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Abstract

The algebraic entropy h defined for endomorphisms φ of abelian groupsGmeasures the growth of
the trajectories of non-empty finite subsets F of G with respect to φ. We show that this growth can
be either polynomial or exponential. The greatest φ-invariant subgroup of G where this growth is
polynomial coincides with the greatest φ-invariant subgroup P(G,φ) of G (named Pinsker subgroup
of φ) such that h(φ �P(G,φ)) = 0. We obtain also an alternative characterization of P(G,φ) from
the point of view of the quasi-periodic points of φ.

1 Introduction

The algebraic entropy ent of endomorphisms of abelian groups was first defined by Adler, Konheim
and McAndrew in [1], then studied by Weiss in [23] and more recently in [6]. This function is
studied also in other recent papers [3, 11, 18, 19, 26].

The definition given by Weiss is appropriate for torsion abelian groups, since ent(φ) = ent(φ �t(G)

) for any endomorphism φ of an abelian group G (so endomorphisms of torsion-free abelian groups
have zero algebraic entropy). Peters [16] modified the definition of algebraic entropy for auto-
morphisms of arbitrary abelian groups, using the non-empty finite subsets instead of the finite
subgroups used by Weiss. This definition can be extended to endomorphisms of abelian groups, as
follows. Let G be an abelian group and φ ∈ End(G). For a non-empty subset F of G and for any
positive integer n, the n-th φ-trajectory of F is

Tn(φ, F ) = F + φ(F ) + . . .+ φn−1(F ),

and the φ-trajectory of F is T (φ, F ) =
∑
n∈N φ

n(F ). For F finite, let

τφ,F (n) = |Tn(φ, F )|;

when there is no possibility of confusion we write only τF (n), omitting the endomorphism φ. For
the function τφ,F : N+ → N the limit

H(φ, F ) = lim
n→∞

log τφ,F (n)

n
(1.1)

exists (see Claim 2.1(a) or [5]), and H(φ, F ) is the algebraic entropy of φ with respect to F . The
algebraic entropy of φ is

h(φ) = sup{H(φ, F ) : F ⊆ G non-empty finite}.

When φ is an automorphism, the algebraic entropy defined in this way has the same values as that
introduced (in a different way) by Peters. Clearly, since ent is defined by ent(φ) = sup{H(φ, F ) :
F ⊆ G finite subgroup}, h coincides with ent for endomorphisms of torsion abelian groups, but
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while the function ent trivializes for torsion-free abelian groups, h remains non-trivial also in this
case. Many properties satisfied by ent are shared also by h (see Fact 2.5).

For a measure preserving transformation φ of a measure space (X,B, µ) the Pinsker σ-algebra
P(φ) of φ is the greatest σ-subalgebra of B such that φ restricted to (X,P(φ), µ �B) has zero measure
entropy. Note that idX : (X,B, µ)→ (X,P(φ), µ �B) is measure preserving, so (X,P(φ), µ �B) is a
factor of (X,B, µ) (see [21]).

The situation is similar in topological dynamics. Let (X,φ) be a topological flow, i.e., a homeo-
morphism φ : X → X of a compact Hausdorff space X. A factor (π, (Y, ψ)) of (X,φ) is a topological
flow (Y, ψ) together with a continuous surjective map π : X → Y such that π ◦φ = ψ ◦π. In [4] (see
also [13]) it is proved that a topological flow (X,φ) admits a largest factor with zero topological
entropy, called topological Pinsker factor.

In analogy with the topological case, we call algebraic flow a pair (G,φ), where G is an abelian
group and φ ∈ End(G). For an algebraic flow (G,φ), we say that a subgroup H of G is φ-invariant
(or just invariant when φ is clear from the context) if φ(H) ⊆ H. A factor of (G,φ) is an algebraic
flow of the form (G/H, φ), where H is a φ-invariant subgroup of G and φ is the endomorphism
induced by φ on the quotient G/H.

An algebraic flow may fail to have a largest factor with zero algebraic entropy even when the
underlying group is torsion as Example 3.5 shows. So the algebraic counterpart of the Pinsker
factor in the case of an algebraic flow cannot be a factor. This motivated us to introduce the notion
of Pinsker subgroup as follows.

Definition 1.1. Let (G,φ) be an algebraic flow. The Pinsker subgroup of G with respect to φ is
the greatest φ-invariant subgroup P(G,φ) of G such that h(φ �P(G,φ)) = 0.

As shown by Proposition 3.1 the Pinsker subgroup exists and has a number of nice properties.
The aim of this paper is to study the properties of this subgroup and characterize it in two distinct
ways.

The first one involves the very definition of algebraic entropy measuring the growth of the
function τφ,F (n). Since

|F | ≤ τφ,F (n) ≤ |F |n for every n ∈ N+, (1.2)

the growth of τφ,F is always at most exponential; moreover, H(φ, F ) ≤ log |F | in (1.1) (note that
(1.2) implies also that τφ,F (n) = 1 for every n ∈ N+ precisely when F is a singleton). This justifies
the following definition.

Definition 1.2. Let (G,φ) be an algebraic flow and let F be a non-empty finite subset of G. Then
we say that:

(a) φ has exponential growth with respect to F (denoted by φ ∈ ExpF ) if there exists b ∈ R,
b > 1, such that τφ,F (n) ≥ bn for every n ∈ N+;

(b) φ has polynomial growth with respect to F (denoted by φ ∈ PolF ) if there exists PF (X) ∈ Z[X]
such that τφ,F (n) ≤ PF (n) for every n ∈ N+;

(c) φ has polynomial growth (denoted by φ ∈ Pol) if φ ∈ PolF for every non-empty finite subset
F of G.

It is not hard to see that for an algebraic flow (G,φ) and a fixed non-empty finite subset F ,
φ has exponential growth with respect to F if and only if H(φ, F ) > 0 (see Theorem 6.12). On
the other hand, if H(φ, F ) = 0, then τφ,F has growth less than exponential, yet it is not clear
whether φ ∈ PolF holds. To clarify this issue, in Section 5 we show that for any algebraic flow
(G,φ) there exists a greatest φ-invariant subgroup Pol(G,φ) of G where the restriction of φ has
polynomial growth. Since φ ∈ PolF immediately yields H(φ, F ) = 0 (see Corollary 6.2), this entails
Pol(G,φ) ⊆ P(G,φ).

We show that these two subgroups coincide as a corollary of our Main Theorem (see below)
involving also another important subgroup related to the algebraic flow (G,φ). This characterizes
the Pinsker subgroup as the greatest φ-invariant subgroup of G on which the restriction of φ has
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polynomial growth. Moreover, using the equality Pol(G,φ) = P(G,φ) we deduce the following
surprising

Dichotomy Theorem. Every algebraic flow (G,φ) has either exponential or polynomial growth
with respect to any fixed non-empty finite subset F of G.

In other words, H(φ, F ) = 0 if and only if φ ∈ PolF holds for any fixed non-empty finite subset
F of G. The Dichotomy Theorem is stronger than the equality P(G,φ) = Pol(G,φ), since by
taking the universal quantifiers with respect to F , one can easily deduce that h(φ) = 0 if and only
if φ ∈ Pol (see Corollary 6.11), i.e., P(G,φ) = Pol(G,φ). The proof of the Dichotomy Theorem
requires a significant effort (see Theorem 6.12).

The function τφ,F makes sense for an endomorphism φ of a non-abelian group G and a non-
empty finite subset F of G. Nevertheless, here the Dichotomy Theorem may fail even for the
identity endomorphism of G (see Remark 2.3).

The second way to characterize the Pinsker subgroup involves another (more immediate) aspect
of the dynamics of an algebraic flow (G,φ), namely, the quasi-periodic points of φ in G (an element
x ∈ G is a quasi-periodic point of φ if there exist n > m in N such that φn(x) = φm(x)). For an
algebraic flow (G,φ) the φ-torsion subgroup of G

tφ(G) = {x ∈ G : |T (φ, 〈x〉)| <∞}

was introduced in [6]. Note that tφ(G) ⊆ t(G), and tφ(G) consists of the quasi-periodic points of φ
in t(G). The equality P(G,φ) = tφ(G) for a torsion abelian group G can be attributed to [6] (see
also Corollary 3.6 for a proof). In other words, in this case the Pinsker subgroup coincides with
the subgroup of all quasi-periodic points.

In Section 4 we elaborate this key idea in the general case, by introducing the counterpart of
tφ(G) in the non-torsion case. Namely, we introduce the smallest φ-invariant subgroup Q(G,φ) of
G such that the induced endomorphism φ of G/Q(G,φ) has no non-zero quasi-periodic points (so
in particular, it contains all quasi-periodic points of φ in G). This subgroup captures important
features of the dynamics of the endomorphism φ from this internal point of view, making no
recurse to the algebraic entropy of φ. In Section 5 we show that Q(G,φ) ⊆ Pol(G,φ) (see Corollary
5.11). Along with the above mentioned inclusion Pol(G,φ) ⊆ P(G,φ) this gives a chain Q(G,φ) ⊆
Pol(G,φ) ⊆ P(G,φ). In the key Theorem 6.6 we prove that if P(G,φ) = G, then Q(G,φ) 6= 0.
From this it is possible to deduce that all three subgroups coincide:

Main Theorem. For every algebraic flow (G,φ),

Q(G,φ) = Pol(G,φ) = P(G,φ).

This alternative description of the Pinsker subgroup is proved in Theorem 6.9.

Notation and terminology

We denote by Z, N, N+, Q and R respectively the set of integers, the set of natural numbers, the
set of positive integers, the set of rationals and the set of reals. For m ∈ N+, we use Z(m) for the
finite cyclic group of order m.

Let G be an abelian group. With a slight divergence from the standard use, we denote by [G]<ω

the set of all non-empty finite subsets of G. If H is a subgroup of G, we indicate this by H ≤ G.
The subgroup of torsion elements of G is t(G), while D(G) denotes the divisible hull of G. For a
cardinal α we denote by G(α) the direct sum of α many copies of G, that is,

⊕
αG.

Moreover, End(G) is the ring of all endomorphisms of G. We denote by 0G and idG respectively
the endomorphism of G which is identically 0 and the identity endomorphism of G. For F ∈ [G]<ω

and n ∈ N+ let
F(n) = F + . . .+ F︸ ︷︷ ︸

n

.
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The hyperkernel of φ ∈ End(G) is ker∞ φ =
⋃
n∈N kerφn. The endomorphism φ : G/ ker∞ φ →

G/ ker∞ φ induced by φ is injective.

2 Background on algebraic entropy

For an algebraic flow (G,φ) and F ∈ [G]<ω, since T (φ, F ) need not be a subgroup of G, we denote
by V (φ, F ) = 〈T (φ, F )〉 = 〈φn(F ) : n ∈ N〉 the smallest φ-invariant subgroup of G containing F
(and consequently containing also T (φ, F )). If F = {g} for some g ∈ G we write simply V (φ, g).
Note that V (φ, F ) =

∑
g∈F V (φ, g).

It is clear from the definition that for the computation of the algebraic entropy of an endomor-
phism φ of an abelian group G it is not restrictive to consider subsets F ∈ [G]<ω such that 0 ∈ F
and F = −F .

In the next claim we collect some technical properties of the trajectories that will be used in
the paper.

Claim 2.1. Let (G,φ) be an algebraic flow, F ∈ [G]<ω such that 0 ∈ F , and let n, k ∈ N+. Then:

(a) Tn+k(φ, F ) = Tn(φ, F ) +φn(Tk(φ, F )) (consequently, τφ,F (n+ k) ≤ τφ,F (n)τφ,F (k); in partic-
ular, the limit in (1.1) exists);

(b) Tn(φk, F ) ⊆ Tnk−k+1(φ, F ) (consequently, τφk,F (n) ≤ τφ,F (nk − k + 1));

(c) Tnk(φ, F ) = Tn(φk, Tk(φ, F )) (consequently, τφ,F (nk) = τφk,Tk(φ,F )(n)).

(d) In particular, T (φ, F ) = T (φk, Tk(φ, F )).

(e) Moreover, for every F1, F2 ∈ [G]<ω, Tn(φ, F1 ∪F2) ⊆ Tn(φ, F1) +Tn(φ, F2), and so H(φ, F1 ∪
F2) ≤ H(φ, F1) +H(φ, F2). In particular, H(φ, F ∪ −F ) ≤ 2H(φ, F ).

Proof. (a) The equality and the inequality are obvious. They show that the sequence {cn : n ∈ N+},
where cn = log τφ,F (n), satisfies cn+k ≤ cn + ck for n, k ∈ N+, and so Fekete Lemma [10] applies to
conclude that the limit H(φ, F ) = limn→∞

cn
n exists (and coincides with infn∈N+

cn
n ).

The remaining items (b), (c) and (d) are easy to check. For (e) note that H(φ, F ) = H(φ,−F ).

In the next claim we see that the identity endomorphism of any abelian group has polynomial
growth and we deduce in Example 2.4 that the algebraic entropy of the identity endomorphism is
zero.

Claim 2.2. Let G be an abelian group and F ∈ [G]<ω. Then |F(n)| ≤ (n+ 1)|F | for every n ∈ N+.

Proof. Let F = {f1, . . . , ft} and let n ∈ N+. If x ∈ F(n), then x =
∑t
i=1mifi, for some mi ∈ N

with
∑t
i=1mi = n. Then 0 ≤ mi ≤ n for every i = 1, . . . , t, that is, (m1, . . . ,mt) ∈ {0, 1, . . . , n}t,

and so |F(n)| ≤ (n+ 1)t.

Remark 2.3. The growth of the function n 7→ |F(n)| has been extensively studied for non-abelian
groups G where it may fail to be polynomial [24].

Example 2.4. For any abelian group G, the identity endomorphism idG has h(idG) = 0. Indeed,
let F ∈ [G]<ω. By Claim 2.2, τidG,F (n) = |Tn(idG, F )| = |F(n)| ≤ (n + 1)|F | for every n ∈ N+.
Hence

H(idG, F ) = lim
n→∞

log τidG,F (n)

n
≤ lim
n→∞

|F | log(n+ 1)

n
= 0.

Since F was chosen arbitrarily, we can conclude that h(idG) = 0.

In the next fact we collect the basic properties of the algebraic entropy. The properties in (b), (c)
and (d) were proved in [16] in the case of automorphisms and then generalized to endomorphisms
in [5].
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Fact 2.5. Let (G,φ) be an algebraic flow.

(a) If H is a φ-invariant subgroup of G and φ : G/H → G/H is the endomorphism induced by φ,
then h(φ) ≥ max{h(φ �H), h(φ)}.

(b) Let (H, η) be another algebraic flow. If φ and η are conjugated (i.e., there exists an isomor-
phism ξ : G→ H such that φ = ξ−1ηξ), then h(φ) = h(η).

(c) If G = G1 ×G2 and φi ∈ End(Gi), for i = 1, 2, then h(φ1 × φ2) = h(φ1) + h(φ2).

(d) If G is a direct limit of φ-invariant subgroups {Gi : i ∈ I}, then h(φ) = supi∈I h(φ �Gi).

Example 2.6. For any abelian group K the right Bernoulli shift is βK : K(N) → K(N) defined by

(x0, x1, x2, . . .) 7→ (0, x0, x1, . . .).

It is proved in [6] that h(βZ(p)) = ent(βZ(p)) = log p, where p is a prime. Then it follows that
h(βZ) = ∞ in view of Fact 2.5(a). Then h(βK) = log |K| (see [5, 6]), with the usual convention
that log |K| =∞ if |K| is infinite.

The following two useful properties of the algebraic entropy are needed in the proof of our main
results, namely, Theorems 6.6 and 6.12.

Lemma 2.7. Let (G,φ) be an algebraic flow. If G is torsion-free and φ̃ : D(G) → D(G) denotes

the unique extension of φ to the divisible hull D(G) of G, then h(φ̃) = h(φ).

Proof. It is obvious that h(φ̃) ≥ h(φ) by Fact 2.5(a).
Let F ∈ [D(G)]<ω. Then there exists m ∈ N+ such that mF ⊆ G. Let µm(x) = mx for every

x ∈ D(G). Then µm is an automorphism of D(G) that commutes with φ̃. Moreover, Tn(φ,mF ) =

Tn(φ, µm(F )) = µm(Tn(φ̃, F )). In particular, τφ,mF (n) = τφ̃,F (n). Hence, H(φ,mF ) = H(φ̃, F ).

Since H(φ,mF ) ≤ h(φ), we conclude that H(φ̃, F ) ≤ h(φ). By the arbitrariness of F , this gives

h(φ̃) ≤ h(φ).

Lemma 2.8. Let (G,φ) be an algebraic flow and F ∈ [G]<ω. If H(φ, F ) = 0, then h(φ �V (φ,F )) = 0.

Proof. Since H(φ, F ) = 0, we have H(φ,−F ∪ {0} ∪ F ) = 0 as well by Claim 2.1(e). Moreover,
V (φ, F ) ⊆ V (φ,−F∪{0}∪F ). So we can assume without loss of generality that 0 ∈ F and F = −F .
From H(φ, F ) = 0, it follows that H(φ, F(m)) = 0 for every m ∈ N+; indeed, fixed m ∈ N+, for
every n ∈ N+, we have Tn(φ, F(m)) = Tn(φ, F )(m), and so τφ,F(m)

(n) ≤ τφ,F (n)m.
Note that

V (φ, F ) =
⋃

m∈N+

Tm(φ, F(m)). (2.1)

Moreover, for m ∈ N+,

H(φ, F(m2)) = 0 implies H(φ, Tm(φ, F(m))) = 0, (2.2)

since Tn(φ, Tm(φ, F(m))) ⊆ Tn+m(φ, F(m2)) for every n ∈ N+. Now, for every F ′ ∈ [V (φ, F )]<ω, by
(2.1) there exists m ∈ N+ such that F ′ ⊆ Tm(φ, F(m)). By (2.2) H(φ, Tm(φ, F(m))) = 0 and so also
H(φ, F ′) = 0. By the arbitrariness of F ′, this proves that h(φ �V (φ,F )) = 0.

3 The Pinsker subgroup

The next proposition proves the existence of the Pinsker subgroup for any algebraic flow.

Proposition 3.1. Let (G,φ) be an algebraic flow. The Pinsker subgroup P(G,φ) of G exists.
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Proof. Let F = {H ≤ G : H φ-invariant, h(φ �H) = 0}.
We start proving that

if H1, . . . ,Hn ∈ F , then H1 + . . .+Hn ∈ F . (3.1)

Let H1, H2 ∈ F . Consider ξ = φ �H1 ×φ �H2 : H1 ×H2 → H1 ×H2. By Fact 2.5(c) h(ξ) = 0. Since
H1 +H2 is a quotient of H1 ×H2, the quotient endomorphism ξ : H1 +H2 → H1 +H2 induced by
ξ has h(ξ) = 0 by Fact 2.5(a). Since φ �H1+H2 is conjugated to ξ, it follows that h(φ �H1+H2) = 0
by Fact 2.5(b). Proceeding by induction it is clear how to prove (3.1).

Let P = 〈H : H ∈ F〉, and let F ∈ [P ]<ω. Then there exist n ∈ N+ and H1, . . . ,Hn ∈ F
such that F ⊆ H1 + . . . + Hn. By (3.1) h(φ �H1+...+Hn) = 0, so in particular H(φ �P , F ) =
H(φ �H1+...+Hn , F ) = 0. Since F is arbitrary, this proves that h(φ �P ) = 0. By the definition of P ,
if H is a φ-invariant subgroup of G with h(φ �H) = 0, then H ⊆ P . Hence P = P(G,φ).

It is clear that for an algebraic flow (G,φ), h(φ) = 0 if and only if G = P(G,φ). In the opposite
direction we consider the following property.

Definition 3.2. Let (G,φ) be an algebraic flow. We say the φ has completely positive algebraic
entropy if h(φ �H) > 0 for every non-trivial φ-invariant subgroup H of G. We denote this by
h(φ) >> 0.

Clearly, h(φ) >> 0 if and only if P(G,φ) = 0.

The definition is motivated by its topological counterpart: a topological flow (X,ψ) has com-
pletely positive topological entropy if all its non-trivial factors have positive topological entropy
[4].

Lemma 3.3. Let (G,φ) be an algebraic flow and let H be a φ-invariant subgroup of G. Then:

(a) P(H,φ �H) = P(G,φ) ∩H;

(b) for π : G → G/H the canonical projection and φ : G/H → G/H the endomorphism induced
by φ, π(P(G,φ)) ⊆ P(G/H, φ).

Proof. (a) Since h(φ �P(H,φ�H)) = 0, it follows that P(H,φ �H) ⊆ P(G,φ)∩H. Since P(G,φ)∩H ⊆
P(G,φ), we have h(φ �P(G,φ)∩H) = 0 and so P(G,φ) ∩H ⊆ P(H,φ �H).

(b) Follows immediately from Fact 2.5(a).

The inclusion in item (b) of the above lemma cannot be replaced by equality (e.g., if G = Q,
H = Z and φ is defined by φ(x) = 2x for x ∈ Q, then P(G,φ) = 0, while P(G/H, φ) = G/H).

Lemma 3.3 shows in particular the stability properties of the class of endomorphisms with zero
algebraic entropy under taking invariant subgroups and quotients over invariant subgroups. By
Fact 2.5(c) this class is preserved also under taking finite direct products, and so also under taking
arbitrary direct sums. Indeed, if G =

⊕
i∈I Gi, then G is direct limit of

⊕
i∈F Gi where F runs

over all non-empty finite subsets of I, and so Fact 2.5(d) applies. Example 3.5 below shows that the
class of endomorphisms with zero algebraic entropy is not preserved under taking arbitrary infinite
direct products.

Lemma 3.4. [6] Let (G,φ) be an algebraic flow and assume that G is torsion. Then:

(a) h(φ �tφ(G)) = 0 and tφ(G/tφ(G)) = 0 for the endomorphism φ : G/tφ(G)→ G/tφ(G) induced
by φ;

(b) if H is a φ-invariant subgroup of G and h(φ �H) = 0, then H ⊆ tφ(G).

Example 3.5. For a prime p, let G =
∏
n∈N+

Z(p)n and for every n ∈ N+ consider the right

shift βn : Z(p)n → Z(p)n defined by (x1, x2, . . . , xn) 7→ (0, x1, . . . , xn−1). Since Z(p)n is finite,
h(βn) = ent(βn) = 0. On the other hand, let φ =

∏
n∈N+

βn : G → G; then h(φ) = ent(φ) > 0.

Indeed, for n ∈ N+, let xn ∈ Z(p)n be such that βn−1Z(p) (xn) 6= 0, hence x = (xn)n∈N+
∈ G has

infinite trajectory under φ. By Lemma 3.4(b) we have h(φ) = ent(φ) > 0.
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Let us see now that the algebraic flow (G,φ) fails to have a largest factor with zero algebraic
entropy. Indeed, such a factor corresponds to a smallest φ-invariant subgroup H of G such that
the induced endomorphism φ : G/H → G/H has zero algebraic entropy. For m ∈ N let Gm =∏
n>m Z(p)n. Then Gm is a φ-invariant subgroup of G and the induced endomorphism φ : G/Gm →

G/Gm has zero algebraic entropy (as G/Gm is finite). Then Gm contains H by the definition of
H. Hence H ⊆

⋂
m∈NGm = 0. Therefore, H = 0, a contradiction (as h(φ) > 0).

From items (a) and (b) of Lemma 3.4 we also obtain immediately the following

Corollary 3.6. Let (G,φ) be an algebraic flow. If G is torsion, then P(G,φ) = tφ(G).

Let (G,φ) be an algebraic flow. A point x ∈ G is a periodic point of φ if there exists n ∈ N+ such
that φn(x) = x. Let P1(G,φ) be the subset of G of all periodic points of φ. Obviously, P1(G,φ) is a
φ-invariant subgroup of G. Analogously, let Q1(G,φ) be the subset of G of all quasi-periodic points
of φ. Hence Q1(G,φ) is a φ-invariant subgroup of G as well, since Q1(G,φ) =

⋃
n∈N φ

−n(P1(G,φ)).
Clearly, the quasi-periodic points of an injective endomorphism φ are periodic, that is, Q1(G,φ) =

P1(G,φ).
If P1(G,φ) = G, we say that φ is locally periodic, i.e., for every x ∈ G there exists n ∈ N+ such

that φn(x) = x. Moreover, φ is periodic if there exists n ∈ N+ such that φn(x) = x for every x ∈ G.
Analogously, if Q1(G,φ) = G, we say that φ is locally quasi-periodic, i.e., for every x ∈ G there
exist n > m in N such that φn(x) = φm(x). Finally, φ is quasi-periodic if there exist n > m in N
such that φn(x) = φm(x) for every x ∈ G.

Proposition 3.7. Let (G,φ) be an algebraic flow. Then

tφ(G) = t(G) ∩Q1(G,φ) ⊆ Q1(G,φ) ⊆ P(G,φ).

If G is torsion, then all these three subgroups coincide.

Proof. The inclusion tφ(G) ⊆ t(G) is obvious. If x ∈ tφ(G), then V (φ, x) is a finite φ-invariant
subgroup of G and so V (φ, x) ⊆ Q1(G,φ), hence tφ(G) ⊆ Q1(G,φ). Since every quasi-periodic
point has finite trajectory, for x ∈ t(G)∩Q1(G,φ) one has x ∈ tφ(G). This proves the first equality.
Moreover, Q1(G,φ) ⊆ P(G,φ), since for every F ∈ [G]<ω with F ⊆ Q1(G,φ), there exists m ∈ N+

such that Tn(φ, F ) = Tm(φ, F ) for every n ∈ N, n ≥ m, hence H(φ, F ) = 0. This proves that
h(φ �Q1(G,φ)) = 0, and so Q1(G,φ) ⊆ P(G,φ).

If G is torsion, P(G,φ) = tφ(G) by Corollary 3.6.

Note that always tidG(G) = t(G) ⊆ Q1(G, idG) ⊆ P(G, idG).
The example of torsion abelian groups gives the motivation and the idea on how to approach

the Pinsker subgroup of arbitrary abelian groups making use of quasi-periodic points. To this end
we need a generalization of the notions of periodic and quasi-periodic points.

4 Generalized quasi-periodic points

Let (G,φ) be an algebraic flow. We extend the definition of P1(G,φ) setting by induction:

(a) P0(G,φ) = 0, and for every n ∈ N
(b) Pn+1(G,φ) = {x ∈ G : (∃n ∈ N+) φn(x)− x ∈ Pn(G,φ)}.

This gives an increasing chain

P0(G,φ) ⊆ P1(G,φ) ⊆ . . . ⊆ Pn(G,φ) ⊆ . . . .

We show below that all members of this chain are φ-invariant subgroups of G. Our interest in these
subgroups is motivated by the fact that they are contained in P(G,φ).

In order to approximate better P(G,φ) we need to enlarge these subsets introducing for every
n ∈ N appropriate counterparts of Q1(G,φ), as follows. Define

(a) Q0(G,φ) = 0, and for every n ∈ N
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(b) Qn+1(G,φ) = {x ∈ G : (∃n > m in N) (φn − φm)(x) ∈ Qn(G,φ)}.
We get an increasing chain

Q0(G,φ) ⊆ Q1(G,φ) ⊆ . . . ⊆ Qn(G,φ) ⊆ . . . . (4.1)

Again we show below that the members of this chain are φ-invariant subgroups of G. One can
prove by induction that for injective endomorphisms φ of an abelian group G, Qn(G,φ) = Pn(G,φ)
for every n ∈ N.

Definition 4.1. For an algebraic flow (G,φ), let Q(G,φ) =
⋃
n∈NQn(G,φ).

Proposition 4.2. Let (G,φ) be an algebraic flow.

(a) For every n ∈ N, Pn(G,φ) is a φ-invariant subgroup of G, and for the induced endomorphism
φn : G/Pn(G,φ)→ G/Pn(G,φ) and the canonical projection πn : G→ G/Pn(G,φ),

Pn+1(G,φ) = π−1n (P1(G/Pn(G,φ), φn)) (i.e., Pn+1(G,φ)/Pn(G,φ) = P1(G/Pn(G,φ), φn)).
(4.2)

(b) For every n ∈ N, Qn(G,φ) is a φ-invariant subgroup of G, and for the induced endomorphism
φn : G/Qn(G,φ)→ G/Qn(G,φ) and the canonical projection πn : G→ G/Qn(G,φ),

Qn+1(G,φ) = π−1n (Q1(G/Qn(G,φ), φn)) (i.e., Qn+1(G,φ)/Qn(G,φ) = Q1(G/Qn(G,φ), φn)).
(4.3)

(c) Q(G,φ) is a φ-invariant subgroup of G.

Proof. (a) We proceed by induction. The cases n = 0 and n = 1 are trivial. Let n ∈ N and assume
that Pn(G,φ) is a φ-invariant subgroup of G.

Let x ∈ Pn+1(G,φ). This is equivalent to the existence of k ∈ N+ such that φk(x)−x ∈ Pn(G,φ).

This occurs if and only if πn(φk(x)−x) = 0 in G/Pn(G,φ). Since φ
k

n(πn(x))−πn(x) = πn(φk(x)−x),
this is equivalent to πn(x) ∈ P1(G/Pn(G,φ), φn), that is, x ∈ π−1n (P1(G/Pn(G,φ), φn)). So this
proves (4.2).

Since P1(G/Pn(G,φ), φn) is a φn-invariant subgroup ofG/Pn(G,φ), its counterimage Pn+1(G,φ)
is a φ-invariant subgroup of G.

(b) Argue as in (a).

(c) By (a), (b) and its definition, Q(G,φ) is a φ-invariant subgroup of G.

It is worth noting the following easy to prove properties.

Lemma 4.3. Let (G,φ) be an algebraic flow. Then:

(a) Pn(H,φ �H) = Pn(G,φ) ∩H and Qn(H,φ �H) = Qn(G,φ) ∩H for every n ∈ N; so

(b) Q(H,φ �H) = Q(G,φ) ∩H.

(c) Moreover, Q(G,φ) = 0 if and only if Q1(G,φ) = 0.

In Example 4.4 we discuss the length of the chain (4.1) for an algebraic flow (G,φ). We shall
prove in Proposition 4.11 that the endomorphism φ : G/Q(G,φ) → G/Q(G,φ) induced by φ
satisfies Q(G/Q(G,φ), φ) = 0. In other words, the chain (4.1) cannot be extended by adding new
terms. This justifies the following definition: for n ∈ N, we say that the Loewy length of Q(G,φ) is
n, if the chain (4.1) stabilizes at the term n, otherwise we say that the Loewy length of Q(G,φ) is
ω.

Example 4.4. For an algebraic flow (G,φ) the Loewy length of Q(G,φ) may be arbitrarily large
(up to ω). In item (a) we point out a large class of examples when the length is 1. In items (b)
and (c) we give examples of length 2 and ω respectively. With similar examples one can show that
it may take all values from 0 to ω.
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(a) If G is torsion, then by Proposition 3.7 Q(G,φ) = tφ(G) coincides with the Pinsker subgroup.
To see that Q(G,φ) = Q1(G,φ) has length 1 it suffices to recall that tφ(G/tφ(G)) = 0
according to [6, Lemma 2.3 (1)].

(b) Let G = Z2 and let φ be the automorphism of G defined by φ(x, y) = (x + y, y), that is, by

the matrix

(
1 1
0 1

)
. The subgroup H = Z × {0} is φ-invariant. Moreover, Q1(G,φ) = H,

while Q(G,φ) = Q2(G,φ) = G. Consequently,

0 = Q0(G,φ) ⊂ Q1(G,φ) ⊂ Q2(G,φ) = Q(G,φ) = G.

(c) Let G = Z(N) =
⊕∞

n=1〈en〉. Let φ be the automorphism of G given by the matrix
1 1 1 . . .
0 1 1 . . .
0 0 1 . . .
...

...
. . .

. . .

 .

For every n ∈ N+ let Gn = 〈e1, . . . , en〉. Then Gn = Pn(G,φ) = Qn(G,φ) and Q(G,φ) = G.
In particular, we have the following strictly increasing chain

0 = Q0(G,φ) ⊂ Q1(G,φ) ⊂ Q2(G,φ) ⊂ . . . ⊂ Qn(G,φ) ⊂ . . . ⊂ Q(G,φ) = G.

Recall that a subgroup H of a torsion-free abelian group G is pure in G if and only if G/H is
torsion-free.

Lemma 4.5. Let (G,φ) be an algebraic flow. If G is torsion-free, then Qn(G,φ), for every n ∈ N,
and Q(G,φ) are pure in G.

Proof. We proceed by induction. The case n = 0 is trivial.
Let k ∈ N and x ∈ Q1(G,φ) ∩ kG. Then x = ky for some y ∈ G and there exist n > m in N

such that φn(x) = φm(x). Consequently, kφn(y) = kφm(y), which yields φn(y) = φm(y) as G is
torsion-free. So y ∈ Q1(G,φ), i.e., x ∈ kQ1(G,φ). This proves that Q1(G,φ) is pure in G.

In the sequel we let Gm = G/Qm(G,φ) for m ∈ N. Assume that Qn(G,φ) is pure in G (so Gn is
torsion-free) for some n ∈ N. We have to show that Gn+1 is torsion-free as well. Let φn : Gn → Gn
be the endomorphism induced by φ. Then Gn+1 = G/Qn+1(G,φ) ∼= Gn/(Qn+1(G,φ)/Qn(G,φ)) =
Gn/Q1(Gn, φn), where the last equality holds in view of (4.3). By the case n = 1, applied to the
torsion-free group Gn, the latter quotient is torsion-free, so Gn+1 is torsion-free as well.

As an increasing union of pure subgroups, Q(G,φ) is pure itself.

Claim 4.6. Let (G,φ) be an algebraic flow, H a φ-invariant subgroup of G and x ∈ G. If φk(x)−x ∈
H for some k ∈ N+, then φnk(x)− x ∈ H for every n ∈ N+. In particular, Pn(G,φ) = Pn(G,φm)
for every n ∈ N and every m ∈ N+.

Proof. Let n ∈ N+, let φ : G/H → G/H be the endomorphism induced by φ, and π : G → G/H
the canonical projection. It suffices to note that φm(x) − x ∈ H for some m ∈ N+ if and only if
φ
m

(π(x)) = π(x), so one can argue by induction on n.

Note that ker∞ φ ⊆ Q1(G,φ), so also ker∞ φ ⊆ Qn(G,φ) for every n ∈ N+, and in particular
ker∞ φ ⊆ Q(G,φ).

Lemma 4.7. Let (G,φ) be an algebraic flow. Then Qn(G,φ) = Pn(G,φ)⊕ker∞ φ for every n ∈ N+.

Proof. We start proving that Pn(G,φ) ∩ ker∞ φ = 0, proceeding by induction. For n = 1, let
x ∈ P1(G,φ)∩ker∞ φ. Then there exist s, t ∈ N+ such that φs(x) = x and φt(x) = 0. Consequently,
x = φst(x) = 0. Assume now that n ∈ N+ and that Pn(G,φ) ∩ ker∞ φ = 0. Let x ∈ Pn+1(G,φ) ∩
ker∞ φ. Then there exist s, t ∈ N+ such that φs(x) − x ∈ Pn(G,φ) and φt(x) = 0. By Claim

9



4.6, φst(x) − x ∈ Pn(G,φ). Since φst(x) = 0, this yields x ∈ Pn(G,φ) ∩ ker∞ φ. By the inductive
hypothesis x = 0.

For the quotient G/ ker∞ φ and the canonical projection π : G → G/ ker∞ φ, the induced
endomorphism φ : G/ ker∞ φ→ G/ ker∞ φ is injective. Hence

Qn(G/ ker∞ φ, φ) = Pn(G/ ker∞ φ, φ) (4.4)

for every n ∈ N. Then, in order to show that Qn(G,φ) = Pn(G,φ) + ker∞ φ for every n ∈ N+, it
suffices to show that for every n ∈ N:

(a) π(Pn(G,φ)) = Pn(G/ ker∞ φ, φ), and

(b) π(Qn(G,φ)) = Qn(G/ ker∞ φ, φ).

(a) Clearly π(Pn(G,φ)) ⊆ Pn(G/ ker∞ φ, φ) for every n ∈ N. So we prove by induction the con-
verse inclusion. The case n = 0 is trivial. Assume now that n ∈ N and that π(Pn(G,φ)) =
Pn(G/ ker∞ φ, φ) holds true. Let x ∈ G be such that π(x) ∈ Pn+1(G/ ker∞ φ, φ). Then there exists
s ∈ N+ such that φ

s
(π(x)) − π(x) ∈ Pn(G/ ker∞ φ, φ). Since π(φs(x) − x) = φ

s
(π(x)) − π(x) ∈

Pn(G/ ker∞ φ, φ), we conclude that

φs(x)− x ∈ Pn(G,φ) + ker∞ φ. (4.5)

Hence there exists k ∈ N+ such that φk(φs(x)−x) ∈ Pn(G,φ) and so φs(φk(x))−φk(x) ∈ Pn(G,φ),
that is, φk(x) ∈ Pn+1(G,φ). By Claim 4.6 applied to (4.5), and since Pn+1(G,φ) is φ-invariant,

φsk(x)− x ∈ Pn(G,φ) + ker∞ φ and φsk(x) ∈ Pn+1(G,φ).

Hence x ∈ ker∞ φ+ Pn+1(G,φ), and consequently π(x) ∈ π(Pn+1(G,φ)).

(b) Let n ∈ N. Clearly π(Pn(G,φ)) ⊆ π(Qn(G,φ)) ⊆ Qn(G/ ker∞ φ, φ). Moreover, we have
Qn(G/ ker∞ φ, φ) = Pn(G/ ker∞ φ, φ) = π(Pn(G,φ)), by (4.4) and (a). Hence all these subgroups
coincide, and in particular π(Qn(G,φ)) = Qn(G/ ker∞ φ, φ).

It is easy to see that if G is an abelian group and φ ∈ Aut(G), then φ(Qn(G,φ)) = Qn(G,φ) and
Qn(G,φ−1) = Qn(G,φ) for every n ∈ N. Consequently, φ(Q(G,φ)) = Q(G,φ) and Q(G,φ−1) =
Q(G,φ).

Proposition 4.8. Let (G,φ) be an algebraic flow. Then Qn(G,φ) = φ−1(Qn(G,φ)) (i.e., the
induced endomorphism φn : G/Qn(G,φ) → G/Qn(G,φ) is injective) for every n ∈ N. Hence,
Q(G,φ) = φ−1(Q(G,φ)) (i.e., the induced endomorphism G/Q(G,φ)→ G/Q(G,φ) is injective).

Proof. The equality Q1(G,φ) = φ−1(Q1(G,φ)) easily follows from the definitions. Then an induc-
tive argument using (4.3) applies.

From Proposition 4.8 one easily obtains:

Corollary 4.9. If (G,φ) is an algebraic flow with surjective φ, then the induced endomorphisms
G/Q(G,φ)→ G/Q(G,φ) and G/Qn(G,φ)→ G/Qn(G,φ) (n ∈ N) are automorphisms.

The following notion is motivated by its connection to ergodic theory (an automorphism φ

of an abelian group G is algebraically ergodic if and only if its Pontryagin dual φ̂ is an ergodic
automorphism of the compact abelian group Ĝ [21]).

Definition 4.10. Let (G,φ) be an algebraic flow. Call φ algebraically ergodic if Q(G,φ) = 0 (that
is, φ has no non-trivial quasi-periodic point).

Observe that for an abelian group G, the endomorphism 0G is algebraically ergodic if and only
if G = 0.

The next proposition shows that, for (G,φ) an algebraic flow, Q(G,φ) is the smallest φ-invariant
subgroup H of G such that the induced endomorphism φ : G/H → G/H is algebraically ergodic.

Proposition 4.11. Let (G,φ) be an algebraic flow. Then:
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(a) the endomorphism φ : G/Q(G,φ)→ G/Q(G,φ) induced by φ is algebraically ergodic, i.e.,

Q(G/Q(G,φ), φ) = 0;

(b) if for some φ-invariant subgroup H of G the endomorphism φ : G/H → G/H induced by φ is
algebraically ergodic, then H ⊇ Q(G,φ).

Proof. (a) According to Proposition 4.8 it suffices to check that φ has no non-zero periodic points.
Let π : G → G/Q(G,φ) be the canonical projection, and assume that π(x) ∈ G/Q(G,φ) is a
periodic point of φ for some x ∈ G. Then there exists n ∈ N+ such that φn(x) − x ∈ Q(G,φ).
Consequently φn(x) − x ∈ Qs(G,φ) for some s ∈ N. This yields x ∈ Qs+1(G,φ) ⊆ Q(G,φ). Thus
π(x) = 0 in G/Q(G,φ). Hence Q1(G/Q(G,φ), φ) = 0. By Lemma 4.3(c), Q(G/Q(G,φ), φ) = 0.

(b) It suffices to see that Qn(G,φ) ⊆ H for each n ∈ N. We shall prove it by induction on
n ∈ N, the case n = 0 being trivial. If n ∈ N and Qn(G,φ) ⊆ H, then for x ∈ Qn+1(G,φ) and
π : G → G/H the canonical projection, π(x) ∈ G/H is a quasi-periodic point of the induced
endomorphism φ : G/H → G/H, as Qn+1(G,φ)/Qn(G,φ) = Q1(G/Qn(G,φ), φn) by (4.3), where
φn : G/Qn(G,φ)→ G/Qn(G,φ) is the induced endomorphism. So our hypothesis yields π(x) = 0,
that is, x ∈ H.

5 The polynomial growth

Example 5.1. Let G be an abelian group.

(a) Then idG ∈ Pol by Claim 2.2 and it is obvious that 0G ∈ Pol.

(b) Moreover, φ �ker∞ φ∈ Pol. Indeed, for every F ∈ [ker∞ φ]<ω, there exists m ∈ N+ such that
φm(F ) = 0. Then τF (n) = τF (m) for every n ∈ N with n ≥ m. In particular, φ ∈ PolF .

The following obvious claim underlines the fact that the property of having polynomial growth
is in some sense “local”.

Claim 5.2. Let (G,φ) be an algebraic flow and F ∈ [G]<ω. The following conditions are equivalent:

(a) φ ∈ PolF ;

(b) φ �V (φ,F )∈ PolF ;

(c) φ �H∈ PolF for every φ-invariant subgroup H of G such that F ⊆ H.

Using the argument from the proof of Lemma 2.8, one can prove that the above equivalent
conditions imply the stronger one φ �V (φ,F )∈ Pol. We are not giving this proof, since this stronger
property can be deduced from Lemma 2.8 and Theorem 6.12.

The next proposition gives basic properties of endomorphisms with polynomial growth. These
are analogous to the properties considered for the algebraic entropy (see Fact 2.5).

Proposition 5.3. Let (G,φ) be an algebraic flow.

(a) Let H be a φ-invariant subgroup of G and φ : G/H → G/H the endomorphism induced by φ.
If φ ∈ Pol, then φ �H∈ Pol and φ ∈ Pol.

(b) Let (H, η) be another algebraic flow. If φ and η are conjugated, (i.e., there exists an isomor-
phism ξ : G→ H such that φ = ξ−1ηξ), then φ ∈ Pol if and only if η ∈ Pol. More precisely,
if F ′ ∈ [H]<ω, then η ∈ PolF ′ if and only if φ ∈ Polξ−1(F ′) (if F ∈ [G]<ω, then φ ∈ PolF if
and only if η ∈ Polξ(F )).

(c) If G = G1 × G2 and φi ∈ End(Gi), for i = 1, 2, then φ1 × φ2 ∈ Pol if and only if φ1 ∈ Pol
and φ2 ∈ Pol.

(d) Let G be a direct limit of φ-invariant subgroups {Gi : i ∈ I}. If φ �Gi∈ Pol for every i ∈ I,
then φ ∈ Pol.

(e) If G is torsion-free, then φ ∈ Pol if and only if φ̃ ∈ Pol, where D(G) is the divisible hull of G

and φ̃ : D(G)→ D(G) is the unique extension of φ to D(G).
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Proof. The proofs of (a), (b), (c) and (d) are straightforward, so we omit them.

(e) Let F ∈ [D(G)]<ω. Then there exists m ∈ N+ such that mF ⊆ G. Let µm(x) = mx

for every x ∈ D(G). Then µm is an automorphism of D(G) that commutes with φ̃. Moreover,

Tn(φ,mF ) = Tn(φ, µm(F )) = µm(Tn(φ̃, F )). In particular, τφ̃,F = τφ,mF . Hence φ̃ ∈ PolF , as
φ ∈ PolmF .

The following property is related to powers of endomorphisms.

Lemma 5.4. Let (G,φ) be an algebraic flow, let k ∈ N+ and F ∈ [G]<ω with 0 ∈ F .

(a) If φ ∈ PolF , then φk ∈ PolF .

(b) If φk ∈ PolTk(φ,F ), then φ ∈ PolF .

In particular, φ ∈ Pol if and only if φk ∈ Pol.

Proof. Let n ∈ N+. We can suppose without loss of generality that 0 ∈ F (so that the cardinality
of the trajectories grows with n).

(a) Since φ ∈ PolF , there exists PF (X) ∈ Z[X] such that τφ,F (n) ≤ PF (n) for every n ∈ N+.
By Claim 2.1(b), for every n ∈ N+,

τφk,F (n) ≤ τφ,F (kn− k + 1) ≤ PF (kn− k + 1).

This shows that φk ∈ PolF .

(b) Since φk ∈ PolTk(φ,F ), there exists a polynomial P (X) ∈ Z[X], depending only on F and
the fixed k, such that τφk,Tk(φ,F )(n) ≤ P (n) for every n ∈ N+. By Claim 2.1(c), for every n ∈ N+,

τφ,F (n) ≤ τφ,F (nk) = τφk,Tk(φ,F )(n) ≤ P (n).

This proves that φ ∈ PolF .

The last assertion follows directly from (a) and (b).

Example 5.5. Let (G,φ) be an algebraic flow. If either φk = idG (i.e., φ is periodic) or φk = 0G
(i.e., φ is nilpotent) for some k ∈ N+, then φ ∈ Pol. This follows immediately from Example 5.1
and Lemma 5.4.

Definition 5.6. For an algebraic flow (G,φ), let Pol(G,φ) be the greatest φ-invariant subgroup of
G such that φ �Pol(G,φ)∈ Pol.

The proof of the following lemma is the same as the proof of the existence of the Pinsker
subgroup of an algebraic flow given in Proposition 3.1, just replacing the properties in Fact 2.5
with those in Proposition 5.3.

Lemma 5.7. Let (G,φ) be an algebraic flow. Then Pol(G,φ) exists.

For an algebraic flow (G,φ) and φ : G/Pol(G,φ)→ G/Pol(G,φ) the endomorphism induced by
φ, one may ask whether Pol(G/Pol(G,φ), φ) = 0. This property in fact holds true and will follow
from results below (see Proposition 4.11 and Theorem 6.9).

Claim 5.8. Let (G,φ) be an algebraic flow. If G = V (φ, F ) for some F ∈ [G]<ω and φ is locally
periodic, then φ is periodic.

Proof. There exists m ∈ N+ such that φm �F= idF . Hence φm = idG.

The next claim generalizes Claim 2.2.

Claim 5.9. Let (G,φ) be an algebraic flow and F ∈ [G]<ω. If (φ− idG)m = 0 for some m ∈ N+,
then τφ,F (n) ≤ (nm + 1)m|F | for every n ∈ N+.

Proof. Let |F | = t, and let s = φ− idG, so that sm = 0. Then
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(1) φn(x) = x+C1
ns(x) +C2

ns
2(x) + . . .+Cm−1n sm−1(x) for every x ∈ G and n ∈ N with n ≥ m;

therefore

(2) φn(F ) ⊆ F + s(F )(C1
n)

+ s2(F )(C2
n)

+ . . . + sm−1(F )(Cm−1
n ) for every F ∈ [G]<ω with 0 ∈ F

and every n ∈ N with n ≥ m.

Hence
φn(F ) ⊆ F + s(F )(n) + s2(F )(n2) + . . .+ sm−1(F )(nm−1)

for every F ∈ [G]<ω with 0 ∈ F and every n ∈ N with n ≥ m. Therefore

(3) Tn(φ, F ) ⊆ F(n) + s(F )(n2) + s2(F )(n3) + . . .+ sm−1(F )(nm) for every F ∈ [G]<ω with 0 ∈ F
and every n ∈ N with n ≥ m.

If |F | = t, then |sk(F )| ≤ t for every k ∈ N, so applying Claim 2.2 to each sk(F ) and (3), we find

τφ,F (n) ≤ |F(n)| · |s(F )(n2)| · |s2(F )(n3)| · . . . · |sm−1(F )(nm)|
≤ (n+ 1)t · (n2 + 1)t · (n3 + 1)t · . . . · (nm + 1)t ≤ (nm + 1)mt,

as desired.

Proposition 5.10. Let (G,φ) be an algebraic flow. Then φ �Q(G,φ)∈ Pol.

Proof. We start proving that

φ �Pm(G,φ)∈ Pol for every m ∈ N. (5.1)

Fix m ∈ N and F ∈ [Pm(G,φ)]<ω with 0 ∈ F . We want to prove that φ ∈ PolF , that is, we have
to find PF (X) ∈ Z[X] such that τφ,F (n) ≤ PF (n) for every n ∈ N+. Since V (φ, F ) is a φ-invariant
subgroup of Pm(G,φ) and since

Pm(V (φ, F ), φ �V (φ,F )) = Pm(G,φ) ∩ V (φ, F ) = V (φ, F )

in view of Lemma 4.3(a), by Claim 5.2 we can assume without loss of generality that G = V (φ, F ).
For every k ∈ {0, . . . ,m− 2} let

Gk = G/Pm−k−1(G,φ) and Gk = Pm−k(G,φ)/Pm−k−1(G,φ).

Let φk : Gk → Gk be the endomorphism induced by φ. Then φk �Gk : Gk → Gk is locally periodic,
becauseGk = P1(Gk, φk) by definition. ConsiderGk as a Z[X]-module lettingX ·g = φk(g) for every
g ∈ Gk. Let πk : G→ G/Pm−k−1(G,φ) be the canonical projection. Our assumption G = V (G,φ)
implies thar the finite subset πk(F ) generates Gk as a Z[X]-module, i.e., Gk = V (φk, πk(F )). Since
Z[X] is noetherian, the submodule Gk of Gk is finitely generated as well, that is, Gk = V (φk, Fk)
for some Fk ∈ [Gk]<ω. By Claim 5.8, φk is periodic on Gk. Then there exists wk ∈ N+ such that
φ
wk
k �Gk= idGk . Let w = w0 · . . . · wm−2. Then φ

w

k �Gk= idGk .
By Claim 2.1(d), G = V (φ, F ) = 〈T (φ, F )〉 = 〈T (φw, Tw(φ, F )〉; moreover, Pl(G,φ) = Pl(G,φ

w)
for every l ∈ N+ by Claim 4.6. By Lemma 5.4(b), φw ∈ PolTw(φ,F ) implies φ ∈ PolF . So without

loss of generality we can replace φw by φ, that is, we can suppose that φk �Gk= idGk .
Let s = φ − idG; then s(Pm−k(G,φ)) ⊆ Pm−k−1(G,φ) for every k ∈ {0, . . . ,m − 2}. In

particular, sm = 0. By Claim 5.9(b) τφ,F (n) ≤ (nm + 1)t for every n ∈ N+ with n ≥ m. Let
PF (X) = (Xm + 1)t + k ∈ Z[X], where k = τφ,F (m). Then τφ,F (n) ≤ PF (n) for every n ∈ N+,
and this shows that φ ∈ PolF . Since F was chosen arbitrary, we have φ ∈ Pol. This concludes the
proof of (5.1).

By Example 5.1(b), φ �ker∞ φ∈ Pol. Hence Proposition 5.3(c), (5.1) and Lemma 4.7 imply that
φ �Qn(G,φ)∈ Pol for every n ∈ N. Since Q(G,φ) is an increasing union of the subgroups Qn(G,φ),
φ �Q(G,φ)∈ Pol by Proposition 5.3(d).

Corollary 5.11. For every algebraic flow (G,φ), we have Q(G,φ) ⊆ Pol(G,φ).

Corollary 5.12. Every locally quasi-periodic endomorphism has polynomial growth.
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6 Two characterizations of the Pinsker subgroup

Lemma 6.1. Let (G,φ) be an algebraic flow.

(a) If φ ∈ PolF for some F ∈ [G]<ω, then H(φ, F ) = 0.

(b) If φ ∈ Pol, then h(φ) = 0.

Proof. (a) By definition there exists PF (X) ∈ Z[X] such that τφ,F (n) ≤ PF (n) for every n ∈ N+.
Then

H(φ, F ) = lim
n→∞

log τφ,F (n)

n
≤ lim
n→∞

logPF (n)

n
= 0.

(b) Follows from (a).

Corollary 6.2. Let (G,φ) be an algebraic flow. Then Q(G,φ) ⊆ Pol(G,φ) ⊆ P(G,φ).

Proof. The inclusion Q(G,φ) ⊆ Pol(G,φ) is proved in Corollary 5.11. By Lemma 6.1(b), Pol(G,φ) ⊆
P(G,φ).

The inclusion Q(G,φ) ⊆ P(G,φ) from Corollary 6.2 gives

Corollary 6.3. Let (G,φ) be an algebraic flow. If φ has completely positive algebraic entropy then
φ is algebraically ergodic.

We shall see below that this implication can be inverted (see Corollary 6.8).

Corollary 6.4. Let (G,φ) be an algebraic flow. If G is torsion, then P(G,φ) = tφ(G) = Pol(G,φ) =
Q(G,φ) = Q1(G,φ).

Proof. By Proposition 3.7, P(G,φ) = tφ(G) = Q1(G,φ) ⊆ Q(G,φ), so Corollary 6.2 applies.

The following theorem due to Kronecker is needed in the next proof:

Theorem 6.5 (Kronecker Theorem). [14] Let α be a non-zero algebraic integer and let P (X) ∈ Z[X]
be its minimal polynomial over Q. If all the roots of P (X) have absolute value ≤ 1, then α is a
root of unity.

In the next theorem we show that for a non-trivial abelian group an endomorphism of zero
algebraic entropy is not algebraically ergodic.

Theorem 6.6. Let (G,φ) be an algebraic flow. If G 6= 0 and h(φ) = 0, then Q1(G,φ) 6= 0.

Proof. We split the proof in several steps, restricting the problem to the case of an automorphism
of Qn for some n ∈ N+.

(a) We can suppose that φ is injective. Indeed, if φ is not injective, then there are certainly
non-zero quasi-periodic elements, as kerφ 6= 0.

(b) We can suppose that G is torsion-free. In fact, if G is torsion, G = P(G,φ) = Q1(G,φ) by
Proposition 3.7, and so Q1(G,φ) 6= 0. If G has non-trivial torsion elements, then t(G) 6= 0, and so
Q1(t(G), φ �t(G)) 6= 0 by the torsion case.

(c) We can suppose that G is a divisible torsion-free abelian group. Indeed, by (b) we can

assume that G is torsion-free. Let D be the divisible hull of G and φ̃ : D → D the (unique)

extension of φ to D. By Lemma 2.7, h(φ̃) = 0. Assume that Q1(D, φ̃) 6= 0. Since G is essential in

D and Q1(G,φ) = Q1(D, φ̃) ∩G by Lemma 4.3(a), it follows that also Q1(G,φ) 6= 0.

(d) We can suppose that G is a divisible torsion-free abelian group of finite rank. Indeed, if
there exists a non-zero element x ∈ G with V (φ, x) of infinite rank, then h(φ �V (φ,x)) = ∞, since
φ �V (φ,x) is conjugated to the right Bernoulli shift βZ with h(βZ) = ∞ (see Example 2.6) and so
Fact 2.5(b) applies. By Fact 2.5(a) this implies h(φ) = ∞, against our hypothesis. Then V (φ, x)
has finite rank for every x ∈ G. Moreover, each V (φ, x) is φ-invariant. So we can assume without
loss of generality that G has finite rank and G = V (φ, x) for some x ∈ G.
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(e) Suppose that G is a divisible torsion-free abelian group of finite rank n > 0. Then G ∼= Qn
and by (a) we can assume that φ is an automorphism of G. Let A = (aij) be the n×n matrix over
Q of φ, let P (X) be the characteristic polynomial of A and λi the eigenvalues of A. In other words,
φ =

∑n
i,j=1 aijεij , where εij ∈ End(Qn) is defined (for k, i, j = 1, 2, . . . , n) by εij(ek) = δkjei,

(e1, e2, . . . , en) is the canonical base of Qn and δkj is Kronecker’s symbol. Alternatively, if νi : Q→
Qn and pj : Qn → Q are defined by νi(r) = rei and pj(r1, . . . , rn) = rj for r, r1, . . . , rn ∈ Q, then
εij = νi ◦ pj .

Let φ̂ : Q̂n → Q̂n be the adjoint automorphism of φ, where Q̂ is the Pontryagin dual of Q (here

we use the fact that Q̂n ∼= Q̂n and the isomorphism is natural, hence we can replace Q̂n by Q̂n).

Since h(φ) coincides with the topological entropy htop(φ̂) of φ̂ by a theorem of Peters [16], our

hypothesis h(φ) = 0 implies that htop(φ̂) = 0 as well. The groups Q̂ and Q̂n are torsion-free and

divisible [9, Corollary 3.3.8, Proposition 3.3.15], so they are Q-vector spaces. Let us see that φ̂ is

described by the transposed matrix At ∈ GLn(Q) of A, i.e., φ̂(x) = Atxt for x = (x1, . . . , xn) ∈ Q̂n.

Indeed, using the fact that the correspondence φ 7→ φ̂ is Q-linear (see [8] for the general case of
locally compact modules over a commutative ring), from the equality φ =

∑n
i,j=1 aijεij we deduce

φ̂ =

n∑
i,j=1

aij ε̂ij =

n∑
i,j=1

aij ν̂i ◦ pj =

n∑
i,j=1

aij p̂j ◦ ν̂i. (6.1)

Furthermore, one can easily check that ν̂i : Q̂n → Q̂ coincides with the i-th projection and p̂j :

Q̂ → Q̂n coincides with the canonical embedding into the j-th coordinate (so that p̂j ◦ ν̂i is the

endomorphism of Q̂n that identically sends the i-th copy of Q̂ to the j-th copy of Q̂ and p̂j ◦ ν̂i is

trivial elsewhere). So (6.1) yields φ̂(x) = Atxt for x = (x1, . . . , xn) ∈ Q̂n.
The eigenvalues and the characteristic polynomials of A and At coincide. According to the

Yuzvinski Formula for the topological entropy of automorphisms of Q̂n (see [15, 22, 25]), we have

htop(φ̂) = log s+
∑
|λi|>1

log |λi|,

where s is the least common multiple of the denominators of the coefficients of P (X). Then

htop(φ̂) = 0 implies that s = 1 and that |λi| ≤ 1 for every i. In other words, P (X) is a monic
polynomial with all roots of modulus ≤ 1. By Theorem 6.5, all the roots of P (X) are roots of the
unity. Then there exist x ∈ G \ {0} and m ∈ N+ such that φm(x) = x, that is, x is a non-zero
periodic point of φ. In particular, Q1(G,φ) 6= 0.

Remark 6.7 (Added in April 2011). In item (e) of the proof of Theorem 6.6 we verify that for an
automorphism φ : Qn → Qn, if h(φ) > 0 then Q1(G,φ) 6= 0. Actually, we show a stronger result,
that is,

h(φ) = 0 implies that all the eigenvalues of φ are roots of unity. (6.2)

We deduce this result from two deep facts involving the topological entropy. One is the so-called
Yuzvinski Formula for the topological entropy and the other is the Bridge Theorem proved by
Peters. As a by-product we show in this way the so-called Algebraic Yuzvinski Formula, stating
that h(φ) = log s +

∑
|λi|>1 log |λi|, where s is the least common multiple of the denominators of

the coefficients of the characteristic polynomial P (X) of φ and the λi are the eigenvalues of φ.
Since we are concerned with the simpler case of zero algebraic entropy, it would be desirable to

avoid the use of these heavy theorems. This becomes possible now because of very recent results
from [7] that produce exactly the required result with a direct algebraic proof. More precisely, (6.2)
is a direct consequence of [7, Corollary 1.3] and [7, Corollary 1.4] covers item (e) of the proof of
Theorem 6.6.

A direct proof of the Algebraic Yuzvinski Formula is now given in [12].

Theorem 6.6 allows us to characterize the algebraically ergodic algebraic flows.
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Corollary 6.8. Let (G,φ) be an algebraic flow. Then φ is algebraically ergodic if and only if φ has
completely positive algebraic entropy.

Proof. According to Corollary 6.3 it suffices to prove (equivalently) that

Q(G,φ) = 0 =⇒ P(G,φ) = 0. (6.3)

To this end, let H = P(G,φ). Then Q(H,φ �H) = Q(G,φ) ∩H by Lemma 4.3(b). By hypothesis
Q(G,φ) = 0, and so Q(H,φ �H) = 0 as well. In particular, Q1(H,φ �H) = 0. So the assumption
P(G,φ) 6= 0, along with Theorem 6.6, would give h(φ �H) > 0, a contradiction. Hence, P(G,φ) = 0,
and (6.3) is proved.

Now we are in the position to prove our Main Theorem:

Theorem 6.9. Let (G,φ) be an algebraic flow. Then Q(G,φ) = Pol(G,φ) = P(G,φ).

Proof. By Corollary 6.2, Q(G,φ) ⊆ Pol(G,φ) ⊆ P(G,φ). To prove that P(G,φ) ⊆ Q(G,φ),
let φ : G/Q(G,φ) → G/Q(G,φ) be the endomorphism induced by φ. By Proposition 4.11(a)
Q(G/Q(G,φ), φ) = 0 and so (6.3) gives

P(G/Q(G,φ), φ) = 0. (6.4)

Let π : G → G/Q(G,φ) be the canonical projection. Since π(P(G,φ)) ⊆ P(G/Q(G,φ), φ) by
Lemma 3.3(b), from (6.4) we conclude that P(G,φ) ⊆ kerπ = Q(G,φ).

The following is a direct consequence of Proposition 4.11(a) and Theorem 6.9.

Corollary 6.10. Let (G,φ) be an algebraic flow. Then the induced endomorphism φ : G/P(G,φ)→
G/P(G,φ) has h(φ) >> 0, i.e., P(G/P(G,φ), φ) = 0.

Now we see that the endomorphims with polynomial growth are precisely those of zero algebraic
entropy.

Corollary 6.11. Let (G,φ) be an algebraic flow. Then h(φ) = 0 if and only if φ ∈ Pol. Conse-
quently, h(φ) > 0 if and only if there exists F ∈ [G]<ω such that φ 6∈ PolF .

Proof. Since h(φ) = 0 if and only if G = P(G,φ), and P(G,φ) = Pol(G,φ) by Theorem 6.9, we
can conclude that h(φ) = 0 precisely when φ ∈ Pol.

Corollary 6.11 can be stated in the following form that enhances the “local” ingredient F :

H(φ, F ) = 0 for every F ∈ [G]<ω if and only if φ ∈ PolF for every F ∈ [G]<ω. (6.5)

Indeed, h(φ) = 0 is equivalent to H(φ, F ) = 0 for every F ∈ [G]<ω and φ ∈ Pol is equivalent to
φ ∈ PolF for every F ∈ [G]<ω. It is natural to ask if it possible to strengthen (6.5) by removing the
universal quantifier. Now we prove this more precise result, providing an important dichotomy for
the algebraic entropy with respect to a non-empty finite subset and for the growth of the cardinality
of the trajectories of a non-empty finite subset.

Theorem 6.12. Let (G,φ) be an algebraic flow and F ∈ [G]<ω. Then

H(φ, F )

{
> 0 if and only if φ ∈ ExpF ,

= 0 if and only if φ ∈ PolF .

Proof. We prove first that H(φ, F ) > 0 if and only if φ ∈ ExpF . Note that both H(φ, F ) > 0 and
φ ∈ ExpF imply |F | ≥ 2; indeed, if |F | = 1, then τφ,F (n) = 1 for every n ∈ N+.

Assume that H(φ, F ) = a > 0. Consequently, there exists m ∈ N+ such that log τφ,F (n) > n · a2
for every n > m. Then τφ,F (n) > en·

a
2 for every n > m. Since |F | ≥ 2, τφ,F (n) ≥ 2 for every

n ∈ N+; in particular, τφ,F (n) ≥ ( m
√

2)n for every n ≤ m. For b = min{ m
√

2, e
a
2 }, we have

τφ,F (n) ≥ bn for every n ∈ N+, and this proves that φ ∈ ExpF .
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Suppose now that φ ∈ ExpF . Then there exists b ∈ R+, b > 1, such that τφ,F (n) ≥ bn for every
n ∈ N+. Hence H(φ, F ) ≥ log b > 0.

By Lemma 6.1(a) if φ ∈ PolF , then H(φ, F ) = 0. If H(φ, F ) = 0, by Lemma 2.8 h(φ �V (φ,F )) =
0. Corollary 6.11 implies in particular that φ ∈ PolF .

Note that this more precise form of (6.5) follows from (6.5) (since in the proof of Theorem 6.12
we apply Corollary 6.11); so they are equivalent.
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