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w-Divisible groups

Dikran Dikranjan∗ Anna Giordano Bruno

Abstract

A topological abelian group G is w-divisible if G has uncountable weight and the subgroup mG = {mx :
x ∈ G} has the same weight of G for each positive integer m. In order to “measure” w-divisibility we
introduce a cardinal invariant (divisible weight) which allows for a precise description of various phenomena
related to the subgroups of the compact abelian groups. We give several applications of these results.

1 Introduction

A Tychonoff topological space X is:

• pseudocompact if every real valued function of X is bounded [24],

• countably compact if every countable open cover of X has a finite subcover,

• strongly pseudocompact if X contains a dense countably compact subspace [2],

• ω-bounded if every countable subset of X is contained in a compact subset of X.

All topological groups in this paper are Hausdorff. A topological group G is:

• precompact if its completion G̃ is compact.

For a topological group the following sequence of implications holds:

ω-bounded ⇒ countably compact ⇒ strongly pseudocompact ⇒ pseudocompact ⇒ precompact.

A subgroup of a topological abelian group G is totally dense in G if it densely intersects each closed
subgroup of G [29]. This property is related to the open mapping theorem as follows: a dense subgroup of
a compact abelian group is totally dense if and only if it satisfies the open mapping theorem [14, 15, 23].

One of the motivations of this paper is the problem of the description of the compact abelian groups
admitting proper totally dense subgroups with some of the compactness-like properties from the above list.
This problem has been studied by various authors — see [7, 9, 11, 12, 16]. It became clear that the first two
properties have to be ruled out, as no compact abelian group can contain a proper totally dense countably
compact subgroup [7, 16] (see also [11] for stronger results). So one has to limit the compactness-like property
within (strong) pseudocompactness. It was proved in [16] that the compact abelian groups K with non-
metrizable connected component have the following stronger property TDω relaxing countable compactness:
there exists a proper totally dense subgroup H of K that contains an ω-bounded dense subgroup of K.
Obviously such an H is strongly pseudocompact, but need not be countably compact. The final solution
of the problem of when a compact abelian group admits proper totally dense pseudocompact subgroups is
given in the next theorem. (A topological group G is singular if mG is metrizable for some positive integer
m [13, Definition 1.2].)

Theorem 1.1. [12, Theorem 5.2] For a compact abelian group K the following conditions are equivalent:

(a) K has a proper totally dense pseudocompact subgroup;

(b) K has no closed torsion Gδ-subgroup;

(c) K is non-singular;

(d) there exists a continuous surjective homomorphism of K onto Sω1 , where S is a compact non-torsion
abelian group;
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(e) K has the property TDω.

In this paper we first generalize this theorem and then, using the new results, we answer a question from
[17]. More precisely we introduce appropriate notions generalizing non-singularity and the property TDω
and we consider also how to extend the properties involved in items (a) and (b) of Theorem 1.1.

In what follows we give first some notations and preliminary results. Then in §1.3 we expose the main
results of the paper.

Notation and terminology

We denote by Z, P, N and N+ respectively the set of integers, the set of primes, the set of natural numbers
and the set of positive integers. For m ∈ N+, we use Z(m) for the finite cyclic group of order m. The circle
group T is identified with the quotient group R/Z of the reals R and carries its usual topology. For p ∈ P
the symbol Zp is used for the group of p-adic integers.

Let G be an abelian group. The subgroup of torsion elements of G is t(G) and G[m] = {x ∈ G : mx = 0}.
We say that G is non-torsion if it does not coincide with t(G). For a cardinal α we denote by G(α) the direct
sum of α many copies of G, that is

⊕
αG. If G = Hα, where H is a group and α an uncountable cardinal,

ΣG is the Σ-product centered at 0 of G, that is the set of all elements of K with countable support; moreover
∆G = {x = (xi) ∈ G : xi = xj for every i, j < α} is the diagonal subgroup of G. We denote by r0(G)
the free-rank of G (i.e., the cardinality of a maximal independent subset of G) and, for p ∈ P, by rp(G) the
p-rank of G (i.e., the dimension of G[p] as a vector space over the field of p elements Fp). The symbol c
stands for the cardinality of the continuum.

For a topological group G we denote by c(G) the connected component of the identity eG in G. If c(G)
is trivial, the group G is said to be totally disconnected. If M is a subset of G then 〈M〉 is the smallest
subgroup of G containing M , and M is the closure of M in G. The symbol w(G) stands for the weight of

G. The Pontryagin dual of a topological abelian group G is denoted by Ĝ.
For undefined terms see [21, 22].

General properties of compact abelian groups

In the following fact we remind some general properties of compact abelian groups, which are applied in the
paper (without giving explicit references).

Fact 1.2. [25, 26] Let K be a compact abelian group. Then:

(a) |K| = 2w(K) and w(K) = |K̂|;
(b) K is connected if and only if it is divisible;

(c) either r0(K) > c or K is bounded torsion.

As in [15], for a prime p, the topological p-component Kp of K is

Kp = {x ∈ K : pnx→ 0 in K, where n ∈ N}.

For p ∈ P and for a subset π ⊆ P consider the metrizable compact abelian groups

Gp =
∏
{Z(pn) : n ∈ N+} and Sπ =

∏
{Z(q) : q ∈ π}.

Clearly, Gp is non-torsion, while Sπ is non-torsion if and only if π is infinite.

For the sake of easier reference we recall here the following useful and well known property of the totally
disconnected compact abelian groups.

Remark 1.3. Let K be a totally disconnected compact abelian group. Then:

(a) [4], [15, Proposition 3.5.9] K =
∏
p∈PKp and every closed subgroup N of K is of the form N =

∏
p∈PNp,

where each Np is a closed subgroup of Kp;

(b) [15, Proposition 4.1.5] if L is a totally disconnected abelian group and f : K → L is a continuous
homomorphism, then f(Kp) = Lp for every p ∈ P.

We recall that the totally disconnected compact abelian groups are precisely the profinite abelian groups
[28]. The profinite groups are topological groups isomorphic to inverse limits of an inverse system of finite
groups. For a prime p, a group G is a pro-p group if it is the inverse limit of an inverse system of finite
p-groups. Equivalently a pro-p group is a profinite group G such that G/N is a finite p-group for every open
normal subgroup N of G.
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1.1 Measuring compactness

In the next definition we consider properties that generalize those from items (a) and (b) of Theorem 1.1.
The property in item (a) is equivalent to the definition given in [27].

Definition 1.4. Let X be a Tychonoff topological space and κ an infinite cardinal.
(a) The space X is κ-pseudocompact if for every continuous function f : X → Y , where Y is a topological

space of weight ≤ κ, f(X) is compact.
(b) A subset Y of X is a Gκ-set of X if Y =

⋂
i<κOi, where Oi is open in X for all i < κ.

Note that ω-pseudocompactness coincides with pseudocompactness [27, Theorem 2.1], while the Gκ-sets
for κ = ω are the well known Gδ-sets. Moreover a κ-pseudocompact space of weight ≤ κ is compact.

Now we want also to give generalizations of ω-boundedness.

Definition 1.5. Let κ be an infinite cardinal. A Tychonoff topological space X is:

• weakly κ-bounded if every subset of X of cardinality < κ is contained in a compact subset of X;

• κ-bounded if every subset of X of cardinality at most κ is contained in a compact subset of X.

Obviously every group is weakly ω-bounded. Moreover these two notions are related as follows: weakly
κ-bounded coincides with the conjunction of λ-bounded for all λ < κ (in particular, κ-bounded coincides
with weakly κ+-bounded).

A weakly κ-bounded group G with w(G) < κ is necessarily compact (see Lemma 2.3), in particular every
w(G)-bounded group G is compact. Examples of non-compact weakly κ-bounded groups of weight κ are
given in Example 2.2.

In analogy with the property TDω, for every infinite cardinal κ we can say that a compact abelian group
K:

• has the property TDκ (briefly, K ∈ TDκ) if K has a proper totally dense subgroup H that contains a
dense κ-bounded subgroup;

• has the property TDκ (briefly, K ∈ TDκ) if K has a proper totally dense subgroup H that contains a
dense weakly κ-bounded subgroup.

The conditions TDκ and TDκ have properties analogous to those of TDω. Obviously TDκ coincides

with TDκ+

, in particular TDκ ⇒ TDκ and TDω1 coincides with TDω. Nevertheless, for a limit cardinal
κ the property TDκ need not coincide with the conjunction of all TDλ for λ < κ (see the comments after
Theorem 1.8).

1.2 Measuring non-singularity

Our next aim is to introduce a notion generalizing non-singularity.
The following definition is justified by the fact that an abelian group G is divisible if and only if G = mG

for every integer m > 0.

Definition 1.6. A topological abelian group G is w-divisible if w(mG) = w(G) > ω for every m ∈ N+.

In this definition we exclude the case of countable weight, because we want w-divisible groups to be
non-singular and non-singular groups are necessarily non-metrizable.

Obviously every divisible topological abelian group of uncountable weight is w-divisible and every w-
divisible abelian group is non-singular. For example every uncountable product

∏
i∈I Ki, where each Ki is

compact, metrizable and non-torsion, is w-divisible. If G is a dense subgroup of a group K, mG is dense
in mK for every m ∈ N+ and so G is w-divisible whenever K is w-divisible. Consequently, connected
precompact groups G of uncountable weight are w-divisible; in fact, G̃ is connected and so divisible (being

compact), hence w-divisible and G is dense in G̃. In general a connected abelian group need not be w-
divisible. Actually, there exist connected abelian groups of every prime exponent [3].

We shall see that every w-divisible compact abelian group K of regular weight contains a proper dense
weakly w(K)-bounded subgroup (so K contains a proper dense κ-bounded subgroup for every κ < w(K)).

The cardinal invariant of compact abelian groups K introduced in the following definition will measure
w-divisibility (and singularity) of K.

Definition 1.7. Let G be a topological abelian group. The divisible weight (or shortly, d-weight) of G is

wd(G) = inf{w(m!G) : m ∈ N+}.
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Indeed, a topological abelian group G is w-divisible if and only if w(G) = wd(G) > ω, whereas a non-
torsion topological abelian group G is singular if and only if wd(G) = ω. We shall see in §3 that every
topological abelian group G has a w-divisible subgroup H of the form H = m!G for some m ∈ N+, such that
wd(G) = w(H) = wd(H), and that there exists a minimal m ∈ N+ with this property. We denote it by

md(G) = min{m ∈ N+ : wd(G) = w(m!G)}.

1.3 Main Results

Our main theorem is a complete generalization of Theorem 1.1 (indeed, to get Theorem 1.1 it suffices to
take λ = ω).

Theorem 1.8. Let K be a compact abelian group and λ an infinite cardinal. The following conditions are
equivalent:

(a) K has a proper totally dense λ-pseudocompact subgroup;

(b) K has no closed torsion Gλ-subgroup;

(c) wd(K) > λ;

(d) there exists a continuous surjective homomorphism of K onto SI , where S is a metrizable compact
non-torsion abelian group and |I| > λ;

(e) K has the property TDλ.

Moreover, K ∈ TDwd(K) if and only if wd(K) is an uncountable regular cardinal.

This theorem will be deduced from Theorem 1.9 given below. Both proofs (as well as those of Theorems
1.10, 1.15 and 1.18) are given in §5.

Several comments are in order here. The equivalence of (c) and (e) in Theorem 1.8 implies

wd(K) = sup{κ : K ∈ TDκ},

but leaves open the question of when K ∈ TDwd(K) holds true. This motivates the final part of the theorem
that settles completely this issue. Consequently, for an infinite cardinal κ the property TDκ coincides for
compact abelian groups with the conjunction of all TDλ for λ < κ precisely when κ is regular.

Analogously, the equivalence of (c) and (d) yields:

wd(K) = sup{κ : there exists a compact non-torsion metrizable abelian group S

and a surjective continuous homomorphism K → Sκ},
but leaves open the extreme case:

(P) when does there exist a surjective continuous homomorphism f : K → Swd(K) with a metrizable
compact non-torsion abelian group S?

Example 2.8 shows a w-divisible group K of non-regular weight having no proper dense weakly w(K)-
bounded subgroup at all (so in particular K 6∈ TDw(K)). Moreover K does not satisfy the property in (P).
We completely answer (P) in Theorem 1.9, showing that for the compact abelian groups K admitting a
continuous surjective homomorphism onto Swd(K) there is a remarkable trichotomy.

Theorem 1.9. A compact abelian group K admits a continuous surjective homomorphism onto Swd(K) for
some metrizable compact non-torsion abelian group S precisely when some of the following occurs:

(a) there exists a continuous surjective homomorphism f : K → Twd(K) if and only if wd(K) = w(c(K));

(b) for some p ∈ P, there exists a continuous surjective homomorphism f : K → Gwd(K)
p if and only if

wd(K) = wd((K/c(K))p);

(c) if π is an infinite subset of {p ∈ P : p > md(K)}, then there exists a continuous surjective homomor-

phism f : K → S
wd(K)
π if and only if wd(K) = w((K/c(K))p) for every prime p ∈ π.

Moreover every compact abelian group K with cf(wd(K)) > ω admits a continuous surjective homomorphism
of K onto Swd(K), where S is a metrizable compact non-torsion abelian group.
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Let us now consider the weaker version of (P) where the power is replaced by a product of eventually
distinct metrizable compact non-torsion abelian groups. It is well known that for every non-metrizable
compact abelian group K there exists a continuous surjective homomorphism of K onto a product

∏
i∈I Ki

of non-trivial metrizable compact abelian groups with |I| = w(K) (e.g., a standard application of the
Pontryagin duality to [1, Theorem 1.1] can produce such a surjective homomorphism). Therefore, inspired
by (P), one can look for such a homomorphism asking that the groups Ki have to be also non-torsion. Since
such a product

∏
i∈I Ki is w-divisible (see Proposition 2.6(a)) and the divisible weight is monotone under

continuous surjective homomorphisms of compact abelian groups (see Claim 3.2), we obtain the restriction
|I| ≤ wd(K) for such a surjective homomorphism. The next theorem shows that this necessary condition is
also sufficient.

Theorem 1.10. Let K be a non-singular compact abelian group. There exists a continuous surjective
homomorphism of K onto

∏
i∈I Ki, where each Ki is metrizable, compact and non-torsion if and only if

|I| ≤ wd(K).

Corollary 1.11. A compact abelian group K is w-divisible if and only if there exists a continuous surjective
homomorphism of K onto

∏
i∈I Ki, where each Ki is compact, metrizable and non-torsion, and |I| = w(K) >

ω.

Even if these results may give the impression to be somewhat technical, they are quite useful. The
remaining part of the paper is dedicated to a relevant application of Corollary 1.11.

Following [5] (see also [17, Definition 2.6]), if X is a non-empty set and σ is an infinite cardinal, then a
set F ⊆ Xσ is ω-dense in Xσ, provided that for every countable set A ⊆ σ and each function ϕ ∈ XA there
exists f ∈ F such that f(α) = ϕ(α) for all α ∈ A.

Definition 1.12. [17, Definition 2.6] If τ and σ ≥ ω are cardinals, then Ps(τ, σ) abbreviates the sentence
“there exists an ω-dense set F ⊆ {0, 1}σ with |F | = τ”.

Moreover Ps(τ) denotes the sentence “Ps(τ, σ) holds for some infinite cardinal σ”.

This set-theoretic condition is closely related to the pseudocompact group topologies:

Theorem 1.13. [17, Fact 2.12 and Theorem 3.3(i)] Let τ and σ ≥ ω be cardinals. Then Ps(τ, σ) holds if
and only if there exists a group G of cardinality τ which admits a pseudocompact group topology of weight σ.

Hence obviously, if G is a pseudocompact abelian group, then Ps(|G|, w(G)) holds. But what about the
free-rank r0(G) of G? Does Ps(r0(G)) holds whenever G is a pseudocompact group? In [17] the authors
proved the following theorem and left open the problem in general.

Theorem 1.14. [17, Theorem 3.21] If G is a non-trivial connected pseudocompact abelian group, then
Ps(r0(G), w(G)) holds.

One can ask also whether connectedness is a necessary condition in order that Ps(r0(G), w(G)) holds.
Applying Theorem 1.10 we prove the following result, that generalizes Theorem 1.14 to w-divisible groups,
which are far from being connected (while connected pseudocompact groups are w-divisible).

Theorem 1.15. If G is a w-divisible pseudocompact abelian group, then Ps(r0(G), w(G)) holds.

Note that for a pseudocompact abelian group G

Ps(r0(G), w(G))⇒ w(G) ≤ 22wd(G)

and there is an example of a singular pseudocompact abelian group G for which Ps(r0(G), w(G)) and

w(G) = 22wd(G)

hold — see Lemma 5.3 and Example 5.4. So this example shows also that the converse
implication of Theorem 1.15 does not hold. This means that w-divisibility (and so also connectedness) is
not a necessary condition in order that Ps(r0(G), w(G)) holds. Nevertheless, the next result provides the
missing equivalence at a different level (namely that of pseudocompact topologization).

Corollary 1.16. For an infinite abelian group G and a cardinal σ ≥ ω1 the following conditions are equiv-
alent:

(a) G admits a connected pseudocompact group topology of weight σ;

(b) G admits a w-divisible pseudocompact group topology of weight σ;

(c) Ps(r0(G), σ) and |G| ≤ 2σ hold.

Proof. (a)⇔(c) is proved in [17, Theorem 7.1], (a)⇒(b) is obvious and (b)⇒(c) follows from Theorem
1.15.
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The characterization of the abelian groups admitting pseudocompact group topologies is still a hard open
question [17, Problem 0.2] (see also [6, Problem 856] and [19, Problem 892]). The following problem seems
to be important for its solution, as mentioned in [17].

Problem 1.17. [17, Problem 9.11] Is Ps(r0(G)) a necessary condition for the existence of a pseudocompact
group topology on a non-torsion abelian group G?

Note that if G is torsion, the problem makes no sense because r0(G) = 0 and Ps(τ, σ) is defined for
infinite σ.

The following result can be easily deduced from Theorem 1.15.

Theorem 1.18. Let G be a pseudocompact non-torsion abelian group. Then Ps(r0(G), wd(G)) holds.

The following immediate corollary of Theorem 1.18 is precisely the answer to Problem 1.17. A completely
different proof of this fact is given in [20].

Corollary 1.19. If G is a pseudocompact non-torsion abelian group, then Ps(r0(G)) holds.

In Corollary 1.16 we considered the problem of the characterization of the abelian groups admitting
pseudocompact group topologies in the case of w-divisible topologies that go closer to the connected ones.
Now we conclude with the case of singular topologies closer to the “opposite end”, namely the torsion
pseudocompact groups (that are always zero-dimensional, hence totally disconnected). Here we offer only
the following:

Conjecture 1.20. For an infinite abelian group G the following conditions are equivalent:

(a) G admits a singular pseudocompact group topology;

(b) there exists m ∈ N+ such that G[m] admits a pseudocompact group topology and mG admits a compact
metrizable group topology.

So this case could be reduced to those of pseudocompact group topologies on torsion abelian groups
(G[m]) and of metrizable compact group topologies on abelian groups (mG). In [17, §6] is given a clear
criterion of when a torsion abelian group admits a pseudocompact group topology, while in [18] the groups
which admit a metrizable compact group topology are well characterized.

2 The properties TDκ and TDκ and κ-pseudocompactness

The following lemma shows that for each infinite cardinal κ the properties TDκ and TDκ and κ-pseudocompactness
are stable under taking inverse images. It generalizes [11, Lemma 3.12] and [12, Lemma 2.6], the proof re-
mains almost the same.

Lemma 2.1. Let K be a compact abelian group that admits a continuous surjective homomorphism f onto
a compact abelian group L. Let κ be an infinite cardinal. If L has the property TDκ (respectively, has the
property TDκ, is κ-pseudocompact), then K has the property TDκ (respectively, has the property TDκ, is
κ-pseudocompact) too.

Now we shall give examples of non-compact weakly w(G)-bounded groups G and of non-compact λ-
bounded groups G for λ < w(G).

Example 2.2. Let κ be an uncountable cardinal, Ki a compact non-torsion abelian group for each i < κ
and K =

∏
i∈I Ki.

(a) Let λ < κ. The subgroup
ΣλK = {x ∈ K : |supp(x)| ≤ λ}

is the λ-Σ-product of the family {Ki : i < κ} (for λ = ω we obtain the usual Σ-product). Let us show that
ΣλK is λ-bounded (non-compact). Take A ⊆ ΣλK with |A| ≤ λ. If a ∈ A, then a ∈

∏
i∈La Ki, where

La ⊆ λ and |La| ≤ λ. Define L =
⋃
a∈A La. Thus A ⊆

∏
i∈LKi and |L| = |A| · sup |La| ≤ λ.

(b) Suppose that κ is regular and consider the following proper subgroup of K:

S =
⋃
λ<κ

ΣλK

(in other words S = {x ∈ K : |supp(x)| < κ}). Clearly S is dense in K, hence S is not compact. Let us
see that S is weakly κ-bounded (so λ-bounded for every cardinal λ < κ). Take A ⊆ S with |A| < κ. If
a ∈ A, then a ∈

∏
i∈La Ki, where La ⊆ κ and |La| < κ. Define L =

⋃
a∈A La. Thus A ⊆

∏
i∈LKi and

|L| = |A| · sup |La| < κ, as κ is regular. Moreover, note that if each Ki is metrizable, then w(S) = w(K) = κ.
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Lemma 2.3. Let κ be an infinite cardinal. A weakly κ-bounded group G with w(G) < κ is necessarily
compact, so every w(G)-bounded group G is compact.

Proof. Let X be a dense subset of G of size ≤ w(G). As w(G) < κ and G is weakly κ-bounded, X is
contained in a compact subset Z of G. Now the density of X in G yields the density of Z in G. Hence
Z = G. This proves that G is compact.

In the next example we explicitly construct a compact abelian group K which has the property TDκ for
an uncountable cardinal κ. Note that K is a power of a metrizable compact non-torsion abelian group S.

Example 2.4. Let κ be an uncountable cardinal, p ∈ P and Kp = Z(p)κ
+

. Define K =
∏
p∈PKp. Note that

K = Sκ
+

with S =
∏
p∈P Z(p). The subgroup H = ΣκS

κ+

+ t(K) is a proper totally dense pseudocompact
subgroup of K. Indeed, t(K) =

⊕
p∈PKp is totally dense in K, because each closed subgroup N of K is

of the form N =
∏
p∈PNp by Remark 1.3(a), while ΣκS

κ+

is a dense κ-bounded (hence pseudocompact)
subgroup of K as proved in Example 2.2(a).

In Proposition 2.6, which generalizes [12, Proposition 2.4], we produce a compact abelian group with the
property TDκ for a given infinite cardinal κ. To prove it we need the following lemma, that was crucial for
proving Theorem 1.1 in [12].

Lemma 2.5. [11, Lemma 3.16],[12, Lemma 3.6] Let K be a compact abelian group that admits a subgroup
B such that r0(K/B) ≥ 1. Then K has a proper totally dense subgroup H that contains B.

Then next proposition generalizes [12, Proposition 2.4].

Proposition 2.6. Let κ be an uncountable cardinal, I a set of indices of cardinality κ, Ki a metrizable
compact non-torsion abelian group for each i ∈ I and K =

∏
i∈I Ki. Then:

(a) K is w-divisible;

(b) K has the property TDλ for every ω ≤ λ < κ.

Proof. (a) is obvious.

(b) Take in K the λ-bounded subgroup of Example 2.2(a) B = ΣλK and for every i ∈ I a non-torsion
element ci ∈ Ki. Defining C = 〈(ci)i∈I〉 we have B ∩ C = {0} and so r0(K/B) ≥ 1. Now apply Lemma
2.5.

The regularity of κ is essential in item (b) of Example 2.2. Indeed we have the following theorem
characterizing the regularity of uncountable cardinals κ in terms of the topological property TDκ (see also
Example 2.9).

Theorem 2.7. Let κ be an uncountable cardinal. Then the following conditions are equivalent:

(a) κ is regular;

(b) for every family {Ki : i < κ}, where each Ki is a metrizable compact non-torsion abelian group,
K =

∏
i<κKi ∈ TDκ;

(c) there exists a compact abelian group K of weight κ such that K ∈ TDκ;

(d) there exists a compact abelian group of weight κ with a proper dense weakly κ-bounded subgroup.

Proof. (a)⇒(b) Let K =
∏
i<κKi, where each Ki is a metrizable compact non-torsion abelian group. Argue

as in the proof of Proposition 2.6(b), using Example 2.2(b), to prove that if κ is regular, then K ∈ TDκ.

(b)⇒(c) and (c)⇒(d) are obvious.

(d)⇒(a) Let H be a proper dense weakly κ-bounded subgroup of K. Fix a point x ∈ K \H and assume
for a contradiction that λ = cf(κ) < κ, i.e.,

κ = sup{κα : α < λ}, with κα < κ for all α < λ.

We can assume without loss of generality that K is a subgroup of G = Tκ. Write Tκ =
∏
α<λ Tα, where

Tα ∼= Tκα for each α < λ. For α < λ, let Nα =
∏
β<α Tβ and let pα : G = Tκ → Nα be the canonical

projection. Since w(Nα) = κα < κ, pα(H) is compact and dense in pα(K), so they coincide. Then there
exists a point hα ∈ H such that

pα(hα) = pα(x). (∗)
The set A = {hα : α < λ} ⊆ H has size ≤ λ < κ. Hence the weak κ-boundedness of H implies that the
H-closure C of A is compact. Then it is closed in K as well. On the other hand, for every neighborhood U
of 0 in G there exists a projection pα such that ker pα ⊆ U . Now (∗) yields hα − x ∈ U , so A ∩ (x+U) 6= ∅.
This proves that x ∈ C ⊆ H, a contradiction.
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Let us note that our main result strengthens substantially Theorem 2.7 (for every w-divisible compact
abelian group K the property TDκ is equivalent to the weaker one: K has a proper dense weakly κ-bounded
subgroup).

Example 2.8. Let p1, p2, . . . , pn, . . . be all primes written in increasing order. Then the group K =∏∞
n=1 Z(pn)ℵn is w-divisible of weight ℵω. Nevertheless, a standard application of the Pontryagin dual-

ity shows that there exists no continuous surjective homomorphism of K onto Sℵω , where S is a non-trivial
metrizable compact abelian group. From Theorem 2.7 it follows that K has no proper dense weakly ℵω-
bounded subgroup and so K 6∈ TDℵω .

Note that the subgroup
⋃
λ<κ ΣλK of K considered in Example 2.2(b) is not even ω-bounded. In fact it

is not even countably compact, as it contains a sequence (xn) that converges to a point of K \
⋃
λ<κ ΣλK,

although it is pseudocompact.

Example 2.9. Let κ be an infinite cardinal.

(a) Every κ-bounded Tychonoff space X is κ-pseudocompact. To see this let f : G→ Y be a continuous
function, where Y is a Tychonoff space of weight ≤ κ. We can suppose without loss of generality that f is
surjective. There exists a dense subset D of Y such that |D| ≤ κ. There exists a subset D1 of X such that
f �D1 : D1 → D is bijective. Then |D1| ≤ κ. Since X is κ-bounded, D1 is compact. Therefore f(D1) is
compact. But f(D1) ⊇ D, D is dense in Y , and so f(D1) = Y is compact.

(b) Let G be a topological group and H a dense subgroup of G. If H is κ-pseudocompact, then G is
κ-pseudocompact too. Let f : G→ Y be a continuous function, where Y is a Tychonoff space of weight ≤ κ.
Since H is κ-pseudocompact, f(H) is compact. Being f(H) also dense in f(G), f(G) = f(H) is compact.

3 The divisible weight

3.1 General properties of w-divisible groups

For a topological abelian group G let Λ(G) be the family of all closed Gδ-subgroups of G.
In [13, Definition 1.3] a topological group G was defined to be almost connected whenever c(G) ∈ Λ(G).

Almost connected pseudocompact groups are an example of w-divisible groups.

The proof of the following lemma is obvious.

Lemma 3.1. Let G =
∏
i∈I Gi where each Gi is a topological group. If Gi is w-divisible for every i ∈ I,

then G is w-divisible.

The quotient of a w-divisible group need not be w-divisible (e.g., for p ∈ P take Zc
p, which has Z(p)c as

a quotient). Nevertheless, we can study the behavior of the divisible weight in this respect. Obviously it is
monotone under taking subgroups. The next claim shows that it is monotone also under taking continuous
surjective homomorphisms of precompact groups.

Claim 3.2. Let G and L be precompact abelian groups such there exists a continuous surjective homomor-
phism f : G→ L. Then wd(G) ≥ wd(L).

Proof. For every m ∈ N+ there exists a continuous surjective homomorphism of m!G onto m!L and so
w(m!G) ≥ w(m!L).

Since the minimal positive integer m0 in the following lemma is uniquely determined by the group G, we
have denoted it by md(G) in the introduction.

Lemma 3.3. Let G be a non-singular abelian group. Then there exists a minimal positive integer m0 ∈ N+

such that if H = m0!G, then:

(a) wd(H) = w(H) = wd(G), in particular H is w-divisible;

(b) r0(H) = r0(G);

(c) if G is pseudocompact, then H is pseudocompact too.

If G is compact, then H has also the following property:

(d) G ∈ TDλ (G ∈ TDλ) for some infinite cardinal λ if and only if H ∈ TDλ (H ∈ TDλ).
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Proof. Since
G ≥ n!G ≥ (n+ 1)!G for every n ∈ N+,

the sequence of weights is decreasing too:

w(G) ≥ w(n!G) ≥ w((n+ 1)!G) for every n ∈ N+.

So it stabilizes in view of the property of cardinal numbers. This means that there exists m0 ∈ N+ such
that wd(G) = w(m0!G) and w(m0!G) ≤ w(kG) for every k ∈ N+, because w(m0!G) ≤ w(k!G) ≤ w(kG). Let
H = m0!G. Then w(H) = wd(G). Moreover H is w-divisible, because w(nH) = w(nm0!G) = w(m0!G) =
w(H) for every n ∈ N+ and so wd(H) = w(H) > ω. Obviously r0(H) = r0(G) and if G is pseudocompact,
then H is pseudocompact as well being a continuous image of G.

Note that in this lemma we ask the group G to be non-singular, otherwise H would be metrizable and
hence not w-divisible.

Fact 3.4. [10, 17] If G is a pseudocompact non-torsion abelian group, then r0(G) ≥ c.

Remark 3.5. Let G be a topological abelian group and let K = G̃ be the completion of G. Observe that
w(mG) = w(mK) for every m ∈ N, because the homomorphism K → mK, defined by the multiplication
by m, is continuous and so mG is dense in mK for every m ∈ N. Then G is w-divisible if and only if K
is w-divisible. More precisely the sequences {w(m!G) : m ∈ N+} and {w(m!K) : m ∈ N+} stabilize at the
same point, that is md(G) = md(K). In particular wd(G) = wd(K).

Claim 3.6. If n ∈ N+, G1, . . . , Gn are topological abelian groups and G = G1 × . . .×Gn, then

wd(G) = max{wd(G1), . . . , wd(Gn)}.

In particular G is w-divisible if and only if Gi is w-divisible for all i = 1, . . . , n and w(G) = w(Gi).

Remark 3.7. The counterpart of Claim 3.6 for md(−) fails to be true. To see this, let G1 = Z(2)c
+

× Tc

and G2 = Z(3)c × T. Then 2 = md(G1) = md(G1 ×G2) < max{md(G1),md(G2)} = md(G2) = 3.
It is easy to see that md(G) ≥ min{md(G1), . . . ,md(Gn)}, where n ∈ N+, G1, . . . , Gn are topological

abelian groups and G = G1 × . . .×Gn.

Claim 3.6 works with a finite number of groups, but it fails to be true in general taking infinitely many
groups:

Remark 3.8. Consider the group K =
∏
p∈P Z(p)ω1 and observe that Kp = Z(p)ω1 for each p ∈ P. Then

wd(K) = w(K), although wd(Kp) = 1 for every p ∈ P.

3.2 w-Divisible compact abelian groups

It is important to observe that for a compact abelian group K

wd(K) ≥ w(c(K)),

because c(K) is divisible, being compact and connected, and so c(K) ≤ m!K for every m ∈ N+.

Here is a corollary of Lemma 3.3 and Theorem 1.10. It will not be used further in our proofs, but we
give it in order to emphasize the analogy between w-divisible and connected/divisible compact groups, since
r0(K) = |K| = 2w(K) for every divisible compact abelian group K [15].

Corollary 3.9. If K is a non-singular compact abelian group, then r0(K) = 2wd(K). In particular r0(K) =
2w(K), whenever K is w-divisible.

Proof. Let σ = wd(K) and H = md(K)!K. By Lemma 3.3 σ = w(H) and H is w-divisible. By Theorem
1.10 there exists a continuous surjective homomorphism H →

∏
i∈I Ki, where each Ki is a metrizable

compact non-torsion abelian group and |I| = σ. By Fact 3.4 and since |Ki| = c, r0(Ki) = c. Consequently
r0(
∏
i∈I Ki) = 2σ and r0(H) ≥ 2σ. But |H| = 2σ and so r0(H) = 2σ. Hence r0(K) = r0(H) = 2σ.

Observe that, for a p ∈ P, compact Zp-modules are precisely the abelian pro-p groups.

Lemma 3.10. Let p ∈ P. If K is a compact Zp-module, then

wd(K) = inf{w(pnK) : n ∈ N}.
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Indeed, if m = pkm1, where m1 is coprime to p, then mK = pkK.

The following fact can be obtained by a standard application of the Pontryagin duality.

Fact 3.11. For a topological abelian group K which is either compact or discrete, and for m ∈ N+, m̂K ∼=
mK̂.

Remark 3.12. Let p ∈ P. In [30] (see [22, §35]) the final rank of an abelian p-group X was defined as

finr(X) = inf
n∈N

rp(p
nX).

Note that finr(X) = wd(X) in case rp(p
nX) is infinite for every n ∈ N+.

If K is a compact Zp-module with wd(K) ≥ ω and X = K̂, then

finr(X) = wd(X) = wd(K).

Since by Fact 3.11 p̂nK ∼= pnX for every n ∈ N, w(pnK) = |pnX| = w(pnX) for every n ∈ N. Hence
wd(K) = wd(X). Being wd(K) ≥ ω, |pnX| is infinite for each n ∈ N+ and by the previous part of the
remark finr(X) = wd(X).

Since the divisible weight coincides with the final rank for discrete abelian p-groups (p ∈ P), it can be
viewed as a natural generalization of the final rank to all abelian (topological) groups.

The equality wd(K) = wd(X) of Remark 3.12 can be proved in general for a compact abelian group:

Theorem 3.13. Let K be a topological abelian group which is either compact or discrete. Then wd(K) =

wd(K̂).

Proof. By Fact 3.11 m̂!K ∼= m!K̂, for every m ∈ N. Then

w(m!K) = w(m̂!K) = w(m!K̂)

for every m ∈ N. This shows that wd(K) = wd(K̂).

Corollary 3.14. Let K be a compact abelian group. Then K is w-divisible if and only if K̂ is w-divisible
(in other words |mK̂| = |K̂| > ω for every m ∈ N+).

Proof. As w(K) = w(K̂), the above theorem applies. Moreover w(mK̂) = |mK̂| for every m ∈ N.

Lemma 3.15. Let K be a compact abelian group. Then wd(K) = max{w(c(K)), wd(K/c(K))}.

Proof. The condition wd(K) > w(c(K)) is equivalent to w(m!K) > w(c(K)) for every m ∈ N+. Since
c(K) is connected and compact, c(K) is divisible and so c(K) ≤ m!K for every m ∈ N+. Then w(m!K) =
w(m!K/c(K)) · w(c(K)) and it follows that w(m!K) = w((m!K)/c(K)) for every m ∈ N+. Now note that
(m!K)/c(K) is isomorphic to m!(K/c(K)). Since wd(K) = inf{w(m!K) : m ∈ N+}, this yields the equalities

wd(K) = inf{w((m!K)/c(K)) : m ∈ N+} = inf{w(m!(K/c(K))) : m ∈ N+} = wd(K/c(K)),

which complete the proof.

This lemma splits the study of wd(K) in two cases. The connected case is trivial as connected groups are
already w-divisible. The more complicated totally disconnected case will be analyzed in the next section.

4 w-Divisibility of profinite abelian groups

For a totally disconnected compact abelian group K =
∏
p∈PKp (see Remark 1.3(a)) the equality wd(K) =

supp∈P wd(Kp) does not hold in general by Remark 3.8.
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4.1 The stable weight

Let K be a totally disconnected compact abelian group. Then K =
∏
p∈PKp by Remark 1.3(a). Let

αp = w(Kp) for each p ∈ P. Define the stable weight of K as ws(K) = ω, when P\Pm(K) is finite, otherwise
let

ws(K) = inf
n∈N

w

 ∏
p∈P,p>n

Kp

 .

Then ws(K) = infn∈N supp∈P,p>n αp > ω. Since supp∈P,p>n αp is a decreasing sequence of cardinals, it
stabilizes and so there exists n0 ∈ N such that

ws(K) = w

 ∏
p∈P,p>n0

Kp

 = sup
p∈P,p>n0

αp.

Definition 4.1. A totally disconnected compact abelian group is stable if w(K) = ws(K) > ω.

Lemma 4.2. If K is a totally disconnected compact abelian group, then ws(K) ≤ wd(K). In particular, K
stable implies K w-divisible.

Proof. As noted in the foregoing part of this section, there exists n0 ∈ N such that ws(K) = supp∈P,p>n0
w(Kp).

By Lemma 3.3 wd(K) = w(H), whereH = md(K)!. Moreover take a n1 ∈ N such that n1 ≥ max{n0,md(K)}.
Consequently

∏
p∈P,p>n1

Kp ≤ H and so ws(K) = w(
∏
p∈P,p>n1

Kp) ≤ w(H) = wd(K).

Note that the inequality of this lemma can be strict only in case wd(K) = wd(Kp) for some p ∈ P, p < n0:
if wd(K) > ws(K), then wd(K) = w(md(K)!K) = w(md(K)!

∏
p∈P,p<n0

Kp) by Claim 3.6; since this is a
finite product, wd(K) = wd(Kp) for some prime p ≤ n0 again by Claim 3.6.

Let K be a totally disconnected compact abelian group. Clearly, ws(K) = ω when K is metrizable or
P \ Pm(K) is finite. For a better understanding of ws(K) in the remaining case assume that P \ Pm(K) is
infinite and define the d-spectrum of K as

Π(K) = {p ∈ P \ Pm(K) : αp ≤ ws(K)} = {p ∈ P : ω < αp ≤ ws(K)}.

Then the complement of Π(K) in P \ Pm(K) is the finite set

πf (K) = {p ∈ P \ Pm(K) : αp > ws(K)},

so Π(K) is infinite. Moreover we have the following partition:

Π(K) = π∗(K) ∪ π(K),

where

π∗(K) = {p ∈ P \ Pm(K) : αp < ws(K)} and π(K) = {p ∈ P \ Pm(K) : αp = ws(K)}.

So we have the partition P = Pm(K) ∪ π∗(K) ∪ π(K) ∪ πf (K) and

K =
∏

p∈Pm(K)

Kp ×
∏

p∈π∗(K)

Kp ×
∏

p∈π(K)

Kp ×
∏

p∈πf (K)

Kp.

Note that π(K) is infinite whenever π(K) 6= ∅. Let

met(K) =
∏

p∈Pm(K)

Kp, sc(K) =
∏

p∈Π(K)

Kp and nst(K) =
∏

p∈πf (K)

Kp.

Then
K = met(K)× sc(K)× nst(K),

met(K) is metrizable, while nst(K) =
∏
p∈πf (K) Kp has no stable subgroups, because nst(K) is a finite

product and since every closed subgroup N of nst(K) is of the form N =
∏
p∈πf (K) Np by Remark 1.3(a).

We shall see below that the subgroup sc(K) (we shall refer to it as stable core of K) is stable when Π(K) 6= ∅.
For the sake of completeness, set

Π(K) = ∅ and πf (K) = P \ Pm(K), when |P \ Pm(K)| <∞.
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Claim 4.3. A totally disconnected compact abelian group K is stable if and only if P \ Pm(K) is infinite
and πf (K) = ∅.

Proof. (a)⇒(b) Suppose that p ∈ πf (K). Then ws(K) < αp ≤ w(K) and so K is not stable.

(b)⇒(a) Since P \ Pm(K) is infinite and πf (K) is empty, ws(K) = supp∈P\Pm(K) αp = w(K), i.e., K is
stable.

Lemma 4.4. Let K be a non-singular totally disconnected compact abelian group. Then:

(a) if P \ Pm(K) is infinite, then sc(K) is stable, so ws(sc(K)) = w(sc(K)) = ws(K);

(b) either wd(K) = wd(Kp) for some p ∈ P or wd(K) = ws(K) = supp∈Π(K) αp.

Proof. By Remark 1.3(a) K =
∏
p∈PKp.

(a) Since P \ Pm(K) is infinite and πf (sc(K)) = ∅, Claim 4.3 applies.

(b) Suppose that wd(K) > wd(Kp) for every p ∈ P. Then P \ Pm(K) is infinite and so also Π(K) is
infinite.

Let D = sc(K). By (a) D is stable and

ws(D) = wd(D) = w(D) = sup
p∈Π(K)

αp = ws(K).

Since
wd(K) = max{wd (nst(Kp)), wd(D)}

by Claim 3.6 and wd(K) > wd(Kp) for all p ∈ P by our hypothesis, it follows that

wd(K) = wd(D).

Therefore wd(K) = wd(D) = w(D) = ws(K).

We shall see in the next subsection that when wd(K) > wd(nst(K)), the stable core sc(K) will play the
essential role as far as projections on products are concerned.

4.2 Projection onto products

Remark 4.5. Let p ∈ P and let K be a compact Zp-module. If X = K̂, according to [22, Theorem 32.3] X
has a basic subgroup B0; in other words there exist cardinals αn, n ∈ N+, such that:

B0
∼=
⊕∞

n=1 Z(pn)(αn),
B0 is pure (i.e., B0 ∩ pnX = pnB0 for every n ∈ N) and
X/B0 is divisible;

so X/B0
∼= Z(p∞)(σ) for some cardinal σ, because X/B0 is a divisible abelian p-group [22, Theorem 23.1].

Let m ∈ N+, and let

B1,m =

m⊕
n=1

Z(pn)(αn) and B2,m =

∞⊕
n=m+1

Z(pn)(αn).

Then we prove that
X = X1,m ⊕B1,m,

where X1,m = pmX + B2,m. Indeed, X = pmX + B0 because X/B0 is divisible. Moreover, this is a direct
sum as X1,m ∩B1,m = {0}; in fact, if z ∈ X1,m ∩B1,m, then z = b ∈ B1,m and z = x+ b′, where x ∈ X1,m,
b′ ∈ B2,m. It follows that x = b − b′ ∈ B0 ∩ pmX. By the purity of B0, we have B0 ∩ pmX = pmB0 ⊆ B2

and this yields b = 0. Moreover, observe that X/B0
∼= X1m/B2,m.

Claim 4.6. [12, Claim 4.7] Let p ∈ P and let K be a compact Zp-module and N a closed subgroup of K
isomorphic to Zσp , for some cardinal σ ≥ ω. Then there exists a continuous surjective homomorphism of K
onto Gσp .

Lemma 4.7. Let p ∈ P and let K be a compact Zp-module. Then there exists a continuous surjective

homomorphism of K onto Gwd(K)
p .
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Proof. Let us reduce first the lemma to the case when K is a w-divisible group. By Lemma 3.3 the subgroup
H = md(K)!K of K is w-divisible and w(H) = wd(K). Moreover, there exists a continuous surjective
homomorphism h : K → H, namely the one defined by h(x) = md(K)!x for every x ∈ K. Clearly every

continuous surjective homomorphism of H onto Gwd(K)
p composed with h gives rise to a continuous surjective

homomorphism of K onto Gwd(K)
p . This is why we suppose from now on that K itself if w-divisible.

Let X be the dual group of K. Observe that |X| = w(K) > ω. By Remark 4.5 there exists a subgroup B0

of X such that B0
∼=
⊕∞

n=1 Z(pn)(αn) and X/B0
∼= Z(p∞)(σ′); put |X/B0| = σ and note that σ = σ′ in case

σ > ω. As in Remark 4.5, for every m ∈ N+ let B1,m =
⊕m

n=1 Z(pn)(αn) and B2,m =
⊕∞

n=m+1 Z(pn)(αn).
Then X = X1,m ⊕B1,m, where X1,m = pmX +B2,m and X1,m/B2,m

∼= X/B0.
By Corollary 3.14 we have |X| = |mX| for every m ∈ N+. Moreover |X| = |mX1,n| for every m,n ∈ N+;

indeed |mX1,n| = |mpnX + mB2,n| = |X| by Corollary 3.14 and our hypothesis on K. Consider now the
sequence of cardinals βn = sup{αm : m ≥ n}. There exists n0 ∈ N+ such that βn = βn0 =: β for every
n ≥ n0. Thus |X| = σ · β, in fact |X| = |X1,n0 | = |X1,n0/B2,n0 | · |B2,n0 | = σ · β.

If |X| = σ, then σ > ω because |X| = w(K) > ω. So in this case σ = σ′ and X/B0
∼= Z(p∞)(σ). By the

Pontryagin duality the group K has a subgroup isomorphic to Zσp . Claim 4.6 applies to conclude that there
exists a continuous surjective homomorphism of K onto Gσp .

If |X| > σ, then |X| = |B2,n0 | = β > ω. We shall prove that

B2,n0 ≥
⊕
n∈N

Z(pn)(β). (†)

Let A = {n ∈ N : n ≥ n0, αn = β}. If A is infinite, then
⊕

n∈A Z(pn)(αn) =
⊕

n∈A Z(pn)(β) contains

a subgroup isomorphic to
⊕

n∈N Z(pn)(β), so (†) holds true. Assume that A is finite. Then, taking an
appropriate n1 ≥ n0 we can assume that A = ∅, i.e., β > αn for every n ≥ n1. Note that still β = sup{αm :
m ≥ n1} holds true, as X is w-divisible by Corollary 3.14 and |X| = |B2,n0 | by our hypothesis |X| > σ.
There exists an infinite subset I of ω such that {αn : n ∈ I} is strictly increasing with β = sup{αm : m ∈ I}
and n ≥ n1 for all n ∈ I. Clearly β = sup{αm : m ∈ I ′} holds true also for every infinite subset I ′ of I. We
can write I =

⋃
n∈N In, where each In is infinite and In ∩ Im = ∅ for every n 6= m. Clearly,⊕

m∈In

Z(pm)(αm) ≥
⊕

m∈In,m≥n

Z(pn)(αm) ∼= Z(pn)(β)

for every n ∈ N. Since B2,n0 ≥
⊕

n≥n1
Z(pn)(αn), we see that B2,n0 contains also

⊕
n∈I

⊕
m∈In Z(pm)(αm)

and the latter group contains a subgroup isomorphic to
⊕

n≥n1
Z(pn)(β). Thus (†) holds also in this case.

By the Pontryagin duality there exists a continuous surjective homomorphism of K onto the dual of the
latter set, that is Gβp .

Remark 4.8. Let p ∈ P. The following more precise property of a non-singular compact Zp-module K can
be proved: K ∼= K1 × B, where B is a bounded torsion compact group and K1 is a w-divisible compact
Zp-module with w(K1) = wd(K).

The next claim is the totally disconnected case of Theorem 1.10.

Claim 4.9. If K is a totally disconnected compact abelian group, then there exists a continuous surjective
homomorphism of K onto a product C of metrizable compact non-torsion abelian groups such that w(C) =
wd(K).

Proof. As K is totally disconnected, we can write K =
∏
p∈PKp by Remark 1.3(a). Let αp = w(Kp) for

every p ∈ P. Note that P \ Pm(K) 6= ∅ as K is non-metrizable.
If P \ Pm(K) is finite, then by Claim 3.6 wd(K) = max{wd(Kp) : p ∈ P \ Pm(K)}. So there exists

p ∈ P \ Pm(K) such that wd(K) = wd(Kp). We can apply Lemma 4.7 to the Zp-module Kp to find a
continuous surjective homomorphism from Kp to Swd(Kp) = Gpwd(K) (recall that the compact group Gp is
metrizable and non-torsion). Now take the composition of this homomorphism with the canonical projection
K → Kp. We can argue in the same way when wd(K) = wd(Kp) for some prime p. Therefore from now on
we assume that wd(K) > wd(Kp) for all primes p and this implies that P \Pm(K) is infinite. By Lemma 4.4
we have wd(K) = ws(K).

For p ∈ P \ Pm(K) consider the quotient Kp/pKp. If X = K̂p, by the Pontryagin duality we know

that X[p] is topologically isomorphic to K̂p/pKp. Moreover, since |X| is not countable, |X| = |X[p]| = αp.
Thus Kp/pKp is topologically isomorphic to Z(p)αp . Consequently there exists a continuous surjective
homomorphism of Kp onto Z(p)αp .
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Since P \ Pm(K) is infinite, Π(K) is not empty and so infinite as well. We have two cases. If π(K) is
infinite, then there exists a continuous surjective homomorphism

K →
∏

p∈π(K)

Z(p)wd(K) = S
wd(K)

π(K) ,

as αp = ws(K) = wd(K) for all p ∈ π(K). Otherwise π(K) is empty and Π(K) = π∗(K). By Lemma 4.4
ws(K) = supp∈Π(K) αp. Moreover wd(K) = ws(K) > αp for all p ∈ Π(K). Order the set {αp : p ∈ Π(K)}
so that αp1 < αp2 < · · · < αpn < . . . and note that the inclusion {pn : n ∈ N+} ⊆ Π(K) could be proper.
Nevertheless ws(K) = supn∈N+

αpn. Let C =
∏∞
n=1 Z(pn)αpn . Then w(C) = ws(K) = wd(K) and

C =

∞∏
n=1

Z(pn)αpn =

∞∏
n=1

n∏
i=1

Z(pn)αpi =

∞∏
i=1

∞∏
n=i

Z(pn)αpi =

∞∏
i=1

S
αpi
πi ,

where πi = {pn : n ∈ N+, n ≥ i}. To end up the proof note that Sπi is a metrizable compact non-torsion
abelian group for every i ∈ N+, since πi is infinite.

The following claim, which is used to prove Theorem 1.9, analyzes when it is possible to project a totally
disconnected compact abelian group onto a power of a metrizable compact non-torsion abelian group.

Claim 4.10. Let K be a totally disconnected compact abelian group, αp = w(Kp) for each p ∈ P and I an
uncountable set of indexes.

(a) If π ⊆ P and |I| ≤ αp for all p ∈ π, then there exists a continuous surjective homomorphism f : K → SIπ.

(b) If wd(Kp) < |I| for all p ∈ P and there exists a continuous surjective homomorphism f : K → SI ,
where S is a metrizable compact non-torsion abelian group, then |I| ≤ αp for all p ∈ π for some infinite
π ⊆ P.

Proof. (a) For every p ∈ π the inequality |I| ≤ αp yields that αp is uncountable, so w(Kp/pKp) = αp.
Hence Kp/pKp is isomorphic to Z(p)αp . Moreover, there exists a continuous surjective homomorphism
Z(p)αp → Z(p)I , since |I| ≤ αp. Therefore there exists a continuous surjective homomorphism

K =
∏
p∈P

Kp →
∏
p∈π

Z(p)I ∼=

(∏
p∈π

Z(p)

)I
= SIπ.

(b) Suppose that wd(Kp) < |I| for all p ∈ P and that there exists a continuous surjective homomorphism
f : K → SI , where S is a metrizable compact non-torsion abelian group. Then S is totally disconnected and
compact, so S =

∏
p∈P Sp by Remark 1.3(a). Since wd(Kp) < |I| for all p ∈ P, it follows that Sp is torsion

for all p ∈ P. Indeed, if Sp were not torsion, then the surjective homomorphism fp = f �Kp : Kp → SIp ,
together with Claim 3.2, would imply that wd(Kp) ≥ wd(S

I
p) = |I|. Hence Sp is a bounded p-torsion group

for every p ∈ P, being p-torsion and compact. Since S is non-torsion, Sp has to be non-trivial for infinitely
many p ∈ P, and so rp(S) = rp(Sp) > 0 for infinitely many p ∈ P. Let p ∈ P be such that rp(Sp) > 0. By the

Pontryagin duality there exists a continuous injective homomorphism
⊕

I Ŝp → K̂p. Since Sp is a bounded

torsion abelian p-group, Ŝp is a bounded torsion abelian p-group as well. Therefore rp(Ŝp) > 0 and it follows

that rp(K̂p) ≥ |I|. Hence αp = w(Kp) ≥ |I|.

5 Proofs of the main results

Proof of Theorem 1.9. Assume that K admits a continuous surjective homomorphism onto Swd(K) for
some metrizable compact non-torsion abelian group S. Such a group S admits as a quotient one of the
following four types of groups: either T, or Gp or Zp for some p ∈ P or Sπ for some infinite π ⊆ P. To see
this let X = Ŝ. Then X is a countable discrete abelian group. If X contains an isomorphic copy of Z, then
S admits T as a quotient. Otherwise X is torsion. If π = {p ∈ P : rp(X) > 0} is infinite, since X has a
subgroup isomorphic to

⊕
p∈π Z(p), it follows that S admits Sπ as a quotient. If π is finite, there exists p ∈ P

such that the subgroup of all p-torsion elements of X is infinite. So we can assume without loss of generality
that X is an infinite p-group. By Remark 4.5 there exists a basic subgroup B0

∼=
⊕∞

n=1 Z(pn)(αn) of X, for

some cardinals αn ≤ ω, such that X/B0
∼= Z(p∞)(σ) for some cardinal σ. If there exists a sequence {nk}k of

positive integers such that nk →∞ and αnk > 0, then B0 contains a subgroup isomorphic to
⊕∞

k=1 Z(pnk ).
Since the latter group obviously contains a copy of the group

⊕∞
n=1 Z(pn), we conclude that in this case
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X has a subgroup isomorphic to
⊕∞

n=1 Z(pn), hence K admits Gp as a quotient. If this subsequence does
not exist, B0 is bounded torsion, that is, there exists n ∈ N+ such that pnB0 = {0}. By Remark 4.5
X ∼= pnX ⊕ B0, where X/B0

∼= Z(p∞)(σ). Note that σ > 0, otherwise X would be bounded torsion and
consequently S would be torsion. So X contains a copy of the group Z(p∞), therefore S admits Zp as a
quotient.

Depending on which of these four cases occurs we have either (a) or (b) or (c).

(a) Assume that there exists a continuous surjective homomorphism f : K → Twd(K). Then the restriction
of f to the connected component c(K) gives rise to a surjective continuous homomorphism f �c(K): c(K)→
Twd(K). This yields w(c(K)) ≥ wd(K), while the inequality wd(K) ≥ w(c(K)) is always available, as
c(K) is w-divisible being divisible. This proves the equality wd(K) = w(c(K)). On the other hand, if
wd(K) = w(c(K)) holds true, then there exists a surjective continuous homomorphism K → Twd(K). This

is a folklore fact of the Pontryagin duality. In fact, if X = K̂, X has X/t(X) as a quotient and X/t(X) ∼=
ĉ(K). Consequently X/t(X) is a torsion-free group of cardinality w(c(K)) and so there exists an injective
homomorphism Z(w(c(K))) → X/t(X). Therefore there exists an injective homomorphism Z(w(c(K))) → X.
By the Pontryagin duality there exists a continuous surjective homomorphism K → Tw(c(K)) = Twd(K).

(b) Assume that there exits a continuous surjective homomorphism f : K → Zwd(K)
p . From wd(K) ≥ ω,

we conclude that
Zwd(K)
p admits Gwd(K)

p as a quotient. So we can suppose that there exists a continuous surjective ho-

momorphism f : K → Gwd(K)
p for some p ∈ P. Since Gwd(K)

p is totally disconnected, f(c(K)) = {0}
and so f factorizes through the projection q : K → K/c(K). This produces a continuous surjective ho-

momorphism K/c(K) → Gwd(K)
p . By Remark 1.3(b) there exists a continuous surjective homomorphism

(K/c(K))p → Gwd(K)
p , hence wd(K) ≤ wd((K/c(K))p). The other inequality is always available by Lemma

3.2. This proves the equality wd(K) = wd((K/c(K))p). On the other hand, if wd(K) = wd((K/c(K))p)

holds true, then there exists a surjective continuous homomorphism (K/c(K))p → Gwd(K)
p by Lemma 4.7.

It remains to compose with the projection q : K → (K/c(K))p.

(c) Assume that there exists a continuous surjective homomorphism f : K → S
wd(K)
π . Since for every

p ∈ π there exists a surjective continuous homomorphism φp : Sπ → Sπ/pSπ ∼= Z(p), we obtain a surjective
continuous homomorphism fp : K → Z(p)wd(K). Since fp factorizes through the canonical projection
q : K → (K/c(K))p (as noted in the proof of item (b)) applying Remark 1.3(b), we get a surjective
continuous homomorphism l : (K/c(K))p → Z(p)wd(K). This proves w((K/c(K))p) ≥ wd(K) for every p ∈ π.
The converse inequality holds, because for every p ∈ π, p > md(K) and so md(K)!(K/c(K))p = (K/c(K))p.
Hence wp((K/c(K))p) ≤ w(md(K)!(K/c(K))) ≤ wd(K) for every p ∈ π.

Now assume that wd(K) = w((K/c(K))p) for every prime p ∈ π. Since wd(K) ≥ wd(K/c(K)) ≥
w((K/c(K))p) for every p ∈ π, we obtain wd(K/c(K)) = w((K/c(K))p) for every p ∈ π. Apply Claim 4.10 to

the totally disconnected group K/c(K) to find a continuous surjective homomorphism g : K/c(K)→ S
wd(K)
π .

Then take the composition of g with the canonical projection K → K/c(K).

To finish the proof we have to see that if K is a non-singular compact abelian group such that there
exists no continuous surjective homomorphism f : K → Swd(K), where S is a metrizable compact non-torsion
abelian group, then cf(wd(K)) = ω. By (a) wd(K) > w(c(K)) and so wd(K) = wd(K/c(K)) by Lemma
3.15. By (b) and (c) wd(K) = wd(K/c(K)) > wd((K/c(K))p) for all p ∈ P and wd(K) > w((K/c(K))p)
for co-finitely many p ∈ P. In view of Lemma 4.4 wd(K) = supp∈Π(K/c(K)) w((K/c(K))p). This proves that
cf(wd(K)) = ω.

From [8, Lemma 6.1] and the results in [13, Section 2] we obtain the following lemma, needed in some of
the following proofs.

Lemma 5.1. Let G be a pseudocompact abelian group. Then:

(a) N ∈ Λ(G) if and only if G/N is metrizable;

(b) w(N) = w(G) whenever N ∈ Λ(G);

(c) every Gδ-set X of G such that 0 ∈ X contains some N ∈ Λ(G).

Proof of Theorem 1.8. (a)⇒(b) Suppose that N is a closed torsion Gλ-subgroup of K. Let us prove
that w(K/N) ≤ λ. Since each Gδ-set of K that contains 0 contains some M ∈ Λ(K) by Lemma 5.1(c),
N ⊇

⋂
i<λNi where {Ni : i < λ} ⊆ Λ(K). We can assume without loss of generality that N =

⋂
i<λNi,

because w(K/N) ≤ w(K/
⋂
i<λNi), since N ⊇

⋂
i<λNi. There exists an embedding K/N →

∏
i<λK/Ni.

By Lemma 5.1(a) K/Ni is metrizable for all i < λ. Therefore w(K/N) ≤ w(
∏
i<λK/Ni) ≤ λ.
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Let H be a proper totally dense λ-pseudocompact subgroup of K. The total density of H yields N ≤ H
as N is torsion. In fact, a totally dense subgroup H of K contains all torsion elements of K: if x ∈ t(K), then
〈x〉 is a finite (so closed) subgroup of K; since H is totally dense, H ∩〈x〉 is dense in 〈x〉 and so H ≥ 〈x〉. On
the other hand, by the λ-pseudocompactness of H we deduce from w(K/N) ≤ κ that the image of H under
the canonical projection K → K/N is compact. Since it must be also dense, we conclude that K = N +H.
Now N ≤ H yields K = H, a contradiction.

(b)⇒(c) Assume wd(K) ≤ λ. Then there exists m ∈ N+ such that w(mK) ≤ λ. So for the closed torsion
subgroup N = K[m] of K one has K/N ∼= mK and consequently w(K/N) ≤ λ. So N is a closed torsion
Gλ-subgroup of K: since K/N is compact of weight ≤ λ, there exists a topological embedding K/N → Tλ.
For each i < λ let pi : Tλ → T be the canonical projection and χi : K/N → T a continuous character.
If q : K → K/N is the canonical homomorphism, then ψi = χi ◦ q : K → T is a continuous character of
K. Then Ni = kerχi ∈ Λ(K/N) and

⋂
i<λNi = {0}. Moreover kerψi ∈ Λ(K) for all i < λ and hence

N =
⋂
i<λ kerψi is a closed torsion Gλ-subgroup of K. This contradicts (b).

(c)⇒(d) We have to consider two cases.
Case 1. There exists a continuous surjective homomorphism of K onto the power Swd(K), where S

is a metrizable compact non-torsion abelian group. To see that (d) is fulfilled it suffices to take I with
|I| = wd(G) > λ.

Case 2. Now assume that such a homomorphism is not available. By Theorem 1.9 this means
cf(wd(K)) = ω and wd(K) > w(c(K)). Then wd(K) = wd(K/c(K)) by Lemma 3.15. So assume with-
out loss of generality that K is totally disconnected. According to Theorem 1.9 our hypothesis yields
wd(K) > wd(Kp) for all p ∈ P (otherwise there would exist a continuous surjective homomorphism of K
onto the power GIp).

Now pick any λ < wd(K) and a set I with λ < |I| < wd(K). We have to prove that there exists a
continuous surjective homomorphism of K onto a power SI of a metrizable compact non-torsion abelian
group S. From |I| < wd(K) we deduce that |I| ≤ αp for infinitely many p ∈ P. By Claim 4.10 there exists
a continuous surjective homomorphism f : K → SI , where S is a metrizable compact non-torsion abelian
group.

(d)⇒(e) Assume there exists a continuous surjective homomorphism of K onto a power SI of a metrizable
compact non-torsion abelian group S such that |I| > κ. By Proposition 2.6(b) SI has the property TDλ,
hence also K has the property TDλ thanks to Lemma 2.1.

(e)⇒(a) follows from Example 2.9.

Let κ = wd(K). Assume that it is regular. By Theorem 1.10 there exists a continuous surjective
homomorphism of K onto the product of metrizable compact non-torsion abelian groups C such that w(C) =
κ. By Theorem 2.7, C has the property TDκ, hence also K has the property TDκ thanks to Lemma 2.1. To
end the proof assume K ∈ TDκ. By Lemma 3.3 the subgroup H = md(K)!K of K is w-divisible, w(H) = κ
and H ∈ TDκ. Now apply again Theorem 2.7 to conclude that κ is regular.

Proof of Theorem 1.10. Since K is non-singular, κ = wd(K) > ω. According to Lemma 3.15

wd(K) = max{w(c(K)), wd(K/c(K))}.

If wd(K) = w(c(K)), there exists a continuous surjective homomorphism of K onto Tκ = C, which is
a product of metrizable compact non-torsion abelian groups of weight κ. So it is possible to suppose
that wd(K) > w(c(K)) and then wd(K) = wd(K/c(K)). By Claim 4.9 applied to K/c(K) there exists
a continuous surjective homomorphism of K/c(K) onto the product of metrizable compact non-torsion
abelian groups C =

∏
i∈I Ki such that w(C) = κ. This yields |I| = κ. It remains to take the composition

K → K/c(K)→ C.
To prove the opposite implication, suppose that there exists a continuous surjective homomorphism of K

onto C =
∏
i∈I Ki, where each Ki is compact, metrizable and non-torsion, and |I| ≤ wd(K). The group C

is w-divisible by Proposition 2.6(a) and the divisible weight is monotone by Claim 3.2, so wd(K) ≥ wd(C) =
w(C) = |I|.

5.1 Proof of Theorems 1.15 and 1.18

Before starting the proof of Theorems 1.15 and 1.18 we note that it is immediate to weaken the hypothesis
of Theorem 1.14 from connected to almost connected to have:

If G is a non-trivial almost connected pseudocompact abelian group, then Ps(r0(G), w(G)) holds.
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In fact c(G) is a non-trivial connected pseudocompact abelian group such that w(c(G)) = w(G) by Lemma
5.1(b) and r0(c(G)) = r0(G) because r0(G) = max{r0(c(G)), r0(G/c(G))}, where r0(c(G)) ≥ c by Fact 3.4
and r0(G/c(G)) ≤ c, since G/c(G) is metrizable by Lemma 5.1(a).

Some useful properties of the condition Ps(τ, σ) are collected in the next lemma.

Lemma 5.2. (a) [17, Lemma 2.7(d)] Ps(c, ω) holds.

(b) [17, Lemma 2.7 (a,ii)] If Ps(τ, σ) holds for some cardinals τ, σ ≥ ω, then Ps(τ ′, σ) holds for every
cardinal τ ′ such that τ ≤ τ ′ ≤ 2σ.

(c) [17, Lemma 2.9] If H is a set such that 2 ≤ |H| ≤ c, then Ps(τ, σ) holds if and only if there exists an
ω-dense set Y ⊆ Hσ with |Y | = τ .

(d) (particular case of) [17, Lemma 3.4(i)]Ps(2κ, 22κ) holds for every infinite cardinal κ.

Using a technique similar to that of the proof of Theorem 1.14 and applying Theorem 1.10 we prove
Theorem 1.15.

Proof of Theorem 1.15. Let w(G) = σ and K = G̃. Then K is a w-divisible compact abelian group of
weight σ. By Theorem 1.10 there exists a continuous surjective homomorphism f : K →

∏
i∈I Ki, where

each Ki is a metrizable compact non-torsion abelian group and |I| = σ. Note that σ > ω. By Fact 3.4
r0(G) ≥ c.

Let ϕ :
∏
i∈I Ki →

∏
i∈I Ki/t(Ki) be the canonical projection. For A ⊆ σ let

ϕA :
∏
i∈A

Ki →
∏
i∈A

Ki/t(Ki).

Moreover
πA :

∏
i∈I

Ki →
∏
i∈A

Ki and π̄A :
∏
i∈I

Ki/t(Ki)→
∏
i∈A

Ki/t(Ki)

are the canonical projections. Let H = f(G) ⊆
∏
i∈I Ki and H̄ = ϕ(H) ⊆

∏
i∈I Ki/t(Ki), while

i : H →
∏
i∈I

Ki and ī : H̄ →
∏
i∈I

Ki/t(Ki)

are the inclusion maps. Finally ϕ̃ = ϕ �H : H → H̄.
Let i ∈ I. Then |Ki/t(Ki)| = c, because Ki/t(Ki) is torsion-free and r0(Ki/t(Ki)) = r0(Ki) = c by

Fact 3.4. Then there exists a bijection ξi : Ki/t(Ki) → X, where X is a set of cardinality c. Consequently
ξ :
∏
i∈I Ki/t(Ki) → XI = Xσ, defined by ξ((ki)i∈I) = (ξi(ki))i∈I for every (ki)i∈I ∈

∏
i∈I Ki/t(Ki), is a

bijection. Define ξ̃ = ξ �H̄ : H̄ → ¯̄H, let ¯̄i : ¯̄H → XI be the inclusion map and ¯̄πA : XI → XA the canonical
projection. Moreover let

χ̃ = ξ̃ ◦ ϕ̃ and χA = ξA ◦ ϕA
and define

ωA = πA ◦ i and ¯̄ωA = ¯̄πA ◦ ¯̄i.

This gives the following commutative diagram:

H
� � i //

ϕ̃

��
χ̃

��

ωA

))∏
i∈I Ki

πA // //

ϕ

��

∏
i∈AKi

ϕA

��
χA

zz

H̄
� � ī//

ξ̃

��

∏
i∈I Ki/t(Ki)

π̄A // //

ξ

��

∏
i∈AKi/t(Ki)

ξA

��
¯̄H
� � ¯̄i //

¯̄ωA

55XI
¯̄πA // // XA

We want to prove that

Ps(|H̄|, σ) holds.
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To this end we prove that ¯̄H = ξ(H̄) is ω-dense in XI .
Let A be a countable subset of I. Since G is a dense pseudocompact subgroup of K, H is a dense

pseudocompact subgroup of
∏
i∈AKi by [21, Theorem 3.10.24]. Therefore ωA : H →

∏
i∈AKi is surjective.

In fact each Ki is metrizable, so
∏
i∈AKi is metrizable as well; since ωA(H) is pseudocompact in the

metrizable group
∏
i∈AKi, it is compact, and being also dense, it coincides with

∏
i∈AKi. Also χA is a

surjection and so χA ◦ ωA is surjective as well. But χA ◦ ωA = ¯̄ωA ◦ χ̃ and hence ¯̄ωA ◦ χ̃ is surjective; thus
¯̄ωA : ¯̄H → XA is surjective too. Then A being an arbitrary countable subset of I proves that ¯̄H is ω-dense
in XI . Therefore | ¯̄H| > ω. Since ξ is a bijection, |H̄| = | ¯̄H| > ω. This yields Ps(|H̄|, σ).

Since there exists a surjective homomorphism of G onto H̄, r0(G) ≥ r0(H̄) = |H̄|. (The last equality is
due to | ¯̄H| > ω and the fact that H̄ is torsion-free as a subgroup of the the torsion-free group

∏
i∈I Ki/t(Ki).)

Moreover r0(G) ≤ |K| = 2σ. Since Ps(|H̄|, σ) holds, Ps(r0(G), σ) holds by Lemma 5.2(b).

An alternative way to prove Theorem 1.18 is adopted in [20].

Proof of Theorem 1.18. If G is non-singular, by Lemma 3.3 there exists a w-divisible subgroup H of G
such that w(H) = wd(G). Moreover r0(H) = r0(G) and H is pseudocompact, since G is pseudocompact.
Apply Theorem 1.15 to H to conclude that Ps(r0(G), wd(G)) holds. If G is singular, by the definition there
exists m ∈ N+ such that mG is metrizable. Since G is non-torsion, r0(G) ≥ c by Fact 3.4 and w(mG) = ω.
Hence r0(G) = c and wd(G) = ω. By Lemma 5.2(a) Ps(c, ω) holds.

One can ask if the implication of Theorem 1.15 can be reversed. Example 5.4 shows that this is not
possible. Anyway the following lemma gives a necessary condition in order that Ps(r0(G), w(G)) holds for
a pseudocompact abelian group G.

Lemma 5.3. Let G be a pseudocompact abelian group. If Ps(r0(G), w(G)) holds, then w(G) ≤ 22wd(G)

.

Proof. To begin with, Ps(r0(G), w(G)) yields

w(G) ≤ 2r0(G). (1)

By Lemma 3.3 there exists a w-divisible pseudocompact subgroup H of G such that w(H) = wd(G) and
r0(H) = r0(G). In view of Theorem 1.15 Ps(r0(H), w(H)) holds and so r0(H) ≤ 2w(H), that is

r0(G) ≤ 2wd(G). (2)

Equations (1) and (2) together give w(G) ≤ 22wd(G)

.

Example 5.4. For every infinite cardinal κ there exists a compact abelian group Hκ such that:

• w(Hκ) = 22wd(Hκ)

;

• wd(Hκ) = κ;

• r0(Hκ) = 2κ;

• Ps(r0(Hκ), w(Hκ)) holds.

The group Hκ = {0, 1}2
κ

× Tκ has the requested properties. Note that Ps(r0(Hκ), w(Hκ)) = Ps(2κ, 22κ)
holds because (2κ)ω = 2κ by Lemma 5.2(d).

In particular every Hκ is not w-divisible and Hω is singular.

Acknowledgment The authors are indebted to the referee for his very careful job and many helpful
comments.
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