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Periodic Solutions to Nonlinear Equations

with Oblique Boundary Conditions

Walter Allegretto & Duccio Papini

September 7, 2011

Abstract

We study the existence of positive periodic solutions to nonlinear elliptic and parabolic equations with
oblique and dynamical boundary conditions and non-local terms. The results are obtained through fixed
point theory, topological degree methods and properties of related linear elliptic problems with natural
boundary conditions and possibly non-symmetric principal part. As immediate consequences, we also
obtain estimates on the principal eigenvalue for non-symmetric elliptic eigenvalue problems.

1 Introduction

In this paper we consider the existence of positive periodic solutions to nonlinear elliptic/parabolic equations
subject to oblique natural boundary conditions. We first consider an elliptic problem in Section 2 and then
apply these results to parabolic problems that, in particular, involve situations with dynamic boundary
conditions. For the sake of simplicity we assume that the right hand side is described by a standard logistic
formula to which we have added a nonlocal term. This has been previously done for various biological
problems ([2],[6],[7],[27]). It invalidates the use of order methods. For a reference to these we direct the
reader to [24],[29]. We thus proceed with topological methods (for a detailed reference see the book [3]).

We observe that the oblique boundary conditions problems we consider would arise in situations where
the motion due to diffusion induced an effect in a different direction, for example in the situation of charged
bacteria [23] moving in a magnetic field. On the other hand, the dynamic boundary condition could be
used to model situations where the biological species was stored and released depending on conditions at the
boundary. To give the flavor of our results we state as an example the following:

Lemma 1.1. Let M,h, e ≥ 0 (possibly e ≡ 0) and P > 0. Assume that there exists a periodic function
c(t) > 0 such that ∫ T

0

∫
Ω

M

c
>

∫ T

0

∫
∂Ω

h

c
.

Then the problem 
e(x)c(t)ut −∆u = [M(x, t)− P (x, t)u]u in Ω× (0, T )
∂u

∂ν
+ c(t)ut + h(x, t)u = 0 on ∂Ω× (0, T )

e(x)u(x, 0) = e(x)u(x, T ) for x ∈ Ω

c(0)u(x, 0) = c(T )u(x, T ) for x ∈ ∂Ω

has a positive generalized solution. Here we assume all problem data regular.
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2 W. Allegretto & D. Papini

The proof of Lemma 1.1 is given in Theorem 3.4 below. We remark that the existence results of Sections 3
and 4 are obtained via fixed point theorems and topological degree arguments. In this respect the use
of estimates in Hölder spaces Cα,α/2 will ensure the compactness of the maps that are involved in the
arguments. Furthermore, solution bounds in these spaces depend only on coefficients estimates, not on the
specific coefficients themselves.

The history of problems with oblique boundary conditions is vast, but we were unable to find our results
in previous work. Problems with dynamic boundary conditions have somewhat fewer results. However we
were only able to find [1] that deals with the periodic case. There the model is a degenerate parabolic
equation and the existence and asymptotic stability of periodic solutions are proved. We note that in [1] the
existence of a positive solution in cases where there is also the identically zero solution was not considered,
nor were the effects on the solution existence of changing c.

Other references deal with the initial value problem and other questions. For example, in [22] dynami-
cal boundary conditions are considered for the Laplace and heat equations with semi-linear forcing terms.
Existence and uniqueness of initial value problems are obtained via semigroup theory. See also [13], [14],
[15], [21], [31] for analogous results. [38] studies a non-symmetric elliptic equation with respect to global
existence for initial value problems. In [35] and [36] the problems of global existence and blow-up in finite
time are tackled for elliptic or parabolic equations with a nonlinear dynamical boundary condition. The
blow-up phenomenon is considered also in [8] for the Laplace equation and conditions for the continuability
after the blow-up are given. Well- or ill-posedness of the initial value problem for linear heat and Laplace
equations with dynamical and reactive boundary conditions are studied in [33], [34]. The paper [16] deals
with reaction-diffusion equation from the point of view of global existence for initial value problems and
global attractor. [30] considers an analogous problem but it is mainly concerned with quenching solutions,
that is: bounded solutions with a bounded maximal time-interval of existence. In [18] a distributed model
for the ecology of mangroves featuring dynamic boundary conditions is considered; existence and unique-
ness of solutions of initial value problems and convergence to steady state are proved. [4] proves existence
and uniqueness of initial value problems for degenerate elliptic-parabolic equation with nonlinear diffusion
and nonlinear dynamical boundary condition. [17] also deals with a degenerate parabolic equation with
p-Laplacean and nonlinear dynamic boundary conditions and shows the existence of a global attractor. In
[12] a Hamilton-Jacobi equation with dynamic boundary condition is studied: in order to prove existence of a
viscosity solution of the initial value problem, an approximating parabolic problem with dynamic boundary
conditions is solved. The papers [37] and [11] deal with global existence and convergence to steady states
for Cahn-Hilliard and Caginalp equations with dynamic boundary conditions and regular potentials. On the
other hand, [19], [28], [9], [10], [20] considers different assumptions on the potentials for Cahn-Hilliard and
Caginalp phase-field systems.

2 Oblique elliptic Problems

We consider in this section the elliptic problem:

(2.1) −
n∑

i,j=1

∂

∂xi

(
aij(x)

∂u

∂xj

)
+

n∑
j=1

βj(x)
∂u

∂xj
+ l(x)u = f(x)

for x ∈ Ω ⊂ Rn with n ≥ 3 and Ω a smooth bounded domain, subject to the natural boundary condition:

(2.2)

n∑
i,j=1

aij(x)
∂u

∂xj
νi(x) + h(x)u = g(x) ,

where h ≥ 0 and ν⃗ = (ν1, . . . , νn) is the outward normal to ∂Ω. We assume all data is regular and set

A = (aij), β⃗ = (β1, . . . , βn). We also assume that (2.1)-(2.2) is elliptic, i.e. ⟨Aξ⃗, ξ⃗⟩ > δ|ξ⃗|2 for some δ > 0,
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but do not require that A be symmetric. Consequently, condition (2.2) becomes:

(2.3) ⟨(As +Aa)∇u, ν⃗⟩+ hu = g

where As = (A + A⊤)/2, Aa = (A − A⊤)/2. Since ⟨Aaν⃗, ν⃗⟩ = 0, we recover in this way oblique derivative
problems. We remark that if an oblique condition is given a priori, then the form associated with (2.1) can
be modified so that the given condition becomes “natural”. We will do this later explicitly for a special case,
and the general process may be found in detail in the book by Troianiello [32]. We also note that it will be

convenient for us to consider a related T -periodic elliptic problem in QT
△
= Ω× (0, T ): now (2.2) is to apply

only to ∂Ω× (0, T ), and we add periodic conditions on the problem data and u:

(2.4) u(x, 0) = u(x, T ) for x ∈ Ω.

We observe that if u solves either (2.1)-(2.2) or the periodic problem, then u is a classical solution (see, e.g.
[32]. For the periodic problem extend u to Ω× (−T, 2T ) by periodicity).

Lemma 2.1. Let u ≥ 0, nontrivial, solve (2.1)-(2.2) then

0 ≤
∫
Ω

{⟨
AA−1

s A⊤∇ϕ,∇ϕ
⟩
+ ⟨∇ϕ+A−1

s A⊤
a ∇ϕ, β⃗⟩ϕ+ ⟨A−1

s β⃗, β⃗⟩ϕ
2

4
+ l

u

u+ η
ϕ2

}
+

∫
∂Ω

hu

u+ η
ϕ2

−
∫
Ω

ϕ2

u+ η
f −

∫
∂Ω

ϕ2

u+ η
g(2.5)

for all ϕ ∈ H1(Ω) and η > 0. If, moreover, f, g are nonnegative and R(ϕ) ≤ 0 for some nontrivial ϕ ∈ H1(Ω),
where

(2.6) R(ϕ)
△
=

∫
Ω

{⟨
AA−1

s A⊤∇ϕ,∇ϕ
⟩
+ ⟨∇ϕ+A−1

s A⊤
a ∇ϕ, β⃗⟩ϕ+ ⟨A−1

s β⃗, β⃗⟩ϕ
2

4
+ lϕ2

}
+

∫
∂Ω

hϕ2 ,

then either µ{x ∈ Ω|u(x) = 0}+ µ′{x ∈ ∂Ω|u(x) = 0} > 0 (where µ and µ′ denote the measures in Rn and
in ∂Ω respectively), or R(ϕ) = 0, ϕ2f = ϕ2g = 0 and

∇
(
ϕ

u

)
= (A⊤)−1

(
Aa

∇u

u
− β⃗

2

)
ϕ

u
wherever u > 0.

Proof. Assume first that ϕ(x) > 0, u(x) > 0. We observe by direct calculation:⟨
As∇

(
ϕ

u

)
,∇
(
ϕ

u

)⟩
u2 = ⟨As∇ϕ,∇ϕ⟩+ 2⟨A⊤

a ∇ϕ,∇u⟩ϕ
u
−
⟨
A⊤∇

(
ϕ2

u

)
,∇u

⟩
.

Put b⃗ = 2(A⊤
a ∇ϕ)/ϕ, whence

2⟨A⊤
a ∇ϕ,∇u⟩ϕ

u
= ⟨⃗b,∇u⟩ϕ

2

u
= −

⟨⃗
b,∇

(
ϕ

u

)⟩
uϕ+ ⟨⃗b,∇ϕ⟩ϕ .

We note that ⟨⃗b,∇ϕ⟩ϕ = 0, whence

u2

⟨
As∇

(
ϕ

u

)
,∇
(
ϕ

u

)⟩
+

⟨⃗
b+ β⃗,∇

(
ϕ

u

)⟩
uϕ = ⟨As∇ϕ,∇ϕ⟩−

⟨
A⊤∇

(
ϕ2

u

)
,∇u

⟩
+⟨β⃗,∇ϕ⟩ϕ−⟨β⃗,∇u⟩ϕ

2

u
.

We add the term ⟨(As)
−1(⃗b+ β⃗), b⃗+ β⃗⟩ϕ2/4 to both sides, thus completing the square on the left hand side

and obtaining

0 ≤
⟨
A−1

s

[
uAs∇

(
ϕ

u

)
+

ϕ

2
(⃗b+ β⃗)

]
,

[
uAs∇

(
ϕ

u

)
+

ϕ

2
(⃗b+ β⃗)

]⟩
=⟨As∇ϕ,∇ϕ⟩+ ⟨β⃗,∇ϕ⟩ϕ−

⟨
A⊤∇

(
ϕ2

u

)
,∇u

⟩
− ⟨β⃗,∇u⟩ϕ

2

u
+ ⟨A−1

s (⃗b+ β⃗), b⃗+ β⃗⟩ϕ
2

4
.
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We expand the last term on the right hand side and obtain:

⟨A−1
s (⃗b+ β⃗), b⃗+ β⃗⟩ϕ

2

4
= ⟨AaA

−1
s A⊤

a ∇ϕ,∇ϕ⟩+ ⟨A−1
s A⊤

a ∇ϕ, β⃗⟩ϕ+ ⟨A−1
s β⃗, β⃗⟩ϕ

2

4
.

We thus obtain for x such that ϕ(x) > 0:

0 ≤
⟨
A−1

s

[
uAs∇

(
ϕ

u

)
+

ϕ

2
(⃗b+ β⃗)

]
,

[
uAs∇

(
ϕ

u

)
+

ϕ

2
(⃗b+ β⃗)

]⟩
=
⟨
AA−1

s A⊤∇ϕ,∇ϕ
⟩
+ ⟨∇ϕ+A−1

s A⊤
a ∇ϕ, β⃗⟩ϕ+ ⟨A−1

s β⃗, β⃗⟩ϕ
2

4

−
⟨
A⊤∇

(
ϕ2

u

)
,∇u

⟩
− ⟨β⃗,∇u⟩ϕ

2

u
,

where we used the identity As + AaA
−1
s A⊤

a = (As + Aa)A
−1
s (As − Aa) = AA−1

s A⊤. Since on the set
{x : ϕ(x) = 0} we have ∇ϕ = 0 a.e., the above inequality holds for almost all x ∈ Ω. Integrating, we obtain:

0 ≤
∫
Ω

⟨
A−1

s

[
uAs∇

(
ϕ

u

)
+

ϕ

2
(⃗b+ β⃗)

]
,

[
uAs∇

(
ϕ

u

)
+

ϕ

2
(⃗b+ β⃗)

]⟩
=

∫
Ω

[⟨
AA−1

s A⊤∇ϕ,∇ϕ
⟩
+ ⟨β⃗,∇ϕ⟩ϕ+ ⟨A−1

s A⊤
a ∇ϕ, β⃗⟩ϕ+ ⟨A−1

s β⃗, β⃗⟩ϕ
2

4
+ lϕ2

]
+

∫
∂Ω

hϕ2 −
∫
Ω

ϕ2

u
f −

∫
∂Ω

ϕ2

u
g .

If u ≥ 0, we repeat the argument, replacing u by u + η, for η > 0, in the inequality. We obtain the same
estimate with∫
Ω

lϕ2+

∫
∂Ω

hϕ2−
∫
Ω

ϕ2

u
f−
∫
∂Ω

ϕ2

u
g replaced by

∫
Ω

l
u

u+ η
ϕ2+

∫
∂Ω

hu

u+ η
ϕ2−

∫
Ω

ϕ2

u+ η
f−
∫
∂Ω

ϕ2

u+ η
g

That is exactly (2.5).
If moreover R(ϕ) ≤ 0, f, g are non-negative and µ{x ∈ Ω|u(x) = 0} + µ′{x ∈ ∂Ω|u(x) = 0} = 0, then

from (2.5), as η → 0, we have that R(ϕ) = 0, ϕ2f = ϕ2g = 0 and at any x with u(x) > 0:

0 = As∇
(
ϕ

u

)
+

ϕ

2u
(⃗b+ β⃗) = As∇

(
ϕ

u

)
−Aa∇

(
ϕ

u
u

)
1

u
+

ϕ

u

β⃗

2
= A⊤∇

(
ϕ

u

)
−

(
Aa

∇u

u
− β⃗

2

)
ϕ

u

and the result follows.

As immediate applications of Lemma 2.1 we obtain estimates of the principal eigenvalue of non-symmetric
elliptic operators, by letting η → 0.

Corollary 2.2. Let λ denote the principal eigenvalue for (2.1)-(2.2), where f
△
= λu and g ≡ 0, with

eigenvector u > 0. Then:

λ ≤ inf
ϕ∈H1(Ω)

[
R(ϕ)∫
Ω
ϕ2

]
.

The choice ϕ ≡ 1 gives:

Corollary 2.3.

λ ≤ 1

|Ω|

{∫
Ω

(
⟨A−1

s β⃗, β⃗⟩
4

+ l

)
+

∫
∂Ω

h

}
.
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The following result is an application of Lemma 2.6 to the principal Steklov eigenvalue. We refer to [5]
for recent results on Steklov eigenvalues in the symmetric case.

Corollary 2.4. Let λ denote the principal eigenvalue for the following Steklov eigenvalue problem:{
−∇ · [A∇u] + β⃗ · ∇u+ lu = 0 in Ω

⟨A∇u, ν⃗⟩+ hu = λu on ∂Ω.

Then

λ ≤ R(ϕ)∫
∂Ω

ϕ2
∀ϕ ∈ H1(Ω).

We comment on the analogous situation for the periodic-elliptic problem in QT
△
= Ω × (0, T ). Observe

that in this case similar results hold if all data is periodic and now

ϕ ∈ H1,per(QT ) = {ϕ : ϕ ∈ H1(QT ), ϕ is periodic in xn+1},

once we observe that a solution u must also have ∂u/∂xn+1 periodic, while on ∂Ω × (0, T ) the outward
normal n⃗ = (ν⃗⊤, 0)⊤ must be perpendicular to the xn+1-axis. In particular it is also convenient to observe
for the periodic-elliptic problem we consider next, that in the preceding argument the variables can be
treated differently in the case of a cylindrical domain as follows: set xn+1 = t, ∇u = ( ∂u

∂x1
, . . . , ∂u

∂xn
)⊤,

δu = (∇⊤u, ut)
⊤. Consider the problem:

(2.7) Lu △
= −∇ · [A∇u+ b⃗ut]−

∂

∂t
[−b⃗ · ∇u+ ϵut] + z⃗ · ∇u+ eut + ru = f in QT

with smooth periodic data, and

(A∇u+ b⃗ut) · ν⃗ + hu = 0 on ∂Ω× [0, T ],(2.8)

u(x, 0) = u(x, T ) for x ∈ Ω,(2.9)

where ν⃗ is the outward normal to ∂Ω. Assume further that A = (aij) is a symmetric positive definite n× n
matrix, ϵ > 0. We then have:

Corollary 2.5. Let k > 1, u > 0, and set

A =


(
1− 1

k

)
A b⃗

−b⃗⊤ ϵ


with As = (A+ A⊤)/2, Aa = (A− A⊤)/2. Let ϕ be smooth, periodic in t. Then:

0 ≤
∫
QT

⟨
A

k
∇ϕ,∇ϕ

⟩
+

∫
QT

⟨z⃗,∇ϕ⟩ϕ+

∫
QT

k

4

⟨
A−1z⃗, z⃗

⟩
ϕ2 +

∫
QT

⟨
AA−1

s A⊤δϕ, δϕ
⟩

+

∫
QT

rϕ2 +

∫ T

0

∫
∂Ω

ϕ2h−
∫
QT

ϕ2

u
(f − eut).

Proof. Choose k > 1 and set

L1u =−∇ ·
[
A

k
∇u

]
+ z⃗ · ∇u,

L2u =−∇ ·
[(

1− 1

k

)
A∇u+ b⃗ut

]
− ∂

∂t

[⃗
b · ∇u+ ϵut

]
+ ru.
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We then observe that L(u) = f implies L1(u) + L2(u) = f − eut. We basically repeat the calculation of
Lemma 2.1 for this case and obtain for any t ∈ (0, T ):

(2.10) 0 ≤
∫
Ω

⟨
A

k
∇ϕ,∇ϕ

⟩
+

∫
Ω

⟨z⃗,∇ϕ⟩ϕ+

∫
Ω

k

4

⟨
A−1z⃗, z⃗

⟩
ϕ2 −

∫
∂Ω

⟨
A

k
∇u, ν⃗

⟩
ϕ2

u
−
∫
Ω

ϕ2

u
L1(u).

Next observe that once again repeating the calculations of Lemma 2.1 yields, with A replacing A and β⃗ = 0
in (2.5), and recalling δϕ = (∇ϕ, ϕt)

(2.11) 0 ≤
∫
QT

⟨
AA−1

s A⊤δϕ, δϕ
⟩
+

∫
QT

rϕ2 −
∫
∂QT

ϕ2

u
⟨Aδu, n⃗⟩ −

∫
QT

ϕ2

u
L2(u).

Integrating (2.10) with respect to t and adding to (2.11) yield, noting that on ∂Ω × (0, T ) the normal n⃗ is
perpendicular to the t-axis,

(2.12)

0 ≤
∫
QT

⟨
A

k
∇ϕ,∇ϕ

⟩
+

∫
QT

⟨z⃗,∇ϕ⟩ϕ+

∫
QT

k

4

⟨
A−1z⃗, z⃗

⟩
ϕ2 +

∫
QT

⟨
AA−1

s A⊤δϕ, δϕ
⟩

+

∫
QT

rϕ2 −
∫ T

0

∫
∂Ω

ϕ2

u

⟨
A∇u+ b⃗ut, ν⃗

⟩
−
∫
QT

ϕ2

u
L(u).

We observe that the last two terms of (2.12) are:∫ T

0

∫
∂Ω

ϕ2h−
∫
QT

ϕ2

u
(f − eut).

3 The Periodic Parabolic Problem

We now consider, as an application of the results in Section 2, the following periodic parabolic problem:

(3.1)



d(x, t)ut −∆u =

(
M(x, t)− P (x, t)u−

∫
Ω

S(ξ, t)udξ

)
u in QT

△
= Ω× (0, T ) ⊂ Rn+1

∂u

∂ν
+ c(x, t)

∂u

∂t
+ h(x, t)u = 0 on ∂Ω× (0, T )

d(x, 0)u(x, 0) = d(x, T )u(x, T ) x ∈ Ω

c(x, 0)u(x, 0) = c(x, T )u(x, T ) x ∈ ∂Ω

with d,M, S, h ≥ 0, P, c > 0 and all periodic. Specifically, we perturb the problem to an elliptic equation as
follows: for 0 < ϵ < 1 and a suitable smooth function a(x, t) ≥ a0 > 0

(3.2) − ϵ

a(x, t)
utt + d(x, t)ut −∆u =

(
M(x, t)− P (x, t)u−

∫
Ω

S(ξ, t)udξ

)
u+ +

ϵ

a(x, t)

subject to the (dynamic) boundary conditions:

∂u

∂ν
+ c(x, t)

∂u

∂t
+ h(x, t)u = 0 (x, t) ∈ ∂Ω× (0, T ),(3.3)

u(x, 0) = u(x, T ) x ∈ Ω.(3.4)
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We can incorporate (3.3) as a natural condition in (3.2) by dividing (3.3) by c and rewriting (3.2) in the
form:

(3.5)
L1(u)

△
= −∇ · (a∇u+ b⃗ut)−

∂

∂t
(−b⃗ · ∇u+ ϵut) +∇a · ∇u+ adut + (∇ · b⃗)ut −

∂b⃗

∂t
· ∇u

= a

(
M − Pu−

∫
Ω

Su

)
u+ + ϵ

with the following choices: a(x, t) = 1/c(x, t) and b⃗ : Ω → Rn such that b⃗ · ν⃗ = 1 on ∂Ω, where c is extended
to a positive smooth function on QT and ν⃗ denotes the outward normal to ∂Ω). We recall that we are
interested in the solution of (3.3)-(3.5) in the limit as ϵ → 0, and that all data is assumed smooth, periodic.

Theorem 3.1. Problem (3.3)–(3.5) has a positive classical solution uϵ for any ϵ > 0. This uϵ also solves
(3.2)–(3.4).

Proof. First of all add a linear term aRu to both sides of (3.5) so that the left hand side is coercive, and
such that any regular solution of (3.3)–(3.5) is positive in Ω× (0, T ) by the maximum principle.

Secondly, any solution of (3.3)–(3.5) is bounded above uniformly with respect to ϵ ∈ (0, 1). Indeed, since
u > 0, we have(

M +R− Pu−
∫
Ω

Su

)
u+

ϵ

a
≤ (M +R− Pu)u+

1

a0
≤ ∥M +R∥2∞

4minP
+

1

a0

△
= K.

Now let z = z(x) > 0 be the solution of −∆z +Rz = K in Ω
∂z

∂ν
= 0 on ∂Ω

and observe that L1(z − u) + aR(z − u) ≥ 0, therefore u(x, t) ≤ z(x) again by the maximum principle. In
particular, the regularity estimates in [25] show that any solution of (3.2)–(3.4) is bounded in Cα(QT ) with
α and the bound depending only on ϵ. For the reader’s convenience, we recall that, if ∂Ω is smooth and
0 < α < 1, Cα(QT ) is the Banach space of continuous functions u : QT → R such that

(3.6) ⟨u⟩(α)QT

△
= sup

|u(x, t)− u(x′, t′)|
|(x− x′, t− t′)|α

< +∞

where the supremum is taken over all (x, t), (x′, t′) ∈ QT such that |x − x′| + |t − t′| ≤ ρ0 for some fixed
ρ0 > 0. Therefore we can consider the compact operator T : Cα/2(QT ) → Cα/2(QT ) such that T (ξ) is the
solution of L1(v)+aRv = a(M+R−Pξ−

∫
Ω
Sξ)ξ++ϵ with (3.3),(3.4). The existence of a solution uϵ follows

by the Schauder Fixed Point Theorem. Regularity is also immediate from local elliptic estimates (see [25])
after we extend u to t ∈ [−T, 2T ] by periodicity. Finally the equivalence of (3.3)-(3.5) to (3.2)-(3.4) is by
direct calculation, since we observe that (3.3) can be recovered as the natural boundary condition associated
with (3.5).

We remark that during the preceding proof we obtained also:

Lemma 3.2. The solutions uϵ of (3.2)–(3.4) are bounded above uniformly with respect to ϵ ∈ [0, 1].

We employ the results of Section 2 to obtain conditions to ensure that uϵ ̸→ 0. Specifically:

Lemma 3.3. If one of the following three conditions is satisfied:

(a) d = d(x) and M ≥ 0, c = c(x) and
∫
QT

M >
∫ T

0

∫
∂Ω

h;
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(b) d = d(x) and M ≥ 0 and the Dirichlet problem:{
−∆w −M(x)w = λ1w in Ω

w = 0 on ∂Ω

has least eigenvalue λ1 < 0 with eigenvector ϕ1, where M(x) = 1
T

∫ T

0
M(x, t)dt and ∥ϕ∥L2(Ω) = 1;

(c) The quotient d/c is a function of x (we allow d ≡ 0) and

(3.7)

∫
QT

M

c
>

∫
QT

c

4

∣∣∣∣∇(1

c

)∣∣∣∣2 + ∫ T

0

∫
∂Ω

h

c

then {uϵ} are bounded away from zero.

Proof. We first deal with cases (a) and (b). Since c = c(x) and a(x) = 1/c(x) in (3.2), we observe that uϵ

satisfies: 
−∆u =

(
M(x, t)− P (x, t)u−

∫
Ω

Su

)
u+ +

ϵ

a(x)
+

ϵutt

a(x)
− d(x)ut in Ω, t ∈ (0, T )

∂u

∂ν
+ h(x, t)u = −c(x)ut on ∂Ω, t ∈ (0, T )

thus we can apply (2.5) in Lemma 2.1 with the choices A ≡ diag(1, . . . , 1), β⃗ ≡ 0, l ≡ 0, g = −c(x)∂uϵ

∂t and

f(x, t) =

(
M(x, t)− P (x, t)uϵ −

∫
Ω

Suϵ

)
u+
ϵ +

ϵ

a(x)
+

ϵ

a(x)

∂2uϵ

∂t2
− d(x)

∂uϵ

∂t

and, after integrating on (0, T ), we obtain by T -periodicity:

0 ≤
∫
QT

|∇ϕ|2 +
∫ T

0

∫
∂Ω

huϵϕ
2

uϵ + η
−
∫
QT

ϕ2

(
M − Puϵ −

∫
Ω

Suϵ

)
uϵ

uϵ + η
− ϵ

∫
QT

ϕ2

a(uϵ + η)

(
∂2uϵ

∂t2
+ 1

)
,

where the last integral can be dropped since:∫
QT

ϕ2

a(uϵ + η)

∂2uϵ

∂t2
=

∫
QT

ϕ2

a(uϵ + η)2

(
∂uϵ

∂t

)2

≥ 0.

In case (a) we choose ϕ ≡ 1 and let η → 0 to obtain

0 ≤
∫ T

0

∫
∂Ω

h−
∫
QT

(
M − Puϵ −

∫
Ω

Suϵ

)
and we observe that ∥uϵ∥L1 cannot tend to zero.

In case (b) we choose ϕ = ϕ1 and note that the Dirichlet condition eliminates the boundary integrals.
Hence we obtain, as η → 0,

0 ≤
∫
QT

|∇ϕ1|2 −
∫
QT

(
M − Puϵ −

∫
Ω

Suϵ

)
ϕ2
1 =

∫
QT

(M − λ1)ϕ
2
1 −

∫
QT

(
M − Puϵ −

∫
Ω

Suϵ

)
ϕ2
1

and ∥uϵ∥L1 ̸→ 0 since λ1 < 0.
Finally, to deal with case (c) we choose a(x, t) = 1/c(x, t) in (3.5) or, equivalently, in (3.2) and we apply

Corollary 2.5 with

A = diag(a, . . . , a), a =
1

c
, z⃗ = ∇

(
1

c

)
, r =

−M + Puϵ +
∫
Ω
Suϵ

c
, e =

d

c
+∇ · b⃗, f = ϵ, k > 1
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and ϕ ≡ 1 to obtain

0 ≤
∫
QT

kc

4

∣∣∣∣∇(1

c

)∣∣∣∣2 + ∫ T

0

∫
∂Ω

h

c
−
∫
QT

1

c

(
M − Puϵ −

∫
Ω

Suϵ

)
+

∫
QT

(
d

c
+∇ · b⃗

)
(uϵ)t
uϵ

Once again, since d/c+∇· b⃗ are functions purely of x, integration with respect to t shows that the last term
vanishes by periodicity. We thus conclude that ∥uϵ∥L1 ̸→ 0 if (3.7) holds and the result follows.

We note that since uϵ are bounded above in L∞, then there is a subsequence that converges strongly
in L2(QT ) [26], while (3.2)-(3.4) indicate that {uϵ} are also bounded in V 1,0

2 (see [26]) by integration. We
recall that V 1,0

2 (QT ) can be obtained by completing the Sobolev space W 1,1
2 (QT ) with respect to the norm

ess supt∈[0,T ] ∥u(·, t)∥L2(Ω) + ∥∇u∥L2(QT ). It follows that without loss of generality we may assume the

existence of a nontrivial u ≥ 0 such that uϵ → u strongly in L2(QT ) and weakly in V 1,0
2 .

Let ϕ : QT → R be a smooth function such that ϕ(x, 0) = ϕ(x, T ), ϕt(x, 0) = ϕt(x, T ). We recall that

b⃗ · ν⃗ = 1 and integrate (3.2)–(3.4) to obtain:

−
∫
QT

uϵ
∂

∂t
(dϕ) +

∫
QT

∇uϵ · ∇ϕ+

∫
QT

uϵ∇ ·
{⃗
b

[
hϕ− ∂

∂t
(cϕ)

]}
− ϵ

∫
QT

uϵ
∂2

∂t2

(
ϕ

a

)
+

∫
QT

∇uϵ · b⃗
[
hϕ− ∂

∂t
(cϕ)

]
=

∫
QT

[(
M − Puϵ −

∫
Ω

Suϵ

)
uϵ +

ϵ

a

]
ϕ.

If one of the conditions of Lemma 3.3 holds, we pass to the limit as ϵ → 0 and find the existence of a weak
V2 solution to (3.1) after noting that functions that are periodic as well as their derivatives are dense in the
space of periodic functions.

We have thus obtained:

Theorem 3.4. If one of the conditions of Lemma 3.3 holds, then there exists a positive weak solution of
problem (3.1).

We note some of the consequences of condition (c) of Lemma 3.3, and in particular that if c = c(t), then
(3.7) reduces to ∫ T

0

1

c

(∫
Ω

Mdx

)
dt >

∫ T

0

1

c

(∫
∂Ω

hdx

)
dt.

Whence we have

Corollary 3.5. If ∫
Ω

M(x, t0)dx >

∫
∂Ω

h(x, t0)

for some t0 ∈ (0, T ) and recalling that the coefficients are smooth, then there exists a positive function c = c(t)
such that problem (3.1) has a positive solution with d(x, t) = c(t)p(x) and any non-negative function p.

Observe that the condition on d/c will always hold if d ≡ 0.

4 Solution of the Nonlinear Periodic Parabolic Problem

We now consider the existence of a solution of the nonlinear version of problem (3.1) given by

(4.1)


d(x, t)ut −∇ · [A(x, t, u)∇u] =

(
M − Pu−

∫
Ω

Su

)
u in QT

⟨A(x, t, u)∇u, ν⃗⟩+ c(x, t)ut + h(x, t)u = 0 on ∂Ω× (0, T )

u(x, 0) = u(x, T ) x ∈ Ω
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We recall that all data is smooth, c, d, P > 0, M,S, h ≥ 0 and that A is uniformly elliptic and bounded:

a0|ξ⃗|2 ≤ ⟨A(x, t, u)ξ⃗, ξ⃗⟩ ≤ A0|ξ⃗|2 for all suitable x, t, u, ξ⃗

for some positive constants a0, A0. We do not require A to be symmetric, although we believe the results to
be new even in this case. We explicitly observe that henceforth we assume d > 0.

We proceed by observing the following regularity results which will be useful in the next section. Specif-
ically consider the linear parabolic problem:

(4.2)

{
L(w) △

= d(x, t)wt −∇ · [B(x, t)∇w] +N(x, t)w = f(x, t) in QT

⟨B∇w, ν⃗⟩+ c(x, t)wt + h(x, t)w = 0 on ∂Ω× (0, T )

with B, d,N, c, h smooth, d, c > 0, h ≥ 0, f ∈ L∞ and ⟨B(x, t)ξ⃗, ξ⃗⟩ ≥ a0|ξ⃗|2 for all suitable x, t, ξ⃗ and a
positive constant a0. B is not necessarily symmetric. Existence, uniqueness and suitable regularity of the
solution of (4.2) follow from [31] and its references and can also be obtained by adaptations of the techniques
described in the book [26]. However, for the reader’s convenience we list here the properties that we need.
For 0 < α < 1, let Cα,α/2(QT ) denote the Hölder space of continuous functions u : QT → R such that

sup
t∈[0,T ]

⟨u(·, t)⟩(α)Ω + sup
x∈Ω

⟨u(x, ·)⟩(α/2)(0,T ) < +∞

(see (3.6) and [26]). In the sequel α will denote a generic positive constant that may change from proof to
proof or even within the same proof. Let N > 0 be sufficiently large.

Lemma 4.1. If the initial data w0 is smooth, the Initial Value Problem associated with (4.2) has a weak
solution w ∈ Cα,α/2(QT ) ∩ V 1,0

2 (QT ). If the initial data satisfies w0 ≥ 0 and f ≥ 0, then w ≥ 0.

We then note that w is defined in QT for any T > 0 and furthermore:

Lemma 4.2. Let w be the solution of Lemma 4.1. Then

(4.3) ∥w∥L∞(Ω×[T/2,3T/2]) ≤ K
[
∥w∥L2(Ω×[T/4,7T/4]) + ∥f∥L∞(QT )

]
.

Lemma 4.3. There exist constants K0 > 0, α > 0 such that

(4.4) ∥w∥Cα,α/2(Ω×[T/2,3T/2]) ≤ K0

[
∥w∥L2(Ω×(T/4,7T/4)) + ∥f∥L∞(QT )

]
with K0 independent of the coefficient N of (4.2). If w ≥ 0 and f ≤ 0 then the dependence on ∥f∥L∞(QT )

may be dropped.

Consider now the periodic problem associated with (4.2). For any w0 ∈ Cα(Ω) (α small) we put T to be
the Poincaré map: T (w0) = w(·, T ), where w is the (generalized) solution in Cα,α/2(QT ) ∩ V 1,0

2 (QT ) of the
initial value problem. We then have:

Theorem 4.4. Let N be large enough. Then the Poincaré map has a fixed point, i.e. problem (4.2) has a
unique solution in Cα,α/2(QT ). The coefficient α only depends on the estimates for B(x, t), not on B itself.

Without loss of generality, suppose N > 0 and let w0 ∈ Cα(Ω). We recall that the coefficient K0 in (4.4)
is independent of N . Assume ∥w0∥Cα ≤ C0∥f∥L∞ for some C0 to be chosen below. The energy inequality
yields

∥w∥L2(Ω×[T/4,7T/4]) ≤
B(1 + C0)

inf N
∥f∥L∞

for some constant B independent of w, f . Choosing N shows that T maps a ball in Cα(Ω) to itself. It is
easy to see that T is continuous and completely continuous. The fixed point of T yields the desired solution,
whose uniqueness follows in the usual way by taking differences of two possible solutions.
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Theorem 4.5. If one of the following three conditions is satisfied:

(a) d = d(x) and M ≥ 0, c = c(x) and
∫
QT

M >
∫ T

0

∫
∂Ω

h;

(b) d = d(x) and M ≥ 0 and the Dirichlet problem:−A2
0

a0
∆w −M(x)w = λ1w in Ω

w = 0 on ∂Ω

has least eigenvalue λ1 < 0 with eigenfunction ϕ1, where M(x) = 1
T

∫ T

0
M(x, t)dt and ∥ϕ1∥L2(Ω) = 1;

(c) The quotient d/c is a function of x and∫
QT

M

c
>

A2
0

a0

∫
QT

c

4

∣∣∣∣∇(1

c

)∣∣∣∣2 + ∫ T

0

∫
∂Ω

h

c
.

Then there exists a non-negative solution to problem (4.1).

Proof. We add the linear term +Nu to both sides of the equation of (4.1), with N > 0 to be chosen later
sufficiently large depending only on data, and for v ∈ Cα,α/2(QT ) put u = Z(v) iff

dut −∇ · [A(x, t, Jη(v))∇u] +Nu =

(
M +N − Pv −

∫
Ω

Sv

)
v+

subject to the same boundary conditions of (4.1). Here Jη denotes a map: Cα,α/2(QT ) → C∞(QT ) such
that Jη(v) → v in Cα,α/2(QT ) as η → 0. Using the previous regularity results, we view Z as a map
Cα,α/2(QT ) → Cα,α/2(QT ), for some small positive α, whose fixed points are the nonnegative solutions of
(4.1).

Under the assumptions of the theorem, no solution u of

(4.5) dut −∇ · [A(x, t, Jη(u))∇u] =

(
M − Pu−

∫
Ω

Su

)
u+ ϵ,

subject to the boundary conditions of (4.1) can have a small Cα,α/2-norm for a fixed ϵ ≥ 0. In particular we
show that the norm of the solutions u to (4.5) are bounded from below independently of ϵ small. Indeed, in

case (a) we apply Lemma 2.1 with the choices ϕ ≡ 1, β⃗ ≡ 0, l ≡ 0, g = −cut and

f =

(
M − Pu

∫
Ω

Su

)
u+ ϵ− dut ,

we integrate (2.5) on (0, T ), use T -periodicity, let η → 0 and obtain∫
QT

M −
∫ T

0

∫
∂Ω

h ≤
∫
QT

(
Puϵ +

∫
Ω

Suϵ

)
≤ (∥P∥∞ + |Ω|∥S∥∞)∥uϵ∥L1 .

In case (b) we make the same choices as in case (a) except for ϕ = ϕ1 and we get

∥ϕ1∥2∞(∥P∥∞ + |Ω|∥S∥∞)∥uϵ∥L1 ≥
∫
QT

(
Puϵ +

∫
Ω

Suϵ

)
ϕ2
1

≥−
∫
QT

⟨AA−1
s A⊤∇ϕ1,∇ϕ1⟩+

∫
QT

Mϕ2
1

≥−
∫
QT

A2
0

a0
|∇ϕ1|2 +

∫
QT

Mϕ2
1

=− Tλ1.
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In case (c) we write (4.5) in the following way:

(4.6) −∇ ·
[
A

c
∇u

]
+

[
A⊤∇

(
1

c

)]
· ∇u =

(
M − Pu−

∫
Ω

Su

)
u

c
+

ϵ

c
− d

c
ut

and the boundary condition on ∂Ω× (0, T ) as⟨
A

c
∇u, ν⃗

⟩
+

h

c
u = −ut ,

therefore we can apply Lemma 2.1 with the choices ϕ ≡ 1, A/c in place of A, β⃗ = A⊤∇(1/c), l ≡ 0, h/c in
place of h, g = −ut and f equal to the right hand side of (4.6). Recalling that now d/c does not depend on
t, the usual computations with (2.5) lead to

∥P∥∞ + |Ω|∥S∥∞
min c

∥uϵ∥L1 ≥
∫
QT

Puϵ +
∫
Ω
Suϵ

c

≥
∫
QT

M

c
−
∫
QT

c

4

⟨
A−1

s A⊤∇
(
1

c

)
, A⊤∇

(
1

c

)⟩
−
∫ T

0

∫
∂Ω

h

c

≥
∫
QT

M

c
− A2

0

a0

∫
QT

c

4

∣∣∣∣∇(1

c

)∣∣∣∣2 − ∫ T

0

∫
∂Ω

h

c
.

In all three cases the norm ∥uϵ∥L1 is bounded away from zero uniformly with respect to ϵ (and η),
therefore, the same holds for the stronger norm ∥uϵ∥Cα,α/2(QT ). By the continuity of the Leray-Schauder

degree, we conclude that deg(u − Z(u), Br, 0) = 0 where Br is the ball of radius r in Cα,α/2(QT ) for some
small r > 0 independent of η.

In the same way, if

(4.7) dut −∇ · [A(x, t, Jη(u))∇u] +Nu = λ

[(
M +N − Pu−

∫
Ω

Su

)
u+

]
for some λ, 0 ≤ λ ≤ 1, then we show that ∥u∥L2 is bounded uniformly with respect to λ (and η). Indeed, we
multiply both sides of equation (4.7) by u and integrate over QT using the boundary conditions and obtain∫

QT

(
M +N − Pu−

∫
Ω

Su

)
u2 ≥ a0

∫
QT

|∇u|2 +
∫ T

0

∫
∂Ω

hu2 +

∫
QT

(
N − dt

2

)
u2 −

∫ T

0

∫
∂Ω

ctu
2

2
.

Now, let the function c be extended to a smooth T -periodic function on QT and let b⃗ : Ω → Rn be a smooth

vector field such that b⃗ · ν⃗ = 1 on ∂Ω. We can estimate the last integral in the preceding inequality as follows:∫
∂Ω

ctu
2

2
=

∫
∂Ω

ctu
2

2
b⃗ · ν⃗

=

∫
Ω

u2∇ ·
(ct
2
b⃗
)
+

∫
Ω

ctu⃗b · ∇u

≤
∫
Ω

u2∇ ·
(ct
2
b⃗
)
+ η

∫
Ω

|∇u|2 +
∫
Ω

c2t |⃗b|2

4η
u2

for any η > 0. Therefore, if we choose η < a0 and

N > sup
QT

[
dt
2

+∇ ·
(ct
2
b⃗
)
+

c2t |⃗b|2

4η

]
,
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we have that

0 <

∫
QT

(
M +N − Pu−

∫
Ω

Su

)
u2 ≤ (∥M∥∞ +N)∥u∥2L2 −

minP

|QT |1/2
∥u∥3L2

by Hölder’s inequality and, hence, ∥u∥L2 is bounded uniformly with respect to λ ∈ [0, 1].
We conclude from (4.4) by periodicity that ∥u∥Cα,α/2(QT ) is bounded uniformly with respect to λ ∈ [0, 1].

It follows that deg(u− Z(u), BR \Br, 0) = 1 and the existence of a nontrivial nonnegative solution to (4.1)
is immediate by the properties of the Leray-Schauder degree and a limit argument as η → 0 (we recall that
the obtained bounds on u are uniform with respect to η).

Remark 4.1. If A(x, t, u) is symmetric then the constant A2
0/a0 in conditions (b) and (c) can be replaced by

A0.
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