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Abstract  In this paper we intend to investigate the relationship between game theory and Fibonacci numbers. We call 
Fibonacci games the subset of constant sum homogeneous weighted majority games whose increasing sequence of all type 
weights and of the minimal winning quota is a string of consecutive Fibonacci numbers. Exploiting key properties of the 
Fibonacci sequence, we obtain closed form results able to provide a simple and insightful classification of such games. In 
detail: we show that the numerousness of Fibonacci games with t types is ( 1) / 2t +  ; we describe unequivocally a 

Fibonacci game on the basis of its profile as a function of t and of a proper index z=1,…, ( 1) / 2t +  ; we provide rules 
concerning the behaviour of the total number n(t,z) of non-dummy players in a Fibonacci game. It turns out that there are 
two kinds of Fibonacci games, associated respectively with z=1 (Fibonacci-Isbell games) and z>1.  

Keywords  Weighted majority games, Homogeneous representation, Minimal winning coalition, Type weight vector, 
Satellite games, Fibonacci numbers 

 

1. Introduction 
Homogeneous weighted majority games have been 

introduced at the origins of modern game theory by Von 
Neumann-Morgenstern [12] and, since then, extensively 
studied because of their capability to give an insightful 
formal framework able to analyse formation of coalitions 
and payoff division both in theory and in real world 
situations. Subsequent treatments of outstanding importance 
have been given by Ostmann [6], who gave the proof that 
any homogeneous weighted majority game (including 
non-constant sum ones) has a unique minimal homogeneous 
representation, and by Rosenmüller ([9] and [10]), who 
provided an analysis of the structure of such games based 
on the concept of characters of types and the role of satellite 
games. 

In the particular case of constant sum homogenous 
weighted majority games, the weights of the minimal 
homogeneous representation are able to capture the power 
of the players. Such ability is revealed by the close 
connections between (properly normalized) those weights 
and some of the outstanding ideas of “solution” of a game. 
Examples of such connections are: a) the stable set of 
imputations of the main simple solution a la Von Neumann- 
Morgenstern; b) the nucleolus (Peleg [7], Schmeidler [11]); 
c) the outcome of the Montero [5] bargaining protocol 
(which modifies the one proposed by Baron-Ferejohn [1])   
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in which both the expected payoffs and actual payoff 
division are proportional to the voting weights.      

In this paper we wish to explore the connections between 
constant sum homogeneous weighted majority games and 
Fibonacci numbers. 

A bridge between these two topics has been built by 
Isbell [2] in a vintage paper going back to the first steps of 
cooperative game theory. The bridge was summarized in a 
couple of propositions. In the first ([2], Cor. [6], p. 185), the 
author showed that, weakly ordering players of a n person 
constant sum homogeneous weighted majority game from 
bottom to top, the individual weight (in the minimal 
homogeneous representation) of the player number i could 
not exceed the corresponding Fibonacci number (more 
formally i iw f≤  for any i=1,…,n). The second 
proposition ([2], third indent, p. 185) claimed that a game 
whose individual weights satisfied =i iw f  for any 
i=1,…,n-2, 1 2 1= , =n n n nw f w f− − − , described, for any 
n>2, a constant sum homogeneous weighted majority game 
with minimal winning quota = nq f . Hence, in such games 
all the first n Fibonacci numbers are associated with all 
individual weights and the winning quota. On the basis of 
this connection we suggest to call Fibonacci-Isbell the set of 
games defined by the second proposition. 

Thinking in terms of type weights rather than of 
individual ones and keeping account that in any n person 
Fibonacci-Isbell game there are t=n-2 types of players, we 
argue that such games satisfy another slightly different 
"bridge" property: the bottom-top (strictly) ordered n-1 (or 
t+1) dimension vector of type weights and winning quota is 
a string of n-1 consecutive Fibonacci numbers starting from 

2 = 1f . In order to generalize this property to other feasible 
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(n,t) combinations, we suggest to define Fibonacci games as 
the subset of constant sum homogeneous weighted majority 
games whose bottom-top increasing sequence of type 
weights and winning quota (in their minimal homogeneous 
representation) is a string of consecutive Fibonacci 
numbers1. Henceforth, it is convenient to use the (first order) 
"delayed" Fibonacci sequence g defined, for any natural n, 
by the relation 1=n ng f + , and delayed Fibonacci 
subsequences 

1 3 2 1= = ( , , , , )odd o
mg g g −g g    

2 4 2= = ( , , , , )even e
mg g gg g    

Moreover, following Rosenmüller ([10], p. 311), we take 
into consideration the "profile" of a constant sum 
homogeneous weighted majority game with t types denoted 
by the ordered vector 1= ( , , , , )j tk k kk   , whose 

component jk  is the number of players of type j in the 
game. 

After that, it becomes clear that Fibonacci games are 
unequivocally described by feasible triplets 1( ; ; )tg +k g  in 
which the profile k and the delayed Fibonacci sequence g 
share the dimension t, gj is the weight of players of type j, 
gt+1 is the winning quota and a triplet is feasible if it meets 
the homogeneity conditions (see [7], Theor. 3.5 and the 
“test” of homogeneity2 [9], Theor.1.4). 

In our paper, we give a simple but insightful 
characterization of the feasible profiles k of Fibonacci 
games with t types. The proof of such a characterization 
largely exploits fundamental properties of the delayed 
Fibonacci sequence (as for the necessary conditions) and 
the satellite game approach (in the sufficiency part). 

As a consequence, for any positive integer t, there are 
altogether 3  ( 1) / 2t +   Fibonacci games, i.e. the 

Fibonacci-Isbell one and other ( 1) / 2t −   games. 
Moreover, it turns out that any two Fibonacci games with 
the same t have a different number n of non-dummy players. 
Hence, it seems logical to associate, for any t, the Fibonacci 
games with the set of integers = 1, , ( 1) / 2z t +   in 
such a way that the number n(t,z) of players (in the 

1 Of course other definitions, based on more or less restrictive conditions on 
Fibonacci numbers, could have been chosen. An alternative approach on this 
line has been proposed by Gambarelli, Gnocchi and Pressacco in an 
unpublished communication presented in the section "Power indices" at the 
conference: Models of collusion, games and decisions for applications to 
judging, selling and voting. Oldofredi Castle, Monte Isola 18-19 June 2012. 
2 Roughly speaking, the test of homogeneity requires that, given a candidate 
homogeneous representation of a game, the measure of the largest (when 
collecting players according to rank) minimal winning coalition must exactly hit 
the winning quota and that each player i of this coalition induces (recursively) a 
(satellite) game whose winning quota is given by her weight 𝑤𝑤� i and either is 
exactly hit by the largest minimal winning coalition obtained by remaining 
players of smaller weight or the global weight of all these players is lower than 
𝑤𝑤𝑖𝑖���. 
3 As usual ⌊𝑥𝑥⌋ denotes the floor(x). In particular, for t integer even (odd), 
⌊(𝑡𝑡 + 1)/2⌋ = 𝑡𝑡/2 (or (t+1)/2)). 

Fibonacci game with t types and index z) is an increasing 
function of z. 

A closed form description of the behavior of the function 
n(t,z) is also provided. It is surprising to verify that the 
derived function ( , ) = ( , 1) ( , )t z n t z n t z∆ + −  is resumed 
by a matrix whose columns are the entire delayed Fibonacci 
sequence (whose starting point is properly shifted down 
with z), while the rows are, in backward order, the delayed 
Fibonacci subsequences coherent with the parity of t 
(properly truncated, so as the row t has ( 1) / 2t −   
components). 

We are well aware of the existence of a vast body of 
literature concerning applications of homogeneous 
weighted majority games (constant as well as non-constant 
sum) to the analysis of voting power and committees 
interactions. Besides already cited papers, other examples 
may be found e.g. in Kalandrakis [3], Le Breton et al [4]. 
Yet we do not discuss applications of the Fibonacci games 
here in this or in other fields. Anyway, we anticipate that 
we have some preliminary evidence that interesting 
applications to the weighted voting systems in 
parliamentary elections may be obtained. 

Yet we do not discuss applications of the Fibonacci 
games here in this or in other fields, but we anticipate that 
we have some (not yet published) preliminary evidence that 
interesting applications to the weighted voting systems in 
parliamentary elections may be obtained. 

The plan of the paper is as follows: section 2 gives a 
short description of the basic notations used in the paper 
and recalls well known concepts of homogeneous weighted 
majority games; section 3 defines Fibonacci games and 
resumes the main results of the paper; section 4 provides an 
explicit description of the profiles of Fibonacci games for 
some small values of t; the behaviour of the n(t,z) and of 

( , )t z∆  functions and their connections with the delayed 
Fibonacci (sub)sequences are presented and discussed in 
section 5; all the proofs are grouped in sections 6 and 7; 
conclusions follow in the final section 8. 

2. Notations 
Let = {1, , }nΩ   denote the set of non-dummy players 

of a simple constant sum game in characteristic function 
form. A simple game is a mapping : ( ) {0,1}v Ω →P  such 
that ( ) = 0v ∅  and ( ) = 1v Ω , and a coalition ( )S∈ ΩP  
is winning if its payoff ( ) = 1v S  and losing otherwise. A 
simple game is constant sum if ( ) ( / ) = 1v S v S+ Ω  for any 
S. Moreover, S is minimal winning if, for any player i S∈ , 

( / ) = 0v S i . 
A simple weighted majority game is described by the pair 

( ; )n qw  where 4  1= { , , }n nw ww   is the (weakly) 

4 Henceforth the subscript of the vector is its dimension, not to be confused 
with the subscript of a scalar that denotes a component of the vector. 
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ordered vector ( i jw w≤  for i<j) of individual weights and 
q the winning quota of the game. Thus the weight of S is 
𝑤𝑤�(𝑆𝑆) = ∑ 𝑤𝑤𝑖𝑖���𝑖𝑖∈𝑆𝑆  and 𝑤𝑤�(𝑆𝑆) ≥ 𝑞𝑞 ⟺ 𝑣𝑣(𝑆𝑆) = 1. 

A simple constant sum homogeneous weighted majority 
game is described by its minimal homogeneous 
representation, that is the ordered vector = ( ; )n qh w  

which meets the homogeneity conditions, that is 1,n+∈h N
w1=1, = (1 ( )) / 2q w+ Ω  and 𝑤𝑤�(𝑆𝑆) = 𝑞𝑞 for any minimal 
winning coalition. 

The vector nw  of the minimal homogeneous 
representation induces a decomposition of Ω  in 
equivalence classes K1,…,Kj,…,Kt.. Each class groups all 
players of the same type, sharing the same individual weight 
and the corresponding (strongly) ordered type weight vector 
is: 

1= { , , , , }t j tw w ww    

with 1 = 1w . 

Coherently, 1= ( ; ) t
t q +∈h w N , but to unequivocally 

describe a game it is necessary also to introduce also the 
profile 1= ( , , , , )t j tk k kk    with jk  the number of 
players of type j in the game. Thus, a constant sum 
homogeneous weighted majority game is described by 

2 1( ; ; ) t
t t q +∈k w N . 
Finally, we denote by 1= ( , , , , ),t j ts s ss   with 

=| |j j js S K k∧ ≤ , the "profile" of the coalition S, so that 

=1( ) = t
j jjw S s w∑  is an alternative formalization of the 

weight of S and, by homogeneity, 

=1( ) = = 2 1.t
j jjw k w qΩ −∑  

3. Fibonacci Games: Main Results 
The Fibonacci sequence f is defined by the well known 

finite difference equation:  

1 2=n n nf f f− −+  

holding for any natural n>2 with initial conditions 
1 2= = 1f f . Henceforth, we exploit the "delayed" 

Fibonacci sequence 1=n ng f +  for any n, and denote, for 

any integer m, by m
m ∈g N  the vector 1 2( , , , )mg g g . 

Coherently, the denumerable sequence 1= ( , , , ),ng g∞g    

and = o e
∞ ∨g g g  with  

1 3 2 1= ( , , , , )o
mg g g −g    

2 4 2= ( , , , , )e
mg g gg    

the two denumerable (sub)sequences obtained extracting 
from ∞g  all elements of odd or, respectively, even index. 

Definition 3.1 The set of Fibonacci games is the subset of 
constant sum homogeneous weighted majority games with 

1= t+h g , that is 1( ; ; ) = ( ; ; )t t t t tq g +k w k g .  
Remark 3.1 Feasibility conditions require that in any 

Fibonacci game with t types, 

1=1 = 2 1t
j j tj k g g + −∑  

constant for any kt: the winning quota is the same for all 
Fibonacci games with the same t.  

Proof. Homogeneity requires that ( ) = 2 1w qΩ − , i.e. 

1=1 = 2 1.t
j j tj k g g + −∑  

Theorem 3.1 Both for t=1 and t=2 there is a unique 
Fibonacci game; their kt are respectively k1=(3), and 
k2=(3,1); for any t>2, a game is a Fibonacci game if and 
only if its kt=k(t,z) is given, for any value of the counter 

= 1, , ( 1) / 2z t −   and with 0 = 1 2j t z+ − , by: 

' '
1 1 2 2 10 0 0

( , ) = ( , , , ) = (2 , ,2, )j t j j zt z k k g g′
− − −+ −k k k 1 1 (1) 

or, putting = ( 1) / 2z t +   in order to have a complete 
indexation of the games, by:  

1 1( , ( 1) / 2 ) = (2 , )t tt t g − − +  +k 1       (2) 

Corollary 3.1 For any t, there are exactly  

( ) = ( 1) / 2t tΦ  +                  (3) 

Fibonacci games with t types.  
Let us denote by n(t,z) the total number of non-dummy 

players in a Fibonacci game with t types and index z.  
Theorem 3.2 For any t, 1 2 1 2< ( , ) < ( , )z z n t z n t z⇔ .  
Proofs of Th. 3.1 and 3.2 follow in sections 6 and 7. 

4. Profile of Fibonacci Games 
According to the Definition 3.1, given t there are no 

degrees of freedom in the choice of the sequence of type 
weights and of the winning quota. Hence, a Fibonacci game 
is unequivocally described by its k(t,z) vector that follows 
the rules described in Formulas (1) and (2). Table 1 helps to 
understand the structure of the profile vectors of Fibonacci 
games for a set of small values of t.  

We distinguish between two patterns of profiles: for 
= ( 1) / 2z t +   (the last vector of each row), all type 

components, except the bottom one, are 1, while this latter 
component plays a balancing role (according to Formula (2)); 
for all the other z, there is just one (non bottom) component 
equal to 2 in place 0 = ( , ) = 1 2 ,j j t z t z+ −  all the others 
(non bottom) are still 1 and, again, the bottom component 
plays the balancing role (according to Formula (1)). 
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Table 1.  The profile k(t,z) for a set of small values of t 

t Φ(t) k(t,1) n(t,1) k(t,2) n(t,2) k(t,3) n(t,3) k(t,4) n(t,4) 

1 1 (3) 3       

2 1 (3,1) 4       

3 2 (2,2,1) 5 (4,1,1) 6     

4 2 (2,1,2,1) 6 (5,1,1,1) 8     

5 3 (2,1,1,2,1) 7 (5,2,1,1,1) 10 (7,1,1,1,1) 11   

6 3 (2,1,1,1,2,1) 8 (7,1,2,1,1,1) 13 (10,1,1,1,1,1) 15   

7 4 (2,1,1,1,1,2,1) 9 (10,1,1,2,1,1,1) 17 (13,2,1,1,1,1,1) 20 (15,1,1,1,1,1,1) 21 

8 4 (2,1,1,1,1,1,2,1) 10 (15,1,1,1,2,1,1,1) 23 (20,1,2,1,1,1,1,1) 28 (23,1,1,1,1,1,1,1) 30 

… … … … … … … … … … 

 
5. The Behavior of n(t,z) 

In this section we investigate the relation between the 
number of non-dummy players in the game and the 
characterization of the Fibonacci games by means of the 
profile vectors. In particular, the following properties give 
an answer to the questions: “given n, how many Fibonacci 
games are there?” and “which kind of Fibonacci games do 
we find?” 

The properties, which hold for any feasible combination 
of (t,z), are the following: 
Property 5.1   

( ,1) = 2n t t +              (4) 

Property 5.2   

2( , ) = ( , 1) ( , ) = t zt z n t z n t z g −∆ + −      (5) 

Property 5.3   

( ,2) ( 1, / 2 ) = 2n t n t t− −            (6) 

Proofs of these Properties are given in the section 7. 
In Table 2 we show the behavior of the function n(t,z). 

Table 2.  List of values n(t,z) 

 z 
t 1 2 3 4 5 

1 3     
2 4 
3 5 6 

4 6 8 
5 7 10 11 
6 8 13 15 

7 9 17 20 21 
8 10 23 28 30 
9 11 32 40 43 44 

10 12 46 59 64 66 
... ... ... ... ... ... 

As it may be observed, there is not one to one 
correspondence between the number n of players and each 
feasible combination of (t,z). Essentially, for any value of 
n>2, there are surely at least one Fibonacci game or, at most, 

two of them. As a consequence, we distinguish between two 
kinds of Fibonacci games: the first one corresponds to z=1 
and Formula (4) implies that there is exactly one Fibonacci 
game (of this kind) for any n>2. We recall that such 
Fibonacci-Isbell games have been described by Isbell ([2], p. 
185) while studying the class of coalitionally Parsimonious 
games5. The second one emerges for z>1: precisely, there is 
only one Fibonacci game (of this second kind) for sparse 
values of n. 

Summing up, there are values of n corresponding to two 
Fibonacci games (one of the first and one of the second kind), 
while for other values of n there is just one Fibonacci game 
of the first kind. For example, for n = 8, there are one 
Fibonacci game of the first kind (z=1, t=6), and one of the 
second kind (z=2, t=4);while for n =9, there is just one 
Fibonacci game of the first kind (z=1, t=7). 

At first glance the values of n associated with the second 
kind of games seem to follow a chaotic rule. Indeed, a 
regularity emerges once we consider the following table of 
the differences generated by Property 5.2 (see also Remark 
7.1). 

Table 3.  Table of the function ( , )t z∆  

 z 
t 1 2 3 4 

3 1  
4 2  
5 3 1  

6 5 2  
7 8 3 1  
8 13 5 2  

9 21 8 3 1 
10 34 13 5 2 

... ... ... ... ... 

Note that the rows corresponding to odd (even) values of t 
are backward initial strings with ( 1) / 2 )t −   elements of 

5 Parsimonious games are the subset of constant sum homogeneous weighted 
majority games characterized by the parsimony property to have, for any given 
number n of non-dummy players in the game, the smallest number, i.e. exactly n, 
of minimal winning coalitions. For details see also [8]. 
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the Fibonacci subsequence og  ( eg ). In turn, the columns 
are nothing but the whole Fibonacci sequence ∞g  whose 
starting point is shifted at the row t=1+2z. 

6. Proofs of Theorem 3.1 
Proof.  
For t=1:  

2= = 2q g  

1 1 1( ) = = = 2 1 = 3w k g k qΩ ⋅ −  

Hence there are three players with weight 1 = 1g , 

1 = (3)k  and (1) = 1Φ .  

For t=2:  

3= = 3q g  

2

=1
( ) = = 2 1 = 5j j

j
w k g qΩ −∑  

Hence, 1 1 2 2 1 2= 1 2 = 5k g k g k k⋅ + ⋅ ⋅ + ⋅ . There are 
two solutions 2 = (3,1)k  and 2 = (1,2)k  but the second 
is not feasible because the profile 2 = (0,2)s  identifies a 
minimal winning coalition S with w(S)=4>q, incompatible 
with the homogeneous character. On the other side, the first 
solution is feasible with profiles (3,0) and (1,1) of the 
minimal winning coalitions, so that (2) = 1Φ .  

For t>2, we show at first that the conditions (1) or (2) are 
necessary for Fibonacci games and then that they are also 
sufficient. 

6.1. Proof of Necessity 

Property 6.1 In any Fibonacci game with t>1, the 
coalition S whose profile st=(0t-2,12), i.e. made by a top and a 
last but top player, is minimal winning.  

Proof.  

1 1 1 1( ) = = = =t t t t t t tw S s g s g g g g q− − − ++ +  

Property 6.2 In any Fibonacci game with t>1, kt=1.  
Proof. Otherwise the coalition S:st=(0t-1,2) would be 

minimal winning with 1( ) = 2 > =t t tw S g g g q−+ , a 
contradiction with the homogeneous character of the game.  

Property 6.3 In any Fibonacci game with t>2, 1 2tk − ≤ .  
Proof. Otherwise the coalition S:st=(0t-2,3,0) would be 

minimal winning as 1 12 < =t t tg g g q− − +  with 

1 1 2 1( ) = 3 > 2 = =t t t t tw S g g g g g q− − − −+ + .  
Property 6.4  In any Fibonacci game with t>3, kt-2=1.  
Proof. Suppose on the contrary, kt-2>1and consider the 

coalition S:st=(0t-3,2,0,1). S would be minimal winning too 
as gt+gt-2<gt+gt-1=q with w(S)=gt+2gt-2>gt+gt-2+gt-3=gt 
+gt-1=q. A contradiction.  

Properties 6.3 and 6.4 may be generalized to types (t-h) 

with h odd and respectively h even. 
Property 6.5 In any Fibonacci game it is 2t hk − ≤  for h 

odd <t-1.  
Proof. Proof of Property 6.5 is based on the following 

lemma:  
Lemma 6.1 In a Fibonacci game consider any player of 

type j0=(t-h) with h odd <(t-1); there exists a minimal 
winning coalition S in which this player is the weakest. The 
profile of S is given by: 1= ( , , , , )t j ts s ss    with 

= 0js  for j<j0; 0
= 1js ; = 1js  for j>j0 and 

0= ( 1)mod 2j j +  and = 0js  for j>j0 and 0= mod 2j j . 

Proof.  

1 10
> and =( 1) mod 20 0

( ) = = = =j j t t t
j j j j

w S g g g g g q− +
+

+ +∑  

Now to prove Property 6.5 suppose on the contrary 

0
> 2jk  and consider the coalition 'S  obtained from S by 

replacement of the player type 0 1j +  with two additional 

players of type 0j . 'S  would be minimal winning with 
'( ) >w S q , a contradiction. 

Property 6.6 In any Fibonacci game it is = 1t hk −  for h 
even <t-1.  

Proof. Proof of Property 6.6 is based on the previous 
Lemma 6.1 and on the following one: 

Lemma 6.2 Suppose in a Fibonacci game there is a 
minimal winning coalition S and a 0 = ( ) > 2j t h−  such 
that = 0js  for 0= 1, , 1j j − ,

0
> 0js  (so that a player 

of type 0 > 2j  is the weakest in S), then kj0-1=1.  
Proof. Suppose on the contrary kj0-1>1 and consider the 

coalition 'S  obtained from S by replacement of a player of 
type 0j  with two players of type 0 1j − . 'S  would be 

minimal winning with '( ) >w S q , a contradiction. This 
Lemma holds independently from the parity of h.  

Lemma 6.3 If a player of type j=t-h>2 is the weakest in a 
minimal winning coalition S, then there exists a minimal 
winning coalition 'S  such that a player of type j-2 is the 
weakest in 'S . 

Proof. In S replace the player of type j with the unique (by 
Lemma 6.2) player of type j-1 and one player of type j-2. 
Also this Lemma holds independently from the parity of h.  

Lemma 6.4  Suppose in a Fibonacci game 
0

= 2jk  for 

j0=t-h with h odd <(t-1), then: a) 10
= 1jk −  (by Property 

6.6) and b) there is a minimal winning coalition 'S  such 
that the player of type 0( 1)j −  is its weakest player.  

Proof. (of part b)) 'S  is obtained from the coalition S in 
Lemma 6.1 by replacement of the player of type t-(h-1) with 
one additional player of type t-h and the player of type 
t-(h+1). Clearly 'S  is minimal winning with '( ) =w S q .  
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Lemma 6.5 If in a Fibonacci game 
0

= 2jk  for j0=t-h 

with h odd <(t-1), then = 1jk  for any 01 < <j j .  
Proof. Lemma 6.4 and Lemma 6.3 imply that there exists a 

set of minimal winning coalitions such that each player of 
type j, 01 < j j≤ , is the weakest in a minimal winning 
coalition of the set. After that Lemma 6.5 comes as an 
immediate corollary of Lemma 6.2.  

Now, it is possible to give a more precise statement of 
Property 6.5 concerning the behaviour of t hk −  for h odd 
<(t-1). Indeed, Property 6.5 and Lemma 6.5 give 
immediately: 

Property 6.7 In a Fibonacci game there is at most one 
odd h<(t-1) such that 

0
= = 2j t hk k −  and = 1jk  for all 

j>1 and 0j j≠ .  
Now by Remark 3.1 it is:  

1 1
=2

= 2 1
t

t j j
j

k g k g+ − − ∑           (7) 

and moreover6:  

2
=1

= 2
t

t j
j

g g+ −∑                (8) 

Furthermore, Properties 6.6 and 6.7 imply that, for any 
= 2, ,j t , kt satisfies conditions (1) or (2). In the first case 

and putting 0 = 1 2j t z+ − , we obtain:  

1 1 1 0
=2

1 1 0
=1

2 1 0
=1

1 0

= ( , ) = 2 1 ( ) =

= ( ) =

= =

= 2

t

t j j
j

t

t t t j j
j

t

t t j j
j

t j

k k t z g g g

g g g g g

g g g g

g g

+

+ −

+ −

−

− − +

+ + − −

+ − −

+ −

∑

∑

∑

  (9) 

In particular, for z=1, 1 = 2k . 
In the second case, we get immediately:  

1 1 1= ( , ( 1) / 2 ) = 2 tk k t t g − +  +       (10) 

To resume, by Properties 6.6 and 6.7, and by Formulas (9) 
and (10), necessary conditions to be satisfied by the kt vector 
of a Fibonacci game with t>2 are those described in 
Formulas (1) and (2). 

6.2. Proof of Sufficiency  

The proof is based on an adaptation to our problem of the 
test for homogeneity of a weighted majority game developed 
as Basic Lemma in [9] (Theorem 1.4) and [10] (pp. 312). 

6 By induction: indeed it is immediate to check that (8) is true for t=1 and, if 
true for t, is true also for t+1. 

Henceforth we use the following definitions and 
notations:    

• 0 0 0 0
1= ( ; ; = )t t tG gλ +k g , "seed" game with 0

tk  

given by Formulas (1) or (2). In particular, 0,zG , seed 
game as a function of = 1, , ( 1) / 2z t +  . 

• = ( ; ; )r r r r
t tG λk g , any game of a r generation7 

derived by the seed 0G . Note that the dimension t of 
rG  depends on r. Whenever useful, we utilize t(r). In 

particular, ,r zG , game of a r  generation derived by 
the seed 0,zG . 

•  Feasible (not feasible) game: a rG  for which 

=2
t r r r

j jj k g λ⋅ ≥∑  (< ).rλ  

•  For any given type index 0 > 1j , an "intermediate" 

player in the game rG  is a player of type 0j , a 
"large" player is a player of any type 0>j j , a "small" 
player  is any player of type 01 < <j j . 

•  No bottom coalition of a feasible game rG : a coalition 
rS  whose profile rs  has 1 = 0rs . 

•  Dominant coalition8 of a feasible game rG  a 
coalition rS  such that: 
(a) rS  is no bottom 
(b) there is an index 0 ( ) > 1rj G  (or shortly 0 > 1rj ) 

and a positive integer rc , such that 

0 0

0

= ( = 0  < ; = (1 );

=  > )

r r r r r r r
j j j

r r r
j j

s j j s c c k

s k j j

∀ ≤ ≤

∀

s
 

i.e. rS  is made by all large players and by some 
(may be all) intermediate players, so that 0

rj  is the 
type index corresponding to the weakest player in 
the dominant coalition rS . 

(c) ( )
=1( ) = =t rr r r r

j jjw S s g λ∑  

•  Generation rules. Let rG  a feasible game, rS  its 
dominant coalition and 0

rj  the corresponding type 

index. To any 0 ( ),rj j t r≤ ≤  associate the game 
1 1 1 1( ) = ( , , )r r r rG j λ+ + + +k g  in which 
1 1= ( )r r j+ +k k : 

- for 0> rj j  and 
0

> 0r r
jk c− :  

7  Note that the winning quota rλ  of rG  may well be greater than 

( )=1 1 2t r
j jj k g r +∑ , i.e. for > 0r , rG  may not be constant sum. 

8  It is the counterpart of the "largest min win" coalition (in backward 
lexicographic order) of a weighted majority game defined in [10], pp. 312. 
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1
1 2 10 0 0

= ( , , , , ),r r r r r r
j j jk k k k c+

− −k   the dimension of 
1r+g is j0 and 1 =r

jgλ +  

- for 0= rj j  or 0> rj j  and 
0

= 0r r
jk c− :   

1
1 1 2 10 0

= ( , , , ),r r r r
j jk k k+
− −k   the dimension of 1r+g is 

0 1j −  and 1 =r
jgλ +  

Verbally the dominant coalition rS  generates as many 
"satellite" games 1( )rG j+  as the number of types j 
included in the coalition. The players of the satellite game 
associated with a type j are all players of type i<j not 
belonging to rS ; the winning quota is gj. The idea is that 
any satellite game looks for the dominant coalition of the 
satellite able to replace one player of type j in the generating 
game, while preserving the homogeneous character of the 
"seed" game. In turn, the dominant coalition gives rise to 
other satellite games of next generation and so on. 

Now, our adapted version of Basic Lemma is:  
Lemma 6.6 A seed weighted majority game 0G  is 

homogeneous if, in the set of all rG  games obtained by the 
generation rules, do not exist feasible games lacking the 
dominant coalition.  

To prove the Lemma 6.6 we show that any game of the set 
rG , ( = 0,1, )r   generated by a seed 0G  coherent with 

formulae (1) and (2) either is not feasible or admits a 
dominant coalition. 

In the proof we will exploit the following relation 9 
concerning Fibonacci numbers:  

2 1 2
=0

2 =
h

t t t j t h
j

g g g g− − + + ++ + ∑         (11) 

Proof. Let us distinguish three cases: 
Case α ): = ( 1) / 2z t +   

Let us denote 0, ( 1)/2 0 0 0
1= = ( ; ; )t

t t tG G g + 
+k g  any 

seed game with 0 0
1 1= ( , )t tk −k 1 . The profile of the 

dominant coalition 0S  is 0
2 2= ( ,1 )t t−s 0  with 

0
1 = 0tk c− − . Hence the satellite games associated with type 

t-1 and t are 
1, 1

1 3 2 1= ( 1) = ( , ; ; )a
t t tG G t k g− − −− 1 g  

and  
1, 1

1 3 2= ( ) = ( , ; ; )b
t t tG G t k g− −1 g  

By Formula (8), 1,bG  is not feasible, while 1,aG  is 
feasible for any = (0) > 4t t . Let us write briefly 

1, 1=aG G ; it is immediate to check that 1G  mimics the 
structure of 0G : only the dimension is different: it is 

9 By induction: it is true for j=0, and if true for j it is true for j+1. 

= (0)t t  for 0G  and = (1) = (0) 2t t t −  for 1G . The 

profile of the dominant coalition 1S  of 1G  is 
1

(1) 2 2 4 2= ( , ) = ( , )t t− −s 0 1 0 1  and the procedure may be 

recursively repeated until the integer r for which also 1,rG  
is no longer feasible. This is resumed by the following  

Property 6.8 Let 0G  be a seed game of type α  with 
t=t(0)>2. For any generation = 0,1, , ( 3) / 2r t −   

there is a unique feasible = ( ; ; )r r r r
t tG λk g . The r

tk  of 

such game is 0
tk  truncated at dimension tr=t(0)-2r, which 

is coherently the dimension of ,r
tg while ( ) 1=r

t rgλ + . 

Feasible rG  games have dominant coalition rS  whose 

(0) 2 (0) 2( 1) 2= ( , )r
t r t r− − +s 0 1 .  

Case β ): = 1z  

Let 0, 0,1 0 0
1 1= = ( ; ; )z

t t tG G g+ +k g  any seed game with 
0 0

1 3= ( , ,2,1)t tk −k 1 . The profile of the dominant coalition 
0S  is still 0

2 2= ( , )t t−s 0 1  with 0
1 = 1tk c− − . Hence, the 

satellite games associated to type t-1 and t are 
1, 1

1 3 2 1= ( 1) = ( , ; ; )a
t t tG G t k g− − −− 1 g  

and 
1, 1

1 2 1= ( ) = ( , ; ; )b
t t tG G t k g− −1 g  

Both games share the properties of 0G  of case α ), that 
is behave as seed games and generate for r=2,… sequences 

,r aG  and ,r bG  according to Property 6.8. Of course the 
dimension of 1, = (1, ) = (0) 2,aG t a t − and of 

1, = (1, ) = (0) 1bG t b t − . 

Case γ ): 1 < < ( 1) / 2z t −   

Let us write 0, 0
1 1 2 2 1= ( , ,2, )z

t z zG k − − −1 1 . The profile of 

the dominant coalition 0,zS  is 0,
2 2= ( , )z

t t−s 0 1  with 
0

1 = 0tk c− − . Let us denote the two satellite games by  

1 , 1 1 , 1 , 1 ,= ( 1) = ( ; ; )z a z z a z a z a
t tG G t λ− k g  

and  
1 , 1 1 , 1 , 1 ,= ( ) = ( ; ; )z b z z b z b z b

t tG G t λk g . 

It is 1 , 1 , 0
2 2 1 1 2 2 3= = ( , ,2, ),z a z b

t t t z zk− − − − −k k 1 1  
1 ,

1= ,z a
tgλ −  and 1 , =z b

tgλ . Note that 1 ,z aG  mimics 
0,( 1)zG − ; hence recursively we go back to 0,1G , i.e. the 

seed game of case β ). 

In turn, as by Formula (11), 1 , = ,z b
j j tjs g g∑  1 ,z bG  

has dominant coalition with profile. 
1 ,

2 2 1 2 3= ( ,1,2, )z b
t t z z− − − −s 0 1                                                               
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Hence 1 ,z bG  gives rise to 2z-1 satellite games 2 , ( )z bG j  
for = (0) 2 , , (0) 2.j t z t− −  

It is 2 , 0
1 2 2 2 1( ) = ( , ; ; )z b

t z t z jG j k g g− − − −1 . By Formula 

(8), for all j, except * = (0) 2j t z− , the 2 , ( )z bG j  are not 

feasible; the survival feasible 2 , *( )z bG j  mimics the 
behavior of the 0G  seed of the case α ). 

Summing up, in all three cases all rG  games either are 
not feasible, or if feasible admit a dominant coalition and the 
conditions of the Basic Lemma are verified. 

7. Proofs of Properties of Section 5 
By definition:  

1
=2

( , ) = ( , ) ( , )
t

j
j

n t z k t z k t z+ ∑           (12) 

Proof. Proof of Property 5.1. 

For = ( 1) / 2z t +   it is 
=2 ( , ) = 1t

jj k t z t −∑ , by 

Formula  
(2) and 1 1= 2 tk g −+  by Formula (10) so that:  

1( , ) = 1 tn t z t g −+ +               (13) 

For < ( 1) / 2z t +   it is 
=2 ( , ) =t

jj k t z t∑ , by 

Formula (1)  
and 1 1 1 2= 2 t t zk g g− + −+ −  by Formula (9) so that:  

1 1 2( , ) = 2 t t zn t z t g g− + −+ + −          (14) 

and in particular 
( ,1) = 2n t t +  

Proof. Proof of Property 5.2. 
For ( 1) < ( 1) / 2z t+  +   by Formula (14):  

1 1 2( 1) 1 1 2

( , 1) ( , )

= ( 2 ) ( 2 )t t z t t z

n t z n t z

t g g t g g− + − + − + −

+ − =

+ + − − + + − =

 

2 1 2 1 2= =t z t z t zg g g− + − − −−                        (15) 

For ( 1) = ( 1) / 2z t+  +   by Formulas (13) and (14):  

1 1 1 2

( , 1) ( , ) =
( 1 ) ( 2 ) =t t t z

n t z n t z
t g t g g− − + −

+ −
= + + − + + −

 

1 2 1t zg + −= −                               (16) 

but = ( 1) / 2 = ( / 2) 1z t t −  −  for t even and ( 1) / 2t −  
for t odd so that:  

t+1-2z=3 for t even and t+1-2z=2 for t odd 
which also means, on one side:  

t-2z=2 for t even and t-2z=1 for t odd 
and on the other one:  

1 2 = 3t zg + − for t even and 1 2 = 2t zg + −  for t odd 

and finally  

1 2 1 2t zg + − − = for t even and 1 2 1 1t zg + − − =  for t odd 

so that in both cases still  

2( , 1) ( , ) = t zn t z n t z g −+ −          (17) 

which completes the proof of Property 5.2. Note that this 
property implies the strict monotony of ( , )n t z  for any t and 
then, as a by product, gives a proof of Theorem 3.2.  

Proof. Proof of Property 5.3. 
Preliminarily note that putting ' = 1t t −  it is 

'( 1) / 2 = ( / 2)t t +     so that by Formula (13): 

' ' '
' 1

( , ( 1) / 2 ) = 1
t

n t t t g
−

 +  + +      (18) 

equivalent to  

2( 1, ( / 2) ) = tn t t t g −−   +  

Moreover, it is by Formula (14) for t>4, or by Formula (13) 
for t=3 and 4 10  

1 3 2( ,2) = 2 = 2t t tn t t g g t g− − −+ + − + +  

and immediately:  

( ,2) ( 1, / 2 ) = 2n t n t t− −              (19) 

Remark 7.1  Jointly Prop. 5.2 and 5.3 imply that, putting 
in lexicographic order the set Ξ  of values of n(t,z), z>1, a 
strictly monotone sequence is obtained. By Formulas (15), 
(17) and (19), all members of the sequence of first 
differences ∆  of the Ξ  sequence are Fibonacci numbers 
(see Table 3).  

8. Conclusions 
In this paper we introduce the class of Fibonacci games. 

They are the subset of constant sum homogeneous weighted 
majority games whose sequence of all type weights and the 
minimal winning quota is a string of consecutive Fibonacci 
numbers. Exploiting properties of the Fibonacci sequence, 
we give closed form results able to provide a simple and 
insightful characterization of such games. In more detail, we 
compute the total number of Fibonacci games for any given 
value of t (type of players in the game); we describe, for any 
(t,z) with z a proper counter, the profile of any game, i.e. the 
vector whose components are the number of non dummy 
players of each type in the game; we provide a recursive rule 
to compute the function n(t,z) which gives the overall 

10  Note that for t=3 or 4 it is 2 11 =t tg g− −+ . Hence for such t: 

2 12 = 1t tt g t g− −+ + + +  so that both (13) and (14) describe 
𝑛𝑛(𝑡𝑡, ⌊(𝑡𝑡 + 1)/2⌋). 
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number of non dummy players in the (t,z) game and we 
underline that such rule may be summarized through a 
matrix whose columns and rows are exactly sequences (or 
subsequences for rows) of Fibonacci numbers.  

Compared to other weighted majority games, the 
Fibonacci games combine two specific characteristics: the 
presence of some, or perhaps many, "peones" (players with 
minimum weight), along with an almost total ranking (with 
one tie at most) of all the other players, whose individual 
power grows at the speed of the Fibonacci sequence. It seems, 
by some preliminary analysis, that this feature might be 
useful in applications to weighted voting systems in 
parliamentary elections. In particular, it might be worthwhile 
investigating the consequences coming from the assignment 
of a wide proposal power besides the voting rights to the 
strongest player. This would be the object of further 
research. 
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