was shown to be also sufficient
under LH. We prove in ZFC that this condition ensures actually the existence

of a proper totally dense subgroup H of K that contains an ω-bounded dense

subgroup of K (such an H is necessarily pseudocompact). This answers two
questions from [9].

1. Introduction

A subgroup H of a topological abelian group G is said to be totally dense if
H densely intersects every closed subgroup of G [15]. The interest in the totally
dense subgroups of a compact abelian group K stems from the fact that they
are precisely those dense subgroups of K, that satisfy the open mapping theorem
[13, 7, 8]. In other words the totally dense subgroups of a compact abelian group
K have a compactness-like property. Therefore it is natural to expect that in
presence of other compactness-like properties they may turn out to be actually
compact, hence coincide with K. Indeed no compact abelian group K has a proper
totally dense countably compact subgroup [9, Theorem 1.4]. We remind here that
a topological group G is countably compact if every countable open cover of G has
a finite subcover, G is pseudocompact if every continuous real-valued function of
G is bounded and G is ω-bounded if every countable subset of G is contained in a
compact subgroup of G. The following chain of implications holds:

compact ⇒ ω-bounded ⇒ countably compact ⇒ pseudocompact.

Comfort and Soundararajan [4] studied for the first time the question of when a
compact abelian group K admits a proper totally dense pseudocompact subgroup
and provided a solution in the case when K is connected (iff K is not metrizable).
Later Comfort and Robertson [2] studied the compact abelian groups K that admit
a totally dense pseudocompact subgroup of size < |K|. They showed that this
question depends only on the cardinal α = w(K) and ZFC cannot decide whether
there exists a compact abelian group K with totally dense pseudocompact subgroups
of size < |K| [2, Theorem 6.3].

For the sake of brevity let us give the following definition (see [5, Definition 1.2]).

Definition 1.1. A compact abelian group K has the property TDω if there exists a
proper totally dense subgroup H of K that contains an ω-bounded dense subgroup.
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2 DIKRAN DIKRANJAN AND ANNA GIORDANO BRUNO

Since the subgroup H must be pseudocompact, the property TDω implies that K
has a proper totally dense pseudocompact subgroup. In these terms the following
theorem was proved extending the ideas from [4] (a self-contained proof of this
theorem is given in §2 for reader’s convenience).

Theorem 1.2. [9, Theorem 1.9] Every compact abelian group with non-metrizable
connected component of zero has the property TDω.

The following necessary condition for the existence of proper totally dense pseu-
docompact subgroups of compact abelian groups was given in [9, Theorem 1.7].

Theorem 1.3. Let G be an abelian topological group which has a torsion closed
Gδ-subgroup N . Then G contains no proper totally dense pseudocompact subgroups.

Note that an abelian topological group which has no torsion closed Gδ-subgroup
is non-metrizable.

Moreover, under the additional set-theoretic assumption 2ω1 = c, known un-
der the name of Lusin’s Hypothesis (LH), this necessary condition was shown to
be the unique constraint for the existence of proper totally dense pseudocompact
subgroups of compact abelian groups:

Theorem 1.4. [9, Theorem 1.8] Under LH a compact abelian group K contains a
proper totally dense pseudocompact subgroup if and only if K has no torsion closed
Gδ-subgroups.

One of the implications of Theorem 1.4 is Theorem 1.3. To prove the other one
in [9] the authors first proved it in case the group has cardinality c. In the general
case, supposing that K has no torsion closed Gδ-subgroups, they constructed a
continuous surjective homomorphism from K to a compact abelian group H with
the same property and with w(H) = ω1. Under LH |H| = 2ω1 = c and so H has a
proper totally dense pseudocompact subgroup by the first part. The inverse image
of this subgroup of H is a proper totally dense pseudocompact subgroup of K.

One of the open problems left in [9, Problem 1.11] was whether the assumption
of LH in Theorem 1.4 can be removed. Another open problem left there [9, Problem
1.12] was whether a compact abelian group without torsion closed Gδ-subgroups
has the property TDω. The main result of our paper (exposed in the next theorem)
resolves positively both problems providing, as a by-product, also independent and
shorter proofs of Theorems 1.2 and 1.4 as well as of the conjecture made in [5,
Remark 3.20].

Theorem 1.5. For a compact abelian group K the following conditions are equiv-
alent:

(a) K has a proper totally dense pseudocompact subgroup;
(b) K has no closed torsion Gδ-subgroups;
(c) K has the property TDω.

The proof of Theorem 1.5 is quite different from that of Theorem 1.4 given in
[9]. In fact, following [5] we add a third condition, that is K has the property TDω,
which seems to be stronger than the others, but it turns out to be equivalent to
them and it helps to prove the theorem in its full generality.

The plan of the proof is the following. It is easy to see that all these conditions
imply the non-metrizability of K. The groups K with non-metrizable connected
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component c(K) are settled by Theorem 1.2. In case c(K) is metrizable one can con-
sider the totally disconnected quotient K1 = K/c(K) that is again non-metrizable,
provided K is non-metrizable. Now every proper totally dense pseudocompact sub-
group H of K1 defines (via inverse image) a proper totally dense pseudocompact
subgroup of K (see Lemma 2.5). In this way the main difficulty is confined in the
totally disconnected case. In §4 we provide various results on the structure of to-
tally disconnected compact abelian groups; this allows us to resolve the problem in
the “local case” (i.e., for abelian pro-p-groups) in Lemma 5.1. Then this is applied
in the proof of the general case given in §5.

Example 1.6. Assuming LH, there exists a compact abelian group that has a
totally dense pseudocompact subgroup which does not contain any non-trivial dense
ω-bounded subgroup (we give the construction of such an example in §5).

Every totally dense subgroup H of K is dense essential in K (i.e. H non-trivially
intersects each non-trivial closed subgroup of K). In a forthcoming paper [12] the
second named author will characterize compact abelian groups which admit proper
dense essential pseudocompact subgroups in a theorem analogous to Theorem 1.5.

Notation and terminology. We denote by Z, P, N and N+ respectively the set of
integers, the set of primes, the set of natural numbers and the set of positive integers.
For m ∈ N+, we use Z(m) for the finite cyclic group of order m. The circle group
T is identified with the quotient group R/Z of the reals R and carries its usual
topology. For a prime p ∈ P the symbol Zp is used for the group of p-adic integers.

Let G be an abelian group. The subgroup of torsion elements of G is t(G) and
G[m] is the subset of all elements x of G such that mx = 0. We denote by r0(G)
the free-rank of G. The symbol c stands for the cardinality of the continuum.

Throughout this paper all topological groups are Hausdorff. For a topological
group G we use w(G) to indicate the weight of G, that is the minimal cardinality
of a base for the topology of G. We denote by c(G) the connected component of
0 in G. If c(G) is trivial, the group G is said to be totally disconnected. If M
is a subset of G then 〈M〉 is the smallest subgroup of G containing M and M is
the closure of M in G. The Pontryagin dual of a topological abelian group G is

denoted by Ĝ. For a product Kσ of a group K with σ > ω we denote by ΣKσ

the Σ-product centered at 0 of Kσ, that is the set of all elements with support of
countable cardinality. For undefined terms see [10].

2. Groups with the property TDω

Let us give an example of a group that has the property TDω.

Example 2.1. [5, Example 3.15] Let Kp = Z(p)ω1 and K =
∏
p∈PKp. Note that

K = Sω1 with S =
∏
p∈P Z(p). The subgroup H = ΣSω1 + t(K) is a proper totally

dense pseudocompact subgroup of K since t(K) =
⊕

p∈PKp is totally dense in K,

while ΣSω1 is a dense ω-bounded (hence pseudocompact) subgroup of K.

In this example works the idea from [2] to construct the totally dense pseudo-
compact subgroups as sums of two subgroups: one totally dense and the other dense
pseudocompact. The problem in general is to ensure that such a sum is a proper
subgroup. Lemma 2.3 offers a completely different solution.
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Lemma 2.2. Let K be an abelian group, C a torsion free subgroup of K and B a
subgroup of K maximal with the property B∩C = {0}. Then B∩mN = m(B∩N)
for every 0 6= m ∈ Z and for every subgroup N of K. In particular, if p ∈ P, then
B ∩N 6⊆ pN for every subgroup N of K isomorphic to Zp, whenever r0(C) < c.

Proof. If x ∈ B ∩mN , then x = mz, with z ∈ N . Assume that z 6∈ B. It follows
that B is a proper subgroup of B1 = B+〈z〉. So there exists y ∈ B1∩C, y 6= 0, that
is y = b+kz ∈ C, where b ∈ B and k ∈ Z. Then my = mb+kmz ∈ B∩C = {0} and
hence my = 0. As C is torsion free, we conclude that y = 0, finding a contradiction.

Suppose that r0(C) < c and assume for a contradiction that N is a subgroup
of K isomorphic to Zp with B ∩ N ⊆ pN . Then B ∩ N = B ∩ pN . Applying
the first part we have also B ∩ pN = p(B ∩ N) = p(B ∩ pN). By induction
B ∩ pN = pn(B ∩ pN) for every n ∈ N. Hence B ∩ pN =

⋂∞
n=1 p

n(B ∩ pN),
but

⋂∞
n=1 p

n(B ∩ N) ⊆
⋂∞
n=1 p

nN = {0}. So B ∩ N = {0}. If ϕ is the natural
projection of K onto K/B, this yields that ϕ �N is injective and consequently
r0(K/B) ≥ r0(N) = c.

To get a contradiction we prove that r0(K/B) ≤ r0(C) < c. Suppose that
r0(K/B) > r0(C). Then ϕ(C) is a torsion free subgroup of K/B such that
r0((K/B)/ϕ(C)) ≥ 1. So there exists an infinite cyclic subgroup C1 of K/B such
that C1∩ϕ(C) = {0}. Now take ϕ−1(C1) and observe that ϕ−1(C1)∩C = B∩C =
{0} and ϕ−1(C1) ) kerϕ = B, contradicting the maximality of B. �

Now we are able to prove the following lemma, that produces totally dense
subgroups containing a given subgroup. It was announced without a proof in [5,
Lemma 3.16].

Lemma 2.3. Let K be a compact abelian group that admits a subgroup B such that
r0(K/B) ≥ 1. Then K has a proper totally dense subgroup H that contains B.

Proof. Since r0(K/B) ≥ 1, there exists a cyclic infinite subgroup C of K such that
B ∩ C = {0}. Let B1 = B + t(K); then B1 ∩ C = {0}. By Zorn’s Lemma there
exists a subgroup H of K such that H ⊇ B1, H ∩C = {0} and H is maximal with
respect to these two properties. It immediately follows that H ⊇ B and that H
is a proper subgroup of K. Moreover t(K) ⊆ H and by Lemma 2.2 H ∩N 6⊆ pN
holds for every subgroup N of K isomorphic to Zp and for every p ∈ P. Now apply
the local criterion for total density [8, Theorem 4.3.7] to conclude that H is totally
dense in K. �

A subgroup H of a topological group G is Gδ-dense in G if it non-trivially
intersects each Gδ-subset of G. If K is a compact group, by the Comfort and Ross
theorem [3] a dense subgroup H of K is pseudocompact if and only if it is Gδ-dense
in K. Therefore, if the subgroup B of K in Lemma 2.3 is dense and pseudocompact,
then H is pseudocompact too. This will be used when this lemma will be applied
in the following proposition, that in particular covers Example 2.1.

Proposition 2.4. [5, Example 3.17] Let K be a non-torsion compact abelian group.
Then Kω1 has the property TDω. In particular Tω1 has the property TDω.

Proof. In Kω1 the Σ-product ΣKω1 is a dense ω-bounded subgroup which meets
trivially the diagonal subgroup ∆Kω1 . Since ∆Kω1

∼= K, consequently r0(∆Kω1 ) ≥
c, that is r0(Kω1/ΣKω1) ≥ c. Now apply Lemma 2.3 to conclude that Kω1 has the
property TDω. �
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Here we give a basic property of condition TDω, that will be used in the proof
of our Main Theorem 5.2.

Lemma 2.5. [5, Lemma 3.12] Let K be a compact abelian group that admits a
continuous surjective homomorphism f onto a compact abelian group L. If L has
the property TDω, then K has the property TDω too.

Proof. There exists a proper totally dense subgroup H of L such that H contains
an ω-bounded dense subgroup M . So f−1(H) is a proper totally dense subgroup
of K and it contains f−1(M) which is dense and ω-bounded. �

Proof of Theorem 1.2. A standard application of Pontryagin duality shows that
K admits a surjective continuous homomorphism onto Tω1 . Now Lemma 2.5 can
be applied, as Tω1 has the property TDω by Proposition 2.4. �

3. Singular Groups

In order to find a more “algebraic” form of the condition of Theorem 1.3 and
Theorem 1.4, we note that for a compact abelian group K the family Λ(K) of
all closed Gδ-subgroups of K is closed under countable intersections. Moreover
N ∈ Λ(K) if and only if K/N is metrizable.

Definition 3.1. A compact abelian group K is singular if there exists m ∈ N+

such that K[m] ∈ Λ(K).

The next lemma offers an alternative form for singularity of compact abelian
groups (mK is metrizable compact for some m ∈ N+). It is useful checking stability
of this property under taking subgroups and quotients.

Lemma 3.2. [6, Lemma 4.1] Let G be a topological abelian group and m ∈ N+.

(a) If mG is metrizable, then G[m] ∈ Λ(G).
(b) If G is compact, then G[m] ∈ Λ(G) implies that mG is metrizable.

The following lemma gives a condition equivalent to the hypothesis of Theorem
1.3 in terms of singular groups.

Lemma 3.3. Let K be a compact abelian group. Then K is singular if and only if
there exists a torsion subgroup N ∈ Λ(K).

Proof. Obviously, if K is singular, K[n] is torsion and K[n] ∈ Λ(K) for some
n ∈ N+. If N ∈ Λ(K) is torsion, then by the compactness of N there exists
n ∈ N+ such that nN = {0}. Therefore N is contained in the subgroup K[n] of K.
Consequently K[n] ∈ Λ(K). �

Lemma 3.4. Let K be a compact abelian group and let N be a closed subgroup of
K. Then K is singular if and only if N and K/N are singular. In particular finite
products of singular compact abelian groups are singular.

Proof. The necessity is obvious. Let us prove the sufficiency. Suppose that both
N and K/N are singular and let X and Y be the Pontryagin duals of K and
K/N respectively. We say that X is almost-countable if mX is countable for some
m ∈ N+. By Pontryagin duality K is singular if and only if X is almost-countable.

Since Y can be identified with a subgroup of X such that X/Y ∼= N̂ , both Y and
X/Y are almost-countable. Thus there exists m ∈ N+ such that mY and m(X/Y )
are countable. Since m(X/Y ) = (mX + Y )/Y is countable, mX is contained in
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a countable union
⋃∞
n=1(zi + Y ), where zi ∈ mX. As mY is countable, m2X is

contained in the union
⋃∞
n=1(mzi + mY ), which is countable. So X is almost-

countable. �

4. Non-singular pro-p-groups

For an abelian topological group G and a prime p we denote by Gp the topological
p-component of G, that is Gp = {x ∈ G : pnx → 0 for some n ∈ N}. By [1] a
totally disconnected non-metrizable compact abelian group K can be decomposed
as K =

∏
pKp. Each Kp is an abelian pro-p-group (i.e., projective limit of finite

p-groups) and at least one of the Kp is non-metrizable.

As we said above, the main difficulty of the problem is in the totally disconnected
case. So in this section we consider the case when K is a totally disconnected
compact abelian group in relation to singularity and metrizability of the topological
p-components of K. In particular Example 2.1 shows that it may happen that each
Kp is singular even if the product K is non-singular.

Lemma 4.1. Let p be a prime and let K be an abelian pro-p-group.

(a) If K/pK is finite, then K ∼= Zmp × F , where m ∈ N and F is a finite
p-group.

(b) If K/pK is infinite, then w(K) = w(K/pK).

In particular K is metrizable whenever K/pK is metrizable.

Proof. By Pontryagin duality X = K̂ is a p-group and X[p] is the dual of the
quotient K/pK.

(a) Assume that K/pK is finite. Then X[p] is finite; hence X[p] is isomorphic to
a subgroup of Z(p∞)n, where n is the p-rank of X (that is the dimension of X[p]
as a vector space over the field Z/pZ). Since Z(p∞)n is divisible, this immersion
can be extended to j : X → Z(p∞)n. Now j is injective because if x ∈ ker j and
x 6= 0 then we can suppose wlog that px = 0, that is x ∈ X[p] and this is not
possible. If d(X) is the maximal divisible subgroup of X, then d(X) is isomorphic
to Z(p∞)m with m ≤ n. Thus X ∼= Z(p∞)m⊕X1 where X1 is reduced and so finite

because it has finite p-rank [11]. By Pontryagin duality K = X̂ ∼= Zmp × F , where

F = X̂1
∼= X1 is finite.

(b) follows from the fact that |X| = |X[p]|, when X[p] is infinite. �

Remark 4.2. Let K be a totally disconnected compact abelian group. So K =∏
p∈PKp. Define

Ps = {p ∈ P : Kp is singular} and Pm = {p ∈ P : Kp is metrizable}
and observe that Pm ⊆ Ps ⊆ P. The group K is metrizable if and only if Pm = P.

Suppose that K is non-metrizable. Let Km =
∏
p∈Pm

Kp, Ks =
∏
p∈Ps\Pm

Kp

and Kr =
∏
p∈P\Ps

Kp. If Pm (resp. Ps\Pm, P\Pm) is empty, put Km = {0} (resp.

Ks = {0}, Kr = {0}). Note that K = Km ×Ks ×Kr and that Km is metrizable.

The next proposition takes care of the case when P \ Pm is infinite.

Proposition 4.3. Let K be a totally disconnected compact abelian group such that
P \ Pm is infinite. Then there exists a continuous surjective homomorphism of K
onto Sω1 , where S is a non-torsion metrizable compact abelian group.
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Proof. By Lemma 4.1 there exist infinitely many primes pn (n ∈ N+) such that
K/pnK is non-metrizable. Let n ∈ N+. Since K/pnK is a non-metrizable com-
pact abelian group of exponent pn, it is topologically isomorphic to Z(pn)w(K/pnK),
where w(K/pnK) ≥ ω1. This yields that for every n ∈ N+ there exists a con-
tinuous surjective homomorphism fn : K/pnK → Z(pn)ω1 . Note that Kq =
pnKq ⊆ pnK for every prime q 6= pn. Therefore pnK coincides with the sub-
group L = pnKpn ×

∏
q 6=pn Kq of K. So K/pnK ∼= Kpn/pnKpn and consequently

fn can be identified with f ′n : Kpn/pnKpn → Z(pn)ω1 . Then f =
∏∞
n=1 f

′
n :∏∞

n=1Kpn/pnK →
∏∞
n=1 Z(pn)ω1 = Sω1 , where S =

∏∞
n=1 Z(pn), is a continuous

surjective homomorphism. Hence the composition of the continuous surjective ho-
momorphism K =

∏
p∈PKp →

∏∞
n=1Kpn/pnKpn with f is a continuous surjective

homomorphism of K onto Sω1 . �

Lemma 4.4. Let K be a totally disconnected compact abelian group. Then K is
singular if and only if Ps = P and P \ Pm is finite.

Proof. Suppose that Ps = P and P \ Pm is finite. Then K = Km ×Ks, where Km

is metrizable and Ks is singular by Lemma 3.4. So K is singular.
Now we prove the converse implication. If P \ Pm is infinite, by Proposition

4.3 there exists a continuous surjective homomorphism of K onto Sω1 , where S is
a non-torsion metrizable compact abelian group. Since Sω1 is non-singular, then
K is non-singular by Lemma 3.4. If P 6= Ps then Lemma 3.4 implies that K is
non-singular. �

Lemma 4.5. Let σ be a cardinal, K an abelian pro-p-group and N a closed subgroup
of K isomorphic to Zσp such that K/N is singular. Then K is non-singular if and
only if σ > ω.

Proof. If σ > ω then N is non-singular and so again Lemma 3.4 implies that K is
non-singular too. Suppose that σ ≤ ω. Then N is metrizable and in particular N
is singular. By Lemma 3.4 this implies that K is singular. �

In the sequel we denote by Lp the group
∏∞
n=1 Z(pn).

Proposition 4.6. Let K be an abelian pro-p-group. Then K has a closed subgroup
N such that

(a) N ∼= Zσp for some cardinal σ;

(b) the quotient L = K/N is isomorphic to
∏∞
n=1 Z(pn)αn , for some cardinals

αn;
(c) if ϕ is the canonical projection of K onto L, then ϕ(t(K)) = t(L).

Moreover, if K is non-singular, then:

(1) there exists a continuous surjective homomorphism of K onto Lω1
p , in case

L is non-singular;
(2) σ = w(N) > ω, in case L is singular.

Proof. Let X = K̂. For a subset T of K the annihilator of T in X is T⊥ = {χ ∈
X : χ(T ) = {0}}.

(a),(b) By [11, Theorem 32.3] X contains a pure subgroup B (i.e., pnX ∩ B =
pnB for every n ∈ N) such that B ∼=

⊕∞
n=1 Z(pn)(αn) and X/B ∼= Z(p∞)(σ) for

some cardinals σ, αn. By Pontryagin duality K has a closed subgroup N ∼= Zσp
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(namely the annihilator of B) such that the quotient L = K/N is isomorphic to∏∞
n=1 Z(pn)αn .
(c) To prove that ϕ(t(K)) = t(L) we show that ϕ(K[pn]) = L[pn] holds for

every n ∈ N+. It is sufficient to see that W = {x ∈ K : pnx ∈ N} = N + K[pn].
Since W = ϕ−1(L[pn]), obviously W contains N +K[pn]. Since W and N +K[pn]
are closed subgroups, to prove that they coincide it suffices to prove that their
annihilators coincide. From W ⊇ N + K[pn], it follows W⊥ ⊆ N⊥ ∩ K[pn]⊥ =
B ∩ pnX = pnB. Observe that the last equality follows from the purity of B. But
we have also

W⊥ = {χ ∈ X : (∀x ∈ K)pnx ∈ N ⇒ χ(x) = 0} ⊇ pn(N⊥) = pnB.

Therefore W⊥ = N⊥ ∩K[pn]⊥.

Suppose now that K is non-singular.
(1) If L is non-singular, pnL is non-metrizable for every n ∈ N+. Since pnL ∼=∏∞
m=n+1 Z(pm−n)αm , there are infinitely many αn > ω. Hence there exists a con-

tinuous surjective homomorphism of L onto
∏∞
n=1 Z(pn)ω1 ∼= Lω1

p . Combining it
with ϕ : K → L, we find a continuous surjective homomorphism of K onto Lω1

p .
(2) follows from Lemma 4.5. �

It follows from [11, Theorem 35.2] that the quotient L = K/N with the prop-
erties (a)–(c) from the above proposition is uniquely determined up to topological
isomorphisms.

Claim 4.7. Let K be an abelian pro-p-group and let N be a closed subgroup of
K isomorphic to Zσp , where σ is a cardinal > ω. Then there exists a continuous
surjective homomorphism of K onto Lσp .

Proof. Let N =
∏∞
n=1Nn, where each Nn ∼= Zσp , and M =

∏∞
n=1 p

nNn. Then

N/M ∼=
∏∞
n=1 Z(pn)σ = Lσp . Let K0 = K/M . Then K0[pn] ⊇ (N/M)[pn] and the

last group contains a subgroup isomorphic to Z(pn)σ for every n ∈ N+. Hence

w(pn−1K0[pn]) ≥ σ. (1)

By Proposition 4.6 there exists a closed subgroup N0 of K0 such that N0
∼= Zσ1

p ,

L0 = K0/N0
∼=

∏∞
n=1 Z(pn)βn for appropriate cardinals σ1, βn and the canonical

projection ϕ : K0 → L0 satisfies ϕ(t(K0)) = t(L0). Since K0[pn] is compact
and trivially meets N0 = kerϕ, so ϕ�K0[pn]: K0[pn] → L0[pn] is a topological

isomorphism. Consequently pn−1L0[pn] is topologically isomorphic to pn−1K0[pn]
and hence w(pn−1L0[pn]) ≥ σ for every n ∈ N+ by (1). Therefore supn≥m βn ≥ σ
for every m ∈ N+.

Let us prove that there exists a continuous surjective homomorphism f : L0 →
Lσp . Then combining it with ϕ and with the canonical projection of K onto K0 =
K/M we are done. Note that infinitely many βn are infinite. So it is possible to
suppose without loss of generality that all βn are infinite. If there are infinitely
many βn such that βn ≥ σ, it is possible to find the required continuous surjective
homomorphism f : L0 → Lσp . Otherwise there exists n0 ∈ N+ such that ω ≤ βn < σ
for every n ≥ n0, with supn≥n0

βn = σ. Take an increasing subsequence {βnk
}k of

{βn}n such that supnk≥n0
βnk

= σ. Observe that
∏∞
k=1 Z(pnk)βnk =

∏∞
k=1 S

βnk

k ,

where Sk =
∏∞
i=k Z(pni) is a non-torsion metrizable compact abelian group. For

every k ∈ N+ there exists a continuous surjective homomorphism of Sk onto Lp
and so the desidered continuous surjective homomorphism f : L0 → Lσp . �
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5. Proof of the Main Theorem and Example 1.6

The next lemma will be used in the proof of the Main Theorem 5.2. It settles
the problem in the “local case”, that is when K is an abelian pro-p-group.

Lemma 5.1. Let K be an abelian pro-p-group. Then the following properties are
equivalent:

(a) K is non-singular;
(b) K has the property TDω;
(c) there exists a continuous surjective homomorphism of K onto Lω1

p .

Proof. (a)⇒(c) follows from Proposition 4.6 and Claim 4.7 and (c)⇒(b) from
Proposition 2.4 and Lemma 2.5.

(b)⇒(a) The property TDω implies that K has a proper totally dense pseudo-
compact subgroup. Now apply Theorem 1.3 and Lemma 3.3 to conclude that K is
non-singular. �

Now it is possible to prove our Main Theorem. For technical convenience we add
the equivalent conditions (c) and (e) that may have also independent interest.

Theorem 5.2. For a compact abelian group K the following conditions are equiv-
alent:

(a) K has a proper totally dense pseudocompact subgroup;
(b) K has no closed torsion Gδ-subgroups;
(c) K is non-singular;
(d) K has the property TDω;
(e) there exists a continuous surjective homomorphism of K onto Sω1 where S

is compact non-torsion.

Proof. (e)⇒(d) by Proposition 2.4 and Lemma 2.5, (d)⇒(a) is obvious, while
(a)⇒(b) by Theorem 1.3 and (b)⇔(c) by Lemma 3.3.

(c)⇒(e) If c(K) is not metrizable, then Theorem 1.2 applies. Suppose that
w(c(K)) ≤ ω. So there is a continuous surjective homomorphism of K onto the
non-singular totally disconnected group K/c(K). Hence we can suppose without
loss of generality that K is totally disconnected and K =

∏
p∈PKp. If Kp is non-

singular for some p ∈ P, apply Lemma 5.1. If Kp is singular for every p ∈ P, then
Ps = P and P \ Pm has to be infinite by Lemma 4.4. So Proposition 4.3 concludes
the proof. �

Remark 5.3. (1) It was announced in [5] that it is possible to prove that the following
condition is equivalent to those of Theorem 5.2:

(f) K has a totally dense subgroup H that contains an ω-bounded subgroup
M of K such that M is a Gδ-subgroup of K and M 6⊆ H.

(2) For compact abelian groups this condition (f), as well as condition (a) of The-
orem 5.2, is preserved under taking inverse image by continuous surjective homo-
morphisms.

Construction of Example 1.6. Consider the compact abelian group K = Zω1
p .

By LH we have |K| = c. Call a non-limit cardinal α = λ + n, where λ is a limit
cardinal and n ∈ N+, odd if n is odd and even if n is even. Let N = {Nλ :
λ odd, λ < c} be the set of all closed subgroup of K isomorphic to Zp. Let then
G = {Oν : ν even, ν < c} be the set of all cosets of Gδ-subgroups of K.
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We define F0 = {0}. For 0 < ξ < c suppose that for every non-limit cardinal

η < ξ, if η is odd, there exists xη ∈ Nη such that 〈xη〉 = Nη and if η is even, there
exists xη ∈ Oη (if η < ξ is a limit cardinal put xη = 0) and they have the property
that Fξ = 〈xη : η < ξ〉 is free; observe that |Fξ| < c since ξ < c. If ξ is odd, since

|Nξ| = c, we can choose xξ ∈ Nξ such that 〈xξ〉 ∩Fξ = {0} and 〈xξ〉 = Nξ. Indeed,
we can choose x∗ξ ∈ Nξ such that 〈x∗ξ〉∩Fξ = {0} but it can happen that x∗ξ ∈ pNξ;
in this case there exists n ∈ N+ such that x∗ξ 6∈ pnNξ and so we take a xξ ∈ Nξ \pNξ
with x∗ξ = pn−1xξ. If ξ is even, since |Oξ| = c, we can choose xξ ∈ Oξ such that

〈xξ〉 ∩ Fξ = {0}. In both cases Fξ+1 is free. Finally define Fc = 〈xξ : 0 < ξ < c〉.
Then Fc is free and it is totally dense and Gδ-dense (so pseudocompact) in K. Since
it is free, Fc cannot contain any non-trivial ω-bounded subgroup and it is proper
in K. �
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